期末复习(一) 有理数

合集下载

人教版七年级上册期末复习第一章有理数:有理数及其运算学案

人教版七年级上册期末复习第一章有理数:有理数及其运算学案
3.下列说法中,正确的是().
A.任何数都不等于它的相反数
B.互为相反数的两个数的立方相等
C.如果a大于b,那么a的倒数一定大于b的倒数
D.a与b两数和的平方一定是非负数
4.如果 ,则 的取值范围是()
A. B. C. D.
5.若 ,则 的值为()
A. B. C. D.
6.四个互不相等的整数的积为4,那么这四个数的和是()
则1+3+5+7+9+ … +13=;
1+3+5+7+9+ … +(2n-1)+(2n+1)=;
41+43+45+ …… +77+79=.
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。5.古代埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数.我们注意到,某些真分数恰好可以写成两个埃及分数的和,例如: = + .

七年级数学期末复习——第一章

七年级数学期末复习——第一章

七年级上册数学期末复习—有理数一、正确判断正、负数1. 叫做正数, 叫做负数。

(注0既不是正数,也不是负数)。

正负数的意义是 。

2.如果收入20元记作+20元,那么-75元表示 .-30%表示 .3.某地最高气温为6℃,比最低气温-3℃高________4.某零件内径的标准取值为(20±0.2)mm ,若工厂制得五个零件的内径分别为20.19,20.3,19.78,18.82,19.9(单位:mm),则合格的零件有_____个二、有理数的分类1.按定义分:2.按性质分:3.π是属于( ) A.有理数; B.正分数; C.自然数; D.正数4. 把下列各数填在相应的大括号里。

32,763-,7.7,24-,08.0-,1415.3-,0,85,π5 正数集合:{}⋯ ;负数集合:{}⋯ ;整数集合: {}⋯ ;负分数集合:{}⋯ 。

三、数轴的理解1.数轴的三要素是 ;若是a 一个正数,则表示数a 的点在原点的 边,表示数-a 的点在原点的 边,与原点的距离是 个单位长度。

2.在数轴上表示下列各数及它们的相反相数,并根据数轴上点的位置把它们按从小到大的顺序排列。

213-,2--,3,0,2113.在数轴上,与表示-1的点的距离为3的点所表示的数是 。

4.在数轴上与数-1所对应的点相距2个单位长度的点表示的数为 .5.在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是( )A.-1B.-6C.-2或-6D.无法确定四、相反数1. 叫做互为相反数,互为相反数的两个数在数轴上的特点为 ,相反数是它本身的数是 .2.满足a a =-的数有 个,他们是 ;3.若3m -4与-11互为相反数,则m=______;4.若34m -的相反数是—11,则231m m -+的值为________;5.若2x+5与3-x 互为相反数,则x 2+3x -1的值为________五、绝对值1. -2.5的相反数是 ;绝对值是 。

《第一章 有理数》期末考点复习

《第一章 有理数》期末考点复习

0-11a b 《第一章 有理数》期末考点复习班级 姓名考点一:考查正、负数的意义例1 王明成绩上升3位记作+3位,那么成绩下降5位记作( )A 、 +3位B 、 +5位C 、 -3位D 、-5位练习:1.王明的成绩上升-10位,实际意思是其成绩 考点二:考查有理数的概念 例 2 在有理数()20133117, , 2.5, 4, , 0, 147-------中,为整数的是_____________,是负分数的有_______________。

考点三:考查数轴、相反数、倒数、绝对值的概念例3 有理数a 、b 在数轴上的对应的位置如图所示,则下列不正确的是( )A .a <0B . b >0C .a <bD .a >b 例4 已知a 、b 互为相反数,c 、d 互为倒数,1x =,则()a b cdx +-= 。

练习:2. 已知p 与3互为相反数,那么p 的倒数是3. 3-= ; 若3,y y ==考点四:考查有理数大小的比较方法例5 在1,—1,—2这三个数中任意两数之和的最大值是( )A 、1B 、 0C 、 —1D 、—3考点五:考查科学记数法、近似数 例6 2003年6月1日9时,举世瞩目的三峡工程正式下闸蓄水,首批4台机组率先发电,预计年内可发电5500000000度,这个数用科学记数法表示记为 度。

例7 近似值0.30精确到 位,235000精确到万位约等于 。

考点六:考查有理数的运算例8 2 -(-3)的结果是( )A.-5; B.5; C.1; D.-1. 例9 如果规定符号“﹡”的意义是a ﹡b =aba b+,则2﹡(3)-的值为 。

例10 已知xy x ,16y ,32==<0, 则x -y=______.例11 计算下列各题:(1) 312 +(-12 )-(- 13 )+223 (2) 2531(1)1(7)768-÷-⨯⨯-(3) (-5)×6+(-125) ÷(-5) (4)899(9)9⨯-13124684⎛⎫-÷-+ ⎪⎝⎭(5) ()()()332875⨯---+-⨯- (6) ()201423122111010⎡⎤⎛⎫--+-÷+- ⎪⎢⎥⎝⎭⎣⎦考点七:考查非负数的性质例12已知 a 、b 为有理数,且()22210a b -++= ,则()2013ab =考点八:考查数学思想方法例13 (数形结合)数m 在数轴上的位置如图所示,化简()m m -- 结果是( )A .0 B.-m C.2m D.-2m 例14 (分类讨论)已知,,a b c 均为非零有理数,则a b c abc++=例15 我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。

