湘教版初二数学数学期中试卷及答案
湘教版八年级数学上册期中试卷及完整答案
湘教版八年级数学上册期中试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒ 3.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,在正方形ABCD 中,AB =9,点E 在CD 边上,且DE =2CE ,点P 是对角线AC 上的一个动点,则PE +PD 的最小值是( )A .310B .103C .9D .9210.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是__________. 3.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________°.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、B6、B7、B8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、a≤2.3、3.4、()()2a b a b++.5、956、12三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、223、0.4、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
湘教版八年级上册数学期中考试试卷带答案
湘教版八年级上册数学期中考试试题一、单选题1.在94,3b a ,24x y +,1y ,5m n +中,分式的个数是()A .2B .3C .4D .52.若把分式3x x y+中的x 和y 都扩大到原来的2倍,那么分式的值()A .不变B .缩小2倍C .扩大2倍D .扩大4倍3.计算2111242m m m -÷+--结果为()A .0B .12m +C .22m +D .22m m +-4.下列长度的三条线段能组成三角形的是()A .1,1,2B .4,4,9C .3,4,5D .6,16,85.下列语句中是命题的有()个(1)三角形的内角和等于180︒;(2)如果5x =,那么5x =;(3)1月份有30天;(4)作一条线段等于已知线段;(5)一个锐角与一个钝角互补吗?A .2B .3C .4D .56.如图,ABC EFD ≌△△且AB EF =,4CE =,5CD =,则AC =()A .4B .5C .9D .107.如图,//AD BC ,//AB DC ,AC 与BD 相交于点O ,EF 经过点O ,且与边AD 、BC 分别交于E 、F 两点,若BF DE =,则图中的全等三角形有()A .2对B .3对C .4对D .6对8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程()A .100603030=+-x x B .100603030=+-x x C .100603030=-+x x D .100603030=-+x x 9.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,∠AFD=158°,则∠EDF 等于()A .58°B .68°C .78°D .32°10.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是()A .18°B .24°C .30°D .36°二、填空题11.已知3x =-时,分式x b x a ++无意义,4x =-时,此分式的值为0,a b +=________.12.化简:11123x x x++=__________.13.方程:2348x x =--的解是__________.14.等腰三角形的两边长分别是2和5,则这个等腰三角形的周长为_______.15.若关于x 的分式方程355x a x x -=--有增根,则a 的值为__________.16.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________.17.如图ABC 的周长为18,且AB AC =,AD BC ⊥于D ,ACD △的周长为12,那么AD 的长为__________.18.如图,△ABC 中,边AB 的中垂线分别交BC 、AB 于点D 、E ,AE =3cm ,△ADC 的周长为9cm ,则△ABC 的周长是_____cm .三、解答题19.解分式方程:(1)33222x x x -+=--(2)22201x x x+=++20.先化简,再求值:2211y x y y x xy y ⎛⎫+÷ ⎪+--⎝⎭,其中2x =,1y =-.21.在ABC ∆中,90C ∠=︒,DE 垂直平分斜边AB ,分别交AB 、BC 于D E 、.若30CAB B ∠=∠+︒,求AEB ∠.22.甲、乙两单位为爱心基金捐款,其中甲单位捐款4800元,乙单位捐款6000元.已知乙单位捐款人数比甲单位多50人,且两单位人均捐款数相等,问这两单位共有多少人捐款?人均捐款额是多少?23.如图,点D 为码头,A ,B 两个灯塔与码头的距离相等,DA ,DB 为海岸线,一轮船离开码头,计划沿∠ADB 的平分线航行,在航行途中C 点处,测得轮船与灯塔A 和灯塔B 的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.24.观察下面的计算:2241⨯=,2241+=;39322⨯=,39322+=;416433⨯=,416433+=;525544⨯=,525544+=﹔根据上面的计算,你能作出什么猜测?你将用什么方法来判断你的猜想是正确的?25.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且BD =AE ,AD 与CE 交于点F(1)求证:AD =CE ;(2)求∠DFC 的度数.26.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB∠+∠=________.(2)ABX ACX∠+∠=________.(说明理由)参考答案1.B【分析】根据分式的概念进行求解即可.【详解】解:∵315ba y m n+,,的分母中含有字母,∴它们都是分式,而9244x y+,的分母中不含有字母,∴它们不是分式,故选:B.【点睛】本题考查分式的概念,熟练掌握分式的定义是解题关键.2.D【解析】【分析】直接利用分式的性质化简得出答案.【详解】解:将分式3x x y+中的x 和y 都扩大到原来的2倍得:()()333284==222x x x x y x y x y +++∴34x x y +=3x x y+×4,即分式的值扩大4倍故选:D【点睛】此题主要考查了分式的基本性质,正确化简分式是解题关键.3.C【解析】【分析】根据分式的混合运算法则计算.【详解】解:原式=()()()112222m m m m -⨯-+-+=1122m m +++=22m +,故选C .【点睛】本题考查分式的运算,熟练掌握分式的除法法则是解题关键.4.C【解析】【分析】组成三角形的三条线段长度,必须满足“两边之和大于第三边,两边之差小于第三边”.根据逐一判断即可【详解】A .1+l=2,不能组成三角形,故该选项错误;B .4+4<9,不能组成三角形,故该选项错误;C .3+4>5,5-4<3能组成三角形,故该选项正确;D .6+8=14<16不能组成三角形,故该选项错误.故选:C【点睛】本题考查三角形三边关系:解题的关键是掌握三角形“两边之和大于第三边,两边之差小于第三边”.5.B【解析】【分析】判断一件事情的语句叫命题,命题都由题设和结论两部分组成,依此对四个选项进行逐一分析即可.【详解】解:(1)三角形的内角和等于180︒,是命题;(2)如果5x =,那么5x =,是命题;(3)1月份有30天,是命题;(4)作一条线段等于已知线段,不是命题;(5)一个锐角与一个钝角互补吗?不是命题,∴是命题的有3个,故选:B .【点睛】本题考查了命题的概念:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注意命题是一个能够判断真假的陈述句.6.C【解析】【分析】根据三角形全等的性质可以得到解答.【详解】解:∵△ABC≌△EFD,∴AC=DE=CD+CE=5+4=9,故选C.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的性质是解题关键.7.D【解析】【分析】先证明四边形ABCD是平行四边形,再根据平行四边形的性质及全等三角形的判定可得图中全等的三角形.【详解】AB DC,解:∵//AD BC,//∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∠BAD=∠BCD,AO=OC,BO=OD,∵BF=DE,∴CF=AE,∵//AD BC,∴∠EAO=∠FCO,∠EDO=∠FBO,①∵AB=CD,AO=OC,BO=OD,∴△AOB≌△COD(SSS);②∵AD=BC,AO=OC,OD=OB,∴△AOD≌△COB(SSS);③∵AB=CD,∠ABC=∠ADC,AD=BC,∴△ABC≌△CDA(SAS);④∵AB=CD,∠BAD=∠BCD,AD=BC,∴△BAD≌△DCB(SAS);⑤∵AE=CF,∠EAO=∠FCO,AO=OC,∴△AOE≌△COF(SAS);⑥∵DE=BF,∠EDO=∠FBO,BO=OD,∴△FOB≌△EOD(SAS),综上,一共6对全等三角形,故选:D .【点睛】本题考查了平行四边形的判定与性质、平行线的性质、全等三角形的判定,熟练掌握平行四边形的性质和全等三角形的判定是解答的关键.8.A【解析】【分析】根据题目中的等量关系列出分式方程即可.【详解】解:设江水的流速为x 千米/时,100603030x x=+-.故选:A .【点睛】本题主要考查分式方程的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出顺水和溺水对应的时间,找出合适的等量关系,列出方程即可.9.B【详解】∵FD ⊥BC ,∠AFD=158°,∴∠CFD=180°﹣∠AFD=180°﹣158°=22°,则∠C=180°﹣∠FDC ﹣∠CFD=180°﹣90°﹣22°=68°.∵∠B=∠C ,DE ⊥AB ,∴∠EDB=180°﹣∠B ﹣∠DEB=180°﹣68°﹣90°=22°,则∠EDC=∠B+∠DEB=∠B+90°.∵∠EDC=∠EDF+90°,∴∠EDF=∠B=68°.故选B .10.A【解析】【分析】先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可.【详解】解:∵AB=AC,∠A=36°∴∠C=72°∵BD是AC边上的高∴∠DBC=180°-90°-72°=18°故选A.【点睛】题目主要考查等腰三角形的性质,三角形的内角和定理,理解题意,综合运用这些知识点是解题关键.11.7【解析】【分析】根据分式无意义和分式的值为零的条件得出a和b的值,代入a+b即可【详解】解:因为x=﹣3时,分式x bx a++无意义,所以﹣3+a=0,所以a=3,又因为x=﹣4时,此分式的值为0,所以﹣4+b=0,所以b=4,所以a+b=3+4=7.故答案为7【点睛】本题考查分式有意义的条件和分式为0的条件,解题的关键是掌握分式分母的值为0时分式无意义,要使分式的值为0,必须使分式分子的值为0并且分母的值不为0.12.11 6x【解析】【分析】先通分,然后再计算即可.【详解】解:11163223661616x x x x x x x ++=++=.故答案为11 6x.【点睛】本题考查了异分母分式加法,正确的通分是解答本题的关键.13.4x=-【解析】【分析】根据解分式方程的方法和步骤求解.【详解】解:原方程两边同时乘以(x-4)(x-8)得:2(x-8)=3(x-4),解之得:x=-4,经检验,x=-4是原方程的解.故答案为:x=-4.【点睛】本题考查分式方程的求解,熟练掌握分式方程的解法是解题关键.14.12【解析】【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<5,所以不能构成三角形;当腰为5时,2+5>5,所以能构成三角形,周长是:2+5+5=12.故答案是:12.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.5【解析】【分析】根据分式方程增根的定义可以得解.【详解】解:原方程两边同时乘以(x-5)得:x-3(x-5)=a,由题意,x=5,∴a=5,故答案为:5.【点睛】本题考查分式方程无解的问题,熟练掌握分式方程增根的意义及产生根源是解题关键.16.直角【解析】【分析】若三角形三个内角的度数之比为2:3:5,利用三角形的内角和定理:三角形的内角和为180°,可求出三个内角分别是36°,54°,90°.则这个三角形一定是直角三角形.【详解】解:设三角分别为2x,3x,5x,依题意得2x+3x+5x=180°,解得x=18°.故三个角的度数分别为36°,54°,90°.故答案为:直角.【点睛】此题主要考查了三角形的内角和定理:三角形的内角和为180°,熟练掌握三角形内角和定理是解决本题的关键.17.3【解析】【分析】由已知条件根据等腰三角形三线合一的性质可得到BD=DC,再根据三角形的周长定义求解.【详解】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=18,即AB+BD+CD+AC=18,∴AC+DC=9∴AC+DC+AD=12,∴AD=3.故答案为:3.【点睛】本题考查等腰三角形的性质;由已知条件结合图形发现并利用AC+CD是△ABC的周长的一半是正确解答本题的关键.18.15【解析】【分析】根据题意得在△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,根据线段垂直平分线的性质,即可求得AD=BD,AB=2AE,又由△ADC的周长为9cm,即可求得AC+BC的值,继而求得△ABC的周长.【详解】解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故答案为:15.【点睛】本题考查线段垂直平分线的性质.解题的关键是注意数形结合思想的应用以及等量代换思想的应用.19.(1)43x=(2)无解【解析】【分析】(1)方程两边同时乘以(x-2)可以去掉分母变成整式方程,解出整式方程后再把解代入x-2检验即可得到解答;(2)方程两边同时乘以x(x+1)可以去掉分母变成整式方程,解出整式方程后再把解代入x(x+1)检验即可得到解答.【详解】解:(1)方程两边同时乘以2x-,则()3223x x-+-=-解得:43 x=又∵20x-≠,∴此方程的解:4 :3 x=(2)方程两边同时乘以()1x x+,则220x+=解得:1x=-又∵10x+=,∴1x=-是此方程的增根,此方程无解.【点睛】本题考查分式方程的求解,熟练掌握分式方程的解法和步骤并检验是解题关键.20.2()x y-+;2-【解析】【分析】先将原式进行化简,然后将x,y代入即可.【详解】解:先化简;2211y x y y x xy y⎛⎫+÷ ⎪+--⎝⎭22()()()y y x y x y x y y --=⋅+-2()x y -=+求值:当2x =,1y =-时22221x y --==-+-【点睛】本题考查了整式的加减−化简求值问题,解题的关键是原式化简.21.120°【解析】【分析】已知DE 垂直平分斜边AB 可求得AE =BE ,∠EAB =∠EBA .易求出∠AEB .【详解】解:∵90C ∠=︒∴90CAB B ∠+∠=︒又∵30CAB B ∠=∠+︒∴3090B B ∠+︒+∠=︒∴30B ∠=︒∵DE 垂直平分BC∴EA EB=∴30EAB B ∠=∠=︒∴180AEB EAB B∠=-∠-∠1803030=︒-︒-︒120=︒.【点睛】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,三角形内角和定理,解题的关键是注意角与角之间的转换.22.450人;24元【解析】【分析】设甲单位捐款人数为x 人,由题意列出分式方程并解出分式方程后可以得到问题解答.【详解】解:设甲单位捐款人数为x 人,则乙单位捐款人数为()50x +人由题意可得:48006000050x x=+解方程得:200x =经检验,x=200是原方程的解且符合实际情况,所以甲单位捐款人数为200人,从而乙单位捐款人数为250人,人均捐款额为480024200=元答:这两单位有450人捐款,人均捐款额为24元.【点睛】本题考查分式方程的应用,设定合适的未知数并根据题目的数量关系列出方程求解是解题关键.23.轮船航行没有偏离指定航线.理由见解析.【解析】【分析】只要证明轮船与D 点的连线平分∠ADB 就说明轮船没有偏离航线,也就是∠ADC=∠BDC ,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【详解】解:轮船航行没有偏离指定航线.理由是:在△ADC 与△BDC 中,∵,,AD BD DC DC AC BC ===,∴ADC BDC SSS ≌(),∴ADC BDC ∠=∠,∴轮船航线DC 即为∠ADB 的角平分线故答案为:轮船航行没有偏离指定航线.【点睛】本题考查了全等三角形的实际应用,解题的关键是读懂题意,建立数学模型.24.11n n n n n n ⨯=+--(n 为大于1的正整数);见解析.【解析】【分析】通过观察题目的几个算式可以得到如下猜测:11n n n n n n ⨯=+--n 为大于1的正整数),然后根据分式的运算法则可以对得到的猜测作出证明.【详解】解:能作出如下的猜测:11n n n n n n ⨯=+--(n 为大于1的正整数)证明猜测:211n n n n n ⨯=--2(1)111n n n n n n n n n -++==---∴11n n n n n n ⨯=+--(n 为大于1的正整数)【点睛】本题考查与实数运算相关的规律探索,在阅读题目所给算式的基础上作出猜测并利用所学知识对得到的猜测给予证明是解题关键.25.(1)见解析;(2)60°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证得△AEC ≌△BDA ,所以AD =CE ,(2)根据全等三角形的性质得到∠ACE =∠BAD ,再根据三角形的外角与内角的关系得到∠DFC =∠FAC +∠ACF =∠FAC +∠BAD =∠BAC =60°.【详解】(1)证明:∵△ABC 是等边三角形,∴∠B =∠BAC =60°,AB =AC .又∵BD =AE∴△ABD ≌△CAE (SAS )∴AD =CE(2)解:由(1)得△ABD ≌△CAE∴∠ACE =∠BAD .∴∠DFC =∠FAC +∠ACE =∠FAC +∠BAD =∠BAC =60°.【点睛】本题利用了等边三角形的性质和三角形外角定理,解题的关键是熟知全等三角形的判定定理及三角形的外角等于与它不相邻的两个内角的和.26.(1)150︒(2)60︒;理由见解析【解析】【分析】(1)根据三角形的内角和定理即可求得答案;(2)先求得XBC XCB ∠+∠=90°,再根据ABX ACX ∠+∠()()ABC ACB XBC XCB =∠+∠-∠+∠即可求得答案.【详解】解:(1)∵180ABC ACB A ∠+∠+∠=︒,30A ∠=︒,∴180ABC ACB A∠+∠=︒-∠18030=︒-︒150=︒,故答案为:150°;(2)60ABX ACX ∠+∠=︒,理由如下:∵180XBC XCB X ∠+∠+∠=︒,90X ∠=︒,∴180XBC XCB X∠+∠=︒-∠18090=︒-︒90=︒,∴ABX ACX∠+∠ABC XBC ACB XCB=∠-∠+∠-∠()()ABC ACB XBC XCB =∠+∠-∠+∠15090=︒-︒60=︒,故答案为:60°.。
