洪山区2016年武汉市中考数学模拟试题(一)

合集下载

武汉市2016中考数学模拟试题一

武汉市2016中考数学模拟试题一

2016年中考数学模拟1一、选择题(共10小题,每小题3分,共30分) 1.在实数-4、0、2、5中,最小的实数是( ) A .-4 B .0 C .2D .52.若代数式6-x 在实数范围内有意义,则x 的取值范围是( ) A .x ≥-6B .x >6C .x ≥6D .x ≤63.把39m m -分解因式正确的是( )A .2(9)m m -B .2(3)m m -C .(3)(3)m m m +-D .(9)(9)m m m +-4.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A .极差是5B .中位数是9C .众数是5D .平均数是9 5.下列计算正确的是( ) A .4a 2﹣2a 2=2B.(a 2)3=a 5C .a 3•a 6=a 9D . (3a )2=6a 26.如图,△ABC 与△DEF 是位似图形,位似中心为O ,相似比为2:3,已知AB=4, 则DE 的长等于( )A .6B .5C .9D .38 7、 如图,由5个完全相同的小正方形组合成一个立体图形,它的左视图是( ).A. B. C. D.8、为了解某区九年级学生课外体育活动的情况,从该年级学生中随机抽取了4%的学生,对其参加的体育活动项目进行了调查,将调查的数据进行统计并绘制了扇形图和条形图.下列结论:①被抽测学生中参加羽毛球项目人数为30人;②在本次调查中“其他”的扇形的圆心角的度数为36°;③估计全区九年级参加篮球项目的学生比参加足球项目的学生多20%;④全区九年级大约有1500名学生参加乒乓球项目.其中正确结论的个数是( ).A. 1个B.2个C. 3个D.4个10.如图,△ABC 中,AC =5,BC =12,∠ACB =90°,E 、F 分别为AC 、AB 中点,过E 、F两点作⊙O ,延长AC 交⊙O 于D ,若12CDO B ∠=∠,则⊙O 的半径为( )A .13B .C .D .272第II 卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算:(-8)+5=_________________12.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为___________________; 13.如图有四张不透明卡片,分别写有实数2,-1,3,51,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是_______. 14.已知A 、B 、C 是同一条笔直公路上的三个不同的车站,甲、乙两人分别从A 、B 车站同时出发,匀速直线运动到C 站,到达C 站就停下来,甲、乙两人与B 站的距离y (千米)与时间x (小时)之间的函数关系的图像如图,当甲出发_______________小时,甲、乙两人相距5千米.15、如图,⊙O 1与坐标轴交于A 、B 、C 、D 四点,A (2,0)、B (-6,0)、D (0,-2),反比例函数y=xk过O 1,则k=_____________ 16、半圆⊙O 中,AB 为直径,C 、D 为半圆上任意两点,将 CD沿直线CD 翻折使AB 与 CD 相切,已知AB =8,求CD 的最大值 .三、解答题(共8小题,共72分)17、(本题8分)已知直线b kx y +=经过点(1,5)和(-1,1). (1)求这个一次函数的解析式;(2)求关于x 的不等式5≥+b kx 的解集.DCBO O 1x /小时18、(本题8分)如图,在Rt△ABC中,∠ACB=90°点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C顺时针旋转90°后得到CE,连接EF.(1)求证:△BC D≌△FCE;(2)若EF∥CD,求∠BDC的度数。

2016年湖北省武汉市中考数学试卷及解析答案word版

2016年湖北省武汉市中考数学试卷及解析答案word版

2016年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间2.(3分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=33.(3分)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a44.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球5.(3分)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+96.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b 的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣17.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A .B .C .D .8.(3分)某车间20名工人日加工零件数如表所示:这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π B.πC.2 D.210.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算5+(﹣3)的结果为.12.(3分)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为.13.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.14.(3分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E 处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.15.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.16.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为.三、解答题(共8题,共72分)17.(8分)解方程:5x+2=3(x+2)18.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了名学生,其中最喜爱戏曲的有人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(8分)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.21.(8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.22.(10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(12分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.2016年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【解答】解:∵1<<2,∴实数的值在:1和2之间.故选:B.2.(3分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=3【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.(3分)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a4【解答】解:A、原式=a3,错误;B、原式=2a2,正确;C、原式=4a4,错误;D、原式=2a6,错误,故选B4.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.5.(3分)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+9【解答】解:(x+3)2=x2+6x+9,故选:C.6.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b 的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=﹣5,b=﹣1.故选D.7.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A .B .C .D .【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.8.(3分)某车间20名工人日加工零件数如表所示:这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选D.9.(3分)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π B.πC.2 D.2【解答】解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=AB=2,OP=AB=2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF 为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=•2π•1=π.故选B.10.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选A二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算5+(﹣3)的结果为2.【解答】解:原式=+(5﹣3)=2,故答案为:2.12.(3分)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为 6.3×104.【解答】解:将63 000用科学记数法表示为6.3×104.故答案为:6.3×104.13.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.【解答】解:∵一个质地均匀的小正方体有6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.故答案为:.14.(3分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E 处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.15.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为﹣4≤b≤﹣2.【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为:﹣4≤b≤﹣2.16.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为2.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===2,故答案为:2.三、解答题(共8题,共72分)17.(8分)解方程:5x+2=3(x+2)【解答】解:去括号得:5x+2=3x+6,移项合并得:2x=4,解得:x=2.18.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.19.(8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了50名学生,其中最喜爱戏曲的有3人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是72°.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人);∵“娱乐”类人数占被调查人数的百分比为:×100%=36%,∴“体育”类人数占被调查人数的百分比为:1﹣8%﹣30%﹣36%﹣6%=20%,∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°;故答案为:50,3,72°.(2)2000×8%=160(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.20.(8分)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.【解答】解:(1)解得kx2+4x﹣4=0,∵反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,∴△=16+16k=0,∴k=﹣1;(2)如图所示,C1平移至C2处所扫过的面积=2×3=6.21.(8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:连接BE、BC、OC,BE交AC于F交OC于H.∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,∴DC=EH=HB,DE=HC,∵cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,∵cos∠CAB==,∴AB=a,BC=a,在RT△CHB中,CH==a,∴DE=CH=a,AE==a,∵EF∥CD,∴==.22.(10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【解答】解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=(1180﹣200a)万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①(1180﹣200a)=440,解得a=3.7,②(1180﹣200a)>440,解得a<3.7,③(1180﹣200a)<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.23.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【解答】解:(1)∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,∴,∴AC2=AP•AB;(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,∵M是PC的中点,∴MG∥AC,∴∠BGM=∠A,∵∠ACP=∠PBM,∴△APC∽△GMB,∴,即,∴x=,∵AB=3,∴AP=3﹣,∴PB=;②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x.∵∠ABC=45°,∠A=60°,∴CH=,HE=+x,∵CE2=(+(+x)2,∵PB=BE,PM=CM,∴BM∥CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴,∴CE2=EP•EA,∴3+3+x2+2x=2x(x++1),∴x=﹣1,∴PB=﹣1.24.(12分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】解:(1)①将P(1,﹣3),B(4,0)代入y=ax2+c,得,解得,抛物线的解析式为y=x2﹣;②如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,D与P关于y轴对称,P(1,﹣3),得D(﹣1,﹣3);当点D在OP右侧时,延长PD交x轴于点G.作PH⊥OB于点H,则OH=1,PH=3.∵∠DPO=∠POB,∴PG=OG.设OG=x,则PG=x,HG=x﹣1.在Rt△PGH中,由x2=(x﹣1)2+32,得x=5.∴点G(5,0).∴直线PG的解析式为y=x﹣解方程组得,.∵P(1,﹣3),∴D(,﹣).∴点D的坐标为(﹣1,﹣3)或(,﹣).(2)点P运动时,是定值,定值为2,理由如下:作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.∵PQ∥OF,∴,∴OF==﹣==amt+at2.同理OE=﹣amt+at2.∴OE+OF=2at2=﹣2c=2OC.∴=2.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。

2016年武汉市中考数学试卷和答案

2016年武汉市中考数学试卷和答案

2016年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数 2 的值在()A.0 和1 之间B.1 和2 之间C.2 和3 之间D.3 和4 之间1实数范围内有意义,则实数x 的取值范围是()2.若代数式在x 3A.x<3 B.x>3 C.x≠3 D.x=33.下列计算中正确的是()4.不透明的袋子中装有性状、大小、质地完全相同的 6 个球,其中 4 个黑球、 2 个白球,从袋子中一次摸出 3 个球,下列事件是不可能事件的是()A.摸出的是 3 个白球B.摸出的是 3 个黑球C.摸出的是 2 个白球、 1 个黑球D.摸出的是 2 个黑球、 1 个白球2 的结果是()5.运用乘法公式计算(x+3)2+9 B.x2-6x+9 C.x2+6x+9 D.x2+3x+9A.x6.已知点A( a,1)与点A′(5,b)关于坐标原点对称,则实数a、b 的值是()A.a=5,b=1 B.a=-5,b=1 C.a=5,b=-1 D.a=-5,b=-1 7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()8.某车间20 名工人日加工零件数如下表所示:日加工零件数 4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、69.如图,在等腰Rt△ABC 中,AC =BC=2 2 ,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点 A 运动至点 B 时,点M 运动的路径长是()A.2πB.πC.2 2 D. 210.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点 C 的个数是()A.5 B.6 C.7 D. 8二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为___________12.某市2016 年初中毕业生人数约为63 000,数63 000 用科学记数法表示为___________ 13.一个质地均匀的小正方体, 6 个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是 5 的概率为___________14.如图,在□ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD′与CE 交于点F.若∠B=52°,∠DAE =20°,则∠FED ′的大小为___________15.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=|2x+b|(b 为常数)的图象.若该图象在直线y=2 下方的点的横坐标x 满足0<x <3,则 b 的取值范围为___________16.如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5 5 ,则BD 的长为___________三、解答题(共8题,共72分)17.(本题8 分)解方程:5x+2=3( x+2)18.(本题8 分)如图,点B、E、C、F 在同一条直线上,AB=DE,AC=DF ,BE=CF,求证:AB∥DE19.(本题8 分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图请你根据以上的信息,回答下列问题:(1) 本次共调查了__________ 名学生,其中最喜爱戏曲的有__________ 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________(2) 根据以上统计分析,估计该校2000 名学生中最喜爱新闻的人数20.(本题8分)已知反比例函数y 4 x(1) 若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k 的值(2) 如图,反比例函数y 4x(1≤x≤4)的图象记为曲线C1,将C1 向左平移 2 个单位长度,得曲线C2,请在图中画出C2,并直接写出C1 平移至C2 处所扫过的面积21.(本题8分)如图,点 C 在以AB 为直径的⊙O 上,AD 与过点 C 的切线垂直,垂足为点D,AD 交⊙O 于点 E(1) 求证:A C 平分∠DAB(2) 连接BE 交AC 于点F,若cos∠CAD =45,求A FFC的值22.(本题10 分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a 20 200乙20 10 40+0.05x2 80其中 a 为常数,且3≤a≤ 5(1) 若产销甲乙两种产品的年利润分别为y1 万元、y2 万元,直接写出y1、y2 与x 的函数关系式(2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10 分)在△ABC 中,P 为边A B 上一点2=AP·AB(1) 如图,若∠ACP=∠B,求证:A C(2) 若M 为CP 的中点,AC=2①如图2,若∠PBM =∠ACP,AB=3,求BP 的长②如图3,若∠ABC=45°,∠A=∠BMP =60°,直接写出BP 的长2+c 与x 轴交于A、B 两点,顶点为C,点P 为抛物线上,且位24.(本题12 分)抛物线y=ax于x 轴下方(1) 如图1,若P(1,-3)、B(4,0)①求该抛物线的解析式②若D 是抛物线上一点,满足∠DPO =∠POB,求点 D 的坐标(2) 如图2,已知直线PA、PB 与y 轴分别交于E、F 两点.当点P 运动时,O EOFOC是否为定值?若是,试求出该定值;若不是,请说明理由参考答案。