七年级数学人教版(上册)期末复习(一)有理数

七年级数学人教版(上册)期末复习(一)有理数

每年减少 10%的过度包装纸的用量,那么可减排二氧化碳 4 280 000
t.把数 4 280 000 用科学记数法表示为 4.28×106

用科学记数法将一个数表示成 a×10n 形式的方法:(1)确定 a, |a|大于或等于 1 且小于 10;(2)确定 n,当原数的绝对值大于或等于 10 时,n 为正整数,且等于原数的整数位数减 1.
1 解:(3)相反数分别为-0.5,2,-2.5,2.5,0,1.4,-4,3.
1 绝对值分别为 0.5,2,2.5,2.5,0,1.4,4,3.
13.(20 分)计算: (1)0.125×(-7)×8. 解:原式=0.125×8×(-7) =1×(-7) =-7.
(2)-32-(-8)×(-1)5÷(-1)4. 解:原式=-9-(-8)×(-1)÷1 =-9-8 =-17.
(2)如果振子每振动 1 mm 用时 0.02 s,那么完成 8 次振动共需要 多少秒?
【解答】 (2)|+10|+|-9|+|+8|+|-6|+|+7.5|+|-6|+|+8| +|-7|=10+9+8+6+7.5+6+8+7=61.5(mm).
61.5×0.02=1.23(s). 答:完成 8 次振动共需 1.23 s.
|a+b| 当 m=2 时,2m2+1+m-3cd=0+2-3=-1;
|a+b| 当 m=-2 时,2m2+1+m-3cd=0-2-3=-5.
15.(14 分)如图,数轴上有 A,B,C 三点,它们分别表示数 a, b,c,已知|a+24|+(b+10)2=0,且 b,c 互为相反数.
(1)求 a,b,c 的值. 解:(1)因为|a+24|+(b+10)2=0, 所以 a+24=0,b+10=0,解得 a=-24,b=-10. 因为 b,c 互为相反数,所以 b+c=0.所以 c=10.

七年级(上)数学期末总复习

七年级(上)数学期末总复习
(1)单程花 20 分钟这一数据的频数最大 (2)小于20分钟的人数占总人数的40%
等于20分钟的人数占总人数的40% 大于20分钟的人数占总人数的20% (3)老师随机地问一个同学,最可能得到 的答案是20分钟.
课后练习 一、填空题 1.数一数,在图中,共有_2_2_条线段.
2.如图 ( 1 ) 如 果 AD//BC , 那 么 根 据两__直__线__平__行__同__位__角__相__等__ ,
例6.下面是某班30学生每天上学单程所到时间(分钟)
(1)在这个统计表中,单程花_______分钟这一数 据的频数最大.
(2)若把这些数据分成小于20分钟,等于20分钟, 和大于20分钟这三档,则各档人数各占总人数的多少.
(3)Байду номын сангаас如老师随机地问一个同学,你认为老师最可 能得到的答案是几分钟
答:
(2)线段、射线、直线等简单平面图形的有关概念,特 征和表示法,三者的区别和联系,及线段中点概念,和进 行有关的简单计算.
(3)角的有关概念.表示法,度、分、秒、间的 换算及简单的计算.会比较角的大小及分类.
(4)平行线,相交线,了解了有关平行线垂线 的特征及识别.
4.数据的收集 通过解决简单的实际问题,体会大千世界的 不确定性,熟悉收集,整理数据,学会根据 不同问题选择适当统计图描述数据得到较明 显的结论,理解频数、频率,不可能发生, 可能发生和必然发生的概念.
二、典型例题分析 例1.把下面各数填入表示它所在数集里.
-3,11, 2 ,0,2003,0.414,-0.618,-7% 5
解:
例2.有理数a、b、c在数轴上的位置如图所示: 化简|a+b|-|c-b|
解:由a、b、c在数轴上所处的 位置可知:a<0、b>0、c<0, 且|a|<|b|<|c|.a+b>0,c-b<0 所以|a+b|=a+b,|c-b|=b-c. |a+b|-|c-b|=a+b-(b-c)=a+c.

81.期末复习(有理数的概念).doc

81.期末复习(有理数的概念).doc

115,(1),1,( 3.5),22------+-1.2 有理数【目标导航】1.进一步加深对有理数的理解、并将有理数分类.2.会画数轴、并正确使用数轴。

3.理解相反数、绝对值的意义。

【要点梳理】知识点一:有理数的概念、及其分类;⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 知识点二:数轴及其应用;知识点三:相反数的意义; 知识点四:绝对值的意义。

【例题讲解】例1把下列各数填在相应的大括号里。

+8,0.275,-|-2|,0,-1.04,-(-10),0.1010010001…,-(-2)2,722,-31,+43,∙1.0正整数集合{ +8, -(-10), ……}整数集合{ +8,-|-2|,0, -(-10), -(-2)2, …} 负整数集合{ -|-2|, -(-2)2 …}正分数集合{ 0.275, 722,43,∙1.0 ……}例2.把下列各数及它们的相反数表示在数轴上。

解:例3.(1)如果一个数的平方等于它的倒数,那么这个是 1 ;(2)若a ,b 两数互为倒数,c,d 两数互为相反数,则2(c +d )2-3ab = -1 . (3)数轴上一对相反数所表示的两点之间的距离是8,它们到表示-2的点的距离各是 2或6 .(4)在足球循环赛中,红队胜黄队4:1,黄 队胜蓝队1:0,蓝队胜红队1:0,则黄队的净 胜球数为_____-2_______. (5)比较大小:)43(--<⎥⎦⎤⎢⎣⎡-+-)54(,722- < -3.14. 例4 已知有理数a,b,c 在数轴上对应点如图化简||||2||a b c a a ++---。

解:a <0, b < 0, c>0原式= a +2(a-c )-(b+a), =b-2c例5若x y y x -=-||,且4||=x ,3||=y ,求2009)(y x +的值。