湘教版初二数学数学期中试卷及答案
湘教版数学八年级上册期中测试A 卷一、选择题(4×9=36分)1.若点P(m,n)在第二象限,则点Q(-m,-n)在………( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限2.若9,422==b a ,且0>ab ,则b a -的值为 ( )A .5±B . 1±C . 5D . 1-3.下列说法不正确的是 ( )A .51251±的平方根是; B .3273-=-C .()21.0-的平方根是±0.1 ; D . 的算术平方根是819-4.将点A(5,-2)按如下方式进行平移:先向上平移2个单位,再向左平移4个单位,则点A平移后的坐标为…………………………………………………………( ) A. (7,-6) B. (9,0) C. (1,-4) D.(1,0) 5.函数xx y -=1 自变量x的取值范围是………………….…………….….…( )A. 全体实数B. x>0C. x≥0且x≠1D.x>16.若m+n <0,mn >0。
则一次函数y=mx+n 的图像不经过…………….….…( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限7.一次函数y=mx+n 与y=mnx (mn ≠0),在同一平面直角坐标系的图像是……( )A. B. C. D.8.某游泳池分为深水区和浅水区,每次消毒后要重新注满水,假定进水管的速度是均匀的,那么游泳池内水的高度h随时间t变化的图像是………………..………….….…( )9.下列各曲线中,不能表示y是x的函数的是…………….…………….…( )二、填空题(4×6=24分)10. 16的算术平方根是 ;=-32 , 25-11.12. 函数y=-2x+3的图像是由直线y=-2x向 平移 个单位得到的。
13. 已知031a 2=++-b , 则b a += . 14. 点(21,y1 ),(2,y2 )是一次函数y=-21x-3图像上的两点, 则y1 y2 。
湘教版八年级数学上册期中试卷及答案【完整】
湘教版八年级数学上册期中试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( ) A .﹣1B .﹣2C .0D .142.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3n ( ) A .2B .3C .4D .54.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠25.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( ) A .1、3B .3、5C .6、8D .7、96.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( ) A .2%B .4.4%C .20%D .44%7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是__________.3.分解因式6xy2-9x2y-y3 = _____________.4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________。
湘教版八年级上册数学期中考试试卷附答案
湘教版八年级上册数学期中考试试题一、单选题1.下列分式是最简分式的是()A .331x x +B .22x y x y --C .222x y x xy y --+D .64x y2.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a≥0时,|a|=a ;④内错角互补,两直线平行.其中是真命题的有()A .1个B .2个C .3个D .4个3.若分式211x x -+的值为0,则x 的值为()A .1B .-1C .±1D .24.要使分式1+1x 有意义,则x 应满足的条件是()A .1x ≠B .1x ≠-C .0x ≠D .1x >5.下列运算正确的是()A .()235x x =B .()55x x -=-C .326x x x ⋅=D .235325x x x +=6.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A .带①去B .带②去C .带③去D .①②③都带7.如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点.如果∠D =70°,∠CAB =50°,那么∠DAB =()A .20°B .50°C .70°D .60°8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.253520x x=-B.253520x x=-C.253520x x=+D.253520x x=+9.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF等于()A.58°B.68°C.78°D.32°10.若分式方程1322a xx x-+=--有增根,则a的值是()A.1B.0C.—1D.3二、填空题11.计算:()32a-=__________.12.计算:1133x x+--=________________.13.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=_____.14.已知关于x的方程244x kx x=--会产生增根,则k的值为________.15.将0.0000105用科学记数法可表示为_______________.16.等腰三角形的两边的长分别为5cm和7cm,则此三角形的周长是_____.17.在△ABC中,∠A=70°,∠A比∠B大10°,则∠C=_______°.18.如图,∠1=∠2,要使△ABE≌△ACE,需添加一个条件是__________.(填上一个条件即可)三、解答题19.计算:101(2( 3.14)2π---+-20.解分式方程:33122x x x-+=--21.先化简,再求值:22453262a a a a a --÷-+++选择一个你喜欢的数.22.观察下面的变形规律:112⨯=1-12;123⨯=12-13;134⨯=13-14;……解答下面的问题:(1)若n 为正整数,请你猜想1n(n 1)+=.(2)若n 为正整数,请你用所学的知识证明1111(1)n n n n -=++;(3)求和:112⨯+123⨯+134⨯+…+120112012⨯ .23.如图,在△ABC 中,BC=8cm ,AB 的垂直平分线交AB 于点D,交边AC 于点E ,△BCE 的周长等于18cm ,求AC 的长.24.如图,D 、E 在BC 上,且BD =CE ,AD =AE ,∠ADE =∠AED .求证:AB =AC .25.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购买A 种图书的数量比B 种图书多20本.(1)求A 和B 两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B 种图书25本,共花费多少元?26.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C 且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ADC ≌CEB △;②DE AD BE =+;(2)当直线MN 烧点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案1.A2.B3.A4.B5.B6.C7.D8.C9.B10.Da-11.612.0.13.70°14.815.1.05×10-516.17cm或19cm.17.50°18.∠B=∠C(或BE=CE或∠BAE=∠CAE)19.-3【详解】--+解;原式=221=-3.20.x=1【详解】解:x-3+(x-2)=-3x+x=-3+3+22x=2x=1检验:当x=1时,左边=3=右边∴x=1是原方程的解21.32a -+,-1【详解】解:224522(3)525.32623(2)(32)2222a a a a a a a a a a a a a a ---+÷-=-=-=-+++++-++++∵a+2≠0,a+3≠0,∴a≠-2且a≠-3,∴取a=1,∴原式=-122.(1)111n n -+;(2)见详解;(3)20112012.【详解】(1)∵112⨯=1-12;123⨯=12-13;134⨯=13-14,∴1n(n 1)+=111n n -+.(2)∵1111(1)(1)n nn n n n n n +-=-+++=11111(1)(1)n n n n n n n n +--==+++,∴1111(1)n n n n -=++;(3)∵()11111n n n n =-++,∴112⨯+123⨯+134⨯+…+120112012⨯=1-12+12-13+13-14+…+1120112012-=1-12012=20112012.23.10cm 【详解】解:∵BCE 的周长为18cm ,∴18BC CE BE cm++= 8BC cm=∴10BE CE cm+=∵DE 垂直平分AB ∴AE BE=∴10BE CE AE CE AC cm +=+==24.证明见解析【分析】先求出BE=CD ,再利用“边角边”证明△ABE 和△ACD 全等,根据全等三角形对应边相等证明即可.【详解】证明:∵BD=CE ,∴BD+DE=CE+DE ,即BE=CD ,在△ABE 和△ACD 中,AD AE ADE AED BE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴AB=AC .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判断方法是解题的关键,难点在于求出BE=CD .25.(1)A 种图书的单价为30元,B 种图书的单价为20元;(2)共花费880元.【解析】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,根据数量=总价÷单价结合花3000元购买的A 种图书比花1600元购买的B 种图书多20本,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量,即可求出结论.【详解】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,依题意,得:30001600201.5x x-=,解得:20x =,经检验,20x =是所列分式方程的解,且符合题意,∴1.530x =.答:A 种图书的单价为30元,B 种图书的单价为20元.(2)300.820200.825880⨯⨯+⨯⨯=(元).答:共花费880元.26.(1)①证明见解析;②证明见解析(2)证明见解析(3)DE BE AD =-(或者对其恒等变形得到AD BE DE =-,BE AD DE =+),证明见解析【解析】(1)①根据AD MN ⊥,BE MN ⊥,90ACB ∠=︒,得出CAD BCE ∠=∠,再根据AAS 即可判定ADC CEB ∆≅∆;②根据全等三角形的对应边相等,即可得出CE AD =,CD BE =,进而得到DE CE CD AD BE =+=+;(2)先根据AD MN ⊥,BE MN ⊥,得到90ADC CEB ACB ∠=∠=∠=︒,进而得出CAD BCE ∠=∠,再根据AAS 即可判定ADC CEB ∆≅∆,进而得到CE AD =,CD BE =,最后得出DE CE CD AD BE =-=-;(3)运用(2)中的方法即可得出DE ,AD ,BE 之间的等量关系是:DE BE AD =-或恒等变形的其他形式.(1)解:①AD MN ⊥ ,BE MN ⊥,90ADC ACB CEB ∴∠=∠=︒=∠,90CAD ACD ∴∠+∠=︒,90BCE ACD ∠+∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCEADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;②ADC CEB ∆≅∆ ,CE AD ∴=,CD BE =,DE CE CD AD BE ∴=+=+;(2)证明:AD MN ⊥ ,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;CE AD ∴=,CD BE =,DE CE CD AD BE ∴=-=-;(3)证明:当MN 旋转到题图(3)的位置时,AD ,DE ,BE 所满足的等量关系是:DE BE AD =-或AD BE DE =+或BE AD DE =+.理由如下:AD MN ⊥ ,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆,CE AD ∴=,CD BE =,DE CD CE BE AD ∴=-=-(或者对其恒等变形得到AD BE DE =+或BE AD DE =+).。
湘教版八年级上册数学期中考试试卷含答案
湘教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列式子中是分式的是( )A.1πB.3xC.11x-D.252.下列分式中属于最简分式的是()A.42xB.11xx--C.211xx--D.221xx+3.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.94.化简2111xx x+--的结果是A.x+1 B.x-1 C.x2− 1 D.211 + -xx5.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.6.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a>0时,|a|=a;④内错角互补,两直线平行.其中真命题的有()A.1个B.2个C.3个D.4个7.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ8.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x 满足的方程是( ) A .4800500020x x =- B .48005000+20x x = C .4800500020x x =- D .48005000+20x x = 9.如图,ABC EFD ≌△△且AB EF =,4CE =,5CD =,则AC =( )A .4B .5C .9D .1010.关于分式32x a x +-,当x=﹣a 时,( ) A .分式的值为零 B .当a≠23-时,分式的值为零 C .分式无意义 D .当a=23时,分式无意义二、填空题11.要使分式21x -有意义,则x 的取值范围是_______. 12.肥皂泡的泡壁厚度大约是0.0007毫米,换算成以米为单位,用科学记数法应表示为_____米.13.命题“两直线平行,同位角相等”的题设是_________;结论是_____________.14.化简:21x x-÷1x x +=_____. 15.如图,∠1=∠2,请添加一个条件使△ABC ≌△ABD :_____.16.若关于x 的分式方程122m x x x-=--﹣3有增根,则实数m 的值是_____. 17.如图,在△ABC 中,DE 是BC 的垂直平分线,垂足为E,交AC 于点D,若AB=6,AC=9,则△ABD 的周长是__.三、解答题18.计算:|﹣1|+(3﹣π)0﹣(12)﹣1.19.解方程:22xx-=1﹣12x-.20.先化简,再求值:211122aa a-⎛⎫-÷⎪++⎝⎭,其中,3.21.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.22.如图∠B=∠C,AB//DE,EC=ED,求证:△DEC为等边三角形.23.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.24.徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请给出证明;若不成立,请说明理由.参考答案1.C【详解】1π、3x、25的分母中不含有字母,属于整式,11x-的分母中含有字母,属于分式.故选C.2.D【分析】根据最简分式的概念:分子、分母没有公因式的分式叫做最简分式,据此逐项判断即可.