湖北省武汉市中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题

湖北省武汉市中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题

2016年某某省某某市中考数学模拟试卷一、选择题1.已知实数x,y满足;,y4+y2=3,则+y4的值为()A.7 B.C.D.52.若n满足(n﹣2015)2+(2016﹣n)2=1,则(n﹣2015)(2016﹣n)=()A.﹣1 B.0 C.D.13.如图,A为DE的中点,设S1=S△DBC,S2=S△ABC,S3=S△EBC,则S1,S2,S3的关系是()A.S2=(S1+S3)B.S2=(S3﹣S1)C.S2=(S1+S3)D.S2=(S3﹣S1)4.图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=()A.B.C.D.5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B. C.D.二、填空题6.如图,指出第6排第7列的数是,2016是排列的数.7.已知x轴上有点A(﹣1,0),B(3,0)两点,y=x2+2kx+k2﹣3的图象与线段AB有交点时,k 的取值X围是.8.如图,已知正方体的棱长为2cm,沿一个顶点C和两棱的中点的连线AB截取出三棱锥D﹣ABC,则这个三棱锥的表面积为cm2.9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN 于点F,C,过点C作AM的垂线CD,垂足为D,若CD=CF,则=.10.已知t是实数,若a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,则(a2﹣1)(b2﹣1)的最小值是.三、解答题11.如图,在直角坐标系中有正方形OABC,以OA为直径作⊙M,在半圆上有一动点P,连接PO、PA、PB、PC,已知A(4,0).(1)OP=2时,P点的坐标是;(2)求当OP为多少时,△OPC为等腰三角形;(3)设P(a,b),S△POC=S1,S△POA=S2,S△PAB=S3,求出S=2S1S3﹣S22的最大值,并求出此时P的坐标.12.设a,b,c为互不相等的实数,且满足关系式:b2+c2=2a2+16a+14①bc=a2﹣4a﹣5②.求a的取值X围.13.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y=也过E、F两点,记S△CEF=S1,S△OEF=S2,用含m的代数式表示.14.如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.2016年某某省某某市华中师大一附中中考数学模拟试卷参考答案与试题解析一、选择题1.已知实数x,y满足;,y4+y2=3,则+y4的值为()A.7 B.C.D.5【考点】换元法解分式方程;解一元二次方程﹣公式法.【专题】计算题.【分析】根据方程特点设=m,y2=n,则已知可化为4m2﹣2m﹣3=0,n2+n﹣3=0.解一元二次方程求m、n,再求所求代数式的值即可.【解答】解:因为x2>0,y2≥0,设=m,y2=n,则已知可化为4m2﹣2m﹣3=0,n2+n﹣3=0.解得, =m=,y2=n=,所以=4()2+()2=7故选A.【点评】用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.2.若n满足(n﹣2015)2+(2016﹣n)2=1,则(n﹣2015)(2016﹣n)=()A.﹣1 B.0 C.D.1【考点】完全平方公式.【分析】根据完全平方公式得出[(n﹣2015+(2016﹣n)]2=(n﹣2015)2+(2016﹣n)2+2(n﹣2015)(2016﹣n)=1+2(n﹣2015)(2016﹣n),即可得出答案.【解答】解:∵(n﹣2015)2+(2016﹣n)2=1,∴[(n﹣2015)+(2016﹣n)]2=(n﹣2015)2+(2016﹣n)2+2(n﹣2015)(2016﹣n)=1+2(n﹣2015)(2016﹣n),∴1=1+2(n﹣2015)(2016﹣n),∴(n﹣2015)(2016﹣n)=0,故选B.【点评】本题考查了完全平方公式,能灵活运用公式进行变形是解此题的关键.3.如图,A为DE的中点,设S1=S△DBC,S2=S△ABC,S3=S△EBC,则S1,S2,S3的关系是()A.S2=(S1+S3)B.S2=(S3﹣S1)C.S2=(S1+S3)D.S2=(S3﹣S1)【考点】三角形的面积.【分析】作DM⊥BC于M,AN⊥BC于N,EH⊥BC于H,根据梯形中位线定理得到AN=(DM+EH),根据三角形的面积公式计算即可判断.【解答】解:作DM⊥BC于M,AN⊥BC于N,EH⊥BC于H,则DM∥AN∥EH,∵A为DE的中点,∴AN是梯形DMHE的中位线,∴AN=(DM+EH),S1+S3=×BC×DM+×BC×EH=×BC×(DM+EH)=×BC×2AN=2S2,∴S2=(S1+S3),故选:C.【点评】本题考查的是三角形的面积计算,掌握三角形的面积公式、梯形的中位线定理是解题的关键.4.图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=()A.B.C.D.【考点】切线长定理;相似三角形的判定与性质;锐角三角函数的定义.【专题】计算题.【分析】取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F,则易证AO⊥BE,△BOF ∽△AOB,则sin∠CBE=,求得OF的长即可求解.【解答】解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F∵AB,AE都为圆的切线∴AE=AB∵OB=OE,AO=AO∴△ABO≌△AEO(SSS)∴∠OAB=∠OAE∴AO⊥BE在直角△AOB里AO2=OB2+AB2∵OB=1,AB=3∴AO=易证明△BOF∽△AOB∴BO:AO=OF:OB∴1: =OF:1∴OF=sin∠CBE==故选D.【点评】本题主要考查了切线长定理,以及三角形的相似,求角的三角函数值的问题转化为求线段的比的问题.5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B. C.D.【考点】相交弦定理;勾股定理.【专题】计算题.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选D.【点评】本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.二、填空题6.如图,指出第6排第7列的数是42 ,2016是45 排10 列的数.【考点】规律型:数字的变化类.【分析】先根据图形找到第n行第n+1列的数为:n(n+1),以此确定第6排第7列的数,从表格中发现:第n排第1列的数为n2,第n行递减的数有n个,由此可计算2016是第45排的数,452﹣9=2016,可确定是第几列.【解答】解:由图可知:第1行2列:2=1×2,第2行3列:6=2×3,第3行4列:12=3×4,第4行5列:20=4×5,∴第6排第7列的数是:6×7=42,又知道第n排第1列的数为n2,第n行递减的数有n个,2016=452﹣9,即2016是第45行第10列,故答案为:42,45,10.【点评】本题是数字类的变化题,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况,得出规律解决问题.7.已知x轴上有点A(﹣1,0),B(3,0)两点,y=x2+2kx+k2﹣3的图象与线段AB有交点时,k 的取值X围是3+≤k或﹣3﹣≤k≤1﹣.【考点】二次函数图象上点的坐标特征.【分析】令y=0得出抛物线与x轴的交点坐标,列出不等式即可解决问题.【解答】解:令y=0,得x2+2kx+k2﹣3=0,解得x=﹣k±,∵二次函数y=x2+2ax+3的图象与线段AB有交点,抛物线与x轴交于(﹣k+,0),(﹣k﹣,0),开口向上,∴当﹣1≤﹣k+≤3时,抛物线与线段AB有交点,即﹣3+≤k;或当﹣1≤﹣k﹣≤3时,抛物线与线段AB有交点,即﹣3﹣≤k≤1﹣;故答案为3+≤k或﹣3﹣≤k≤1﹣.【点评】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用图象解决问题,把问题转化为不等式,属于中考常考题型.8.如图,已知正方体的棱长为2cm,沿一个顶点C和两棱的中点的连线AB截取出三棱锥D﹣ABC,则这个三棱锥的表面积为4 cm2.【考点】勾股定理;认识立体图形;几何体的表面积.【专题】计算题.【分析】求出△ADB、△ADC、△CDB的面积,根据勾股定理求出AB、BC、AC的长,再利用海伦公式求出△ADC的面积,将四个三角形的面积相加即可求出三棱锥的表面积.【解答】解:∵AD=DB=1cm,DC=2cm,∴AB==cm,BC=AC==cm,S△ACB==cm2;S△ADB=×1×1=;S△ADC=S△CDB=×1×2=1;∴这个三棱锥的表面积为1+1++=4cm2.故答案为4cm2.【点评】本题考查了勾股定理、认识立体图形、几何体的表面积,熟悉海伦公式及能将立体图形平面化是解题的关键.9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN 于点F,C,过点C作AM的垂线CD,垂足为D,若CD=CF,则=.【考点】矩形的性质;相似三角形的判定与性质.【分析】由于AD∥BC,易得△AEF∽△CBF,那么AE:BC=AF:FC,因此只需求得AF、FC的比例关系即可.可设AF=a,FC=b;在Rt△ABC中,由射影定理可知AB2=AF•AC,联立CD=CF=AB,即可求得AF、FC的比例关系,由此得解.【解答】解:设AF=a,FC=b;∵AM⊥AB,BN⊥AB,∴AM∥BN;∴△AEF∽△CBF;∴AE:BC=AF:FC=a:b;Rt△ABC中,BF⊥AC,由射影定理,得:AB2=AF•AC=a(a+b);∵AM⊥AB,BN⊥AB,CD⊥AM,∴四边形ABCD是矩形,∴CD=AB=CF=b;∴b2=a(a+b),即a2+ab﹣b2=0,()2+()﹣1=0解得=(负值舍去);∴==.【点评】此题主要考查了矩形的性质、直角三角形及相似三角形的性质.能够正确的在Rt△ABC中求得AF、FC的比例关系是解答此题的关键.10.已知t是实数,若a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,则(a2﹣1)(b2﹣1)的最小值是﹣3 .【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,根据根与系数的关系,化简(a2﹣1)(b2﹣1)即可求解.【解答】解:∵a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,∴可得a+b=2,ab=t﹣1≥0,∴t≥1,又△=4﹣4(t﹣1)≥0,可得t≤2,∴2≥t≥1,又(a2﹣1)(b2﹣1)=(ab)2﹣(a2+b2)+1=(ab)2﹣(a+b)2+2ab+1,∴(a2﹣1)(b2﹣1),=(t﹣1)2﹣4+2(t﹣1)+1,=t2﹣4,又∵2≥t≥1,∴0≥t2﹣4≥﹣3,故答案为:﹣3.【点评】本题主要考查了根与系数的关系及根的判别式,属于基础题,关键要掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.三、解答题11.如图,在直角坐标系中有正方形OABC,以OA为直径作⊙M,在半圆上有一动点P,连接PO、PA、PB、PC,已知A(4,0).(1)OP=2时,P点的坐标是(1,);(2)求当OP为多少时,△OPC为等腰三角形;(3)设P(a,b),S△POC=S1,S△POA=S2,S△PAB=S3,求出S=2S1S3﹣S22的最大值,并求出此时P的坐标.【考点】圆的综合题.【分析】(1)根据正方形的性质求出OA=AB=BC=CO=4,根据圆周角定理得到∠OPA=90°,根据勾股定理求出OE、PE,得到答案;(2)分PC=PO、CO=CP两种情况,根据等腰三角形的性质以及勾股定理计算即可;(3)用a、b分别表示出S1、S2、S3,根据射影定理求出b2=a(4﹣a),根据二次函数的性质解答即可.【解答】解:(1)∵点A的坐标为(4,0),∴OA=4,∵四边形OABC为正方形,∴OA=AB=BC=CO=4,∵OA为⊙M的直径,∴∠OPA=90°,OP=2,OA=4,∴∠OAP=30°,∴∠OPE=30°,又OP=2,∴OE=1,PE=,∴P(1,);(2)如图2,当PC=PO时此时P位于四边形OABC的中心,过点P作PE⊥OA于E,作PF⊥OC于F,则四边形OEPF是正方形,∴PE=OE=OA=2,∴OP=2,如图3,当CO=CP时,以点C为圆心,CO为半径作圆与弧OA的交点为点P.连PO,连接PM,CM,CM交OP于点G,在△ADO和△PDO中,,∴△ADO≌△PDO,∴CM⊥OP,OG=PG,∵OC=4,OM=2,∴CM=2,∴OG==,则OP=2OG=,当OP为2或时,△OPC为等腰三角形;(3)∵P(a,b),OA=AB=CO=4,∴S1=2a,S3=8﹣2a,b2=4a﹣a2,S2=2b,如图2,P(a,b),由射影定理得,PE2=OE•AE,即b2=a(4﹣a),∴S=2×2a×(8﹣2a)﹣(2b)2=8(4a﹣a2)﹣4b2=﹣4(a﹣2)2+16,当a=2时,S最大=16,当a=2时,b==2,∴P的坐标为(2,2).【点评】本题考查的是圆周角定理、全等三角形的判定和性质、正方形的性质、二次函数的解析式的求法以及二次函数的性质的综合运用,灵活运用相关的定理、正确作出辅助线是解题的关键.12.(2011•富阳市校级自主招生)设a,b,c为互不相等的实数,且满足关系式:b2+c2=2a2+16a+14①bc=a2﹣4a﹣5②.求a的取值X围.【考点】解一元二次方程﹣公式法;根的判别式.【专题】方程思想.【分析】先通过代数式变形得(b+c)2=2a2+16a+14+2(a2﹣4a﹣5)=4a2+8a+4=4(a+1)2,即有b+c=±2(a+1).有了b+c与bc,就可以把b,c可作为一元二次方程x2±2(a+1)x+a2﹣4a﹣5=0③的两个不相等实数根,由△=4(a+1)2﹣4(a2﹣4a﹣5)=24a+24>0,得到a>﹣1.再排除a=b和a=c 时的a的值.先设a=b和a=c,分别代入方程③,求得a的值,则题目要求的a的取值X围应该是在a>﹣1的前提下排除求得的a值.【解答】解:∵b2+c2=2a2+16a+14,bc=a2﹣4a﹣5,∴(b+c)2=2a2+16a+14+2(a2﹣4a﹣5)=4a2+8a+4=4(a+1)2,即有b+c=±2(a+1).又bc=a2﹣4a﹣5,所以b,c可作为一元二次方程x2±2(a+1)x+a2﹣4a﹣5=0③的两个不相等实数根,故△=4(a+1)2﹣4(a2﹣4a﹣5)=24a+24>0,解得a>﹣1.若当a=b时,那么a也是方程③的解,∴a2±2(a+1)a+a2﹣4a﹣5=0,即4a2﹣2a﹣5=0或﹣6a﹣5=0,解得,或.当a=c时,同理可得或.所以a的取值X围为a>﹣1且且.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的求根公式:x=(b2﹣4ac≥0).同时考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式b2﹣4ac和根与系数的关系.13.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y=也过E、F两点,记S△CEF=S1,S△OEF=S2,用含m的代数式表示.【考点】相似三角形的判定与性质;反比例函数系数k的几何意义.【分析】过点F作FG⊥y轴于点G,根据平行线证出三角形相似得出ME:MC的值,设出点C的坐标,表示出点E、F的坐标,结合三角形的面积公式找出S1、S2的值,二者相比即可得出结论.【解答】解:过点F作FG⊥y轴于点G,如图所示:∵CM⊥y轴,FG⊥y轴,∴CM∥FG,MC=FG,∴△BME∽△BGF,∴===,设点C的坐标为(a,b),则E(,b),F(a,),∴S1=×(a﹣)•(b﹣)=ab;S2=a•b﹣•﹣•﹣ab=ab.∴=.【点评】此题主要考查了相似三角形的判定与性质、反比例函数的综合应用以及三角形面积求法,根据已知表示出E,F的点坐标是解题关键.14.如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.【考点】切割线定理;勾股定理;切线的性质.【专题】计算题;综合题.【分析】连接PO交AB于H,设DE=x,由勾股定理得,(x+2)2+x=2(x+3),从而求出x的值即可.【解答】解:连接PO交AB于H,由切线长定理可知,OP平分∠APB,而PA=PB,∴PO⊥AB,设DE=x,则PA2=PE•PC=2(x+3).在Rt△APH中,AP2=AH2+PH2,即AH2+PH2=2(x+3)①,在Rt△PHD中,PH2+DH2=(x+2)2②,又AD•DB=ED•DC,而AD•DB=(AH﹣DH)(AH+DH)=AH2﹣DH2,∴AH2﹣DH2=x•1③,由①②③得(x+2)2+x=2(x+3),解得DE=x=.【点评】本题考查的是切割线定理,切线的性质定理,勾股定理.。