2022—2023学年人教版数学七年级上册期末复习(1)有理数

2022—2023学年人教版数学七年级上册期末复习(1)有理数

人教版数学7年级上册期末复习(1)有理数一、考点过关【考点1】正数、负数的判断及意义1.下列数:91-,1.5,23,136,7,0中,负数的个数是( ) A.1个 B.2个 C.3个 D.4个2.(2020·中山市期末)如果把顺时针方向转30°记为+30°,那么逆时针方向转45°,记为 .3.先向南走5 m ,再向南走-4 m 的意义是( )A.先向南走5 m ,再向南走4 mB.先向南走5 m ,再向北走-4 mC.先向北走-5 m ,再向南走4 mD.先向南走5 m ,再向北走4 m【考点2】有理数的分类4.在1+,2,0,5-,133-这几个数中,整数有( ) A.1个 B.2个 C.3个 D.4个5.在有理数0,23,5,3.2,12-中,分数有( ) A.1个 B.2个 C.3个 D.4个【考点3】数轴6.(阳江阳东区期末)如图所示的数轴上,被叶子盖住的点表示的数可能是( )A.-1.3B.1.3C.3.1D.2.37.一只蜗牛在数轴上爬行,从原点出发爬行3个单位长度到达终点,那么这个终点表示的数是 .【考点4】相反数、绝对值、倒数8.(锦州中考)6-的相反数是( )A.6B.-6C.16D.16- 9.(2020·邵阳)2020的倒数是( )A.-2020B.2020C.12020D.12020- 10.若一个数的绝对值是9,则这个数是( )A.9B.-9C.9或-9D.011.检测篮球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下面最接近标准的是( )12.下列几组数中,不相等的是( ) A.3-+和()3+- B. 5-和5--C.()7+-和()7-- D.()2-+和2-+ 【考点5】有理数的大小比较13.(2020·龙华区期末)下列各数中,最小的一个数是( )A.-3B.-1C.0D.214.(2020·潮阳区期末)比较大小:34-0.8- (填“>”或“<”)【考点6】科学记数法15.(2020·顺德区期末)用科学记数法表示水星的半径24400000m 为 m. 16.2020年11月1日是深圳市第四个“人才日”,截至目前,全市人才总量超过600万人,将600万用科学记数法表示为( )A.2 610⨯B.6 610⨯C.7 0.610⨯D.7 610⨯17.(2020·揭西县期末)华为Mate 30 5G 系列是近期相当火爆的5G 国产手机,它采用的麒麟990 5G 芯片在指甲盖大小的面积上集成了103亿个晶体管,将103亿用科学记数法表示为( )A.91.0310⨯B.910.310⨯C.111.0310⨯D.101.0310⨯【考点7]近似数18.按要求取近似数:(1)12.365≈ (精确到0.1);(2)7.6034≈ (精确到百分位);(3)64900≈ (精确到千位).【考点8】有理数的计算19.(2020·黄埔区期末)计算:(1)()()35-+-= ;(2)()()1215---= ;(3)()()133-⨯-= .20.(2020·封开县期末)()842-+÷-= .21.如果()2130x y -+-=,则()2x y -= . 二、核心考题1.既是负数又是整数的是( )A.1-B.15- C. 1.5- D.+6 2.(2020·坪山区期末)某天最高气温为5℃,最低气温为-1℃,则这天最高气温比最低气温高 ℃.3.(佛山顺德区期末)下列运算结果正确的是( )A.()325---=-B.()239-=- C.527-+=- D 210 533⨯= 4.(2020·天河区期末)计算:()()32212410⨯---÷+.5.(2020·惠城区期末)计算:()()23224133-+---⨯⎡⎤⎣⎦. 6.计算:232146232⎛⎫ ⎪⎝⎭-+-⨯-÷ 7.某冷冻厂的冷库温度是-4 ℃,现有一批食品需要在-28℃的温度下冷藏,如果冷库每小时降温6 ℃,问几小时能达到所需求的温度?8.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼;(2)该中心大楼每层高3 m ,电梯每向上或向下1 m 需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?9.某市客运管理部门对“十一”国庆假期七天客流变化量进行了不完全统计,数据如下(用正数表示客流量比前一天上升数,用负数表示比前一天下降数):与9月30日相比,10月7日的客流量是上升了还是下降了?变化了多少?10.(茂名高州市期中)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表: 与标准质量的差值(单位:g )-5 -2 0 1 3 6 袋数 1 4 3 4 5 3(2)标准质量为450 g ,则抽样检测的总质量是多少克?三、满分冲刺1.绝对值大于1而不大于3的整数有( )A.1个B.2个C.3个D.4个 日期1日 2日 3日 4日 5日 6日 7日 变化/万人 20 -3 -10 -3 2 9 32.