【详解】解:A、42=2x x,不是最简分式,故此选项不符合题意;B、111xx-=--,不是最简分式,故此选项不符合题意;C 、211x x --=11(1)(1)1x x x x -=+-+,不是最简分式,故此选项不符合题意; D 、221x x +是最简分式,故此选项符合题意, 故选:D .【点睛】本题考查最简分式的概念,涉及分式的基本性质、平方差公式,理解最简分式的概念是解答的关键.3.C【分析】根据三角形的三边关系可判断x 的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x <7+2,即5<x <9.因此,本题的第三边应满足5<x <9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x <9,只有6符合不等式,故选C .【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键. 4.A【分析】先把分式化简,再求值.【详解】解:原式=()()2111 1.111x x x x x x x +--==+--- 故选A.【点睛】此题重点考察学生对分式的化简求值的应用,熟练掌握分式化简求值方法是解题的关键. 5.A【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A 是作BC 边上的高,C 是作AB 边上的高,D 是作AC 边上的高.故选A.考点:三角形高线的作法6.B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】解:两点之间,线段最短,所以①正确;相等的角不一定是对顶角,所以②错误;当a>0时,|a|=a,所以③正确;内错角相等,两直线平行,所以④错误.则真命题有2个故选:B.【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.7.B【详解】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选B.8.B【解析】如果设第一次有x人捐款,那么第二次有(x+20)人捐款,根据两次人均捐款额相等,可得等量关系为:第一次人均捐款额=第二次人均捐款额,据此列出方程即可.解:设第一次有x人捐款,那么第二次有(x+20)人捐款,由题意,有4800 x =500020x,故选B.9.C【分析】根据三角形全等的性质可以得到解答.【详解】解:∵△ABC≌△EFD,∴AC=DE=CD+CE=5+4=9,故选C.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的性质是解题关键.10.B【解析】【分析】根据分式有意义的条件是分母不等于零;分式无意义的条件是分母等于零;分式值为零的条件是分子等于零且分母不等于零即可判断.【详解】A. 当x=−a=23时,分式x a3x2+-无意义,故本选项错误;B. 当x+a=0且x≠23时,即当a≠−23时,分式的值为零,故本选项正确;C. 当x=−a≠23时,分式x a3x2+-有意义,故本选项错误;D. 当a=23时,分式x a3x2+-有意义,故本选项错误;故选B.【点睛】本题主要考查了分式有意义的条件,牢牢掌握分式有意义的条件是解答本题的重难点. 11.x≠1【分析】分式有意义的条件:分母不等于零,依此列不等式解答.【详解】∵分式21x-有意义,∴10x-≠,解得x≠1故答案为:x≠1.【点睛】此题考查分式有意义的条件,正确掌握分式有意义的条件列不等式是解题的关键.12.7×10﹣7.【分析】先换算单位,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007毫米=0.0000007米=7×10﹣7.故答案为7×10﹣7.【点睛】本题考查用科学记数法表示较小的数,与较大数的科学记数法不同的是其所使用的是负指数幂,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.如果两条平行线被第三条直线所截,那么同位角相等【分析】由命题的题设和结论的定义进行解答.【详解】命题“两直线平行,同位角相等”改写为“如果两条平行线被第三条直线所截,那么同位角相等.”所以“如果两条平行线被第三条直线所截”是命题的题设部分,“那么同位角相等”是命题的结论部分.故答案为:如果两条平行线被第三条直线所截;那么同位角相等【点睛】考查了命题的题设和结论,先把命题写出“如果...那么…”的形式,找出题设和结论即可. 14.x﹣1【分析】先利用平方差公式对第一项分子进行分解因式,然后将除法转化为乘法,继而约分即可求解.【详解】解:原式=()()111 x x xx x+-⨯+=x﹣1故答案为:x﹣1.【点睛】本题考查了分式的混合运算,熟记法则和运算顺序是解决此题的关键.15.AD=AC【分析】由题意可知:AB=AB,∠1=∠2,证明△ABC≌△ABD,根据全等三角形的判定方法,再添加一个条件证得两个三角形全等,从而可得答案.【详解】解:∵∠1=∠2,AB=AB,∴若添加条件AD=AC,则△ABC≌△ABD(SAS),若添加条件∠D=∠C,则△ABC≌△ABD(AAS),若添加条件∠ABD=∠ABC,则△ABC≌△ABD(ASA),故答案为:AD=AC(答案不唯一).【点睛】本题考查的是全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键.16.1【详解】解:去分母,得:m=x﹣1﹣3(x﹣2),由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程可得:m=1,故答案为1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17.15【分析】根据线段的垂直平分线的性质得到DB=DC,根据三角形的周长公式计算即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案为15.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.0【分析】先根据绝对值、零指数幂、负整数指数幂分别求值,再将各项相加减即可.【详解】解:原式=1+1﹣2=0.故答案为0.【点睛】本题主要考查绝对值、零指数幂、负整数指数幂等考点的运算,属于基础题型.19.x=﹣1【分析】根据解分式方程的步骤求出方程的解,再进行检验即可得出答案【详解】解:22xx-=1﹣12x-去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解,∴方程的解为:x=﹣1.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.化简结果为,值为.【分析】先把括号里的式子通分相减,然后把除数的分子分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约成最简分式或整式;求值时把a值代入化简的式子算出结果.【详解】原式=212aa+-+×2(1)(1)aa a++-= 1(1)(1)a a a ++- =11a - ; 当a=3时,11a - = 131- =12. 考点:分式的混合计算及求值.21.答案见解析【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.22.证明见解析.【详解】试题分析:利用等腰梯形的性质,证明边相等,易得三角是全等三角形.试题解析:∵AB //DE ,∴∠B =∠DEC,又∵∠B =∠C, ∴∠C =∠DEC,∴DE=DC,又∵EC=ED,∴EC=ED=DC,∴△DEC 为等边三角形.23.(1)∠ECD=36°;(2)BC 长是5.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE ,然后根据等边对等角可得∠ECD=∠A ;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC =∠A+∠ECD =72°,继而得∠BEC=∠B ,推出BC=CE 即可.【详解】解:(1)∵DE 垂直平分AC ,∴CE =AE ,∴∠ECD =∠A =36°;(2)∵AB =AC ,∠A =36°,∴∠B =∠ACB =72°,∴∠BEC =∠A+∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.A 车行驶的时间为3.5小时,B 车行驶的时间为2.5小时.【分析】设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时,根据题意得:700t ﹣7001.4t=80,解分式方程即可,注意验根.【详解】解:设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时, 根据题意得:700t ﹣7001.4t=80, 解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,∴1.4t=3.5.答:A 车行驶的时间为3.5小时,B 车行驶的时间为2.5小时.【点睛】本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程. 25.(1)见解析;(2)成立,理由见解析【分析】(1)根据AAS 证明△ADB ≌△CEA ,得到AE =BD ,AD =CE ,即可证明;(2)同理证明△ADB ≌△CEA ,得到AE =BD ,AD =CE ,即可证明;【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(2)∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°﹣α,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.。
湘教版八年级上册数学期中考试试卷及答案
湘教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.若分式23x-有意义,则x的取值范围是()A.x≠3B.x≠﹣3 C.x>3 D.x>﹣32.在式子1a ,2334a b,112nna++,78x y+中,分式的个数是()A.1 B.2 C.3 D.4 3.下列属于命题的是()A.期中测试卷难吗?B.请你把书递过来C.今天下雨了D.连接A、B两点4.下列运算正确的是()A.x4•x3=x12B.(x3)4=x81C.x4÷x3=x(x≠0)D.x4+x3=x75.若分式||11xx-+的值为0,则x的值为()A.1 B.﹣1 C.±1 D.无解6.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是()A.13 B.17 C.22 D.17或227.如图,已知∠1=∠2,若用“SAS”证明△ACB≌△BDA,还需加上条件()A.AD =BC B.BD=AC C.∠D=∠C D.OA=OB8.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.2cm,3cm,5cmC.5cm,6cm,12cm D.4cm,6cm,8cm9.一艘船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.设船在静水中的速度为x千米/时,则可列出的方程为()A.906022=+-x xB.906022=-+x xC.90602x x+=D.60902x x+=二、填空题10.计算:(﹣1)0+(13)﹣1=_____.11.分式:211a -,21+a a ,21a 的最简公分母是 12.把命题“全等三角形的对应边相等”改写成“如果……,那么……”的形式 13.用三根木条钉成一个三角形框架,这个三角形框架的形状和大小就不变了,这是因为三角形具有14.某种原子直径为1.2×10﹣2纳米,把这个数化为小数是__纳米.15.如图,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD=__度.16.如图,等腰三角形ABC 中,AB =AC ,∠A =40°,CD ⊥AB 于D ,则∠DCB 等于_____.三、解答题17.化简:()x y x y x y x y +÷-+-22211 (2)先化简,再求值:22453262a a a a a --÷-+++,并选一个你喜欢的数代入求值. 18.解方程:(1)1233x x x=+-- (2)2316111x x x +=+--. 19.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.20.如图,在方格纸中,△PQR 的三个顶点及A,B,C,D,E 五个点都在小方格的顶点上,现以A,B,C,D,E 中的三个顶点为顶点画三角形,(1)在图甲中画出一个三角形与△PQR 全等;(2)在图乙中画出一个三角形与△PQR 面积相等 但不全等.21.为了帮助四川雅安芦山县遭到地震的灾区重建家园,某公司号召员工自愿捐款,请你根据下面两位经理的对话,求出第一次捐款的人数.经理甲:第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元; 经理乙:第一次捐款总额为20000元,第二次捐款总额为56000元.22.如图,P 、Q 是△ABC 边上的两点,且BP=PQ=QC=AP=AQ ,求∠BAC 的度数.23.如图,△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE =5,求BC 长.24.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度; (2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论参考答案1.A【分析】分式有意义时,分母不等于零.【详解】当分母x﹣3≠0,即x≠3时,分式23x-有意义.故选A.2.B 【解析】试题解析:在式子1a,2334a b,109xy+,78x y+中,分式为1a,109xy+.共2个.故选B.3.C【解析】试题解析:A、期中测试卷难吗?是疑问句,不是命题;B、是祈使句,不是命题;C、今天下雨了,对某件事情做出了判断,是命题;D、是祈使句,不是命题,故选C.4.C【详解】试题解析:A、x4•x3=x7,故本选项错误;B、(x3)4=x12,故本选项错误;C、x4÷x3=x(x≠0),故本选项正确;D、x4+x3≠x7,故本选项错误;故选C.5.A【详解】试题解析:∵分式||11xx-+的值为0,∴|x|﹣1=0,且x+1≠0,解得:x=1.故选A.6.C【分析】由于等腰三角形的底和腰长不能确定,故应分两种情况进行讨论.【详解】分为两种情况:①当三角形的三边是4,4,9时,∵4+4<9,∴此时不符合三角形的三边关系定理,此时不存在三角形;②当三角形的三边是4,9,9时,此时符合三角形的三边关系定理,此时三角形的周长是4+9+9=22. 故选C.7.B【分析】根据SAS是指两边及夹角相等进行解答即可.【详解】解:已知∠1=∠2,AB=AB ,根据SAS 判定定理可知需添加BD =AC ,故选B【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A 、1+2<4,不能组成三角形;B 、2+3=5,不能组成三角形;C 、5+6<12,不能组成三角形;D 、4+6>8,能组成三角形.故选:D .【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.9.A【分析】根据等量关系:顺流航行90千米时间=逆流航行60千米所用的时间,列出方程即可.【详解】解:设船在静水中的速度为x 千米/时,由题意得:906022=+-x x , 故选A .【点睛】此题主要考查了由实际问题抽象出分式方程,找到等量关系是解决问题的关键.本题需注意顺流速度与逆流速度的求法.10.4 【解析】试题解析:(﹣1)0+(13)﹣1=1+3=4.11.a2(a+1)(a﹣1)【解析】试题解析:先把分母因式分解,再找出最简公分母a2(a+1)(a﹣1).12.如果两个三角形全等,那么这两个三角形的对应边相等【解析】∵原命题的条件是:两个三角形是全等三角形,结论是:对应角相等,∴命题“全等三角形的对应角相等”改写成“如果…,那么…”的形式是如果两个三角形是全等三角形,那么它们的对应角相等.13.稳定性【解析】试题解析:根据三角形的稳定性可知,三根木条钉成一个三角形框架的形状和大小就不变了,故答案为:稳定性.14.0.012【解析】将1.2中的小数点向左移动两位即可得出结论.15.95【详解】试题分析:根据三角形内角和定理可得:∠OBC=180°-20°-65°=95°,根据三角形全等的性质可得:∠OAD=∠OBC=95°.考点:三角形全等的性质.16.20°.【详解】试题分析:先根据等腰三角形的性质求得∠B的度数,再根据三角形的内角和定理即可求得结果.∵AB=AC,∠A=40°,∴∠B=(180°-∠A)÷2=70°∵CD⊥AB∴∠DCB=20°.考点:本题考查的是等腰三角形的性质,三角形的内角和点评:解答本题的关键是熟练掌握等腰三角形的两个底角相等,三角形的内角和为180°. 17.(1)2xy;(2)当a=1时,原式=-1. 【解析】试题分析:(1)先对括号内的式子通分,然后去括号后,将除法转化为乘法即可解答本题;(2)根据分式的除法和减法即可化简本题,然后选取合适的a 的值代入即可化简本题,注意a 不能取2,﹣2,﹣3.试题解析:(1)()x y x y x y x y +÷-+-22211 =2()()()()x y x y x y x y x y x y x y ++--+⨯-+ =22x x y =2xy; (2)22453262a a a a a --÷-+++ =22(3)53(2)(2)2a a a a a a -+⨯-+-++ =2522a a -++ =32a -+, 当a=1时,原式=312-+=﹣1. 18.(1)x=7;(2)x=2.【解析】试题分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:(1)去分母得:1=2x ﹣6﹣x ,解得:x=7,经检验x=7是分式方程的解;(2)去分母得:3x ﹣3+x+1=6,解得:x=2,经检验x=2是分式方程的解.19.