2016年湖北省武汉市数学中考最新精品模拟试题

2016年湖北省武汉市数学中考最新精品模拟试题

2016年湖北省武汉市中考数学最新精品模拟试题一、单项选择题(本题有10道小题,每小题3分,共30分)1.下列哪一个数值最小? ( )A .9.5⨯10-9B .2.5⨯10-9C .9.5⨯10-8D .2.5⨯10-8 。

2. 使分式12-x x 有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D. 21≠x 3.二次函数y =x 2+4x ﹣5的图象的对称轴为 ( ) A . x =4 B . x =﹣4 C . x =2 D . x =﹣24.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x 的某个取值范围内,都有函数值y 随x 的增大而减小,则符合上述条件的函数可能是( )A . 正比例函数B . 一次函数C . 反比例函数D . 二次函数则弦AB 的长为 ( )A .3B .4C .6D .96题图 7题图 8题图 9题图7.如图,抛物线y 1=a (x +2)2与y 2=12(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分 别交两条抛物线于点B ,C .则以下结论:① 无论x 取何值,y 2的值总是正数;②a =1;③当=0时,y 2-y 1=4;④2AB =3AC .其中正确结论是 ( )A .①②B .②③C .③④D .①④8.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC =3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为 ( ) A . 3:4 B . 9:16 C . 9:1 D . 3:19.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是 ( )A . =B . =C . =D . =10.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率()A.1/3B.1/2C.2/3D.3/4二、填空题(本题10小题,每小题3分,共30分)11.若实数满足,则的值是.12.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为_________.12题图 13题图 15题图13.在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为_________.14.正在修建的西塔(西宁——塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,12天可以完成.若设甲单独完成这项工程需要x天.则根据题意,可列方程为____________.15.如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当PQ=BQ 时,a的值是___________.16.要使式子a+2a有意义,a的取值范围是.17.已知点P(3,2),则点P关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是.18.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.18题图 19题图 20题图19.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需要再添加的一个条件可以是.20.如图,已知A1,A2,……,A n,A n+1在x轴上,且OA1=A1A2=A2A3=……=A n A n+1=1,分别过点A 1,A 2,……,A n ,A n +1作x 轴的垂线交直线y =x 于点B 1,B 2,……,B n ,B n +1,连接A 1B 2,B 1A 2,A 2B 3,B 2A 3,……,A n B n +1,B n A n +1,依次相交于点P 1,P 2,P 3,……,P n ,△A 1B 1P 1,△A 2B 2P 2,……,△A n B n P n 的面积依次为S 1,S 2,……,S n ,则S 1= ,S n = .三、解答题(本题8小题,共60分)21.(5分)计算:|-5|-( 2 -3)0+6×(13 - 12)+(-1)2. 22.(5分)已知二次函数图象的顶点坐标为(1,-1),且经过原点(0,0),求该函数的解析式.23. (7分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x (单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m 的值和E 组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数24.(8分)如图,在△ABC 中,∠CAB =90°,∠CBA =50°,以AB 为直径作⊙O 交BC 于点D ,点E 在边AC 上,且满足ED =EA .(1)求∠DOA 的度数;(2)求证:直线ED 与⊙O 相切.25. (8分)如图,反比例函数k y x =的图象与一次函数14y x =的图象交于点A 、B ,点B 的横坐标是4.点P 是第一象限内反比例函数图象上的动点,且在直线AB 的上方.(1)若点P 的坐标是(1,4),直接写出k 的值和△PAB 的面积;(2)设直线PA 、PB 与x 轴分别交于点M 、N ,求证:△PMN 是等腰三角形;(3)设点Q 是反比例函数图象上位于P 、B 之间的动点(与点P 、B 不重合),连接AQ 、BQ ,比较∠PAQ 与∠PBQ 的大小,并说明理由.26. (7分)如图,在△ABC中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.⋅∠的值;(1)求BD cos HBD(2)若∠CBD=∠A,求AB的长.27.(10分)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C.D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A.B.D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.28. (10分)在平面直角坐标系中,已知点A(-2,0),B(0,4),点E在OB上,且∠OAE=∠OBA.(1)如图1,求点E的坐标;(2)如图2,将△AEO沿x轴向右平移得到△AE′O′,连结A′B、BE′.①设AA′=m,其中0<m<2,使用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).图1 图2。

2016武汉中考数学试卷答案

2016武汉中考数学试卷答案
2016 年武汉市中考数学试卷
一、选择题 1 共 10 小题,每小题 3 分,共 30 分 实数 2 的值在 B 1 和 2 之间 C 2 和 3 之间 D 3 和 4 之间
A 0 和 1 之间 答案 B 解析 1 2 4
考点 有理数的估计
1
2
4
1
2 2.
2 A
若代数式在 x 3 考点 答案 C 解析 要使
B
x2 6x 9
C
x2 6x 9
D
x2 3x 9
考点 完全 方公式
方公式
(x 3)2
x2 2×3x 32
x2 6x 9
故答案为
6
C
b)关于坐标原点对 B a 1 D a 则实数 a b 的值是 5 b 5 b 1 1
已知点 A(a 1) 点 A′(5 5 b 1
A a C
a 5 b 答案 D
考点 关于原点对 的点的坐标
9
如图 在等腰 Rt△ABC 中 AC BC
2 2
点 P 在以斜边 AB 为直 的半圆
M为
PC 的中点 当点 P 沿半圆从点 A 运动至点 B 时 点 M 运动的路 长是
A

B
π
C
2 2
D 2
考点 轨迹 等腰直角 角形 答案 B 解析 取 AB 的中点 E 取 CE 的中点 F 连接 PE CE 的轨迹为以 F 为圆心 1 为半 的半圆 MF 则 FM
解析 关于原点对 的点的横坐标 纵坐标互为相反数 坐标原点对 a 5 b 1 故选 D
点 A(a 1) 点 A′(5

b)关于
7
如图是 一个圆柱体和一个长方体组 的几何体 其 视图是
考点 简单几何体的 视图 答案 A 解析 从 面看 故选 A 某车间 20 人日加 零 数如 表所示 4 2 5 6 6 5 均数 别是 C 6 5 6 D 5 6 6 7 4 8 3 面看到的是长方形 面看到的也是长方形 且两个长方形一样大

2015~2016学年度武汉市九年级中考数学模拟试卷

2015~2016学年度武汉市九年级中考数学模拟试卷

2015~2016学年度武汉市九年级中考数学模拟试卷武汉市东山中学教学九年级组 2016.5.5第Ⅰ卷 (选择题 共30分)一、选择题(共10小题,每小题3分,共30分) 1.下列实数落在7与8之间的是( )A.41B.51C.31D.61 2.分式xx222-有意义,则x 的取值范围是( )A. x ≠2B. x ≤2.C. x ≠1D. x ≥1 3.运用乘法公式计算)3)(3(a a +--的结果是( )A.29a -B..932-+-a a C..92-a D..962---a a4.下列事件是确定性...事件的是( ). A.掷一次骰子,在骰子向上的一面上的点数大于0. B.买一张福利彩票,中100万.C.武汉市地铁5号线今年年底通车.D.明天天气晴朗.5.下列计算正确的是( ).A.x x x =÷232B.2532x x x =⋅C.422624x x x =+ D.124=⋅xx 6.在平面直角坐标系xoy 中,将△ABC 绕着原点o 逆时针旋转90,得到△'''C B A ,已知)3,2(A 、)5,4(B 、)1,6(-C ,且A 、B 、C 的对应点对应为A 、B 、C ,已知P 是线段AC的中点,则点'P 的坐标为( ).A.(4,1).B.(4,-1)C.(1,4)D.(-1,4).7.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )8.某校九年级兴趣小组在课后就本校学生对中考的看法做了如下调查:该兴趣小组随机抽查了本校部分学生,进行了问卷调查,问卷内容包括如下四类,A 类:一定要竭尽全力考进高中,B 类:中考好坏都无所谓,C 类:没想过,D 类:基础较差,力不从心。

该兴趣小组将调查结果绘制成了下列图表:根据上述图表中的信息,请你计算扇形图中的值为( ). A.6 B. 108 C.%12 D.2.439.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,...,依次规律,第6个图形有( )个小圆.......A.3B.5C.8D.1310.如图,已知O 是四边形ABCD 内一点,OA=OB=OC ,∠ABC=∠ADC=70,则∠DAO+∠DCO 的大小是( )A.70B.110C.140D.150第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算-10-(+3)的结果为.12.天文单位(英文:Astronomical Unit ,简写AU )是长度的单位,历史上约等于地球跟太阳的平均距离。

湖北省武汉市2016届九年级中考模拟(一)考试数学试题解析(解析版)

湖北省武汉市2016届九年级中考模拟(一)考试数学试题解析(解析版)