若x 是-3的相反数,5y =,则x y +的值为( )A.2B.8C.-8或2D.8或-23.若x y =,则x 与y 之间的关系是( )A.相等B.互为相反数C.相等或互为相反数D.无法判断4.(2020·海珠区期末)若 0a b c ++=且a b c >>,则下列几个数中:()22;;;;a b ab ab b ac b c +--+①②③④⑤,一定是正数的有 (填序号).5.(肇庆期中)已知ab o >,则||||||a b ab a b ab++= . 6.观察如图所示的程序,若输出的结果为3,则输入的x 值为( )A.1B.-2C. -1或2D.1或27.定义:α是不为1的有理数,我们把11a-称为α的差倒数.例如:2的差倒数是1 1,112---=的差倒数是111(1)2=--.已知1213a a =,是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依次类推,解决下列问题:(1)2a = ,3a = ,4a = ;(2)20192000 a a = .8.【数形结合思想】(河北中考)在一条不完整的数轴上从左到右有点A B C ,,,其中21AB BC ==,,如图所示.设点A B C ,,所对应数的和是p .(1)若以B 为原点,写出点A C ,所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点О在图中数轴上点C 的右边,且28CO =,求p .9.【分类讨论思想】(2020·福田区期末)已知数轴上两点A B ,对应的数分别为13-,,点Р为数轴上一动点,其对应的数为x .(1)若点Р为AB 的中点,直接写出点Р对应的数;(2)数轴的原点右侧有点Р,使点Р到点A 、点B 的距离之和为8.请直接写出x 的值. x = ;(3)现在点A 、点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A 与点B 之间的距离为3个单位长度时,点P 所对应的数是多少?人教版数学7年级上册期末复习(1)有理数一、考点过关1.B2.-45°3.D4.C5.C6.D7.+3或-38.B9.C10.C 11.B 12.C 13.A 14.> 15.72.4410⨯ 16.B 17.D 18.(1)12.4 (2)7.60 (3)46.510⨯ 19.(1)-8 (2)3 (3)1 20.-10 21.4二、核心考题1.A2.63.D4.解:原式()214410=⨯--÷+21107=--+=5.解:原式()816193=-+--⨯⎡⎤⎣⎦[]81683=-++⨯840=-+=326.解:原式32166223⎛⎫ ⎪⎝⎭=-+-⨯⨯ 32161223⎛⎫ ⎪⎝⎭=-+-⨯ 16188=-+-6=-7.解:根据题意,得()42864⎡⎤⎣-⎦--÷=(小时),答:4小时能达到所需求的温度.8.解:(1)()()()()()()()6310812710++-+++-+++-+-6310812710=-+-+--=28-28=0∴王先生能回到出发点1楼(2)王先生走过的路程是()36310812710⨯++-+++-+++-+-()36310812710=⨯++++++=3×56=168 (m )∴他办事时电梯需要耗电168×0.2=33.6度.9.解:20310329318---+++=(万人)答:与9月30日相比,10月7日的客流量是上升了.变化了18万人.10.解:(1)()512403143563-⨯+-⨯+⨯+⨯+⨯+⨯ 58041518=--++++1337=-+=24克2420 1.2÷=克答:这批样品的平均质量比标准质量多,多1.2克.(2)24450202490009024+⨯=+=克.答:抽样检测的总质量是9024克.三、满分冲刺1.D2.D3.C4.①④⑤5.3或-16.C7.(1)32 -2 13 (2)23- 8.解:(1)若以B 为原点,则C 表示1,A 表示-2,∴1021p =+-=-若以C 为原点,则A 表示-3,B 表示-1,∴3104p =--+=-(2)若原点O 在图中数轴上点C 的右边,且CO =28,则C 表示-28,B 表示-29,A 表示-31,∴31292888p =---=-.9.解:(1)点P 所对应的数1312x -+== (2)∵点P 在原点右侧,∴1x >-①当点P 在原点和B 点之间时,由题意,得()138x x --+-=方程无解②当点P 在B 点右侧时,由题意,得()138x x --+-=解得x =5故答案为:5(3)设移动的时间为t 秒,①当点A 在点B 的左边,使AB =3时,有()30.5213t t +--= 解得23t = 此时点P 移动的距离为2643⨯= 因此点P 所表示的数为143-=-,②当点A 在点B 的右边,使AB =3时,有()2130.53t t --+= 解得143t =此时点P移动的距离为14628⨯=,3-=-,因此点P所表示的数为12827所以当点A与点B之间的距离为3个单位长度时,点P所对应的数是-3或-27.。