见解析(2)∠EBC=25°【分析】(1)根据AAS 即可推出△ABE 和△DCE 全等.(2)根据三角形全等得出EB=EC ,推出∠EBC=∠ECB ,根据三角形的外角性质得出∠AEB=2∠EBC ,代入求出即可【详解】解(1)证明:∵在△ABE 和△DCE 中,A D{AEB DEC AB DC∠=∠∠=∠=,∴△ABE ≌△DCE (AAS )(2)∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°20.解:(1)如图所示:(2)如图所示:【详解】(1)过A 作AE ∥PQ ,过E 作EB ∥PR ,再顺次连接A 、E 、B .(答案不唯一)(2)∵△PQR 面积是:12×QR×PQ=6,∴连接BA ,BA 长为3,再连接AD 、BD ,三角形的面积也是6,但是两个三角形不全等.(答案不唯一)21.400人.【解析】试题分析:设第一次捐款的人数为x,那么二次捐款人数是2x,根据人均捐款额比第一次多20元,列出方程求解即可.试题解析:设第一次捐款的人数为x人,根据题意列方程得:560002000020-=,2x x解得x=400,经检验x=400是原方程的根,且符合题意;答:第一次捐款400人.22.∠BAC=105°.【分析】由BP=PQ=QC=AP=AQ,可得∠PAQ=∠APQ=∠AQP=60°,∠B=∠BQP,∠C=∠CAQ,继而根据三角形外角的性质可得∠BQP=30°,继而可得∠AQB=90°,从而求得∠CAQ=45°,再由∠BAC=∠BAQ+∠CAQ即可求得答案.【详解】∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BQP,∠C=∠CAQ,又∵∠BQP+∠ABQ=∠APQ,∠C+∠CAQ=∠AQB,∴∠BQP=30°,∴∠AQB=∠BQP+∠AQP=90°,∴∠CAQ=45°,∴∠BAC=∠BAQ+∠CAQ=105°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的性质,三角形外角的性质等,正确求出∠BAQ与∠CAQ的度数是解本题的关键.23.(1)∠ECD=36°;(2)BC长是5.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC=∠A+∠ECD=72°,继而得∠BEC=∠B,推出BC=CE即可.【详解】解:(1)∵DE 垂直平分AC ,∴CE =AE ,∴∠ECD =∠A =36°;(2)∵AB =AC ,∠A =36°,∴∠B =∠ACB =72°,∴∠BEC =∠A+∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.(1)90;(2)①180αβ+=︒,理由见解析;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.【分析】(1)可以证明△BAD ≌△CAE ,得到∠B =∠ACE ,证明∠ACB =45°,即可解决问题; (2)①证明△BAD ≌△CAE ,得到∠B =∠ACE ,β=∠B +∠ACB ,即可解决问题; ②证明△BAD ≌△CAE ,得到∠ABD =∠ACE ,借助三角形外角性质即可解决问题.【详解】(1)90︒;(2)①αβ180+=︒.理由:∵BAC DAE ∠∠=,∴BAC DAC DAE DAC ∠∠∠∠-=-.即BAD CAE ∠∠=.又AB AC AD AE ==,,∴ABD ACE ≌.∴B ACE ∠∠=.∴B ACB ACE ACB ∠∠∠∠+=+.∴B ACB β∠∠+=.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.②当点D 在射线BC 上时,αβ180+=︒.当点D 在射线BC 的反向延长线上时,αβ=.【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.。
湘教版八年级下册数学期中考试试卷附答案
湘教版八年级下册数学期中考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是()A .选①②B .选②③C .选①③D .选②④3.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC4.下列各组数据中,不能作为一个直角三角形三边长的一组是()A .2223,4,5B .C .1,D .5.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把 CDB 旋转90°,则旋转后点D 的对应点D ¢的坐标是()A .(2,10)B .(﹣2,0)C .(2,10)或(﹣2,0)D .(10,2)或(﹣2,0)6.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=D.AF=EF7.如图,Rt△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,AD=10,则点D到AB的距离是()A.8B.5C.6D.48.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米B.10米C.12米D.14米9.下列四组线段中,可以构成直角三角形的是()A.2,3,4B.4,5,6C.1,3D.110.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14B.16C.18D.20二、填空题11.如图,Rt△ABC中,∠ACB=90°,BD是∠ABC的角平分线,AC=8,12DC AD,则D到AB的距离为________.12.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是_____.13.如图,已知矩形ABCD,一条直线把矩形分割成两个多边形,若两个多边形的内角和分 的最小值为________.别为M和N,则M N14.如图所示,已知 ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC 中,能说明 ABCD是矩形的有______________(填写序号)15.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为__________.16.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;三、解答题17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.18.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)19.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形;为什么.20.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.21.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.22.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.23..已知如图,DC =4,AC =3,∠ACD =90°,AB =13,BD =12.试求出:(1)∠ADB 的度数.(2)求出△ABD 的面积.24.已知:□ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOD 的周长比△BOA 的周长长5cm ,求这个平行四边形各边的长.25.在四边形ABCD 中,//AD BC ,BC CD ⊥,6cm AD =,10cm BC =,点E 从A 出发以1cm /s 的速度向D 运动,点F 从点B 出发,以2cm /s 的速度向点C 运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t .(1)t 取何值时,四边形EFCD 为矩形?(2)M 是BC 上一点,且4BM =,t 取何值时,以A 、M 、E 、F 为顶点的四边形是平行四边形?参考答案1.D【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2.B【详解】试题分析:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.考点:1.正方形的判定;2.平行四边形的性质.3.D【详解】根据平行四边形判定定理进行判断:A 、由“AB ∥DC ,AD ∥BC”可知,四边形ABCD 的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B 、由“AB=DC ,AD=BC”可知,四边形ABCD 的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C 、由“AO=CO ,BO=DO”可知,四边形ABCD 的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D 、由“AB ∥DC ,AD=BC”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .考点:平行四边形的判定.4.A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.【详解】A 、()()()222222345+≠,不符合勾股定理的逆定理,故本选项符合题意;B 、2221+=,符合勾股定理的逆定理,故本选项不符合题意;C 、22212+=,符合勾股定理的逆定理,故本选项不符合题意;D 、22211+=,符合勾股定理的逆定理,故本选项不符合题意.故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.C【解析】【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【详解】解:∵点D (5,3)在边AB 上,∴BC =5,BD =5﹣3=2,①若顺时针旋转,则点D ¢在x 轴上,O D ¢=2,所以,D ¢(﹣2,0),②若逆时针旋转,则点D ¢到x 轴的距离为10,到y 轴的距离为2,所以,D ¢(2,10),综上所述,点D ¢的坐标为(2,10)或(﹣2,0).故选:C .【点睛】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.6.D【解析】【详解】试题分析:∵AD ∥BC ,∴∠AFE=∠FEC ,∵∠AEF=∠FEC ,∴∠AFE=∠AEF ,∴AF=AE ,∴选项A 正确;∵ABCD 是矩形,∴AB=CD ,∠B=∠C=90°,∵AG=DC ,∠G=∠C ,∴∠B=∠G=90°,AB=AG ,∵AE=AF ,∴△ABE ≌△AGF ,∴选项B 正确;设BE=x ,则CE=BC ﹣BE=8﹣x ,∵沿EF 翻折后点C 与点A 重合,∴AE=CE=8﹣x ,在Rt △ABE 中,222AB BE AE +=,即2224(8)x x +=-,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE=∠CEF ,∴∠AEF=∠AFE ,∴AE=AF=5,过点E 作EH ⊥AD 于H ,则四边形ABEH 是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF ﹣AH=5﹣3=2,在Rt △EFH 中,EF=C 正确;由已知条件无法确定AF 和EF 的关系,故选D .考点:翻折变换(折叠问题).7.B【解析】【分析】作DE⊥AB于E,根据角平分线的定义得到∠DAB=30°,根据等角对等边得到BD=AD=10,然后利用30°所对直角边是斜边的一般求解.【详解】解:作DE⊥AB于E,∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=30°,∴∠B=∠DAB,∴BD=AD=10,∴在Rt△DEB中,DE=12BD=5,即点D到AB的距离是5,故选B.【点睛】本题考查的是角平分线的性质、等角对等边,含30°直角三角形的性质,掌握直角三角形中30°所对直角边是斜边的一般是解题的关键.8.B【解析】【详解】试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,在Rt△AEC中,(米).故选B.9.D【解析】【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【详解】解:A、32+22≠42,即三角形不是直角三角形,故本选项错误;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、12+22≠32,即三角形不是直角三角形,故本选项错误;D、12+223)2,即三角形是直角三角形,故本选项正确;故选D.【点睛】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.10.C【解析】【详解】试题分析:利用菱形的性质结合勾股定理得出AB的长,进而得出答案.∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选C.考点:菱形的性质,勾股定理.11.8 3【解析】【分析】根据题意作辅助线,然后根据角平分线的性质得出DE=CD,根据已知可得CD=83,所以DE=83,即D点到BC的距离可得.【详解】过点D作DE⊥AB于点E,∵已知∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴∠C=∠DEB=90°,根据角平分线的性质可得:DE=CD.∵AC=8,DC=12 AD,∴CD=8 3,∴DE=8 3,∴D到AB的距离为8 3,故答案为:8 3.【点睛】本题主要考查角平分线的性质,正确作出辅助线是解决本题的关键.12.2【解析】【详解】试题分析:解:∵D为AB的中点,AB=8,∴AD=4,∵DE⊥AC于点E,∠A=30°,∴DE=12AD=2,故答案为2.【点睛】本题考查三角形中位线定理;含30度角的直角三角形.13.360【解析】【分析】根据多边形内角和定理:()2180n -︒ ,列出M+N 的式子,然后求出最小值.【详解】一条直线将该矩形ABCD 分割成两个多边形,设两个多边形的分别为m 边形和n 边形,则M+N=()()21802180m n -︒+-︒ ,∵3m ≥,3n ≥,∴360M N +≥︒,即最小值为:360︒.故答案为:360︒.【点睛】本题主要考查了多边形的内角和定理,解答本题的关键是掌握多边形的内角和定理.14.①④【解析】【详解】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD 是矩形的条件是①和④.15.30°.【解析】【详解】∵四边形ABCD 是平行四边形∴AB ∥DC ,∠ABC=∠D∴∠DAB+∠D=180°,∵∠D=100°,∴∠DAB=80°,∠ABC=100°又∵∠DAB的平分线交DC于点E ∴∠EAD=∠EAB=40°∵AE=AB∴∠ABE=12(180°-40°)=70°∴∠EBC=∠ABC-∠ABE=100°-70°=30°.考点:1.角平分线的性质;2.平行四边形的性质.16.6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,C AED CAD EADAD DA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.17.(1)(﹣3,2);(2)作图见解析(3)(﹣2,3).【解析】【详解】试题分析:(1)关于y轴对称的点坐标是纵坐标相同,横坐标互为相反数,(2)分别将三个顶点A、O、B,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(1)因为B的坐标是(3,2),所以B关于y轴对称的点的坐标是(-3,2)(2)将A向左移三个格得到A1,O向左平移三个单位得到O1,B向左平移三个单位得到B1,再连线得到△A1O1B1.(3)因为A的坐标是(1,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A1是(-2,3).考点:1.关于y轴对称点坐标规律2.图形平移后点的坐标规律18.直线L上距离D点566米的C处开挖.【解析】【详解】试题分析:根据条件证明∠D=∠DBC=45°,得出△BCD是等腰直角三角形,然后利用勾股定理可得CD2+BC2=BD2计算即可.试题解析:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,≈566(米),答:直线L上距离D点566米的C处开挖.考点:勾股定理的应用.19.(1)证明见解析;(2)当AB=BC时,四边形DBEF是菱形,理由见解析.【解析】【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明.(2)根据邻边相等的平行四边形是菱形证明.【详解】解:(1)∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线.∴DE∥BC.又∵EF∥AB,∴四边形DBFE是平行四边形.(2)当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=12 AB.∵DE是△ABC的中位线,∴DE=12 BC.∵AB=BC,∴BD=DE.又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(1)证明见解析;(2)∠EBC=30°.【解析】【分析】(1)由矩形的性质和折叠的性质可得DE=BC,∠E=∠C=90°,对顶角∠DFE=∠BFC,利用AAS可判定△DEF≌△BCF;(2)由已知知△ABD 是直角三角形,由已知AD=3,BD=6,可得出∠ABD=30°,然后利用折叠的性质可得∠DBE=30°,继而可求得∠EBC 的度数.