一.选择题(共10小题,每小题3分,共30分)1.估计7的值介于()A.0与1之间B.1与2之间C.2与3之间D.3与4之间【答案】C【解析】<<∴23<<2和3之间,故选C.考点:估算无理数的大小.2.若分式25x-有意义,则x的取值范围是()A.x≠5 B.x≠﹣5 C.x>5 D.x>﹣5【答案】A【解析】试题分析:∵x﹣5≠0,∴x≠5;故选A.考点:分式有意义的条件.3.计算(a﹣1)2正确的是()A.a2﹣a+1 B.a2﹣2a+1 C.a2﹣2a﹣1 D.a2﹣1 【答案】B【解析】试题分析:原式=a2﹣2a+1,故选B考点:完全平方公式.4.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根【答案】D【解析】考点:随机事件;二元一次方程的解.5.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x3【答案】B【解析】试题分析:A、x•x6=x7,原式计算错误,故本选项错误;B、(x2)3=x6,原式计算正确,故本选项正确;C、(x+2)2=x2+4x+4,原式计算错误,故本选项错误;D、(2x)3=8x3,原式计算错误,故本选项错误.故选B.考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.6.下列几何体中,主视图相同的是()A.①②B.①③C.①④D.②④【答案】B【解析】试题分析:圆柱的主视图是长方形,圆锥的主视图是三角形,长方体的主视图是长方形,球的主视图是圆,故选:B.考点:简单几何体的三视图.7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1) D.(2,﹣1)【答案】D【解析】试题分析:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.考点:坐标与图形变化-平移.8.小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.A.1080 B.900 C.600 D.108【答案】A【解析】试题分析:根据题意得:抽取的总人数是:45÷30%=150(人),体育所占的百分比是:30150×100%=20%,则娱乐所占的百分比是:1﹣6%﹣8%﹣20%﹣30%=36%,全校喜欢娱乐类节目的学生大约有3000×36%=1080(人).故选A.考点:用样本估计总体;扇形统计图;条形统计图.9.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是()A.(63,32)B.(64,32)C.(63,31)D.(64,31)【答案】A【解析】试题分析:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2C1=2=21,同理得:A3C2=4=22,…,∴点B6所在正方形的边长=25,∴其横坐标=1+21+22+23+24+25=63,∴B6的坐标是(63,32).故选A.考点:一次函数图象上点的坐标特征;正方形的性质.10.如图所示,直线CD 与以线段AB 为直径的圆相切于点D 并交BA 的延长线于点C ,且AB=2,AD=1,P 点在切线CD 的延长线上移动时,则△PBD 的外接圆的半径的最小值为( )A .1B .2C .12D 【答案】B 【解析】试题分析:连接DO . ∵AB 是直径, ∴∠ADB=90°, ∵AB=2,AD=1, ∴AB=2AD , ∴∠ABD=30°, ∵OD=OB ,∴∠ODB=∠OBD=30°, ∵CD 是切线, ∴∠PDO=90°, ∴∠PDB=60°,由题意当BD 为△PBD 外接圆直径时,△PBD 的外接圆半径最小.∵∴△PBD 外接圆的半径为2.故选B .考点:切线的性质;三角形的外接圆与外心.二.填空题(共6小题,每小题3分,共18分)11.计算:﹣6+4=.【答案】﹣2【解析】试题分析:﹣6+4=﹣2.故答案为:﹣2.考点:有理数的加法.12.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为.【答案】4.4×106.【解析】试题分析:将4400000用科学记数法表示为:4.4×106.故答案为:4.4×106.考点:科学记数法—表示较大的数.13.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是.【答案】1 3【解析】试题分析:掷一枚质地均匀的正方体骰子,骰子向上的一面点数共有6种可能,而只有出现点数为1、2才小于3,所以这个骰子向上的一面点数小于3的概率=26=13.故答案为:1 3.考点:概率公式.14.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数=度.【答案】60【解析】试题分析:连接BD,BF∵∠BAD=80°∴∠ADC=100°又∵EF垂直平分AB,AC垂直平分BD∴AF=BF,BF=DF∴AF=DF∴∠FAD=∠FDA=40°∴∠CDF=100°﹣40°=60°.故答案为:60.考点:线段垂直平分线的性质;菱形的性质.15.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.【答案】2【解析】试题分析:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:2考点:翻折变换(折叠问题).16.我们把a、b两个数中较小的数记作min{a,b},直线y=kx﹣k﹣2(k<0)与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点,则k的取值为.【答案】2﹣53或﹣1.【解析】①直线y=kx﹣k﹣2经过点(﹣2,3)时,3=﹣2k﹣k﹣2,k=53-,此时直线y=53-x13-,与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点.②直线y=kx﹣k﹣2与函数y=x2﹣1相切时,由212y xy kx x⎧=-⎨=--⎩消去y得x2﹣kx+k+1=0,∵△=0,k<0,∴k2﹣4k﹣4=0,∴k=2﹣2+y=(2﹣x﹣4+y=min{x2﹣1、﹣x+1}的图象有且只有2个交点.③直线y=kx﹣k﹣2和直线y=﹣x+1平行,k=﹣1,直线为y=﹣x﹣1与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点.综上,k=2﹣-53或﹣1.故答案为:2﹣-53或﹣1.考点:二次函数与不等式(组).三.解答题(共8小题,共72分)17.解方程:2﹣2(x﹣1)=3x+4.【答案】x=0【解析】试题分析:方程去括号,移项合并,把x系数化为1,即可求出解.试题解析:去括号得:2﹣2x+2=3x+4,移项合并得:5x=0,解得:x=0.考点:解一元一次方程.18.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.【答案】证明见解析【解析】试题分析:根据已知条件得出△ACB≌△DEF,即可得出∠ACB=∠DFE,再根据内错角相等两直线平行,即可证明BC∥EF.试题解析:证明:∵AF=DC,∴AC=DF,又∵AB=DE,∠A=∠D,∴△ACB≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.考点:全等三角形的判定与性质;平行线的判定.19.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;(2)该班学生体育测试成绩的中位数落在等级内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?【答案】(1)4%,72°;(2)B(3)估计这次考试中A级和B级的学生共有380人.【解析】试题分析:(1)先求出总人数,再求D成绩的人数占的比例;C成绩的人数为10人,占的比例=10÷50=20%,表示C的扇形的圆心角=360°×20%=72°;(2)根据中位数的定义判断;(3)该班占全年级的比例=50÷500=10%,所以,这次考试中A级和B级的学生数=(13+25)÷10%=380人.试题解析:(1)总人数为25÷50%=50人,D 成绩的人数占的比例为2÷50×100%=4%, 表示C 的扇形的圆心角360°×(10÷50)=360°×20%=72°, 故答案为:4%,72°;(2)由于A 成绩人数为13人,C 成绩人数为10人,D 成绩人数为2人,而B 成绩人数为25人,故该班学生体育测试成绩的中位数落在B 等级内; 故答案为:B ; (3)132550+×500=380(人), 答:估计这次考试中A 级和B 级的学生共有380人. 考点:条形统计图;用样本估计总体;扇形统计图;中位数.20.已知:如图,在平面直角坐标系中,一次函数y=ax +b (a ≠0)的图象与反比例函数(0)ky k x=≠的图象交于一、三象限内的A 、B 两点,与x 轴交于C 点,点A 的坐标为(2,m ),点B 的坐标为(n ,﹣2),tan ∠BOC=25. (1)求该反比例函数和一次函数的解析式;(2)在x 轴上有一点E (O 点除外),使得△BCE 与△BCO 的面积相等,求出点E 的坐标.【答案】(1)一次函数解析式为y=x +3; (2)E (﹣6,0) 【解析】试题分析:(1)过B 点作BD ⊥x 轴,垂足为D ,由B (n ,﹣2)得BD=2,由tan ∠BOC=25,解直角三角形求OD ,确定B 点坐标,得出反比例函数关系式,再由A 、B 两点横坐标与纵坐标的积相等求n 的值,由“两点法”求直线AB 的解析式;(2)点E 为x 轴上的点,要使得△BCE 与△BCO 的面积相等,只需要CE=CO 即可,根据直线AB 解析式求CO ,再确定E 点坐标.试题解析:(1)过B 点作BD ⊥x 轴,垂足为D ,∴A (2,5),将A (2,5),B (﹣5,﹣2)代入y=ax +b 中,得2552a b a b +=⎧⎨-+=-⎩, 解得13a b =⎧⎨=⎩.则一次函数解析式为y=x +3;(2)由y=x +3得C (﹣3,0),即OC=3, ∵S △BCE =S △BCO , ∴CE=OC=3,∴OE=6,即E (﹣6,0).考点:反比例函数综合题.21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若sin∠ABC=,求tan∠BDC的值.【答案】(1)证明见解析;(2)tan∠CDB=tan∠DBM=DMBM=38kk=38.【解析】试题分析:(1)先证明AD∥OC,得∠DAC=∠ACO,再根据OA=OC得∠OAC=∠OCA,由此即可证明.(2)连接BM、OC交于点N,根据sin∠ABC=sin∠BCN=45=BNBC,设BN=4k,BC=5k,则CN=3k,求出DM,BM,根据tan∠CDB=tan∠DBM=DMBM即可解决问题.试题解析:(1)∵DC是⊙O切线,∴OC⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠DAB.(2)连接BM、OC交于点N.∵AB是直径,∴∠AMB=90°,∵AD∥OC,∴∠ONB=∠AMB=90°=∠CNB,∵OC=OB,∴∠OCB=∠OBC,∴sin∠ABC=sin∠BCN=45=BNBC,设BN=4k,BC=5k,则CN=3k,∵∠CDM=∠DMN=∠DCN=90°,∴四边形DMNC是矩形,∴DM=CN=3k,MN=BN=4k,CD∥BM,∴∠CDB=∠DBM,∴tan∠CDB=tan∠DBM=DMBM=38kk=38.考点:切线的性质.22.为了美化环境,学校准备在如图所示的矩形ABCD空地上迸行绿化,规划在中间的一块四边形MNQP 上种花,其余的四块三角形上铺设草坪,要求AM=AN=CP=CQ.已知BC=24米,AB=40米,设AN=x米,种花的面积为y1平方米,草坪面积y2平方米.(1)分别求y1和y2与x之间的函数关系式(不要求写出自变量的取值范围)(2)当AN的长为多少米时种花的面积为440平方米?(3)若种花每平方米需200元,铺设草坪每平方米需100元现设计要求种花的面积不大于440平方米,那么学校至少需要准备多少元费用.【答案】(1)y1=40×24﹣y2=﹣2x2+64x,y2=2x2﹣64x+960;(2)AN的长为10米或22米时种花的面积为440平方米;(3)学校至少要准备140000元.【解析】试题分析:(1)根据三角形面积公式可得y2的解析式,再用长方形面积减去四个三角形面积,即可得y1的函数解析式;(2)根据题意知y1=440,即即可得关于x的方程,解方程即可得;(3)列出总费用的函数解析式,将其配方成顶点式,根据花的面积不大于440平方米可得x的范围,结合此范围根据二次函数性质即可得函数的最大值,从而得解.试题解析:(1)根据题意,y2=2×12•x•x+2×12(40﹣x)(24﹣x)=2x2﹣64x+960,y1=40×24﹣y2=﹣2x2+64x;(2)根据题意,知y1=440,即﹣2x2+64x=440,解得:x1=10,x2=22,故当AN的长为10米或22米时种花的面积为440平方米;(3)设总费用为W元,则W=200(﹣2x2+64x)+100(2x2﹣64x+960)=﹣200(x﹣16)2+147200,由(2)知当0<x≤10或22≤x≤24时,y1≤440,在W=﹣200(x﹣16)2+147200中,当x<16时,W随x的增大而增大,当x>16时,W随x的增大而减小,∴当x=10时,W取得最大值,最大值W=140000,当x=22时,W取得最大值,最大值W=140000,∴学校至少要准备140000元.考点:二次函数的应用;一元二次方程的应用。

2016年湖北省武汉市中考数学试卷含答案

2016年湖北省武汉市中考数学试卷含答案

2016年湖北省武汉市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间 B .1和2之间 C .2和3之间 D .3和4之间2.若代数式31x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <3 B .x >3 C .x ≠3 D .x =33.下列计算正确的是( ) A .a • a 2 = a 2 B .2a • a =2a 2C .(2a 2)2=2a 4D .6a 8÷3a 2=2a 44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球 B .摸出的是3个黑球 C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球5.运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +96.若点A (a ,1)与点A′(5,b )关于坐标原点对称,则实数a ,b 的值是( ) A .a =5,b =1 B .a =-5,b =1 C .a =5,b =-1 D .a =-5,b =-1 7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )(第7题图)A B C D 8.某车间20名工人日加工零件数如下表:这些工人日加工零件数的众数、中位数、平均数分别是( ) A .5,6,5 B .5,5,6C .6,5,6D .5,6,69.如图,在等腰直角三角形ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()(第9题图)A.2πB.πC.22D.210.在平面直角坐标系中,已知点A(2,2),B(4,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(本题共6小题,每小题3分,共18分)11.计算5+(-3)的结果为.12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为.13.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.14.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.(第14题图)15.将函数y=2x+b(b为常数)的图像位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图像.若该图像在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为.(第16题图)三、解答题(共8小题,共72分) 17.(8分)解方程:5x +2=3(x +2).18.(8分)如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .(第18题图)19.(8分)某学校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如图不完整的统计图.(第19题图)请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2 000名学生中最喜爱新闻的人数. 20.(8分)已知反比例函数y =x4. (1)若该反比例函数的图像与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2)如图,反比例函数y =x4(1≤x ≤4)的图像记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.(第20题图)21.(8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E .(1)求证:AC 平分∠DAB .(2)连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF的值.(第21题图)22.(10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:其中a 为常数,且3≤a ≤5.(1)若产销甲、乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式.(2)分别求出产销两种产品的最大年利润.(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由. 23.(10分)在△ABC 中,P 为边AB 上一点. (1)如图①,若∠ACP =∠B ,求证:AC 2=AP •AB . (2)若M 为CP 的中点,AC =2.①如图②,若∠PBM =∠ACP ,AB =3,求BP 的长;②如图③,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长.① ② ③(第23题图)24.(12分)抛物线y =ax 2+c 与x 轴交于A ,B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.(1)如图①,若P (1,-3),B (4,0). ①求该抛物线的表达式;②若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标.(2)如图②,已知直线P A ,PB 与y 轴分别交于E ,F 两点.当点P 运动时,OCOFOE 是否为定值?若是,试求出该定值;若不是,请说明理由.① ②(第24题图)参考答案一、1.B 【分析】∵1<2<2,∴实数2的值在1和2之间.故选B . 2.C 【分析】由题意,得x -3≠0,解得x ≠3.故选C .3.B 【分析】A .原式=a 3,错误;B .原式=2a 2,正确;C .原式=4a 4,错误;D .原 式=2a 6,错误.故选B .4.A 【分析】A .摸出的是3个白球是不可能事件;B .摸出的是3个黑球是随机事件; C .摸出的是2个白球、1个黑球是随机事件;D .摸出的是2个黑球、1个白球是随机事件.故选A .5.C 【分析】(x +3)2=x 2+6x +9.故选C .6.D 【分析】∵点A (a ,1)与点A′(5,b )关于坐标原点对称,∴a =-5,b =-1.故选D .7.A 【分析】从左面可看到一个长方形和上面一个长方形,且两个长方形的长相等.故 选A .8.D 【分析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10、11个数的平均数,则中位数是266+=6;平均数是203847566524⨯+⨯+⨯+⨯+⨯=6.故选D .9.B 【分析】如答图,取AB 的中点O ,AC 的中点E ,BC 的中点F ,连接OC ,OP ,OM ,OE ,OF ,EF .∵在等腰直角三角形ABC 中,AC =BC =22,∴AB =2BC =4,∴OC =21AB =2,OP =21AB =2.∵M 为PC 的中点,∴OM ⊥PC ,∴∠CMO =90°,∴点M 在以OC 为直径的圆上.当P 点在A 点时,M 点在E 点;当P 点在B 点时,M 点在F 点,易得四边形CEOF 为正方形,∴EF =OC =2,∴M 点的路径为以EF 为直径的半圆,∴点M 运动的路径长为21×2π×1=π.故选B .(第9题答图)10.A 【分析】∵点A ,B 的坐标分别为(2,2),(4,0).∴AB =22.①若AC =AB ,以A 为圆心,AB 为半径画弧与坐标轴有3个交点(含B 点),即(0,0),(4,0),(0,4). ∵点(0,4)与直线AB 共线,∴满足△ABC 是等腰三角形的C 点有1个.②若BC =AB ,以B 为圆心,BA 为半径画弧与坐标轴有2个交点(A 点除外),即满足△ABC 是等腰三角形的C 点有2个.③若CA =CB ,作AB 的垂直平分线与坐标轴有两个交点,即满足△ABC 是等腰三角形的C 点有2个.综上所述,点C 在坐标轴上,△ABC 是等腰三角形,符合条件的点C 共有5个.故选A .二、11.2 【分析】原式=+(5-3)=2. 12.6.3×10413.31【分析】∵一个质地均匀的小正方体有6个面,其中标有数字5的面有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率为62=31. 14.36° 【分析】∵四边形ABCD 是平行四边形,∠B =52°,∴∠D =∠B =52°.由折叠的性质,得∠D′ =∠D =52°,∠EAD′ =∠DAE =20°,∴∠AEF =∠D +∠DAE =52°+20°=72°,∠AED′ =180°-∠EAD′ -∠D′ =108°,∴∠F ED′ =108°-72°=36°.15.-4≤b ≤-2 【分析】∵y =2x +b ,∴当y <2时,2x +b <2,解得x <22b-.∵函数y =2x +b 沿x 轴翻折后的表达式为-y =2x +b ,即y =-2x -b ,∴当y <2时,-2x -b <2,解得x >-22b +.∴-22b+< x <22b -.∵x 满足0<x <3,∴-22b +=0,22b-=3,解得b =-2或b =-4.∴b 的取值范围为-4≤b ≤-2.16.241 【分析】如答图,过点D 作DM ⊥BC ,交BC 的延长线于点M ,连接AC ,则∠M=90°,∴∠DCM +∠CDM =90°.∵∠ABC =90°,AB =3,BC =4,∴AC 2=AB 2+BC 2=25. ∵CD =10,AD =55,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,即∠ACD =90°,∴∠ACB +∠DCM =90°,∴∠ACB =∠CDM .∵∠ABC =∠M =90°,∴△ABC ∽△CMD ,∴CMAB =CDAC DM BC ==21,∴CM =2AB =6,DM =2BC =8,∴BM =BC +CM =10,∴BD =DM BM 22+=81022+=241.(第16题答图)三、17.解:去括号,得5x +2=3x +6. 移项、合并同类项,得2x =4. 系数化为1,得x =2.18.证明:∵BE =CF ,∴BC =EF .在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===,,,EF BC DF AC DE AB∴△ABC ≌△DEF (SSS ), ∴∠ABC =∠DEF ,∴AB ∥DE . 19.解:(1)50 3 72°.分析:本次共调查学生的人数为4÷8%=50.最喜爱戏曲的人数为50×6%=3. ∵“娱乐”类人数占被调查人数的百分比为5018×100%=36%, ∴“体育”类人数占被调查人数的百分比为1-8%-30%-36%-6%=20%, ∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°. (2)2 000×8%=160.答:估计该校2 000名学生中最喜爱新闻的人数是160.20.解:(1)联立44y x y kx ⎧=⎪⎨⎪=+⎩,,得kx 2+4x -4=0. ∵反比例函数的图像与直线y =kx +4(k ≠0)只有一个公共点, ∴∆=16+16k =0,解得k =-1.(2)如答图,C 1平移至C 2处所扫过的面积为2×3=6.(第20题答图)21.(1)证明:如答图①,连接OC . ∵CD 是⊙O 的切线,∴CD ⊥OC .又∵CD ⊥AD ,∴AD ∥OC ,∴∠CAD =∠ACO . ∵OA =OC ,∴∠CAO =∠ACO , ∴∠CAD =∠CAO ,即AC 平分∠DAB .(2)解:如答图②,连接BE ,BC ,OC ,BE 交AC 于点F ,交OC 于点H . ∵AB 是⊙O 的直径,∴∠AEB =∠DEH =∠D =∠DCH =90°, ∴四边形DEHC 是矩形,∴∠EHC =90°,即OC ⊥EB , ∴DC =EH =HB ,DE =HC . ∵cos ∠CAD =54=ACAD,设AD =4a ,AC =5a ,则DC =EH =HB =3a . ∵cos ∠CAB =54=ABAC,∴AB =425a ,∴BC =415a .在Rt △CHB 中,CH =BH CB 22-=49a , ∴DE =CH =49a ,AE =BE AB 22-=47a . ∵EF ∥CD ,∴97==ED AE FC AF .① ②(第21题答图)22.解:(1)y 1=(6-a )x -20(0<x ≤200),y 2=(20-10)x -40-0.05x 2=-0.05x 2+10x -40(0<x ≤80). (2)∵在y 1=(6-a )x -20中,6-a >0,∴当x =200时,y 1有最大值,最大值为(1 180-200a )万元. ∵在y 2=-0.05x 2+10x -40=-0.05(x -100)2+460中,0<x ≤80, ∴当x =80时,y 2有最大值,最大值为440万元. (3)①1 180-200a =440,解得a =3.7. ②1 180-200a >440,解得a <3.7. ③1 180-200a <440,解得a >3.7. ∵3≤a ≤5,∴当a =3.7时,生产甲、乙两种产品的年利润相同; 当3≤a <3.7时,生产甲产品的年利润比较高;当3.7<a ≤5时,生产乙产品的年利润比较高. 23.(1)证明:∵∠ACP =∠B ,∠A =∠A , ∴△ACP ∽△ABC , ∴ACABAP AC =, ∴AC 2 =AP • AB .(2)解:①如答图①,取AP 的中点G ,连接MG ,设AG =x ,则PG =x ,BG =3-x . ∵M 是PC 的中点,∴MG ∥AC ,∴∠BGM =∠A . ∵∠ACP =∠PBM ,∴△APC ∽△GMB , ∴BG AC GM AP =,即xx -=3212,解得x =253±. ∵AB =3,∴AP =3-5,∴PB =5.②如答图②,过点C 作CH ⊥AB 于点H ,延长AB 到点E ,使BE =BP .设BP =x . ∵∠ABC =45°,∠A =60°,∴CH =3,HE =3+x , ∴CE 2=(3)2+(3+x )2. ∵PB =BE ,PM =CM ,∴BM ∥CE , ∴∠PMB =∠PCE =60°=∠A . ∵∠E =∠E ,∴△ECP ∽△EAC , ∴CEAEEP CE =,∴CE 2 =EP • EA , 即3+3+x 2+23x =2x (x +3+1),解得x =7-1(负值已舍去). ∴PB =7-1.① ②(第23题答图)24.解:(1)①将P (1,-3),B (4,0)的坐标分别代入y =ax 2+c ,得3160a c a c +=-⎧⎨+=⎩,, 解得⎪⎩⎪⎨⎧-==.51651c a , ∴该抛物线的表达式为y =51x 2-516. ②当点D 在OP 左侧时,由∠DPO =∠POB ,得DP ∥OB .由点D 与点P 关于y 轴对称,点P (1,-3),得D (-1,-3).当点D 在OP 右侧时,如答图①,延长PD 交x 轴于点G ,作PH ⊥OB 于点H ,则OH =1,PH =3.∵∠DPO =∠POB ,∴PG =OG .设OG =x ,则PG =x ,HG =x -1.在Rt △PGH 中,由x 2=(x -1)2+32,得x =5.∴点G (5,0).∴直线PG 的表达式为y =43x -415. 解方程组⎪⎩⎪⎨⎧-=-=,,51651415432x y x y 得⎩⎨⎧-==,,3111y x ⎪⎩⎪⎨⎧-==.162741122y x , ∵P (1,-3),∴D (411,-1627). ∴点D 的坐标为(-1,-3)或(411,-1627). (2)当点P 运动时,OCOF OE +是定值,定值为2.理由如下: 如答图②,过点P 作PQ ⊥AB 于点Q .设P (m ,am 2+c ),A (-t ,0),B (t ,0),则at 2+c =0,c =-at 2.∵PQ ∥OF ,∴BOBQ OF PQ =, ∴OF =BQ BO PQ ∙=-m t t c am -+-)(2=tm t at am --)(22=amt +at 2. 同理可知,OE =-amt +at 2.∴OE +OF =2at 2=-2c =2OC . ∴OCOF OE +=2.① ②(第24题答图)。