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。

2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。

3、数轴的定义:规定了________、________和________的________叫数轴。

4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。

5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。

6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。

7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。

8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。

9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。

10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。

③一个数与0相加,________。

11、有理数减法法则:减去一个数,等于____________。

12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。

13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。

第1章《有理数》期末复习试卷(含答案)

第1章《有理数》期末复习试卷(含答案)

期末复习一 有理数一、必备知识:1.规定了____________、____________和____________的直线叫做数轴.2.在数轴上,表示互为相反数(0除外)的两个点,位于原点的____________,并且到原点的距离____________.3.一个正数的绝对值是____________;一个负数的绝对值是它的相反数;0的绝对值是0.____________的两个数的绝对值相等.4.在数轴上表示的两个数,____________的数总比____________的数大;两个负数比较大小,绝对值大的数____________.二、防范点:1.到数轴上的某点距离等于a 的点所表示的数有两种情况,已知某数的绝对值求某数时也要注意有两个答案.2.两个负数比较大小时,注意绝对值大的数反而小.用正数、负数表示相反意义的量例1 (1)如果南湖的水位升高0.4m ,水位变化记做+0.4m ,那么水位下降0.3m 时,水位变化可以记做________m .(2)在下列各组中,哪个选项表示互为相反意义的量( ) A .足球比赛胜5场与负2场 B .向东走3千米与向南走4千米 C .长大1岁和减少2公斤 D .下降与上升【反思】实际生活中具有相反意义的词语还是比较多的,如:北与南,上升与下降,运进与运出,增加与减少等等.在表示时往往先规定其中一个量为正,那么另一个量就可以用负来表示了.有理数的分类例2 把下列各数分别填在题后相应的集合中: -52,0,-1,0.73,2,-5,78,-29.52,+28. 正数集合:{ } 负整数集合:{ } 分数集合:{ } 非负整数集合:{ } 【反思】注意非负整数概念是正整数和零.相反数与绝对值例3 (1)-32的相反数是________,-14的倒数是________,2-5的绝对值是________.(2)若实数a 、b 满足|a +2|+b -4=0,则ab=________.(3)绝对值小于4的整数有________个,它们的和是________,积是________. 【反思】绝对值的意义是一个数在数轴上对应的点到原点的距离,所以任何有理数的绝对值都是非负数.而相反数是只有符号不同的两个数,互为相反数的两个数(除0外)符号一定是一正一负.有理数的大小比较例4 (1)比较大小:-23________-34.(2)如图,在数轴上有a ,b 两个有理数,则下列结论中,不正确的是( )A.a+b<0 B.a-b<0 C.ab<0 D.(-ab)3>0【反思】两个有理数的大小比较往往运用法则,注意两个负数比较大小时,绝对值大的反而小;而多个数的大小比较往往通过画数轴比较,左边的点表示的数总比右边的点表示的数小.绝对值相关问题例5(1)检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是()A.-2 B.-3 C.3 D.5(2)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b| B.1<-a<bC.1<|a|<b D.-b<a<-1(3)x是2的相反数,|y|=3,则x-y的值是________.【反思】绝对值等于一个正数的数有两个,注意解题时不要遗漏.涉及字母的绝对值问题关键是关注字母所表示数的正负性,有时还可以用绝对值在数轴上的几何意义来形象的解决这类问题.数轴相关问题例6(1)把表示下列各数的点画在数轴上,再按从小到大的顺序,用”<”把这些数连接起来:3,-1,5,0,-|-4|.(2)如果数轴上的两点A,B,它们与原点O的距离分别是:A到O有3个单位,B到O 有5个单位,则A,B两点之间的距离等于________个单位.(3)一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),数轴上的原点对应刻度尺上的3.6cm,A点和B点分别对应刻度尺上的”15cm”和”0cm”,则A点和B点在数轴上分别表示数________和________.【反思】数轴是数学中一个很重要的工具,解决很多问题时往往会用到数轴,并且很多情况下要用到分类讨论思想,考虑多种情况.用正、负数解决生活实际问题例7根据《青少年生长参考》的身高标准表,一个13周岁的男生的标准身高为156.0cm,若记该标准身高为0,高于该标准记为”+”,低于该标准记为”-”.某校七年级一组男生共有8名13周岁的学生,在体检中测得他们的身高汇总如下表:(1)哪位学生的身高最高?哪位学生的身高最矮?(2)张民身高多少?李志伟呢?(3)该组男生中身高最高的比最矮的高多少?【反思】用正、负数解决问题时,往往定某一个数为基准,高于基准的为正,低于基准的则用负数表示,那样就可以用正、负数的相关知识解决实际问题了.1.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么北京时间1月4日20时应是()第1题图A.伦敦时间1月4日11时B.巴黎时间1月4日13时C.纽约时间1月4日5时D.首尔时间1月4日19时2.数轴上到-3的距离等于2的数是____________.3.甲、乙两支同样的温度计如图所示放置,如果向左移动甲温度计,使其度数20正对着乙温度计的度数-10,那么此时甲温度计的度数-5正对着乙温度计的度数是____________.第3题图4.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第7个图形的小圆个数是____________.第4题图5.在数轴上,点A与点B表示的数分别为a和2(a<2),已知点C是线段AB的三等分点,且点C表示的数为1,则a的值是____________.6.如图,已知数轴的单位长度为1.(1)如果点A,B表示的数是互为相反数,那么点C表示的数是____________;(2)如果点D,B表示的数是互为相反数,那么点C表示的数是____________(填”正数”或”负数”),图中表示的5个点中,表示的数的绝对值最小的一个点是____________,最小的绝对值是____________;(3)若点A为原点,CF=3,求点F表示的数.第6题图7.阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以当a ≥0时,a =a ;当a <0时,a =-a .根据以上阅读完成:(1)|3.14-π|=____________;(2)计算:⎪⎪⎪⎪1-12+⎪⎪⎪⎪12-13+⎪⎪⎪⎪13-14+…+⎪⎪⎪⎪199-1100.8.阅读理解:若A 、B 、C 为数轴上三点,点C 是线段AB 上一点,若点C 到点A 的距离是点C 到点B 的距离的2倍,我们就称点C 是【A ,B 】的好点,如图1,点A 表示的数为-1,点B 表示的数为2,表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的好点;又如,表示0的点D 到点A 的距离是1,到点B 距离是2,那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点.知识运用:如图2,M 、N 为数轴上两点,点M 所表示的数为-2,点N 所表示的数为4.(1)数____________所表示的点是【M ,N 】的好点;(2)如图3,A 、B 为数轴上两点,点A 所表示的数为-20,点B 所表示的数为40,现有一只电子蚂蚁P 从点B 出发,以每秒2个单位的速度向左运动,到达点A 时停止,运动的时间为t 秒.当t 为何值时,点P 、A 和B 中恰有一个点为其余两点的好点?第8题图参考答案期末复习一 有理数【必备知识与防范点】1.原点 单位长度 正方向 2.两侧 相等 3.它本身 互为相反数 4.右边 左边 反而小【例题精析】 例1 (1)-0.3 (2)A例2 正数:0.73,2,78,+28;负整数:-1,-5;分数:-52,0.73,78,-29.52;非负整数:0,2,+28.例3 (1)32-45-2 (2)-12(3)7 0 0 例4 (1)> (2)B例5 (1)A (2)A (3)-5或1例6 (1)画图略 -|-4|<-1<0<3<5 (2)2或8 (3)11.4 -3.6 例7 (1)王峰 张民 (2)154.5cm 156.8cm (3)4.3cm 【校内练习】1.B 2.-5或-1 3.15 4.605.-1或12 【解析】①AC =13AB 时,1-a =13(2-a ),得a =12;②BC =13AB 时,2-1=13(2-a ),得a =-1. 6.(1)-1 (2)正数 C 0.5 (3)5或-17.(1)π-3.14 (2)⎪⎪⎪⎪1-12+⎪⎪⎪⎪12-13+⎪⎪⎪⎪13-14+…+⎪⎪⎪⎪199-1100=1-12+12-13+13-14+…+199-1100=1-1100=99100. 8.(1)2 (2)t 为10秒或20秒。

章末复习(一) 有理数

章末复习(一) 有理数

B. 1是最小的正整数
C. 0是最小的自然数
D. 自然数就是非负整数
17.(2023·天水麦积区期中)下列有理数大小关系判断正确的是
( A
)
A. −



>−
C. − < +



B. > −
D. − > −.
18.如图,点表示的有理数是,则,−,1的大小顺序为( A
若点与点之间的距离是7,则点所表示的数是( D )
A. 6
B. −或6
C. −
D. −或8
7.已知是数轴上的一点,且点到原点的距离为1,把点沿数轴向
右移动3个单位长度得到点,则点表示的数是( C
A. 4
B. −
C. 4或2
)
D. −或−
考点4 相反数
8.(2023·安徽)−的相反数是( B
B. 向右移6个单位长度
C. 向左移3个单位长度
D. 向右移3个单位长度
11.化简:
−.
(1)− +. =______.
(2)−




=__.

考点5 绝对值

12.(2023·仙桃)− 的绝对值是−

D
C.
)


D.