【详解】解:(1)由折叠的性质可得:DE=BC ,∠E=∠C=90°,在△DEF 和△BCF 中,DFE BFC E C DE BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BCF (AAS );(2)在Rt △ABD 中,∵AD=3,BD=6,∴∠ABD=30°,由折叠的性质可得;∠DBE=∠ABD=30°,∴∠EBC=90°﹣30°﹣30°=30°.【点睛】本题考查1、矩形的性质;2、全等三角形的判定与性质;3、图形的翻折.21.(1)证明见解析;(2)四边形ACEF 是菱形,理由见解析.【解析】【分析】(1)由三角形中位线定理得出DE ∥AC ,AC=2DE ,求出EF ∥AC ,EF=AC ,得出四边形ACEF 是平行四边形,即可得出AF=CE ;(2)由直角三角形的性质得出∠BAC=60°,AC=12AB=AE ,证出△AEC 是等边三角形,得出AC=CE ,即可得出结论.【详解】试题解析:(1)∵点D ,E 分别是边BC ,AB 上的中点,∴DE ∥AC ,AC=2DE ,∵EF=2DE ,∴EF ∥AC ,EF=AC ,∴四边形ACEF 是平行四边形,∴AF=CE ;(2)当∠B=30°时,四边形ACEF 是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=12AB=AE ,∴△AEC 是等边三角形,∴AC=CE ,又∵四边形ACEF 是平行四边形,∴四边形ACEF 是菱形.【点睛】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.22.(1)12,2)【解析】【分析】(1)首先根据菱形的性质可得菱形的边长为48÷4=12cm ,然后再证明△ABC 是等边三角形,进而得到AC=AB=12cm ,然后再根据勾股定理得出BO 的长,进而可得BD 的长即可;(2)根据菱形的面积公式=对角线之积的一半可得答案.【详解】解:(1)∵菱形ABCD 的周长是48cm ,∴AB=BC=CD=DA=12cm ,又∵∠ABC 与∠BAD 的度数比为1:2,∠ABC=60°,∴△ABC 是正三角形,AC=AB=12cm ,又∠ABO=30°,∴AO=6cm ,=,BD=,(2)S 菱形ABCD=12AC·BD=2.23.(1)∠ADB=90°;(2)30.【解析】【分析】(1)首先根据勾股定理求出AD ,然后利用勾股定理逆定理求解即可;(2)直接利用三角形面积公式计算即可.【详解】解:(1)∵DC =4,AC =3,∠ACD =90°,∴5=,∵52+122=169=132,即AD 2+BD 2=AB 2,∴△ADB 是直角三角形,∠ADB=90°.(2)△ABD 的面积=11=512=3022AD BD ⋅⨯⨯.【点睛】本题考查了勾股定理及勾股定理的逆定理,难度不大,熟练掌握基础知识是解题关键.24.AB=CD=252cm,AD=BC=352cm【解析】【分析】平行四边形周长为60cm,即相邻两边之和为30cm,△AOD的周长比△BOA的周长长5cm,而AO为公共边,OB=OD,所以AD比AB长5cm,问题得解.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵△AOD的周长比△BOA的周长长5cm,∴AD−AB=5(cm),又∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴AB=CD=252cm,AD=BC=352cm.【点睛】此题主要考查了平行四边形的性质,熟练掌握平行四边形对边相等,对角线互相平分是解题关键.25.(1)t=4(2)t=4或4 3【解析】【分析】(1)当DE=CF时,四边形EFCD为矩形,列出方程即可解决问题;(2)分两种情形列出方程即可解决问题;【详解】解:(1)当DE=CF时,四边形EFCD为矩形,则有6−t=10−2t,解得t=4,答:t=4s时,四边形EFCD为矩形.(2)①当点F在线段BM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=4−2t,解得t=4 3,②当F在线段CM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=2t−4,解得t=4,综上所述,t=4或43s时,以A、M、E、F为顶点的四边形是平行四边形.【点睛】本题考查矩形判定和性质、平行四边形的判定和性质等知识,解题的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.。
湘教版八年级上册数学期中考试试卷带答案
湘教版八年级上册数学期中考试试题一、单选题1.代数式213x -,21a a +-,35,2x π-,32x y ,2xx 中,是分式有()A .1个B .2个C .3个D .4个2.下列长度的三条线段不能组成三角形的是()A .5,5,10B .4,5,6C .4,4,4D .3,4,53.下列分式是最简分式的为()A .223aa b B .23a a a-C .22a b a b ++D .222a ab a b --4.若分式211x x --的值为0,则()A .x=1B .x =﹣1C .x=±1D .x ≠15.下列计算正确的是()A .1b a a b ÷=B .212x x⋅=C .11111x xx x +-⋅=-+D .()32163a b a b ----=-6.如果分式2+a a b中的a ,b 都同时扩大2倍,那么该分式的值()A .不变B .缩小2倍C .扩大2倍D .扩大4倍7.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的一点,若△ADE ≌△CFE ,则下列结论中不正确的是()A .AD=CFB .AB//CFC .E 是AC 的中点D .AC ⊥DF8.如图,DE 是AC 的垂直平分线,AB=12厘米,BC=10厘米,则△BCD 的周长为()A.22厘米B.16厘米C.26厘米D.25厘米9.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定10.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的有()A.1个B.2个C.3个D.4个二、填空题11.如图,两个三角形全等,则∠α的度数是____12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是_____(只写一个条件即可).13.数据0.00000000835用科学记数法表示为____________14.把“对顶角相等”改写成“如果…那么…”的形式________________________15.已知6mx =,3n x =,则2m n x -的值为________.16.如图,AD 、BE 是△ABC 的两条中线,则S △EDC :S △ABD=______.17.如图,已知点D 、点E 分别是等边三角形ABC 中BC 、AB 边的中点,6AD =,点F 是线段AD 上的动点,则BF EF +的最小值为______.18.如图,在△ABC 中,∠ACB=90º,∠BAC=30º,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有____个.三、解答题19.计算:(1)()()()22021211 3.1423π-⎛⎫-+-⨯-+- ⎪⎝⎭;(2)解方程:221111x x x x --=--.20.先化简,再求值:22211121x x x x x x ⎛⎫--+÷ ⎪+++⎝⎭,选择一个你喜欢的x 的值代入其中并求值.21.如图,四边形ABCD 中,AB ∥CD ,∠A =60°,(1)作∠ADC 的角平分线DE ,交AB 于点E ;(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)判断△ADE 是什么三角形,并说明理由;22.如图所示,ADF 和BCE 中,A B ∠=∠,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①AD BC =;②DE CF =;③//BE AF .(1)请你用其中两个关系式作为条件,另一个作为结论,写出一个你认为正确的命题;(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗)(2)说明你写的一个命题的正确性.23.某县为落实“精准扶贫惠民政策",计划将某村的居民自来水管道进行改造该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定时间的1.5倍;若由甲、乙两队先合作施工15天,则余下的工程由甲队单独完成还需5天这项工程的规定时间是多少天?24.当a 为何值时,关于x 的方程223224ax x x x +=-+-无解.25.已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E .求证:(1)△BFC ≌△DFC ;(2)AD=DE .26.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC =cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ?(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm/秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.参考答案1.C 【解析】【分析】根据分式的定义:形如AB(A 、B 为整式)这种形式,B 中含有字母,且B 不等于0的式子叫做分式,进行逐一判断即可.【详解】解:213x -不是分式;21a a +-是分式;35不是分式;2x π-不是分式;32x y 是分式;2xx 是分式;∴分式一共有3个,故选C .【点睛】本题主要考查了分式的定义,解题的关键在于熟知定义.2.A 【解析】【详解】解:A .5+5=10,不能组成三角形,故此选项正确;B .4+5=9>6,能组成三角形,故此选项错误;C .4+4=8>4,能组成三角形,故此选项错误;D .4+3=7>5,能组成三角形,故此选项错误.故选A .3.C 【解析】【分析】根据最简分式的概念可直接进行排除选项.【详解】解:A .22233a a b ab=,故不符合题意;B .2133a a a a =--,故不符合题意;C .22a ba b ++,分子和分母不能约分,故符合题意;D .()()()222a a b a ab a a b a b a b a b--==-+-+,故不符合题意.故选C .【点睛】本题主要考查最简分式的概念,熟练掌握最简分式的概念是解题的关键.4.B 【解析】【分析】根据分式值为零的条件是分子等于零且分母不等于零解答即可.【详解】根据题意得,x 2-1=0且x -1≠0,解得x=±1且x≠1,所以x=-1.故选B .【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.D 【解析】【分析】根据分式的乘除以及负整数指数幂的计算法则进行求解即可.【详解】解:A 、22b a b b a b a b a a÷=⋅=,计算错误,不符合题意;B 、21x x x⋅=,计算错误,不符合题意;C 、11111x xx x +-⋅=--+,计算错误,不符合题意;D 、()32163a b a b ----=-,计算正确,符合题意;故选D .【点睛】本题主要考查了分式的乘除计算,负整数指数幂,解题的关键在于能够熟练掌握相关计算法则.6.C 【解析】【分析】依题意分别用2a 和2b 去代换原分式中的a 和b ,利用分式的基本性质化简即可.【详解】分式2a a b ⎛⎫ ⎪+⎝⎭中的a 、b 都同时扩大2倍,∴()222222a a a b a b=++,∴该分式的值扩大2倍.故选:C .【点睛】本题考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7.D【解析】【分析】根据全等三角形的性质进行判断,全等三角形的对应边相等,全等三角形的对应角相等.【详解】解:∵△ADE≌△CFE,∴AD=CF,∠A=∠ECF,AE=CE,∴AB∥CF,点E是AC的中点∴(A)、(B)、(C)正确;∵∠AED不一定为直角∴AC⊥DF不一定成立∴(D)不正确.故选:D.【点睛】本题考查了全等三角形的性质,解题时注意:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.8.A【解析】【分析】要求△BCD的周长,现有CB的长度,只要求出BD+CD即可,根据线段垂直平分线的性质得CD=AD,于是答案可得.【详解】解:∵DE垂直平分AC,∴CD=AD,又AB=12厘米,BC=10厘米,∴△BCD的周长为BD+DC+BC=AD+DB+BC=AB+BC=12+10=22(厘米).故选:A.【点睛】本题考查了线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.对相等的线段进行等效转移是正确解题的关键.9.C【解析】【分析】已知条件中的外角可能是顶角的外角,也可能是底角的外角,需要分情况进行讨论,再结合三角形的内角和为180︒,即可求出顶角的度数.【详解】︒-︒=︒;解:∵①当顶角的外角等于100︒时,则该顶角为:18010080︒-︒=︒,又由于是等腰三角形,故此时②当底角的外角等于100︒时,则该底角为18010080︒-︒-︒=︒.顶角为:180808020∴综上所述,等腰三角形的顶角为80︒或20︒.故选:C【点睛】此题考查了等腰三角形的性质以及邻补角的性质.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.10.C【解析】【分析】根据矩形的性质和AAS可证△AEB≌△CED,进而可得BE=DE,然后根据等腰三角形的定义以及轴对称图形的定义即可判断①③④;但无法判断∠ABE和∠CBD是否相等,于是可得答案.【详解】解:∵四边形ABCD为矩形,∴∠BAE=∠DCE,AB=CD,在△AEB和△CED中,∵∠BAE=∠DCE,∠AEB=∠CED,AB=CD,∴△AEB≌△CED(AAS),∴BE=DE,∴△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形,故说法①③④是正确的;但无法判断∠ABE和∠CBD是否相等,所以说法②不正确.故结论正确的有3个.故选:C.【点睛】本题考查了折叠的性质、矩形的性质、全等三角形的判定、等腰三角形的定义以及轴对称图形的定义等知识,属于常见题型,熟练掌握上述知识是解题的关键.11.50°【解析】【分析】根据全等三角形的对应角相等解答.【详解】解:∵两个三角形全等,∴∠α=50°,故答案为:50°.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.12.∠B=∠C(答案不唯一)【解析】【详解】由题意得,AE=AD,∠A=∠A(公共角),可选择利用AAS、SAS、ASA进行全等的判定,答案不唯一:添加∠B=∠C,可由AAS判定△ABE≌△ACD;添加AB=AC或DB=EC可由SAS判定△ABE≌△ACD;添加∠ADC=∠AEB或∠BDC=∠CEB,可由ASA判定△ABE≌△ACD.故答案为:∠B=∠C13.98.3510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000835=8.35×10−9.故答案为:8.35×10−9.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.如果两个角是对顶角,那么它们相等【解析】【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么它们相等”.故答案为:如果两个角是对顶角,那么它们相等.【点睛】本题考查了命题的条件和结论的叙述,注意确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式.15.12【解析】【分析】逆运用同底数幂的乘法公式和幂的乘方公式对原式适当变形,再将值代入计算即可.【详解】解:2222()6312m n m n n m x x x x x -=÷=÷=÷=.故答案为:12.【点睛】本题考查幂的乘方公式的逆运用,同底数幂的乘法逆运用.熟练掌握相关公式是解题关键.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE 12=AB ,根据相似三角形的性质得到EDC ABCS S = (DE AB )214=,根据三角形的面积公式计算,得到答案.【详解】∵AD 、BE 是△ABC 的两条中线,∴DE ∥AB ,DE 12=AB ,∴△EDC ∽△ABC ,∴EDC ABCS S = (DE AB )214=,∵AD 是△ABC 的中线,∴12ABD ABC S S = ,∴S △EDC :S △ABD=1:2.故答案为:1:2.【点睛】本题考查的是三角形中位线定理、相似三角形的判定和性质、三角形的面积计算,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.6【解析】【分析】过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小,证△ADB ≌△CEB 得CE=AD=6,即BF+EF=6.【详解】解:过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小(根据两点之间线段最短;点到直线垂直距离最短),由于C 和B 关于AD 对称,则BF+EF=CF ,∵等边△ABC 中,BD=CD ,∴AD 是BC 的垂直平分线(三线合一),∴C 和B 关于直线AD 对称,∴CF=BF ,即BF+EF=CF+EF=CE ,∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CEB=90°,在△ADB 和△CEB 中,ADB CEB ABD CBE AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEB (AAS ),∴CE=AD=6,即BF+EF=6.