湖北省武汉市2016年中考数学试题(附答案)

湖北省武汉市2016年中考数学试题(附答案)

2016年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数2的值在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间 2.若代数式在31 x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3 B .x >3 C .x ≠3 D .x =33.下列计算中正确的是( )4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +96.已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( )A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-17.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )8.某车间20名工人日加工零件数如下表所示:这些工人日加工零件数的众数、中位数、平均数分别是( )A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、69.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π2B.πC.22D.210.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为___________12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为___________ 13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为___________14.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE 交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为___________15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为___________16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD 的长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:5x+2=3(x+2)18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图 请你根据以上的信息,回答下列问题:(1) 本次共调查了__________名学生,其中最喜爱戏曲的有__________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数20.(本题8分)已知反比例函数xy 4= (1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值(2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积21.(本题8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E(1) 求证:AC 平分∠DAB(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF 的值22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:其中a 为常数,且3≤a ≤5(1) 若产销甲乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式(2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10分)在△ABC 中,P 为边AB 上一点(1) 如图,若∠ACP =∠B ,求证:AC 2=AP ·AB(2) 若M 为CP 的中点,AC =2① 如图2,若∠PBM =∠ACP ,AB =3,求BP 的长② 如图3,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长24.(本题12分)抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方(1) 如图1,若P (1,-3)、B (4,0)①求该抛物线的解析式② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标(2) 如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OCOF OE 是否为定值?若是,试求出该定值;若不是,请说明理由参考答案。

2016年湖北省武汉数学中考试卷+答案

2016年湖北省武汉数学中考试卷+答案

2016年武汉市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数√2的值在( )A.0和1之间B.1和2之间C.2和3之间D.3和4之间在实数范围内有意义,则实数x的取值范围是( )2.若代数式1x-3A.x<3B.x>3C.x≠3D.x=33.下列计算中正确的是( )A.a·a2=a2B.2a·a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球.下列事件是不可能事件的是( )A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球5.运用乘法公式计算(x+3)2的结果是( )A.x2+9B.x2-6x+9C.x2+6x+9D.x2+3x+96.已知点A(a,1)与点A'(5,b)关于坐标原点对称,则实数a,b的值是( )A.a=5,b=1B.a=-5,b=1C.a=5,b=-1D.a=-5,b=-17.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )8.某车间20名工人日加工零件数如下表所示:日加工零4 5 6 7 8件数人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是( )A.5,6,5B.5,5,6C.6,5,6D.5,6,69.如图,在等腰Rt△ABC中,AC=BC=2√2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( )A.√2πB.πC.2√2D.210.平面直角坐标系中,已知A(2,2),B(4,0),若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.5B.6C.7D.8第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算5+(-3)的结果为.12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为.13.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.14.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD'E处,AD'与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED'的大小为.15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象,若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5√5,则BD长为.三、解答题(共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程5x+2=3(x+2).18.(本小题满分8分)如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF.求证AB∥DE.19.(本小题满分8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 ;(2)根据以上统计分析,估计该校2 000名学生中最喜爱新闻的人数.20.(本小题满分8分)已知反比例函数y=4x .(1)若该反比例函数的图象与直线y=kx+4(k ≠0)只有一个公共点,求k 的值;(2)如图,反比例函数y=4x (1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2.请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.21.(本小题满分8分)如图,点C 在以AB 为直径的☉O 上,AD 与过点C 的切线垂直,垂足为点D,AD 交☉O 于点E. (1)求证:AC 平分∠DAB;(2)连接BE 交AC 于点F,若cos ∠CAD=45,求xxxx 的值.22.(本小题满分10分) 某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:产品 每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件) 甲 6 a 20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1,y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(本小题满分10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.图1 图2 图324.(本小题满分12分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P在抛物线上,且位于x轴下方.(1)如图1,若P(1,-3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;是否为定值?(2)如图2,已知直线PA,PB与y轴分别交于E,F两点,当点P运动时,xx+xxxx若是,试求出该定值;若不是,请说明理由.答案全解全析:一、选择题1.B ∵√1<√2<√4,∴1<√2<2,故选B.2.C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.3.B A项:a·a2=a1+2=a3,错误;B项:2a·a=2a1+1=2a2,正确;C项:(2a2)2=4a2×2=4a4,错误;D项:6a 8÷3a 2=2a 8-2=2a 6,错误.故选B.4.A 袋子中只有2个白球,所以“摸出的是3个白球”是不可能事件.故选A.5.C 根据乘法公式得(x+3)2=x 2+6x+9.故选C.6.D ∵点A(a,1)与点A'(5,b)关于坐标原点对称,∴a=-5,b=-1,故选D.7.A 从左面看到的是上下叠放且有一条等于a 的公共边的两个长方形.故选A.评析 主视图、左视图、俯视图分别是从正面、左面、上面三个方向看同一个物体所得到的平面图形.8.D 日加工零件数为5的有6人,出现的次数最多,则众数是5;把这些数据从小到大排列,中位数是第10和第11个数据的平均数,则中位数=6+62=6;平均数是4×2+5×6+6×5+7×4+8×320=6,故选D.评析 解此类题的关键是掌握中位数、众数、平均数的概念.9.B 如图,当点P 位于弧AB 的中点时,M 为AB 的中点.∵AC=BC=2√2,∴AB=4,CM=2,设M 1,M 2分别为AC,BC 的中点,连接M 1M 2,交CP 于点O,则M 1M 2=2,OM 1=OM 2=OC=OM=1,当点P 沿半圆从点A 运动至点B 时,点M 运动的路径是以点O 为圆心,1为半径的半圆.所以点M 运动的路径长为π,故选B.10.A 如图,①当AB=AC 时,以点A 为圆心,AB 长为半径作圆,与坐标轴有两个交点(点B 除外),即O(0,0),C 0(0,4),其中点C 0与A 、B 两点共线,不符合题意;②当AB=BC 时,以点B 为圆心,AB 长为半径作圆,与坐标轴有两个交点,均符合题意;③当AC=BC 时,作AB 的垂直平分线,与坐标轴有两个交点,均符合题意.所以满足条件的点C 有5个,故选A.二、填空题 11.答案 2解析 5+(-3)=2.12.答案 6.3×104解析 63 000=6.3×104.13.答案 13解析 因为小正方体6个面分别标有数字1,1,2,4,5,5,其中数字为5的情况有2种,所以随机投掷一次小正方体,朝上一面的数字是5的概率为26=13. 14.答案 36°解析 ∵四边形ABCD 是平行四边形,∠B=52°,∴∠D=52°,∵∠DAE=20°,∴∠AED=180°-20°-52°=108°,∠AEC=20°+52°=72°.由折叠的性质可得∠AED'=∠AED=108°,∴∠FED'=∠AED'-∠AEC=108°-72°=36°.评析 本题是平行四边形与折叠相结合的问题,要熟练掌握平行四边形的性质,解决折叠问题的关键是折叠前后的图形全等,把对应边和对应角进行转化. 15.答案 -4≤b ≤-2解析 令|2x+b|<2,则-1-x 2<x<1-x2,∵函数y=|2x+b|(b 为常数)的图象在直线y=2下方的点的横坐标x 满足0<x<3,∴-x 2-1≥0,1-x2≤3,解得-4≤b ≤-2.16.答案 2√41解析 如图,连接AC,过点D 作DE ⊥BC,交BC 的延长线于E.∵∠ABC=90°,AB=3,BC=4,∴AC=5,∵CD=10,DA=5√5,∴AC 2+CD 2=AD 2,∴∠ACD=90°,∴∠ACB+∠DCE=90°,∵∠ACB+∠BAC=90°,∴∠BAC=∠DCE,又∵∠ABC=∠DEC=90°,∴△ABC ∽△CED,∴xx xx=xx xx=xx xx,即510=3xx=4xx,∴CE=6,DE=8.在Rt △BED中,BD=√xx 2+D x 2=√(4+6)2+82=2√41.三、解答题17.解析 5x+2=3x+6,(3分) 2x=4,(6分) x=2.(8分)18.证明 ∵BE=CF,∴BC=EF.(2分)在△ABC 和△DEF 中,{xx =xx ,xx =xx ,xx =xx ,(5分)∴△ABC ≌△DEF(SSS).(6分) ∴∠B=∠DEF, ∴AB ∥DE.(8分)19.解析 (1)本次调查的学生人数为4÷8%=50, 其中最喜爱戏曲的有50×6%=3(人).最喜爱娱乐的学生人数占总人数的百分比为1850×100%=36%,则最喜爱体育的学生人数占总人数的百分比为1-6%-8%-30%-36%=20%,则最喜爱体育的对应扇形的圆心角大小为360°×20%=72°.(6分)(2)2 000×8%=160(人).答:估计该校最喜爱新闻的学生有160人.(8分)20.解析 (1)由{x =4x ,x =xx +4得kx 2+4x-4=0(k ≠0).(2分)∵反比例函数的图象与直线只有一个公共点, ∴Δ=16+16k=0. ∴k=-1.(4分)(2)曲线C 2如图.(6分)C 1平移至C 2处扫过的面积为6个平方单位.(8分) 21.解析 (1)证明:连接OC. ∵CD 为☉O 的切线,且AD ⊥CD, ∴AD ∥OC,(1分) ∴∠CAD=∠ACO. ∵OA=OC,∴∠OAC=∠ACO,∴∠CAD=∠CAO,即AC 平分∠DAB.(3分)(2)连接BC,记OC 交BE 于点G. 设AD=4t,OG=x.∵∠D=90°,cos ∠CAD=45,∴AC=5t. ∵cos ∠BAC=cos ∠CAD=45, ∴xx xx =45,AB=25x4.(5分)∵AB 为☉O 的直径,∴∠AEB=90°.则易知四边形DCGE 为矩形,G 为BE 的中点, ∴AE=2OG=2x,DE=CG=25x 8-x.由2x+(25x 8-x )=4t,得x=7x 8.(6分)由AD ∥OC 可得△AEF ∽△CGF, ∴xx xx =xx xx=2x 25x 8-x =79.(8分)评析 对于含有切线的证明题,通常需要作辅助线构造直角三角形,一般的方法为“见切点,连圆心”.22.解析 (1)y 1=(6-a)x-20,y 2=-0.05x 2+10x-40.(2分) (2)∵3≤a ≤5,∴6-a>0, ∴y 1随x 的增大而增大. ∵x ≤200,∴当x=200时,y 1取得最大值1 180-200a.(4分)∵y 2=-0.05x 2+10x-40=-0.05(x-100)2+460,(5分) 而-0.05<0,∴当x<100时,y 2随x 的增大而增大. ∵x ≤80,∴当x=80时,y 2取得最大值440.综上,若产销甲种产品,最大年利润为(1 180-200a)万元,若产销乙种产品,最大年利润为440万元.(7分)(3)解法一:设w=1 180-200a-440=-200a+740. ∵-200<0,∴w 随a 的增大而减小. 由-200a+740=0,解得a=3.7.(9分) ∵3≤a ≤5,∴当3≤a ≤3.7时,选择产销甲种产品;当3.7≤a ≤5时,选择产销乙种产品.(10分) 解法二:由1 180-200a<440,解得a>3.7.(9分) ∵3≤a ≤5,∴当3≤a ≤3.7时,选择产销甲种产品;当3.7≤a ≤5时,选择产销乙种产品.(10分) 评析 函数的应用题大多数以生活情境为背景命题,解答此类问题,应在弄懂题意的前提下,建立函数模型,然后结合函数的图象与性质以及方程(组)、不等式的知识解答. 23.解析 (1)证明:∵∠ACP=∠B,∠A=∠A, ∴△ACP ∽△ABC.(2分) ∴xx xx =xx xx ,∴AC 2=AP ·AB.(3分)(2)①解法一:延长PB 至点D,使BD=PB,连接CD.∵M 为CP 中点,∴CD ∥MB.∴∠D=∠PBM,(4分) ∵∠PBM=∠ACP, ∴∠D=∠PBM=∠ACP.由(1)得AC 2=AP ·AD,(5分)设BP=x,则22=(3-x)(3+x).解得x=√5(舍去负根),即BP=√5.(7分) 解法二:取AP 的中点E,连接EM.∵M 为CP 中点,∴ME ∥AC,EM=12AC=1.(4分)∴∠PME=∠ACP,∵∠PBM=∠ACP,∴∠PME=∠PBM.由(1)得EM 2=EP ·EB,(5分) 设BP=x,则12=3-x 2·(3-3-x 2).解得x=√5(舍去负根),即BP=√5.(7分) ②BP=√7-1.(10分)24.解析 (1)①依题意有{x +x =-3,16x +x =0,(1分)解得{x =15,x =-165.∴抛物线的解析式为y=15x 2-165.(3分) ②当点D 在OP 左侧时, ∵∠DPO=∠POB,∴PD ∥OB.∴D,P 两点关于y 轴对称,∴D(-1,-3).(4分) 当点D 在OP 右侧时,延长PD 交x 轴于点G. 作PH ⊥OB 于点H,则OH=1,PH=3.∵∠DPO=∠POB,∴PG=OG. 设OG=x,则PG=x,HG=x-1.Rt △PGH 中,由x 2=(x-1)2+32,得x=5. ∴点G(5,0).(6分)∴直线PG 的解析式为y=34x-154.解方程组{x =34x -154,x =15x 2-165,得{x 1=1,x 1=-3,{x 2=114,x 2=-2716.∵P(1,-3),∴D (114,-2716).∴点D 的坐标为(-1,-3)或(114,-2716).(8分)(2)解法一:xx +xxxx的值为定值2.理由如下:(9分)作PQ ⊥AB 于Q 点.设P(m,am 2+c),A(-t,0),B(t,0),则at 2+c=0,c=-at 2.∵PQ ∥OF,∴xx xx =xxxx , ∴OF=xx ·xx xx =-(xx 2+c)·t x -x =(xx 2-a x 2)·t x -x=amt+at 2.(10分)同理,OE=-amt+at 2.(11分) ∴OE+OF=2at 2=-2c=2OC, ∴xx +xxxx =2.(12分)解法二:xx +xxxx 的值为定值2.理由如下:(9分)设直线PA 的解析式为y=k 1x+b 1,直线PB 的解析式为y=k 2x+b 2. 由{x =xx 2+c,x =x 1x +x 1得ax 2-k 1x+c-b 1=0. ∴x P ·x A =x -x1x .(10分)同理,x P ·x B =x -x2x .∵x A =-x B ,∴x -x1x =-x -x2x .(11分)∴b 1-c=c-b 2,即-b 1-b 2=-2c,OE+OF=2OC, ∴xx +xxxx =2.(12分)。