13.(2023·天水麦积区期中)如果 = −,那么的值为( B
B. 2个
C. 3个
D. 4个
考点2 有理数及其分类


3.在 ,%,−,0,−. ,. ,−,− 中,非负有理数有


( C
)
A. 2个
B. 3个

第一章有理数(学生版)

第一章有理数(学生版)

初一数学期末复习 第一章 有理数 主要知识点1.正数、负数、有理数例1.―10表示支出10元,那么+50表示 ;如果零上5度记作5°C ,那么零下2°C 记作 ;如果上升10m 记作10m ,那么―3m 表示 ;比海平面高50m 的地方,它的高度记作海拨 ;比海平面低30m 的地方,它的高度记作海拨 . 例2. 把下列各数填在相应的集合内-0.1,-9,125,0,+16.71,1000,317-,4,-26,-3.8,6%,2π,0.3131131113……(每两个3之间依次多一个1)正数集合:{ …} ;负数集合: { … }; 整数集合:{ …} ;分数集合: { …}; 负分数集合:{ … } ;有理数集合:{ …}. 练习:1. 下列说法正确的是( )A. 有理数分为正有理数和负有理数B. 整数和分数统称有理数C. 0不是有理数D. 负有理数就是负整数 2. 在0,-2,3.14,227,2π,0.1414 中,有理数的个数是 ( )A. 2个B. 3个C. 4个D. 5个 2.相反数、绝对值、倒数例1. (1)7的相反数是 ;(2)a b -的相反数是 ;a b +的相反数是 ; (3)相反数等于它本身的数是 ; (4)如果,a b 互为相反数,那么 . 例2.(1)-1.5的倒数是 ;(2)23的负倒数是 ;(3)a 的倒数是 ;(4)倒数等于它本身的数是 ;(5)如果,a b 互为倒数,那么 ;如果,a b 互为负倒数,那么 . 例3. (1)34-的绝对值是 ;(2)绝对值小于3的整数有 ;(3)若|x| = 3, |y| = 7,则x -y 的值是 ;(4)若a a -=,则a 与0的大小关系是:a 0(5)数轴上点A 距离表示数1的点6个单位长度,则点A 所表示的数是 ; 练习:1.-5的相反数、倒数、绝对值各是 ( ) A. 5,51,5 B. 5,51,5-C. 5,51,5-- D. 5,51,5--2. 下列各数中,互为相反数的是( ) A. 2.03-和3210B.12和2 C. 12-和0.5 D. 3和13-3.以下命题中:①倒数等于它本身是1;②绝对值等于它本身的数是0; ③相反数等于它本身的数是0; ④平方等于它本身的数是±1; ⑤立方等于它本身的数是±1. 正确的命题有( )个A. 0B. 1C. 2D. 3 4.若3a =-,则a =______________.5. 如果a 与1互为相反数,则│a│等于 ( )A.2B.-2C.1D.-1 6.若实数a 、b 互为相反数,则下列等式中恒成立的是 ( ) A. 0a b -= B. 0a b += C. 1a b = D. 1ab =-7.若22(1)0,x y -++=则xy =__________.8.已知x 、y 是实数,且2(1)24y x y --+与互为相反数,求实数x y +的倒数.9.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,求2a b x cdx++-的值.10.大家知道055-=,它在数轴上的意义是表示5的点与原点之间的距离,又如式子36-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似的,式子5+a 在数轴上的意义是 .3.数轴例 1.若一个数与它的相反数在数轴上对应点间的距离为8个单位长度,则这个数是( )A.+8和–8B.+4和–4C.+8D. –4 例2. 把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.例3.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,•再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A ,B 是数轴上的点,•请参照图1-8并思考,完成下列各题:-5-4-3-2-10234567853(1)如果点A 表示数-3,•将点A•向右移动7•个单位长度,•那么终点B•表示的数是_______,A ,B 两点间的距离是________;(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是_______,A ,B 两点间的距离为________;(3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256•个单位长度,那么终点B 表示的数是_________,A ,B 两点间的距离是________.(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p•个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?练习:1.如图5-2,数轴上的点A 表示的数为a,则1a 等于( )A. 12- B.12C.-2D.22. 点A ,B ,C ,D 在数轴上的位置如图5-11所示,其中表示-2的相反数的点是___________.3. 数轴上的点A 到原点的距离是6,则点A 表示的数为( )A.6或6-B.6C.6-D.3或3-A BC D图5-11图5-21-1图4.绝对值化简例1.若有理数a 、b 、c 在数轴上的对应点如图所示,化简:| a+b |+| c+b |+| c-a |= .例2.已知8,2,a b a b b a ==-=-,则a b +的值是( ) 1066101010A B C D ---、、、或、或练习: 1.化简:(1)3π- = ; (2)3.14π-= .2.若11a a -=-,则a 的取值范围是( )1111A a B a C a D a ><≥≤、、、、3.已知12x <<,则31x x-+-等于 ( )2222A xB C xD --、、、、4.有理数,a b 在数轴上对应的点的位置如图1-1,则a b a b b a-+-++= .5.已知,a b 为实数,且0,0a b ><,化简2a b b a ---.5.比较大小例1.在数轴上表示出下列各数,并把各数用“<”从小到大连接起来. 1, 0, -3, 221, -1.5, 5.例2.用“>”“<”或“=”填空. (1)7383; (2)-4131; (3)0.1 -10;(4)0.2 0; (5)-(-3) |-3|; (6)|-521| -221.练习:1. 比较大小:35-12-; -(+3.12138.2. 实数a 、b 两数在数轴上的位置如图5-16所示,下列结论正确的是 ( )....A a b B a b C a bD a b>>->-<-3. 如图5-15,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是( ) A.a <1<-aB.a <-a <1C.1<-a <aD.-a <a <14.下列说法正确的是( )A.若a 为有理数,则0a -<B.如果两个有理数a b>,那么a b>C.已知两个有理数不等,则这两个数的绝对值也不等D.任何一个有理数的绝对值都是非负数5.大家知道055-=,它在数轴上的意义是表示5的点与原点之间的距离,又如式子36-,它在数轴上的意义是表示6的点与表示3的点之间的距离。

初一数学上册知识点归纳总结

初一数学上册知识点归纳总结

人教版七年级数学上册期末总复习第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

期末复习(一) 有理数及其运算-北师大版七年级数学上册作业课件

期末复习(一) 有理数及其运算-北师大版七年级数学上册作业课件

次测量数据的部分记录(用A-C表示观测点A相对观测点C的高度):
A-C C-D E-D F-E G-F B-G
90米 80米 -60米 50米 -70米 40米
根据这次测量的数据,可得观测点A相对观测点B的高度是( A )
A.210米
B.130米
C.390米
D.-210米
二、填空题(每小题3分,共15分)
重难点3 科学记数法
【例3】 森林是地球之肺,每年能为人类提供大约28.3亿吨的有
机物,28.3亿用科学记数法表示为( D )
A.28.3×107
B.2.83×108
C.0.283×1010
D.2.83×109
科学记数法的表示形式为a×10n,其中1≤a<10,n为正整数,表 示时关键要正确确定a的值以及n的值.
14.请把0,-2.5,
1 3
,-
1 2
,8,0.75这六个数按从小到大,从左
到右串成糖葫芦.
依次应填: -2.5,-12,0,13,0.75,8