故答案为:6.【点睛】本题考查了轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.18.6【解析】【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【详解】如图,①AB 的垂直平分线交AC 一点P 1(PA=PB ),交直线BC 于点P 2;②以A 为圆心,AB 为半径画圆,交AC 有二点P 3,P 4,交BC 有一点P 2,(此时AB=AP );③以B 为圆心,BA 为半径画圆,交BC 有二点P 5,P 2,交AC 有一点P 6(此时BP=BA ).故符合条件的点有6个.故答案为:6.【点睛】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.19.(1)12;(2)2x =.【解析】【分析】(1)原式利用乘方的意义,负整数指数幂、零指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()220210211 3.1423π-⎛⎫-+-⨯-+- ⎪⎝⎭1149=-+⨯+149=-++12=(2)221111x x x x --=--方程的两边同时乘以最简公分母()()11x x +-得:()()()()12111x x x x x +--=+-即:22211x x x x +-+=-解得:2x =.检验:把2x =代入()()11x x +-得()()21210+⨯-≠:∴2x =为原方程的解.【点睛】此题考查了解分式方程,以及实数的运算,解分式方程利用了转化的思想,注意要检验.20.11x -;2x =时,原式=1.【解析】【分析】先计算括号内的分式,然后根据计算分式的除法,最后根据分式有意义的条件,代值计算即可.【详解】解:22211121x x x x x x ⎛⎫--+÷ ⎪+++⎝⎭()22211121x x x x x x ⎡⎤-=--÷⎢⎥+++⎣⎦()()()()()221111111x x x x x x x x -++⎡⎤=-⋅⎢⎥+++-⎣⎦()()()()2211(1)111x x x x x x x --++=⋅++-()()()211111x x x x +=⋅++-11x =-.由题知,10x +≠且2210x x ++≠,且210x -≠∴1x ≠-或1x ≠,可取2x =.当2x =时,原式111121x ===--.【点睛】本题主要考查了分式的化简求值,分式有意义的条件,解题的关键在于能够熟练掌握相关计算法则.21.(1)作图见解析;(2)△ADE 是等边三角形;理由见解析.【解析】【分析】(1)根据角平分线的作法作出图形即可;(2)由角平分线定义,平行线的性质,得到∠ADE=∠AED ,则AD=AE ,结合∠A =60°,即可得到答案.【详解】解:(1)如图所示,(2)△ADE 是等边三角形;理由如下:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵AB//CD ,∴∠CDE=∠AED ,∴∠ADE=∠AED ,∴AD=AE ,∵∠A =60°,∴△ADE 是等边三角形;【点睛】本题考查了角平分线的作法,等边三角形的判定,平行线的性质,解题的关键是熟练掌握所学的知识,正确的作出图形进行分析.22.(1)如果①,③,那么②;如果②,③,那么①;(2)见解析(答案不唯一)【解析】【分析】(1)本题主要考查全等三角形的判定,能不能成立,就看作为条件的关系式能不能证明△ADF ≌△BCE ,从而得到结论;(2)对于“如果①,③,那么②”进行证明,根据平行线的性质得到∠AFD =∠BEC ,因为AD =BC ,∠A =∠B ,利用AAS 判定△ADF ≌△BCE ,得到DF =CE ,即得到DE =CF .【详解】(1)如果①,③,那么②;如果②,③,那么①;(2)对于命题“如果①,③,那么②”证明如下:∵//BE AF ,∴AFD BEC ∠=∠.∵AD BC =,A B ∠=∠,∴ADF BCE ≅ ,∴DF CE =.∴DF EF CE EF -=-,即DE CF =;对于命题“如果②,③,那么①”证明如下:∵//BE AF ,∴AFD BEC ∠=∠.∵DE CF =,∴DE EF CF EF +=+,即DF CE =.∵A B ∠=∠,∴ADF BCE ≅ ,∴AD BC =.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,AAS 、HL 等.编题然后选择,最后进行证明是现在比较多的一种考题,要注意掌握.23.30天【分析】设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x 天完工,依题意,得:1551511.5x x++=,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.24.a=1,-4或6时原方程无解.【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.【详解】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=±2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或6时原方程无解.【点睛】此题考查分式方程的解,熟练掌握分式方程无解的条件是解题的关键.25.(1)证明见解析;(2)证明见解析.【分析】(1)由CF 平分∠BCD 可知∠BCF=∠DCF ,然后通过SAS 就能证出△BFC ≌△DFC .(2)要证明AD=DE ,连接BD ,证明△BAD ≌△BED 则可.AB ∥DF ⇒∠ABD=∠BDF ,又BF=DF ⇒∠DBF=∠BDF ,∴∠ABD=∠EBD ,BD=BD ,再证明∠BDA=∠BDC 则可,容易推理∠BDA=∠DBC=∠BDC .【详解】解:(1)∵CF 平分∠BCD ,∴∠BCF=∠DCF .在△BFC 和△DFC 中,{BC DCBCF DCFFC FC=∠=∠=∴△BFC ≌△DFC (SAS ).(2)连接BD .∵△BFC ≌△DFC ,∴BF=DF ,∴∠FBD=∠FDB .∵DF ∥AB ,∴∠ABD=∠FDB .∴∠ABD=∠FBD .∵AD ∥BC ,∴∠BDA=∠DBC .∵BC=DC ,∴∠DBC=∠BDC .∴∠BDA=∠BDC .又∵BD 是公共边,∴△BAD ≌△BED (ASA ).∴AD=DE .【点睛】本题考查全等三角形的判定与性质;梯形.26.(1)(10﹣2t);(2)t =2.5;(3)存在;v 的值为2.4或2【解析】【分析】(1)根据题意求出BP ,计算即可;(2)根据全等三角形的判定定理解答;(3)分△ABP ≌△QCP 和△ABP ≌△PCQ 两种情况,根据全等三角形的性质解答.【详解】解:(1)∵点P 的速度是2cm/s ,∴ts 后BP=2tcm ,∴PC=BC−BP=(10−2t)cm ,故答案为:(10﹣2t)(2)当t=2.5时,△ABP ≌△DCP ,∵当t=2.5时,BP=CP=5,在△ABP 和△DCP 中,AB DCB C BP CP=⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△DCP ;(3)∵∠B=∠C=90°,∴当AB=PC,BP=CQ 时,△ABP ≌△PCQ ,∴10−2t=6,2t=vt ,解得,t=2,v=2,当AB=QC,BP=CP 时,△ABP ≌△QCP ,此时,点P为BC的中点,点Q与点D重合,∴2t=5,vt=6,解得,t=2.5,v=2.4,综上所述,当v=1或v=2.4时,△ABP≌△PCQ全等.21。
湘教版八年级上册数学期中考试试卷附答案
湘教版八年级上册数学期中考试试题一、单选题1.计算:03-=()A.-3B.-1C.1D.32.用科学记数法表示0.0000000314为()A.90.31410-⨯B.93.1410-⨯C.83.1410-⨯D.73.1410-⨯3.若分式293x x --的值为零,则x 的值为()A.-3B.-1C.3D.3±4.下列运算正确的是()A.55835a b a b -=B.1262t t t ÷=C.()222a b a b +=+D.()428216t t -=5.已知命题“能被2整除的数是偶数”,则其逆命题为()A.能被2整除的数不是偶数B.不能被2整除的数是偶数C.偶数是能被2整除的数D.偶数不是能被2整除的数6.化简2221211x x x x x x ---++g 的结果是()A.1xB.x C.11x x +-D.11x x -+7.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是()A.304015x x =-B.304015x x=-C.304015x x =+D.304015x x=+8.如图,AE、AD 分别是ABC 的高和角平分线,且28B ∠=︒,72C ∠=︒,则DAE ∠的度数为()A.18°B.22°C.30°D.38°9.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是()A.13cm B.6cm C.5cm D.4m10.三角形一个外角小于与它相邻的内角,这个三角形()A.是钝角三角形B.是锐角三角形C.是直角三角形D.属于哪一类不能确定.二、填空题11.计算:()()2112x x ---=______.12.如图,在长方形ABCD 中,对角线AC,BD 交于点O,若120AOD ∠=︒,2AB =,则CO 的长为________.13.如图,AC=BD,AC,BD 交于点O,要使△ABC≌△DCB,只需添加一个条件,这个条件可以是______.14.计算:2222342•()()a b a b a ----÷=______________.15.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=__度.16.已知23,25xy ==,则212x y --的值为____________.17.如图所示,每个小正方形的边长为1,A、B、C 是小正方形的顶点,则∠ABC 的度数为_____.18.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.19.已知D、E 分别是△ABC 的边BC 和AC 的中点,若△ABC 的面积=36cm ,则△DEC 的面积为__________.三、解答题20.解方程:23193xx x +=--21.计算:21211x xx x x-+-+-22.如图,在四边形ABCD中,AB=CB,AD=CD.求证∠C=∠A.23.化简,再求值:22112x xx x x--÷+,其中x=224.如图,在四边形ABCD中,//AD BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE 交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.25.已知:如图,∠ABC=50°,∠ACB=80°,点D、B、C、E四点共线,DB=AB,CE=CA,求∠D、∠E、∠DAE的度数.26.如图,点D,E在线段BC上,BD=CE,∠ADE=∠AED,证明△ABC是等腰三角形.27.如图1,点P、Q 分别是等边△ABC 边AB、BC 上的动点(端点除外),点P 从顶点A、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ、CP 交于点M.(1)求证:ABQ CAP ≌△△:(2)当点P、Q 分别在AB、BC 边上运动时,∠QMC 的大小变化吗?若变化,请说明理由:若不变,求出它的度数.(3)如图2,若点P、Q 在运动到终点后继续在射线AB、BC 上运动,直线AQ、CP 相交于点M,则∠QMC 的大小变化吗?若变化,请说明理由:若不变,则求出它的度数.参考答案1.B 【解析】【分析】依题意,依据零指数幂定义及性质进行求解即可;【详解】由题知,零指数幂为:01a =(0)a ≠;可得:031=,∴03(1)1-=-=-;故选:B;【点睛】本题考查零指数幂的定义和性质,关键在负号“-”的理解;2.C 【解析】【分析】依题意,依据科学记数法的基本形式转换即可;【详解】由题知,科学记数法的基本形式为:10n a ⨯(110,)a n ≤<为正整数或负整数;∴80.0000000314 3.1410-=⨯;故选:C 【点睛】本题考查科学记数法,关键在熟练科学记数法的基本形式及要求;3.A 【解析】【分析】根据分式的值为零的条件即可求出答案.【详解】解:由题意可知:29030x x ⎧-=⎨-≠⎩解得:x=-3,故选:A.【点睛】本题考查分式的值,解题的关键是熟练运用分式的值为零的条件.4.D 【解析】【分析】直接利用合并同类项、同底数幂的乘法、幂的乘方、完全平方公式进行进行判断即可;【详解】A、555835a b a b a b -=,故A 错误;B、1266t t t ÷=,故B 错误;C、()2222a b a ab b +=++,故C 错误;D、()428216t t -=,故D 正确;故选:D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方、完全平方公式,正确掌握计算方法是解题的关键.5.C 【解析】【分析】依题意,写出原命题中的条件和结论,然后按照逆命题的要求,交换结论和条件即可;【详解】由题知,原命题为:能被2整除的数是偶数;原命题的条件为:一个数能被2整数;原命题的结论为:这个数则为偶数;逆命题:一个数是偶数,则这个数能被2整除;故选:C 【点睛】本题考查命题及其四种命题的转换,关键在写出原命题的条件和结论;6.B 【解析】【分析】先把分式的分子和分母因式分解,再约分即可求解.【详解】原式()()()()211111x x x x x x --=++-g x=故选:B.【点睛】本题考查分式的乘法,解题的关键是熟练掌握分子和分母的因式分解,利用到的知识点是分式的基本性质和约分.7.C 【解析】【分析】题中等量关系:甲车行驶30千米与乙车行驶40千米所用时间相同,据此列出关系式.【详解】∵甲车的速度为x 千米/小时,则乙车的速度为(x+15)千米/小时∴甲车行驶30千米的时间为30x ,乙车行驶40千米的时间为4015x +,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x =+.故选C.8.B 【解析】【分析】根据角平分线性质和三角形内角和定理求解即可;【详解】∵AE 是ABC 的高,∴90AEB AEC ∠=∠=︒,又∵AD 是ABC 的角平分线,∴BAD CAD ∠=∠,∵28B ∠=︒,72C ∠=︒,∴40BAD CAD ∠=∠=︒,∴180407268ADC ∠=︒-︒-︒=︒,∴906822DAE ∠=︒-︒=︒;故答案选B.【点睛】本题主要考查了角平分线的性质和三角形内角和定义,准确分析计算是解题的关键.9.B 【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a,根据三角形三边关系9494a -<<+解得513a <<.只有B 符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.10.A 【解析】【分析】由三角形的外角与它相邻的内角互为邻补角,且根据此外角小于与它相邻的内角,可得此外角为锐角,与它相邻的角为钝角,可得这个三角形为钝角三角形.【详解】∵三角形的外角与它相邻的内角互补,且此外角小于与它相邻的内角,∴此外角为锐角,与它相邻的角为钝角,则这个三角形为钝角三角形.故选:A.【点睛】此题考查了三角形的外角性质,其中得出三角形的外角与它相邻的内角互补是解本题的关键.11.214x -【解析】【分析】原式利用平方差公式计算即可得到答案;【详解】原式=()()2121214x x x -+--=-,故答案为:214x -.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解题的关键;12.2【解析】【分析】根据题意120AOD ∠= ,得到60AOB ∠= ,再根据OA OB =可以得到AOB 为等边三角形,再根据矩形的对角线互相平分,得到OA OC AB ==,即可得到答案.【详解】解:∵120AOD ∠= ∴60AOB ∠=又∵长方形ABCD 中,对角线AC,BD 交于点O,∴O 为AC,BD 的中点,且AC=BD,∴OA OB=∴AOB 为等边三角形∴2OA AB ==∵四边形ABCD 是长方形∴AC 、BD 相等且互相平分∴2OC OA AB ===故答案为:2.【点睛】本题主要考查矩形的性质和等边三角形的判定,解题的关键在于判断AOB 为等边三角形.13.AB=DC 【解析】根据全等三角形的判定,可以用SSS解题.【详解】解:∵AC=BD,BC=BC当添加条件为AB=DC时,即可判定△ABC≌△DCB,故答案为AB=DC(答案不唯一)【点睛】本题考查了全等三角形的判定,属于简答题,掌握证明全等的方法是解题关键.14.8b【解析】【分析】幂的乘方,法则为:底数不变,指数相乘;同底数幂相乘,法则为:底数不变,指数相加,积的乘方等于先把每个因数乘方,再把所得的幂相乘,此题先算乘方,再算乘除即可.【详解】原式=a−2b2⋅a−6b6÷a−8=a−8b8÷a−8=b8,故答案为b8【点睛】本题考查整式的混合运算,负整数指数幂,同底数幂的乘法,幂的乘方与积的乘方,解题关键是熟练掌握幂的有关运算法则.15.95【解析】【详解】根据三角形内角和定理可得:∠OBC=180°-20°-65°=95°,根据三角形全等的性质可得:∠OAD=∠OBC=95°.故答案为:9516.9 10【解析】根据同底数幂的除法底数不变指数相减,幂的乘方,可得答案.【详解】解:212x y --=22x ÷2y÷2=(2x )2÷2y ÷2=9÷5÷2=910故答案为910.【点睛】本题考查同底数幂的除法、幂的乘方,熟记法则并根据法则计算是解题关键.17.45︒【解析】【分析】如图,连接AC,根据勾股定理即可得到AB,BC,AC 的长度,勾股定理的逆定理判断ABC 的形状,进而可得出∠ABC 的度数.【详解】解:如图,连接AC,由勾股定理得:AC BC ==,AB =∵222+=,∴222AC BC AB +=,∴△ABC 是等腰直角三角形,∴∠ABC=45°,故答案为:45°.