2016年湖北省武汉市中考数学试卷及答案

2016年湖北省武汉市中考数学试卷及答案

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前湖北省武汉市2016年初中毕业生学业考试数学 .................................................................. 1 湖北省武汉市2016年初中毕业生学业考试数学答案解析 .. (4)湖北省武汉市2016年初中毕业生学业考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.的值在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间 2.若代数式13x -在实数范围内有意义,则实数x 的取值范围是( ) A .3x < B .3x >C .3x ≠D .3x = 3.下列计算中正确的是( ) A .22a a a = B .222a a a = C .224(2)2a a =D .824632a a a ÷=4.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球.下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算2(3)x +的结果是( ) A .29x +B .269x x -+C .269x x ++D .239x x ++6.已知点(,1)A a 与点(5,)A b '关于坐标原点对称,则实数a ,b 的值是( ) A .5a =,1b = B .5a =-,1b =C .5a =,1b =-D .5a =-,1b =- 7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )ABCD8.某车间这些工人日加工零件数的众数、中位数、平均数分别是( )A .5,6,5B .5,5,6C .6,5,6D .5,6,69.如图,在等腰Rt ABC △中,AC BC ==,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是 ( )A B .π C .D .210.平面直角坐标系中,已知(2,2)A ,(4,0)B ,若在坐标轴上取点C ,使ABC △为等腰三角形,则满足条件的点C 的个数是( ) A .5B .6C .7D .8第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 11.计算5(3)+-的结果为 .12.某市2016年初中毕业生人数约为63000,63000用科学记数法表示为 .毕业学校_____________ 姓名________________考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)13.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .14.如图,在□ABCD 中,E 为边CD上一点,将ADE △沿AE 折叠至AD E '△处,AD '与CE 交于点F .若52B =∠,20DAE =∠,则FED '∠的大小为 .15.将函数2y x b =+(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数|2|y x b =+(b 为常数)的图象,若该图象在直线2y =下方的点的横坐x 满足03x <<,则b 的取值范围为 .16.如图,在四边形ABCD 中,°90ABC =∠,3AB =,4BC =,10CD =,55DA =,则BD 的长为 .三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分) 解方程523(2)x x +=+.18.(本小题满分8分)如图,点B ,E ,C ,F ,在同一条直线上,AB DE =,AC DF =,BE CF =.求证:AB DE ∥.19.(本小题满分8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 ;(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(本小题满分8分) 已知反比例函数4y x=. (1)若该反比例函数的图象与直线+4(0)y kx k =≠只有一个公共点,求k 的值; (2)如图,反比例函数4(14)y x x=≤≤的图象记为曲线1C ,将1C 向左平移2个单位长度,得曲线2C ,请在图中画出2C ,并直接写出1C 平移至2C 处所扫过的面积.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)21.(本小题满分8分)如图,点C 在以AB 为直径的O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交O 于点E .(1)求证:AC 平分DAB ∠;(2)连接BE 交AC 于点F ,若4cos 5CAD =∠,求AF FC的值.22.(本小题满分10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产其中a 为常数,且35a ≤≤.(1)若产销甲、乙两种产品的年利润分别为1y 万元、2y 万元,直接写出1y ,2y 与x 的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(本小题满分10分)在ABC △中,P 为边AB 上一点.图1图2图3(1)如图1,若ACP B =∠∠,求证:2AC AP AB =; (2)若M 为CP 的中点,2AC =;①如图2,若PBM ACP =∠∠,3AB =,求BP 的长;②如图3,若45ABC =∠,60A BMP ==∠∠,直接写出BP的长.24.(本小题满分12分)抛物线2y ax c =+与x 轴交于A B 、两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.图1图2(1)如图1,若(1,3)P -,(4,0)B . ①求该抛物线的解析式;②若D 是抛物线上一点,满足DPO POB =∠∠,求点D 的坐标; (2)如图2,已知直线PA ,PB 与y 轴分别交于E ,F 两点,当点P 运动时,OE OFOC+是否为定值?若是,试求出该定值;若不是,请说明理由.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

2016年湖北省武汉市中考数学试卷-答案

2016年湖北省武汉市中考数学试卷-答案

湖北省武汉市2016年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】因为124<<,所以122<<,则实数2的值在1和2之间。

故选B 。

【提示】估算无理数大小,正确得出无理数接近的有理数是解题关键。

【考点】估算无理数的大小2.【答案】C【解析】依题意得:x 30-≠,解得x 3≠,故选C 。

【提示】分式有意义的条件是分母不等于零,分式无意义的条件是分母等于零。

【考点】分式的概念3.【答案】B【解析】原式3a =,故选项A 错误;原式22a =,故选项B 正确;原式44a =,故选项C 错误;原式62a =,故选项D 错误。

所以选B 。

【提示】此题运用的是整式的混合运算,熟练掌握运算法则是解本题的关键【考点】整式的混合运算4.【答案】A【解析】根据白色的只有两个,不可能摸出三个进行解析。

选项A 中,摸出的是3个白球是不可能事件;选项B 中,摸出的是3个黑球是随机事件;选项C 中,摸出的是2个白球、1个黑球是随机事件;选项D 中,摸出的是2个黑球、1个白球是随机事件。

故选A 。

【提示】必然事件指在一定条件下,一定发生的事件。

不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件。

【考点】随机事件5.【答案】C【解析】根据完全平方公式,即可解析。

题目中22(x 3)x 6x 9+=++,故选C 。

【提示】本题运用完全平方公式,解决本题的关键是熟记完全平方公式。

【考点】完全平方公式6.【答案】D【解析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解析。

因为点A(a,1)与点A (5,b)'关于坐标原点对称,所以a 5=-,b 1=-。

故选D 。

【提示】本题运用的是关于原点对称的点的坐标的内容,两点关于原点对称,则两点的横、纵坐标都是互为相反数。

【考点】关于原点对称的点的坐标7.【答案】A【解析】找到从左面看所得到的图形即可。

2016届湖北武汉中考模拟数学试卷(一)(带解析)

2016届湖北武汉中考模拟数学试卷(一)(带解析)