期末复习(一) 有理数及其运算 期末复习(一) 有理数及其运算
期 期末末复复习 习((一一))15有 有.理 理数 数根及 及其 其据运 运算 算如图所示的程序计算,若输入x的值为1,则输出y的值
11.王老师把数学测验成绩高于班级平均分8分的记为+8分,则
低于平均分5分的可记为 -5 分.
12.据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2
800 000人进行了扶贫搬迁,成功脱贫.其中2 800 000人用科学记数法
可表示为 2.8×106
人.
13.计算12-7×(-4)+8÷(-2)的结果是 36 .
期末复习(一) 有理数及其运算

七年级数学人教版(上册)【知识讲解】章末复习(一)有理数

七年级数学人教版(上册)【知识讲解】章末复习(一)有理数

A.-3 C.3
B.0 D.-6
考点 3 有理数的大小比较
7.(2021·泰安)下列各数:-4,-2.8,0,|-4|,其中比-3 小
的数是( A )
A.-4
B.|-4|
C.0
D.-2.8
10 8.在数轴上画出表示下列各数的点:-1.8,0,-|-3.5|, 3 ,
1 -(-62),(-1)2.再将这些数重新排成一行,并用“<”号把它们连 接起来.
3.把下列各数填入相应括号内.
2 -3,0.618,-3.141 5,2 022,-26,65%,0. 正分数:{ 0.618,65%,… };
整数:{ 2 022,-26,0,… }; 负有理数:{ -23,-3.141 5,-26,… }; 非负数:{ 0.618,2 022,65%,0,… }.
考点 2 数轴、相反数、绝对值、倒数
4.(2021·株洲)若 a 的倒数为 2,则 a=( A )
1 A.2
B.2
1 C.-2
D.-2
5.(2021·永州)-|-2 021|的相反数为( B )
A.-2 021
B.2 021
1 C.-2 021
1 D.2 021
6.(2021·广州)如图,在数轴上,点 A,B 分别表示 a,b,且 a +b=0.若 AB=6,则点 A 表示的数为( A )
=3+2-6+2
=1.
12.(1)定义新运算:对于任意有理数 a,b,都有 a b=a(a-b)
+1.例如:2 5=2×(2-5)+1=2×(-3)+1=-6+1=-5.求(-2)
3 的值.
解:(1)(-2) 3=(-2)×(-2-3)+1=11. a-b
(2)对于有理数 a,b,若定义运算:a b=a+b,求(-4) 3

期末复习(1)— 有理数期末复习

期末复习(1)— 有理数期末复习

(3) - (- a) = a (4) - - a = a
( (
2.(1)若a,b互为相反数;c,d互为倒数,m的绝对值 ab 2 是2,则 m cd ____ m
1 (2) 1 的相反数_____,绝对值是____,倒数是 2 ____ 3 的倒数的绝对值是_____ 5
若 n 2 (3m 2) 0 则
2
m =_____
n
25 (3)平方得 的数是____;立方得-64的数是___ 64 平方等于(-3)2的数是_____
四. 相反数、绝对值、倒数:
3.下列各式中,总是正数的是 ( D )பைடு நூலகம்
A.a
2
B. a
D.a 1
2
C. a 1
提醒:1. a 2 ≥0 2. a ≥0
a (a>0) 3. a 0 (a=0) a (a<0)
二.有理数的分类
1、按定义分类 2、按性质分类
1、请将下列数分类:
15%, 3.5 , 2 , ( 1)
2
100
, 0,
22 3 3 , , (3) , , 0.2, 3.1415 7 5
正分数:____________
非正整数:____________ 负数:____________
2、有理数中,最小的正整数为________,最大 的负整数为_________;
有理数中,是整数而不是正数的例如___, 是负数而不是分数的例如___________。
三.数轴 三要素:原点、正方向、单位长度
1.在数轴上,与原点距离为3的点表示的数_____
2.数轴上表示8的点,移动2个单位长度后,这个点 表示的数是_____

1期末复习(一) 有理数

1期末复习(一) 有理数

解:(3)每日计件工资制: 5×191+(9+8+6)×3-(7+4+1)×2=1 000(元),
每周计件工资制: 5×191+(191-180)×3=988(元), 所以988<1 000, 答:小颖本周应选择“每日计件工资制”更合算.
2 <
14.计算: (1)(-11)-(-7.5)-(+9)+2.5;
解:原式=-11+7.5-9+2.5 =-11-9+7.5+2.5 =-10.
(4)5÷[(-1)3-4]+32×(-1);
解:原式=5÷(-1-4)+9×(-1) =5÷(-5)+(-9) =-1+(-9) =-10.
期末复习(一) 有理数
1.如果一个有理数的绝对值是8,那么这个数一定是( B ) A.-8 B.-8或8 C.8 D.以上都不对
2.(萧县期末)ChatGPT是人工智能研究实验室OpenAI新推出的一种由人工 智能技术驱动的自然语言处理工具,ChatGPT的背后离不开大模型、大数 据、大算力,其技术底座有着多达1 750亿个模型参数,数据1 750亿用科 学记数法表示为( B ) A.1.75×103 B.1.75×1011 C.1750×108 D.1.75×1012
解:-(-3.5)=3.5,-|-3|=-3, 在数轴上表示出各数如下:
解:(1)5-(-2)=5+2=7.
18.请根据下列对话,解答问题. (1)分别求出a,b,c的值; (2)求9-a+b-c的值.
解:(1)由题意可知a=-3,b=-5, 因为b+c=-7,所以c=-2.
3.在数0,4,-3,-1.5中,属于负整数的是( C ) A.0 B.2 C.-3 D.-1.5
4.(合肥期末)用四舍五入法把3.896 3精确到百分位得到的近似数是( D )