【点睛】本题考查了勾股定理,勾股定理的逆定理,等腰三角形的判定与性质.解题的关键在于判断ABC 的形状.18.4θ2nθ【解析】【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC,∠A 1CD=∠A 1+∠A 1BC,根据角平分线的定义可得∠A 1BC=12∠ABC,∠A 1CD=12∠ACD,整理得到∠A 1=12∠A,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案.【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC,∠A 1CD=∠A 1+∠A 1BC,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC,∠A 1CD=12∠ACD,∴∠A 1=12∠A,同理可得∠A 2=12∠A 1=14∠A,∵∠A=θ,∴∠A 2=4θ,同理:∠A 3=12∠A 2=382θθ=,∠A 4=12∠A 3=4162θθ=……∴∠A n =2nθ.故答案为:4θ,2nθ【点睛】本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键.19.9cm .【解析】【详解】试题分析:∵D 是△ABC 的边BC 的中点,∴S △ACD =36÷2=18(cm 2);又∵E 是AC 的中点,∴S △DEC =18÷2=9(cm 2).故答案为9cm .考点:三角形的面积.20.4x =-【解析】【分析】根据解分式方程的基本步骤解方程即可.【详解】解:23193xx x +=--方程两边同时乘(3)(3)x x -+可得:3+(3)x x +=(3)(3)x x -+,去括号可得:22339x x x ++=-,移项合并同类项可得:312x =-,解得:4x =-,将4x =-代入(3)(3)x x -+可得:(3)(3)x x -+=7≠0,∴原方程的解为:4x =-【点睛】本题主要考查分式方程,注意解方程最后要检验,防止无解的情况出现.21.-1【解析】【分析】根据分式的性质计算即可;【详解】原式()()()221111x x x x x--=---,()2211x x xx --+=-,()()2211x x --=-,1=-.【点睛】本题主要考查了分式的加减运算,准确计算是解题的关键.22.见解析【解析】【分析】先连接BD,由AB=CB、AD=CD、BD=BD 可证△ABD≌△CBD,即可证得结论.【详解】证明:如图:连接BD,∵在△ABD 和△CBD 中,AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩∴△ABD≌△CBD,∴∠C=∠A.【点睛】本题主要考查了全等三角形的判定与性质,正确作出辅助线、灵活运用SSS 证明三角形全等是解答本题的关键.23.12x x ++;34.【解析】【分析】先化除法为乘法进行化简,然后代入求值.【详解】解:原式=()(1)(1)21x x xx x x +-⋅+-=12x x ++,将x=2代入,原式=213224+=+.【点睛】本题考查了分式的化简求值,不应考虑把x 的值直接代入,通常做法是先把分式化简,然后再代入求值.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先根据平行线的性质可得,F DAE ECF D ∠=∠∠=∠,再根据线段中点的定义可得CE DE =,然后根据三角形全等的判定定理与性质即可得证;(2)先根据三角形全等的性质可得FE AE =,再根据线段垂直平分线的判定与性质可得AB FB =,然后根据线段的和差、等量代换即可得证.【详解】(1)//AD BC ,,F DAE ECF D ∴∠=∠∠=∠,点E 是CD 的中点,CE DE ∴=,在CEF △和DEA △中,F DAEECF D CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEF DEA AAS ∴≅ ,FC AD ∴=;(2)由(1)已证:CEF DEA ≅ ,FE AE ∴=,又BE AE⊥,BE∴是线段AF的垂直平分线,AB FB BC FC∴==+,由(1)可知,FC AD=,AB BC AD∴=+.【点睛】本题考查了平行线的性质、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.25.∠D=25°,∠E=40°,∠DAE=115°.【解析】【详解】试题分析:由∠ABC=50°,DB=BA,据三角形外角性质可得∠D=∠DAB=12∠ABC=25°;同理可得∠E=40°;由三角形内角和定理可得∠BAC=50°,即可得∠DAE的度数.试题解析:解:∵∠ABC=50°,DB=BA,∴∠D=∠DAB=12∠ABC=25°;同理可得∠E=∠CAE=12∠ACB=40°;∵在△ABC中,∠ABC=50°,∠ACB=80°,∴∠BAC=50°,∴∠DAE=∠DAB+∠BAC+∠CAE=115°.考点:1.三角形内角和定理;2.三角形的外角性质.26.证明见试题解析.【解析】【详解】试题分析:先证△ABD≌△AEC,进而证出结论.试题解析:证明:∵∠ADE=∠AED,∴AD=AE,∠BDA=∠CEA,∵BD=CE,∴△ABD≌△AEC,∴AB=AC,∴△ABC是等腰三角形.考点:1.等腰三角形的判定;2.全等三角形的性质和判定.27.(1)证明见解析(2)∠QMC的大小不变,∠QMC=60°(3)∠QMC的大小不变,∠QMC=120°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证明△ABQ≌△CAP;(2)由△ABQ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC 是等边三角形∴∠ABQ=∠CAP=60°,AB=CA,又∵点P、Q 运动速度相同,∴AP=BQ,在△ABQ 与△CAP 中,∵AB CA ABQ CAP BQ AP =⎧⎪∠=∠⎨⎪=⎩,∴ABQ CAP ≌△△(SAS);(2)解:点P、Q 分别在AB、BC 边上运动时,∠QMC 的大小不变,∠QMC=60°.理由:∵ABQ CAP ≌△△,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°(3)解:点P、Q 在运动到终点后继续在射线AB、BC 上运动时,∠QMC 的大小不变.理由:同理可得ABQ CAP ≌△△,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°-∠PAC=180°-60°=120°.。
湘教版八年级上册数学期中考试试卷带答案
湘教版八年级上册数学期中考试试题一、单选题1.下列各组数中,能作为一个三角形三边边长的是()A .1,1,2B .1,2,4C .2,3,4D .2,3,52.不改变分式的值,下列各式变形正确的是()A .11x x y y +=+B .1x yx y-+=--C .22x y x y x y-=++D .22233()x x y y-=3.若102a a-=,则a 的值为()A .0B .1C .1-D .24.如图,在等边ABC 中,点O 是BC 上任意一点,OD ,OE 分别与AB ,AC 垂直,垂足为D 、E ,且等边三角形的高为2,则+OD OE 的值为()A .5B .4C .3D .25.已知两个分式:244A x =-,1122B x x=++-,其中x≠±2,则A 与B 的关系是()A .相等B .互为倒数C .互为相反数D .A 大于B6.如图,已知长方形ABCD ,将△DBC 沿BD 折叠得到△DBC′,BC′与AD 交于点E ,若长方形的周长为20cm ,则△ABE 的周长是()A .5cmB .10cmC .15cmD .20cm7.下列分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中,不能再化简的有()A .1个B .2个C .3个D .4个8.文文借了一本书共280页,要在两周借期内读完.当她读了一半时,发现平均每天要多读21页才能在借期内读完.她在读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是()A .2802801421x x +=-B .2802801421x x +=+C .1401401421x x +=-D .1401401421x x +=+9.若等腰三角形的两边长为2和5,则该等腰三角形的周长为()A .9B .12C .9或12D .710.已知11xy-=3,则代数式232x xy yx xy y+---的值是()A .72-B .112-C .92D .3411.对于非零的两个实数a 、b ,规定11a b b a⊗=-,若1(1)1x ⊗+=,则x 的值为()A .32B .13C .12D .12-12.已知关于x 的分式方程329133x mxx x--+=---无解,则m 的值为()A .1m =B .4m =C .3m =D .1m =或4m =二、填空题13.为使一个四边形木架不变形我们会从中钉一根木条,这是利用了三角形的_______.14.如图所示,在△ABC 中,AB =AC ,∠B =50°,则∠A =________.15.甲、乙两个服装厂加工一批校服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套校服,甲厂比乙厂少用4天,则乙厂每天加工________套校服.16.在等腰△ABC 中,AB=AC ,一腰上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为__________17.若111(1)1n n n n =-++,则111112233499100+++⋅⋅⋅+=⨯⨯⨯⨯________.18.如图,ABC 中,14cm AB AC ==,AB 的垂直平分线MN 交AC 于点D ,且DBC △的周长是24cm ,则BC =________cm .三、解答题19.计算:(1)1530122( 3.142020)2π-⎛⎫--÷+-+ ⎪⎝⎭(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x 20.如图,已知ABC .(保留作图痕迹)(1)作BC 边上的高AD 交BC 于点D ;(2)作AC 边上的垂直平分线EF ,交AC 于点E ,交BC 于点F ;(3)作AB 边的中线CG ,交AB 于点G .21.解分式方程:(1)2133193x x x +=--(2)2134412142x x x x +=--+-22.先化简,再求值:2222-++xy y x xy y ÷(1﹣x y x y -+)•222-y x ,其中x 、y 满足方程组24210x y x y +=⎧⎨+=-⎩.23.如图,点D 在AB 上,点E 在AC 上,BE 、CD 相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B 的度数;(2)试猜想∠BOC 与∠A+∠B+∠C 之间的关系,并证明你猜想的正确性.24.如图,在等边△ABC 中,点D ,E 分别在边BC ,AB 上,且BD=AE ,AD 与CE 交于点F .(1)求证:△ABD ≌△CAE ;(2)求∠DFC 的度数.25.“六一”儿童节前夕,某文具店用4000元购进A 种滑板车若干台,用8400元购进B 种滑板车若干台,所购B 种滑板车比A 种滑板车多10台,且B 种滑板车每台进价是A 种滑板车每台进价的1.4倍.(1)A 、B 两种滑板车每台进价分别为多少元?(2)第一次所购滑板车全部售完后,第二次购进A 、B 两种滑板车共100台(进价不变),A 种滑板车的售价是每台300元,B 种滑板车的售价是每台400元.两种滑板车各售出一半后,六一假期已过,两种滑板车均打七折销售,全部售出后,第二次所购滑板车的利润为5800元(不考虑其他因素,求第二次购进A 、B 两种滑板车各多少台?26.(1)如图1,在ABC 中,BP 平分ABC ∠,CP 平分ACB ∠,求证:1902P A ∠=︒+∠;(2)如图2,在ABC 中,BP 平分ABC ∠,CP 平分外角ACE ∠,猜想P ∠和A ∠有何数量关系,并证明你的结论.参考答案1.C 【解析】【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】A 、1+1=2,不满足三边关系,故错误;B 、1+2<4,不满足三边关系,故错误;C 、2+3>4,满足三边关系,故正确;D 、2+3=5,不满足三边关系,故错误.故选C .【点睛】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.B 【解析】【分析】由分式的基本性质可判断,,,A B C 由分式的乘方运算可判断,D 从而可得答案.【详解】解:1,1x x y y +≠+故A 不符合题意;()1,x y x y x y x y---+==---故B 符合题意;()()22,x y x y x y x y x y x y-+-==-++故C 不符合题意;22239()x x y y-=,故D 不符合题意;故选:.B 【点睛】本题考查的是分式的基本性质,分式的乘方运算,掌握以上知识是解题的关键.3.B 【解析】【分析】根据102a a-=即可得到10a -=,由此即可得到答案.【详解】解:∵102a a-=,a≠0∴10a -=,∴1a =,故选B .【点睛】本题主要考查了分式值为零的条件,解题的关键在于能够熟练掌握分式值为零时的条件是分子为0,分母不等于0.4.D 【解析】【分析】连接AO ,作CF ⊥AB 于点F ,利用等边三角形性质分别表示出ABC S 和AOB AOC S S +△△,可得出OE 与OD 的和与三角形的高相等,进而求解即可.【详解】解:如图所示,连接AO ,作CF ⊥AB 于点F ,∵△ABC 是等边三角形,∴AB=AC ,∵等边三角形的高为2,∴CF=2,∵OD ⊥AB ,OE ⊥AC ,∴ABCAOB AOCS S S =+△△△∴111222AB CF AB OD AC OE ⨯⨯=⨯⨯+⨯⨯,∴()11222AB AB OD OE ⨯⨯=⨯⨯+,∴2OD OE +=.故选:D .【点睛】本题考查了等边三角形的性质,三角形面积,解题的关键是根据题意分别表示出ABC S 和AOB AOC S S +△△.5.C 【解析】【详解】∵B=1122x x ++-=1122x x ++-=()()()()2222x x x x --++-=2-44x -,又∵A=244x -,∴A+B=244x -+2-44x -=0,∴A 与B 的关系是互为相反数.故选:C .6.B 【解析】【分析】根据现有条件推出∠EDB=∠EBD ,得出BE=DE ,可知△ABE 的周长=AB+AD ,是长方形的周长的一半,即可得出答案.【详解】由折叠可知:∠CBD=∠C′BD ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠ADB=∠CBD ,∴∠ADB=∠C′BD ,∴∠EDB=∠EBD ,∴BE=DE ,∴△ABE 的周长=AB+AD ,∵长方形的周长为20cm ,∴2(AB+AD )=20cm ,∴AB+AD=10cm ,∴△ABE 的周长为10cm ,故选:B .【点睛】本题考查了等腰三角形的性质,折叠的性质,推出BE=DE 是解题关键.7.C 【解析】【分析】根据最简分式的定义即可得出答案.24221(1)(1)1=1(1)(1)(1)1x x x x x x x x -+-=-++-+,能化简,其余均不能化简,故选:C .【点睛】本题考查的是最简分式,比较简单,注意约分前先进行因式分解.8.D 【解析】【详解】读前一半时,平均每天读x 页,即读140页时,用时表示为140x天,后一半平均每天要多读21页,得读后一半时平均每天读()21x +页,用时14021x +天,∴两周借期内读完列分式方程为:14014014.21x x +=+故选:D.9.B 【解析】【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故选B .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.D 【解析】由113x y -=得出3y xxy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得.【详解】113x y-=,∴3y xxy-=,∴3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xyxy xy xy -+-+-====-----.故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.11.D 【解析】【分析】根据新运算的运算规则计算即可.【详解】因为规定11a b b a⊗=-,所以11(1)111x x ⊗+=-=+,所以x=12-,经检验x=12-是分式方程的解,故选D .【点睛】本题考查了新定义下的运算,分式方程的计算,解决此题的关键是要正确理解新定义运算的概念.12.D 【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解得到x−3=0,确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:3−2x−9+mx =−x +3,整理得:(m−1)x=9,当m−1=0,即m=1时,该整式方程无解;当m−1≠0,即m≠1时,由分式方程无解,得到x−3=0,即x=3,把x=3代入整式方程得:3m−3=9,解得:m=4,综上,m的值为1或4,故选D.【点睛】此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.13.稳定性【解析】【分析】题中给出四边形的不稳定性,即可判断是利用三角形的稳定性.【详解】为使四边形木架不变形,从中钉上一根木条,让四边形变成两个三角形,因为三角形不变形,故应该是利用三角形的稳定性.