试卷第1页,共19页绝密★启用前2016届湖北武汉中考模拟数学试卷(一)(带解析)试卷副标题考试范围:xxx ;考试时间:92分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为( ) A .﹣64B .0C .18D .64【答案】C . 【解析】试题分析:由题意得: a n+1=a n +a n+2, a n+2=a n+1+a n+3, a n+3=a n+2+a n+4,三式相加,得:a n +a n+2+a n+4=0, 同理可得:a n+1+a n+3+a n+5=0, 以上两式相加,可知:该数列连续六个数相加等于零,2016是6的倍数,所以结果为零.试卷第2页,共19页故选C .考点:规律探究题.2、为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是( ) A .赚了12元B .亏了12元C .赚了20元D .亏了20元【答案】D . 【解析】试题分析:设赚钱的衣服的进价为x 元,赔钱的衣服的进价为y 元,则x+20%x=240,解得x=200,y ﹣20%y=240,解得y=300, ∴240×2﹣=﹣20(元).即:这个服装店卖出这两件服装亏本了,亏本20元. 故选D .考点:一元一次方程的应用.3、如图,是一次函数y=kx+b 与反比例函数y=的图象,则关于x 的方程kx+b=的解为( )A .x l =1,x 2="2"B .x l =﹣2,x 2=﹣1C .x l =1,x 2=﹣2D .x l =2,x 2=﹣1【答案】C . 【解析】试题分析:由图可知,两函数图象的交点坐标为(1,2),(﹣2,﹣1),即可得关于试卷第3页,共19页x 的方程kx+b=的解为x l =1,x 2=﹣2.故选C .考点:反比例函数的图象;一次函数的图象. 4、下列说法正确的是( )A .随机抛掷一枚硬币,反面一定朝上B .数据3,3,5,5,8的众数是8C .某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D .想要了解长沙市民对“全面二孩”政策的看法,宜采用抽样调查【答案】D . 【解析】试题分析:选项A ,抛硬币是一个随机事件,不能保证反面朝上,所以A 错误;选项B ,本组数据应该有两个众数,3、5都出现了两次,所以B 错误;选项C ,获奖概率为是一个随机事件,所以C 错误;选项D ,对长沙市民的调查涉及的人数众多,适合用抽样调查,所以D 正确.故选D .考点:概率的意义;全面调查与抽样调查;众数.5、若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是( ) A .90°B .120°C .150°D .180°【答案】D . 【解析】试题分析:设正圆锥的底面半径是r ,则母线长是2r ,底面周长是2πr ,设正圆锥的侧面展开图的圆心角是n°,则=2πr ,解得:n=180°.故选D .考点:圆锥的计算.6、在平面直角坐标系中,如果抛物线y=3x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是( ) A .y=3(x ﹣2)2+2 B .y=3(x+2)2﹣2 C .y=3(x ﹣2)2+2D .y=3(x+2)2+2试卷第4页,共19页【答案】B . 【解析】试题分析:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向下、向左平移2个单位(﹣2,﹣2),根据“左加右减”的规律可得所以在新坐标系中此抛物线的解析式为y=3(x+2)2﹣2.故选B .考点:二次函数图象与几何变换.7、如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( )A .40°B .35°C .50°D .45°【答案】A . 【解析】试题分析:已知AD 平分∠BAC ,∠BAD=70°,根据角平分线定义求出∠BAC=2∠BAD=140°,再由AB ∥CD ,所以∠ACD=180°﹣∠BAC=40°,故选A . 考点:平行线的性质.8、2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为( ) A .42×103米B .0.42×105米C .4.2×104米D .4.2×105米【答案】C . 【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.将42千米用科学记数法表示为4.2×104,故选C . 考点:科学记数法. 9、下列计算正确的是( ) A .a 3+a 4=a 7B .a 3•a 4=a 7C .(a 3)4=a 7D .a 6÷a 3=a 2【答案】B .试卷第5页,共19页【解析】试题分析:选项A ,a 3与a 4是相加,不是相乘,不能利用同底数幂的乘法计算,故本选项错误;选项B ,、a 3•a 4=a 7,正确;选项C ,应为(a 3)4=a 3×4=a 12,故本选项错误;选项D ,应为a 6÷a 3=a 6﹣3=a 3,故本选项错误.故选B .考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 10、数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或﹣3B .6C .﹣6D .6或﹣6【答案】A . 【解析】试题分析:设这个数是x ,则|x|=3,解得x=+3或﹣3.故选A . 考点:数轴. 11、要使式子在实数范围内有意义,则x 的取值范围是( ) A .x≥1B .x <1C .x≤1D .x≠1【答案】A . 【解析】试题分析:根据被开方数大于等于0可得x ﹣1≥0,解得x≥1.故选A . 考点:二次根式有意义的条件.12、如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( )A .(2,5)B .(2.5,5)C .(3,5)D .(3,6)【答案】B . 【解析】试题分析:∵以原点O 为位似中心,在第一象限内,将线段CD 放大得到线段AB , ∴B 点与D 点是对应点,则位似比为5:2, ∵C (1,2),∴点A 的坐标为:(2.5,5)试卷第6页,共19页故选B .考点:位似变换;坐标与图形性质.试卷第7页,共19页第II 卷(非选择题)二、填空题(题型注释)13、如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8.把△ABC 绕AB 边上的点D 顺时针旋转90°得到△A′B′C′,A′C′交AB 于点E .若AD=BE ,则△A′DE 的面积是 .【答案】6. 【解析】试题分析:Rt △ABC 中,由勾股定理求AB==10,由旋转的性质,设AD=A′D=BE=x ,则DE=10﹣2x , ∵△ABC 绕AB 边上的点D 顺时针旋转90°得到△A′B′C′, ∴∠A′=∠A ,∠A′DE=∠C=90°, ∴△A′DE ∽△ACB ,∴=,即,解得x=3,∴S △A′DE =DE×A′D=×(10﹣2×3)×3=6,考点:相似三角形的判定与性质;勾股定理;旋转的性质.14、如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,点D 为⊙O 上一点,若∠CAB=55°,则∠ADC 的大小为 (度).【答案】35°.试卷第8页,共19页【解析】试题分析:由AB 为⊙O 的直径,根据直径所对的圆周角是直角得∠ACB=90°,又由直角三角形的两锐角互余,即可求得∠B=90°﹣∠CAB=35°,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ADC=∠B=35°. 考点:圆周角定理.15、若关于x 的函数y=kx 2+2x ﹣1与x 轴仅有一个公共点,则实数k 的值为 .【答案】0或﹣1. 【解析】试题分析:令y=0,则kx 2+2x ﹣1=0.∵关于x 的函数y=kx 2+2x ﹣1与x 轴仅有一个公共点, ∴关于x 的方程kx 2+2x ﹣1=0只有一个根.①当k=0时,2x ﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0, 解得,k=﹣1. 综上所述,k=0或﹣1. 考点:抛物线与x 轴的交点.16、已知x ,y 满足方程组,则x ﹣y 的值是 .【答案】﹣1. 【解析】试题分析:,由②﹣①得:x ﹣y=﹣1.考点:解二元一次方程组.17、有一组数据如下:2,a ,4,6,8,已知它们的平均数是5,那么这组数据的方差为 .【答案】4. 【解析】试题分析:由平均数的定义可得a=5×5﹣2﹣4﹣6﹣8=5,根据方差公式可得s 2=[(2试卷第9页,共19页﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(8﹣5)2]=4. 考点:方差;算术平均数.18、如图,在平行四边形ABCD 中,点E 、F 分别在边BC 、AD 上,请添加一个条件 ,使四边形AECF 是平行四边形(只填一个即可).【答案】AF=CE . 【解析】试题分析:添加的条件是AF=CE .理由是: ∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴AF ∥CE , ∵AF=CE ,∴四边形AECF 是平行四边形. 考点:平行四边形的判定与性质.三、计算题(题型注释)19、已知抛物线y 1=x 2+bx+c 的顶点坐标为(﹣1,1),直线1的解析式为y 2=2mx+3m 2+4nm+4n 2,且l 与x 轴、y 轴分别交于A 、B 两点. (1)求b 、c 的值;(2)若函数y 1+y 2的图象与x 轴始终有公共点,求直线l 的解析式;(3)点P 是抛物线对称轴上的一个动点,是否存在点P ,使△PAB 为等腰角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)b 的值为2,c 的值为2;(2)当△PAB 是等腰三角形时,点P 坐标为(﹣1,4)或(﹣1,)或(﹣1,﹣)或(﹣1,2).【解析】试题分析:(1)利用顶点坐标公式,待定系数法列出方程组即可解决问题.(2)根据△≥0,以及非负数的性质即可解决问题.(3)首先求出A 、B 坐标,分三种情形讨论试卷第10页,共19页即可①当BA=BP 时,②当AB=AP 时,③当PA=PB 时. 试题解析:(1)∵抛物线y 1=x 2+bx+c 的顶点坐标为(﹣1,1),∴,解得:,∴b 的值为2,c 的值为2.(2)y 1+y 2=x 2+2x+2+2mx+3m 2+4nm+4n 2=x 2+(2+2m )x+3m 2+4nm+4n 2+2, ∵函数y 1+y 2的图象与x 轴始终有公共点,∴△=(2+2m )2﹣4×1×(3m 2+4nm+4n 2+2)≥0,即﹣4(m ﹣1)2﹣4(m+2n )2≥0. ∵(m ﹣1)2≥0,(m+2n )2≥0,∴m=1,n=﹣,∴直线l 的解析式为y=2x+2.(3)如图,A (﹣1,0),B (0,2).AB==,对称轴x=﹣1,①当BA=BP 时,可得P 1(﹣1,4), ②当AB=AP 时,可得P 2(﹣1,),P 3(﹣1,﹣), ③当PA=PB 时,可得P 4(﹣1,2).综上所述,当△PAB 是等腰三角形时,点P 坐标为(﹣1,4)或(﹣1,)或(﹣1,﹣)或(﹣1,2).考点:二次函数综合题.20、计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.【答案】原式=4﹣.【解析】试题分析:原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.试题解析:原式=2﹣1+3﹣2×=4﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.四、解答题(题型注释)21、在平面直角坐标系中,点C 的坐标为(0,1.5),我们把以点C 为圆心,半径为1.5的圆称为点C 的朋友圈,圆周上的每一个点叫做点C 的一个好友. (1)写出点C 的两个好友坐标;(2)直线l 的解析式是y=x ﹣4,与x 轴、y 轴分别交于A 、B 两点,圆心C 从点(0,1.5)开始以每秒0.5个单位的速度沿着y 轴向下运动,当点C 的朋友圈有好友落在直线上时,直线将受其影响,求在点C 向下运动的过程中,直线受其影响的时间; (3)抛物线y=ax 2+bx+c 过原点O 和点A ,且顶点D 恰好为点C 的好友,连接OD .E 为⊙C 上一点,当△DOE 面积最大时,求点E 的坐标,此时△DOE 的面积是多少?【答案】(1)点(0,0)、(0,3)为点C 的好友;(2)在点C 向下运动的过程中,直线受其影响的时间为6≤t≤16;(3)当△DOE 面积最大时,点E 的坐标为(﹣,),此时△DOE 的面积是.【解析】试题分析:(1)由朋友圈以及好友的定义,结合图形,即可得出结论;(2)设圆心C 往下运动了t 秒,则点C 的坐标为(0,1.5﹣0.5t ),根据好友的定义,结合点C 到直线l 的距离小于等于1.5,即可得出关于时间t 的含绝对值符号的一元一次方程,解方程即可得出结论;(3)根据二次函数的性质找出抛物线的对称轴,结合函数图象以及好试卷第12页,共19页友的定义找出点D 的坐标;连接OD ,过点C 作CM ⊥OD 于点M ,延长MC 交圆C 于点E ,连接EO 、ED ,通过垂径定理、解直角三角形求出线段EM 的长,再结合三角形的面积公式即可求出S △DOE 的值,由点C 、M 点的坐标利用待定系数法求出直线CM 的解析式,设出点E 的坐标,再结合两点间的距离公式即可求出点E 的坐标,此题得解. 试题解析:(1)1.5﹣1.5=0,1.5+1.5=3, ∴点(0,0)、(0,3)到点C 的距离为1.5, ∴点(0,0)、(0,3)为点C 的好友.(2)设圆心C 往下运动了t 秒,则点C 的坐标为(0,1.5﹣0.5t ),直线l :y=x ﹣4可变形为4x ﹣3y ﹣12=0,点C 到直线l 的距离d==|0.3t ﹣3.3|,当直线受圆C 影响时,有d≤1.5,即|0.3t ﹣3.3|≤1.5, 解得:6≤t≤16.∴在点C 向下运动的过程中,直线受其影响的时间为6≤t≤16.(3)令y=x ﹣4中y=0,则x ﹣4=0,解得:x=3,即点A 的坐标为(3,0). 依照题意画出图形,如图1所示.∵抛物线y=ax 2+bx+c 过原点O 和点A ,点O (0,0),点A (3,0),∴抛物线的对称轴为x==1.5,∵点D 恰好为点C 的好友,∴点D 的坐标为(1.5,1.5).连接OD ,过点C 作CM ⊥OD 于点M ,延长MC 交圆C 于点E ,连接EO 、ED ,此时S △DOE 最大,如图2所示.∵OD 是圆C 的弦,CM ⊥OD , ∴点M 为线段OD 的中点,∴点M 的坐标为(,)、OM= =,在Rt △CMO 中,OM=,CO=1.5=,∴CM==.∵CE=1.5=,EM=EC+CM ,∴EM=,此时S △DOE =OD•EM=OM•EM=×=.设直线CM 的解析式为y=mx+n ,∵点C 的坐标为(0,1.5)、点M 的坐标为(,)即(0.75,0.75),∴,解得:,∴直线CM 的解析式为y=﹣x+1.5. 设点E 的坐标为(x ,﹣x+1.5)(x <0), ∵EC==1.5,∴x=﹣,或x=(舍去),∴点E 的坐标为(﹣,).故当△DOE 面积最大时,点E 的坐标为(﹣,),此时△DOE 的面积是.考点:二次函数综合题.试卷第14页,共19页22、如图,P 是正方形ABCD 对角线AC 上一点,点E 在BC 上,且PE=PB . (1)求证:PE=PD ;(2)连接DE ,试判断∠PED 的度数,并证明你的结论.【答案】(1)详见解析;(2)∠PED=45°,证明见解析. 【解析】试题分析:(1)根据正方形的性质四条边都相等可得BC=CD ,对角线平分一组对角线可得∠ACB=∠ACD ,然后利用“边角边”证明△PBC 和△PDC 全等,根据全等三角形对应边相等可得PB=PD ,然后等量代换即可得证;(2)根据全等三角形对应角相等可得∠PBC=∠PDC ,根据等边对等角可得∠PBC=∠PEB ,从而得到∠PDC=∠PEB ,再根据∠PEB+∠PEC=180°求出∠PDC+∠PEC=180°,然后根据四边形的内角和定理求出∠DPE=90°,判断出△PDE 是等腰直角三角形,根据等腰直角三角形的性质求解即可. 试题解析:(1)∵四边形ABCD 是正方形, ∴BC=CD ,∠ACB=∠ACD , 在△PBC 和△PDC 中,,∴△PBC ≌△PDC (SAS ), ∴PB=PD , ∵PE=PB , ∴PE=PD ;(2)判断∠PED=45°. ∵四边形ABCD 是正方形, ∴∠BCD=90°, ∵△PBC ≌△PDC , ∴∠PBC=∠PDC , ∵PE=PB ,∴∠PBC=∠PEB , ∴∠PDC=∠PEB , ∵∠PEB+∠PEC=180°, ∴∠PDC+∠PEC=180°,在四边形PECD 中,∠EPD=360°﹣(∠PDC+∠PEC )﹣∠BCD=360°﹣180°﹣90°=90°, 又∵PE=PD ,∴△PDE 是等腰直角三角形, ∴∠PED=45°.考点:正方形的性质;全等三角形的判定与性质.23、为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2013年的绿色建筑面积约为950万平方米,2015年达到了1862万平方米.若2014年、2015年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2016年是“十三五”规划的开局之年,我市计划推行绿色建筑面积达到2400万平方米.如果2016年仍保持相同的年平均增长率,请你预测2016年我市能否完成计划目标?【答案】(1)这两年我市推行绿色建筑面积的年平均增长率是40%;(2)2016年我市能完成计划目标. 【解析】试题分析:(1)设这两年我市推行绿色建筑面积的年平均增长率x ,根据2013年的绿色建筑面积约为950万平方米和2015年达到了1862万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2016年绿色建筑面积,再与计划推行绿色建筑面积达到2400万平方米进行比较,即可得出答案.试题解析::(1)设这两年我市推行绿色建筑面积的年平均增长率x ,根据题意得: 950(1+x )2=1862,解得:x 1=0.4=40%,x 2=﹣2.4(不合题意,舍去), 答:这两年我市推行绿色建筑面积的年平均增长率是40%;试卷第16页,共19页(2)根据题意得:∵2016年绿色建筑面积是:1862×(1+0.4)=2606.8万平方米>2400万平方米, ∴2016年我市能完成计划目标. 考点:一元二次方程的应用.24、如图,△ABC 中,AB=AC ,点D 为BC 上一点,且AD=DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连结DE . (1)求证:AC 是⊙O 的切线;(2)若sinC=,AC=6,求⊙O 的直径.【答案】(1)详见解析;(2)⊙O 的直径为.【解析】试题分析:(1)根据等腰三角形的性质,由AB=AC ,AD=DC 得∠C=∠B ,∠1=∠C ,则∠1=∠B ,根据圆周角定理得∠E=∠B ,∠ADE=90°,所以∠1+∠EAD=90°,然后根据切线的判定定理即可得到AC 是⊙O 的切线;(2)过点D 作DF ⊥AC 于点F ,如图,根据等腰三角形的性质得CF=AC=3,在Rt △CDF中,利用正弦定义得sinC==,则设DF=4x ,DC=5x ,利用勾股定理得CF=3x ,所以3x=3,解得x=1,于是得到DC=AD=5,然后证明△ADE ∽△DFC ,再利用相似比可计算AE 即可.试题解析:(1)∵AB=AC ,AD=DC , ∴∠C=∠B ,∠1=∠C , ∴∠1=∠B , 又∵∠E=∠B , ∴∠1=∠E , ∵AE 是⊙O 的直径,∴∠ADE=90°, ∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°, ∴AE ⊥AC , ∴AC 是⊙O 的切线;(2)过点D 作DF ⊥AC 于点F ,如图, ∵DA=DC ,∴CF=AC=3,在Rt △CDF 中,∵sinC==,设DF=4x ,DC=5x , ∴CF==3x ,∴3x=3,解得x=1, ∴DC=5, ∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C , ∴△ADE ∽△DFC ,∴,即,解得AE=,即⊙O 的直径为.考点:切线的判定;相似三角形的判定与性质.25、为了认真贯彻教育部关于与开展“阳光体育”活动的文件精神,实施全国亿万学生每天集体锻炼一小时活动,吸引同学们走向操场、走进大自然、走到阳光下,积极参加体育锻炼,掀起校园内体育锻炼热潮,我市各学校结合实际情况举办了“阳光体育”系列活动,为了解“阳光体育”活动的落实情况,我市教育部门在红旗中学2000名学生中,随试卷第18页,共19页机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)参加调查的人数共有 人,在扇形统计图中,表示“C”的扇形的圆心角为 度; (2)补全条形统计图,并计算扇形统计图中m 的值;(3)若要从该校喜欢“D”项目的学生中随机选择8名进行节目排练,则喜欢该项目的小丽同学被选中的概率是多少【答案】(1)300,108;(2)图见解析,m=20;(3).【解析】试题分析:(1)用喜欢乒乓球的人数除以其所占的百分比即可求得调查的总人数,;(2)用喜欢C 项目的人数除以总人数即可求得其百分率,从而得到m 的值;(3)利用概率公式即可求得该同学被抽中的概率.试题解析:(1)参加调查的人数为69÷23%=300(人), ∵“C”的人数为:300﹣60﹣69﹣36﹣45=90(人),∴表示“C”的扇形的圆心角为×360°=108°,(2)补全条形图如下:∵m%=×100%=20%,∴m=20;(3)=,答:喜欢该项目的小丽同学被选中的概率是.考点:条形统计图;扇形统计图;概率公式.26、先化简,再求值:,其中a=﹣1.【答案】原式=,当a=﹣1时,原式=1﹣.【解析】试题分析:先进行通分得到原式=,再进行同分母的加法运算,然后把分子分解因式后约分得到原式=,再把a的值代入计算即可.试题解析:原式====,当a=﹣1时,原式==1﹣.考点:分式的化简求值.。