01 有理数【7大考点串讲+34种题型+基础专题+方法专题】七年级数学上学期期末考点(人教版)

01 有理数【7大考点串讲+34种题型+基础专题+方法专题】七年级数学上学期期末考点(人教版)

所以-41<-2<-0.5<0<1<1<3.
2
2
知识串讲 题型十三:能利用性质比较有理数的大小.
【例 13】比较下列各对数的大小: (1)0 与-(-3);(2)-(+2)与-(-1);(3)-5与-6.
67 【规范解答】(1)-(-3)=3,因为正数大于 0,所以 0<-(-3); (2)-(+2)=-2,-(-1)=1,因为正数大于一切负数, 所以-(+2)<-(-1);
七年级人教版数学上册期末大串讲 串讲01 有理数
思维 导图
知识 串讲
常用 技巧/结论
思维导图
正整数
正有理数

0
整数
加法 减法

0
负整数

交换律 有理数 运算 结合律
正分数 负有理数
分数
负分数 相反数
点与数的对应
乘法
数轴 绝对值
除法
乘方
比较大小
知识串讲
考点一 有理数的概念和分类
正数和负数 1.小学学过的除0以外的数都是正数. 在正数前面加上符号“-”(负)的数叫做负数. 2.用正、负数表示具有相反意义的量
【方法归纳】已知一个数的绝对值,求这个数,根据绝对值的几何意义分 析,即绝对值等于一个正数的数有两个,它们互为相反数,注意不要漏掉 负数;绝对值为 0 的数只有 0.
知识串讲
题型十一:会用绝对值的非负性解决问题.
【例 11】若|a|+|b|=0,求 a、b 的值.
【思路分析】由绝对值的性质可知|a|≥0,|b|≥0.
【规范解答】因为|a|≥0,|b|≥0,且|a|+|b|=0,所以|a|=0,|b|=0, 所以 a=0,b=0.
【方法归纳】如果几个非负数的和为 0,那么这几个非负数都等于 0.

有理数基本概念经典绝版

有理数基本概念经典绝版

绵阳中学英才学校四初一期末复习之有理数有理数概念整理班级:姓名:(一)有理数:(1)整数与分数统称按定义分类:_______________⎧⎧⎫⎪⎪⎬⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩_ _ _ _ _ _ _ _ _有理数 _ _ _ _ __ _ _ _ __ _ _ _ _按符号分类:__________⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩_ _ _ __ _ _ _有理数零_ _ _ __ _ _ _注:①正数和零统称为;②负数和零统称为;③正整数和零统称为;④负整数和零统称为 .注意:都大于零,都小于零.“0”即不是,也不是 .(3)用正数、负数表示相反意义的量:如果用正数表示某种意义的量,那么负数表示其意义的量,如果负数表示某种意义的量,则正数表示其意义的量.如:若-5米表示向东走5米,则+3米表示向走3米;若+6米表示上升6米,则-2米表示;+7C o表示零上7C o,-7C o则表示 .(1)概念:规定了、和的直线注:①、、称为数轴的三要素,三者缺一不可.(2)数轴的画法及常见错误分析①画一条水平的;②在这条直线上适当位置取一实心点作为:③确定向右的方向为,用表示;⑤数轴画法的常见错误(3)有理数与数轴的关系一切有理数都可以用数轴上的表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数,正数都大于,负数都小于,正数大于一切负数.注意:数轴上的点不都是有理数,如π.(三)相反数(1)相反数:只有的两个数互称为相反数.特别地,0的相反数是;若a与b互为相反数,则___a b+= ,反之亦然 .(2)相反数的性质:①代数意义:只有的两个数叫做互为相反数,特别地,O的相反数是0.相反数必须出现,不能单独存在.例如+5和互为相反数,或者说+5是的相反数,-5是的相反数,而单独的一个数不能说是.另外,定义中的“只有”指除以外,两个数,注意应与“只要符号不同”区分开.例如+3与-3互为相反数,而+3与-2虽然不同,但它们不是相反数.②几何意义:一对相反数在数轴上应分别位于两侧,并且到原点的相等.这两点是关于对称的.③求任意一个数的相反数,只要在这个数的前面添上“”号即可.一般地,数a的相反数是 ;这里以a 表示任意一个数,可以为 、 、负数,也可以是任意一个代数式.注意-a 不一定是 .注意:当a >0时,-a 0(正数的相反数是 数);当a=0时,-a O(0的相反数是 );当a <0时,-a O (负数的相反数是 ).④互为相反数的两个数的和为 ,即若a 与b 互为 ,则a+b=0,反之,若a+b=O ,则a 与b 互为 .⑤多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部 ;一个正数前面有 个“-”号,也可以把“-”号全部去掉;一个正数前面有 个“-”号,则化简后只保留一个“-”号,即“ 负 正”(其中“奇偶”是指正数前面的“ ”号的个数的 ,“负正”是指化简的最后结果的 .(四)绝对值(1)绝对值的代数意义及几何意义① 绝对值的代数意义:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 .② 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的 与的距离.数a 的绝对值记作 .注意:①取绝对值也是一种 ,这个 符号是“ ”,求一个数的绝对值,就是根据性质 绝对值符号.②绝对值具有 性,取绝对值的结果总是 .③任何一个有理数都是由 部分组成: 和它的 ,如:-5,符号是 ,绝对值是 .(2)字母a 的绝对值的分类___,()___,(0)___,(0)a o a a a >⎧⎪==⎨⎪<⎩ 或___,(0)___,(0)a a a ≥⎧=⎨<⎩ 或___,(0)___,(0)a a a >⎧=⎨≤⎩ (3)利用绝对值比较两个负有理数的大小规则:两个负数,绝对值大的反而 .步骤:①计算两个负数的 .②比较这两个 的大小.③写出正确的判断结果.④如果若干个非负数的和为0,那么这若干个非负数都必为 . 例如:若0,____,____,______a b c a b c ++====则知识点二:有理数运算(一)有理数比较大小1、 0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩同正:__________大的数大两数同号同负:__________大的反而小比较大小两数异号(一正一负):______大于_______正数与0:_______大于0其中有时负数与0:_______小于02、数形结合利用数轴比较有理数大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档