2016年武汉市中考数学试卷

2016年武汉市中考数学试卷

2016年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间2.若代数式在31x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =33.下列计算中正确的是( )4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +9 6.已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( ) A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-17.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )8.某车间20名工人日加工零件数如下表所示: 日加工零件数4 5 6 7 8 人数 26543 这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、69.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( ) A .π2B .πC .22D .210.平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5B .6C .7D .8二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为___________12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为___________ 13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为___________14.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为___________15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x <3,则b的取值范围为___________5,则BD的16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:5x+2=3(x+2)18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图请你根据以上的信息,回答下列问题:(1) 本次共调查了__________名学生,其中最喜爱戏曲的有__________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数20.(本题8分)已知反比例函数xy 4=(1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值 (2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积21.(本题8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E (1) 求证:AC 平分∠DAB(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF 的值22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:产品 每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件) 甲 6 a 20 200 乙201040+0.05x 280其中a 为常数,且3≤a ≤5(1) 若产销甲乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式 (2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由 23.(本题10分)在△ABC 中,P 为边AB 上一点 (1) 如图,若∠ACP =∠B ,求证:AC 2=AP ·AB (2) 若M 为CP 的中点,AC =2① 如图2,若∠PBM =∠ACP ,AB =3,求BP 的长② 如图3,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长24.(本题12分)抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方(1) 如图1,若P (1,-3)、B (4,0) ① 求该抛物线的解析式② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标(2) 如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OCOFOE 是否为定值?若是,试求出该定值;若不是,请说明理由。

武汉市洪山区中考数学模拟试题及答案

武汉市洪山区中考数学模拟试题及答案

2015年武汉市中考数学模拟试题(一)第Ⅰ卷(选择题 共30分)一.选择题(共10小题,共30分)1.在0、3、-1、21中最小的数是( ) A .0 B .3 C .-1 D .21 2.函数1+=x y 自变量x 的取值范围( )A .x >1B .x <-1C .x ≥-1D .x ≤-1 3.下列各式,因式分解正确的是( ) A .22()x y xy xy xy x y ++=+ B . 222()x y x y -=-C .222+(+)a ab b a b +=D .222168(4)a ab b a b -+=-4.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,则这组数据的众数与中位数分别是( )A .25,25B .28,28C .25,28D .28,31 5.下列运算正确的是( ) A .3362x x x += B .326x x -=() C .842x x x ÷= D .32x x x -= 6.如图,线段AB 两个端点的坐标分别为A (6,8)、B (7,4),以原点为位似中心,在第一象限内将线段AB 缩小为原来的21后得到线段CD ,则端点C 的坐标为( ) A .(3,4)B .(4,3)C .(3,3)D .(27,2)7.下列几何体的主视图为三角形的是( )8.在武汉某中学举办的演讲比赛活动中,评委将学生的成绩分为A 、B 、C 、D 四个等级,并绘制了如图所示的不完整两种统计图,根据图中的信息,下列说法中错误的是( )A .参加演讲比赛学生共40人B .扇形统计图中m =10,n =40C .学校欲从获A 等级的学生中随机选取2人参加市级比赛,选中A 等级的小明的概率为21 D .C 等级所对应的圆心角为120度9.如图,在直角坐标系中,以原点O 为圆心的同心圆的半径由内向外依次1,2,3,4,…,同心圆与直线y =x 和y =-x 分别交于A 1,A 2,A 3,A 4,…,则点A 2015的坐标是( )A .(-2015,-2015)B .(2504-,2504-)C .(2252-,2252)D .(2252-,2252-)10.如图,矩形台球桌ABCD ,其中A 、B 、C 、D 处有球洞,已知DE =4,CE =2,BC =36,球从E 点出发,与DC 夹角为α,经过BC 、AB 、AD 三次反弹后回到E 点,求tan α的取值范围( )A .tan α=3B .433<tan α< 233 C .3≤tan α<233 D .433<tan α<33第Ⅱ卷(非选择题 共90分)二.填空题(共6小题,共18分)11.计算:-(-1)-3 =12.据统计部门报告,我市去年国民生产总值为 2 138 000 000 000 元,这个数据用科学记数法表示为13.在6瓶饮料中,有2瓶已过了保质期,从这6瓶饮料中任取1瓶,取到已过保质期饮料的概率为 .14.某电信公司推出手机两种收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 元.15.如图, 双曲线xk y =与x y 6-=上分别有两点A 、B, AB ∥x 轴, 直线y=x+b 过点A, 另交xk y =于C , 交x 轴、y 轴于M 、N, 若MC=CA=AN, 且△ABC 面积为1, 则k = .16.如图,四边形ABCD 中,∠BAD=∠ACB=90°,AB=AD ,AC=4BC ,若CD=5,则四边形ABCD 的面积为 .三.解答题(共8题,共72分)17.(8分)已知一次函数b kx y +=的图像经过点)2,1(-与)103(,-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洪山区2016年武汉市中考数学模拟试题(一)
一.选择题(共10小题,每小题3分,共30分) 1.估计7的值介于( ) A .0与1之间
B .1与2之间
C .2与3之间
D .3与4之间
2.若分式5
2
x 有意义,则x 的取值范围是( ) A .x ≠5
B .x ≠-5
C .x >5
D .x >-5 3.计算(a -1)2正确的是( ) A .a 2-a +1
B .a 2-2a +1
C .a 2-2a -1
D .a 2-1
4.下列事件是必然事件的是( ) A .抛掷一枚硬币四次,有二次正面朝上 B .打开电视频道,正在播放《我是歌手》 C .射击运动员射击一次,命中十环
D .方程x 2-2x -1=0必有实数根
5.下列代数运算正确的是( ) A .x ·x 6=x 6
B .(x 2)3=x 6
C .(x +2)2=x 2+4
D .(2x )3=2x 3
6.下列几何体中,主视图相同的是( )
A .①②
B .①③
C .①④
D .②④
7.在平面直角坐标系中,将点A (x ,y )向左平移5个单位长度,再向上平移3个单位长度后与点B (-3,2)重合,则点A 的坐标为( ) A .(2,5)
B .(-8,5)
C .(-8,-1)
D .(2,-1)
8.小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有( )人
A .1080
B .900
C .600
D .108
9.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、……按如图的方式放置,A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =x +1和x 轴上,则点B 6的坐标是( ) A .(63,32) B .(64,32) C .(32,16) D .(128,64)
10.如图所示,直线CD 与以线段AB 为直径的圆相切于点D 并交BA 的延长线于点C ,且AB =2,AD =1,P 点在切线CD 的延长线上移动时,则△PBD 的外接圆的半径的最小值为( )
A .1
B .
2
3
C .
2
1
D .2
二、填空题(共6小题,每小题3分,共18分) 11.计算:-6+4=__________
12.钓鱼岛是中国领土,面积约4 400 000平方米,数据4 400 000用科学计数法表示为_______ 13.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是__________
14.如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于F ,E 为垂足,连接DF ,则∠CDF 的度数为__________
15.在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为__________
16.我们把a 、b 两个数中较小的数记作min {a ,b },直线y =kx -k -2(k <0)与函数y =min {x 2-1,-x +1}的图像有且只有2个交点,则k 的取值为__________ 三、解答题(共8小题,共72分)
17.(本题8分)解方程:2-2(x -1)=3x +4
18.(本题8分)如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =CD ,求证:BC ∥EF
19.(本题8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)
(1) 写出D 级学生的人数占全班总人数的百分比为__________ C 级学生所在的扇形圆心角的度数为__________
(2) 该班学生体育测试成绩的中位数落在等级__________内
(3) 若该校九年级学生共有500人,请你估计这次考试中A 级和B 级的学生共有多少人?
20.(本题8分)已知如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数x
k
y
(k ≠0)的图象交于一、三象限内A 、B 两点,与x 轴交于点C ;点A (2,m )、点B (n ,-2),且tan ∠BOC =
5
2 (1) 求一次函数和反比例函数的解析式
(2) 在x 轴上有一点E (O 点除外),使得△BCE 与△BCO 的面积相等,求点E 的坐标
21.(本题8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D
(1) 求证:AC 平分∠DAB (2) 若sin ∠ABC =
5
4
,求tan ∠BDC 的值
22.(本题10分)为了美化环境,学校准备在如图所示的矩形ABCD 空地上进行绿化,规划在中间的一块四边形MNQP 上种花,其余的四块三角形上铺设草坪,要求AM =AN =CP =CQ .已知BC =24米,AB =40米,设AN =x 米,种花的面积为y 1米平方米,草坪面积y 2平方米 (1) 分别求y 1和y 2与x 之间的函数关系式(不要求写出自变量的取值范围) (2) 当AN 的长为多少米时 种花的面积为440平方米?
(3) 若种花每平方米需200元铺设草坪每平方米需100元现设计要 求种花的面积不大于440平方米那么学校至少需要准备多少元费用?
23.(本题10分)如图1,已知等腰△ABC 中,AC =BC ,点D 、E 、F 分别是线段AC 、BC 、AD 的中点,连FE 、ED ,BF 的延长线交ED 的延长线于点G ,连接GC (1) 求证:EF ∥CG
(2) 若AB AC 2 ,求证:AC =CG (3) 如图2,若CG =EG ,则
AB
AC
=_________
24.(2012·海淀区二模)(本题12分)已知抛物线y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点.若m >1,且点A 在点B 的左侧,OA ∶OB =1∶3 (1) 试确定抛物线的解析式
(2) 直线y =kx -3与抛物线交于M 、N 两点,若△AMN 的内心在x 轴上,求k 的值
(3) 设(2)中抛物线与y 轴的交点为C ,过点C 作直线l ∥x 轴,将抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象,请你结合新图象回答:当直线y =3
1
x +b 与新图象只有一个公共点P (x 0,y 0)且y 0≤7时,求b 的取值范围。

相关文档
最新文档