故答案为:稳定性【点睛】本题考查三角形稳定性的应用,关键在于熟悉三角形的基本性质.14.80°【解析】【详解】根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A的度数.解:∵在△ABC中,AB=AC,∠B=50°∴∠C=50°∴∠A=180°﹣50°﹣50°=80°故答案为80°.15.50【解析】【分析】设乙工厂每天加工x套校服,则甲工厂每天加工1.5x套校服,然后根据两厂各加工600套校服,甲厂比乙厂少用4天,列出方程求解即可.【详解】解:设乙工厂每天加工x套校服,则甲工厂每天加工1.5x套校服,由题意得60060041.5x x-=,解得50x=,经检验50x=是原方程的解,∴乙工厂每天加工50套校服,故答案为:50.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确找到等量关系列出方程求解.16.7或11【解析】【分析】分两种情况讨论,列出方程即可解决问题.【详解】①当15是腰长与腰长一半时,1152AC AC+=,解得10AC=,∴底边长1121072=-⨯=;三边长为:10,10,7;②当12是腰长与腰长一半时,1122AC AC+=,解得8AC=,∴底边长1158112=-⨯=,三边长为:8,8,11;经验证,这两种情况都是成立的.∴这个三角形的底边长等于7或11.故答案为:7或11.【点睛】本题主要考查了等腰三角形的性质及三角形三边关系;注意:求出的结果一定要检验是否符合三角形三边性质.分类讨论是正确解答本题的关键.17.99100##0.99【解析】【分析】根据题目给出的结论,把算式变形,然后计算即可.【详解】解:∵111 (1)1 n n n n=-++,∴1111 12233499100 +++⋅⋅⋅+⨯⨯⨯⨯=1111111 12233499100 -+-+-+⋅⋅⋅+-=1 1 100 -=99 100.故答案为:99 100.【点睛】本题考查了有理数的运算,解题关键是根据题目给出的结论对算式进行变形.18.10【解析】【分析】由边AB的垂直平分线与AC交于点D,故AD=BD,于是将△BCD的周长转化为BC与边长AC的和来解答.【详解】解:∵C △DBC =24cm ,∴BD +DC +BC =24cm ①,又∵MN 垂直平分AB ,∴AD =BD ②,将②代入①得:AD +DC +BC =24cm ,即AC +BC =24cm ,又∵AC =14cm ,∴BC =24−14=10cm .故答案为:10.19.(1)5-;(2)1x y-【分析】(1)本题需先根据零指数幂、负整数指数幂、正整数指数幂的运算法则分别进行计算,再把所得的结果合并即可.(2)先根据完全平方公式运算括号内的,再利用除法法则运算即可.【详解】解:(1)1530122( 3.142020)2π-⎛⎫--÷+-+ ⎪⎝⎭,2=221--+,=241--+,=5-;(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x ,222=x y x xy y x x ⎛⎫--+÷ ⎪⎝⎭,()2x y x y x x--=÷,()2x y x x x y -=⨯-,1x y=-.20.(1)见解析;(2)见解析;(3)见解析【分析】(1)以点A为圆心,AC长为半径画弧交BC于点E,再分别以点E和点C为圆心,大于二分之一CE的长度为半径画弧,最后连接弧的交点即可;(2)以点A和点C分别为圆心,大于二分之一AC的长为半径画弧,连接弧的交点即可;(3)以点A和点B分别为圆心,大于二分之一AB的长为半径画弧,连接弧的交点与AB 交于点G,连接CG即可.【详解】解:(1)如图所示,AD为所求.;(2)如图所示,EF为所求.;(3)如图所示,CG为所求..【点睛】本题考查了尺规作图,解题的关键是熟练掌握垂直平分线的画法.21.(1)无解;(2)x=6【解析】【分析】先去分母,将分式方程化为整式方程,解出整式方程,再检验,即可求解.【详解】解:(1)2133193x x x +=--方程两边同时乘以()93x -,得:()23131x x -+=,解得:13x =检验:当13x =时,1939303x -=⨯-=,∴13x =为增根,原方程无解.(2)2134412142x x x x +=--+-方程两边同时乘以,得:()()()213221421x x x +=⨯--+解得:6x =检验:当6x =时,()()2224124612860x -=⨯-=≠∴6x =是原方程的解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的步骤,并注意验根是解题的关键.22.﹣21()+x y ,﹣14.【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将方程组中两个方程相加得到x+y 的值,继而整体代入计算可得.【详解】解:原式=2()()y x y x y -+÷22•()()y x y x y x y +-+-=﹣2()•()2y x y x y x y y -++2•()()x y x y +-=﹣21()+x y ,∵x 、y 满足方程组24210x y x y +=⎧⎨+=-⎩,∴3x+3y =﹣6,则x+y =﹣2,∴原式=﹣21(2)-=﹣14.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(1)30°;(2)∠BOC=∠A+∠B+∠C ,理由见解析.【解析】【分析】(1)利用三角形外角的性质和三角形内角和定理即可求得∠B 的度数;(2)用三角形外角和定理求出∠BOC ,∠BEC 的两角之和,最后得出结论.【详解】解:(1)∵∠A=50°,∠C=30°,∴∠BDO=80°;∵∠BOD=70°,∴∠B=30°;(2)∠BOC=∠A+∠B+∠C.理由:∵∠BOC=∠BEC +∠C ,∠BEC=∠A+∠B ,∴∠BOC=∠A+∠B+∠C.24.(1)见解析;(2)60度【解析】【分析】(1)利用等边三角形的性质,证明△ABD ≌△CAE ;(2)由△ABD ≌△CAE 得出角相等,∠ACE=∠BAD ,再利用角的等量代换求出结论.【详解】(1)∵△ABC 是等边三角形,∴∠BAC=∠B=60°,AB=AC ,在△AEC 和△BDA 中,AC AB EAC DBA AE BD ⎧⎪∠∠⎨⎪⎩===,又∵AE=BD ,∴△AEC ≌△BDA (SAS ).(2)∵△AEC ≌△BDA ,∴∠ACE=∠BAD ,∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=60°.【点睛】本题考查了等边三角形的性质和全等三角形的性质与判定;解决本题的关键是利用全等求解角相等.25.(1)A 、B 两种滑板车每台进价分别为200元,280元;(2)第二次购进A 种滑板车40台、B 种滑板车60台【解析】【分析】(1)设A 种滑板车每台进价为x 元,则B 种滑板车每台进价为1.4x 元,根据用8400元购买的B 种滑板车比用4000元购买的A 种滑板车多10台,即可得出关于x 的分式方程,解之即可得出结论;(2)设第二次购进A 种滑板车y 台,则购进B 种滑板车(100−y )台,根据总利润=每台的利润×销售数量,即可得出关于y 的一元一次方程,解之即可得出结论.【详解】(1)解:设A 种滑板车每台进价为x 元.根据题意得:84004000101.4x x-=,解得:200x =,经检验200x =是原方程的根,且符合题意.B 种:1.4×200=280(元),答:A 、B 两种滑板车每台进价分别为200元,280元;(2)解:设第二次购进A 种滑板车y 台.()()()()10010030020030070%20040028040070%28058002222y y y y --⨯-+⨯⨯-+⨯-+⨯⨯-=,解得:40y =,B 种:100-40=60(台).答:第二次购进A 种滑板车40台、B 种滑板车60台.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.26.(1)见解析;(2)12P A ∠=∠,证明见解析【解析】【分析】(1)根据三角形内角和定理以及角平分线的定义进行证明即可:(2)根据一个三角形的外角等于与它不相邻的两个内角和,可求出A ACE ABC ∠=∠-∠,P PCE PBC ∠=∠-∠,再由角平分线的定义得到12PBC ABC ∠=∠,12PCE ACE ∠=∠,则()11112222P ACE ABC ACE ABC A ∠=∠-∠=∠-∠=∠.【详解】(1)证明:()180P PBC PCB ∠=-∠+∠ ,∵BP 平分ABC ∠,CP 平分ACB ∠,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠,∴()111222PBC PCB ABC ACB ABC ACB ∠+∠=∠+∠=∠+∠∴()11801802P PBC PCB ABC ACB ∠=--=-∠+∠o o ∠∠,∵=180ABC ACB A+-o ∠∠∠()11180180=9022P A A ∴∠=--+∠o o o ∠;(2)猜想:12P A ∠=∠,证明:ACE A ABC ∠=∠+∠ ,A ACE ABC ∴∠=∠-∠,∵PCE P PBC ∠=∠+∠,∴P PCE PBC ∠=∠-∠,又BP 平分ABC ∠,CP 平分ACE ∠,∴12PBC ABC ∠=∠,12PCE ACE ∠=∠,()11112222P ACE ABC ACE ABC A ∴∠=∠-∠=∠-∠=∠,12P A ∴∠=∠.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,解题的关键在于能够熟练掌握角平分线的定义.。
湘教版八年级上册数学期中考试试卷附答案
湘教版八年级上册数学期中考试试题一、单选题1.分式22x -有意义,则x 的取值范围是()A .2x >B .2x ≠C .2x ≠-D .2х>-2.下列线段,能组成三角形的是()A .2cm,3cm,5cmB .5cm,6cm,10cmC .1cm,1cm,3cmD .3cm,4cm,8cm3.把0.000000125这个数据用科学记数法可表示为()A .0.125×107B .1.25×107C .1.25×10﹣7D .0.125×10﹣74.把代数式xyx y+中的x 、y 同时扩大2倍后,代数式的值()A .扩大为原来的1倍B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的125.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是()A .AB=DEB .AC=DFC .∠A=∠D D .BF=EC6.下列命题的逆命题不成立的是()A .等边对等角B .线段垂直平分线上的点到线段两端的距离相等C .全等三角形的对应角相等D .三个角都是60°的三角形是等边三角形7.已知关于x 的方程31(1)x a x x x +=--的增根是x =1,则字母a 的值为()A .1B .1-C .2D .2-8.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别是点D ,E ,若3AD =,1BE =,则DE 的长是()A .32B .2C .3D .49.如图,已知AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE .下列说法正确的是()①BD =CD ;②∠BAD =∠CAD ;③△BDF ≌△CDE ;④BF ∥CE ;⑤CE =AEA .①②B .③⑤C .①③④D .①④⑤10.222a b b b a b-⎛⎫⨯ ⎪-⎝⎭的结果是()A .1bB .2a b ab b -+C .a b a b-+D .1()b a b +二、填空题11.计算:112-⎛⎫= ⎪⎝⎭_____________.12.在△ABC 中,∠B =40°,∠C =25°,点D 在BA 的延长线上,则∠CAD 为____度.13.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为__________14.分式2111,,42x x x x --+,的最简公分母是______15.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =10cm ,CF =3cm ,则AC =_______cm .16.我国元代数学家朱世杰的著作《四元玉鉴》中记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽,每株脚钱三文足,无钱准与一株椽.”其大意为:用6210文钱请人代买一批椽.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是______.三、解答题17.计算:212()a b a b --18.解分式方程:11222x x x-=---.19.先化简,再求值:24512(1()11a a a a a a-+-÷----,其中a =﹣1.20.如图,在△ABC 中,D 是AC 的中点,且BD ⊥AC ,ED ∥BC ,ED 交AB 于点E ,BC=6cm ,AC =4cm ,求△AED 的周长.21.如图,D 是△ABC 的边AC 上一点,点E 在AC 的延长线上,ED =AC ,过点E 作EF ∥AB ,并截取EF =AB ,连接DF .求证:DF=CB .22.某中学为了创设“体育校园”,准备购买A ,B 两种足球,在购买时发现,A 种足球的单价比B 种足球的单价多30元,用750元购买A 种足球的个数与用600元购买B 种足球的个数相同.求A,B两种足球的单价各是多少元?23.如图,AD是△ABC的中线,分别过点C、B作AD及其延长线的垂线,垂足分别为E、F.(1)求证:△CED≌△BFD;(2)若△ACE的面积为8,△CED的面积为6,求△ABF的面积.24.综合与探究:如图①,在△ABC中,∠C>∠B,AD是∠BAC角平分线.(1)探究与发现:如图①,AE⊥BC于点E,①若∠B=30°,∠C=70°,则∠CAD=°,∠DAE=°;②若∠B=45°,∠C=65°,则∠DAE=°;③试探究∠DAE与∠B、∠C的数量关系,并说明理由.(2)判断与思考:如图②,F是AD上一点,FE⊥BC于点E,这时∠DFE与∠B、∠C又有怎样的数量关系?参考答案1.B【解析】【分析】由分母不为0,列不等式,再解不等式即可.【详解】解: 分式22x-有意义,20,x∴-≠2x∴≠故选:B.【点睛】本题考查的是分式有意义的条件,掌握“分式有意义:分母不为0”是解本题的关键.2.B【解析】【分析】根据三角形的三边关系定理即可进行判断.【详解】解:A、3+2=5,故选项错误;B、5+6>10,故正确;C、1+1<3,故错误;D、4+3<8,故错误.故选B.【点睛】考查了三角形的三边关系,验证三角形的三边关系定理:任意两边之和大于第三边.只要验证两条较短的边的和大于最长的边即可.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:0.000000125=1.25×10﹣7,故选:C.【点睛】此题考查科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,n等于原数左数第一个非零数字前0的个数,按此方法即可正确求解.4.B【解析】【分析】将x、y同时扩大2倍后再进行化简即可求解.故选:B【点睛】本题主要考查了分式的基本性质,熟练掌握分式的基本性质是解答此题的关键.5.C【解析】【详解】解:选项A、添加AB=DE可用AAS进行判定,故本选不符合题意;选项B、添加AC=DF可用AAS进行判定,故本选项不符合题意;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项符合题意;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项不符合题意.故选C.6.C【解析】【分析】根据选项写出原命题的逆命题,判断真假即可.【详解】解:A、等边对等角的逆命题为:等角对等边,成立,不符合题意;B、线段垂直平分线上的点到线段两端的距离相等的逆命题为:到线段两端的距离的点在线段垂直平分线上,成立,不符合题意;C、全等三角形的对应角相等的逆命题为:对应角相等的三角形为全等三角形,不成立,符合题意;D、三个角都是60°的三角形是等边三角形的逆命题为:等边三角形的三个角都是60 ,成立,不符合题意;故选:C.【点睛】本题考查了命题与逆命题,以及命题的真假,能够根据原命题准确写出逆命题然后判断真假是解本题的关键.7.C【解析】【分析】把分式方程化为整式方程后,把x=1代入,即可求得结果.【详解】解:方程两边同时乘以x(x-1)得:3x=x+a,把x=1代入得:3×1=1+a,解得:a=2,故选:C.【点睛】本题考查了分式方程的增根,理解分式方程增根的定义是解决问题的关键.8.B【解析】【分析】根据已知条件可以得出∠E=∠ADC=90°,进而得出∆CEB≅∆ADC,就可以得出BE=DC,就可以求出DE的值.【详解】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°∴∠EBC+∠BCE=90°∵∠BCE+∠ACD=90°∴∠EBC=∠DCA在∆CEB和∆ADC中,∠E=∠ADC,∠EBC=∠DCA,BC=AC∴∆CEB≅∆ADC(AAS)∴BE=DC=1,CE=AD=3∴DE=EC-CD=3-1=2故选:B.【点睛】全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件.9.C【解析】【分析】①根据三角形的中线直接进行判断即可;②一般三角形一条边上的中线不一定是这条边所对的角的平分线;③根据“SAS”直接进行判断即可;④根据三角形全等的性质直接判定∠F=∠DEC,根据平行线的判定方法得出结果;⑤根据全等三角形的性质可以判定CE=BF,不能判定CE=AE.【详解】解:①∵AD是△ABC的中线,∴BD=CD,故①正确;②∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;③在△BDF和△CDE中BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;④∵△BDF≌△CDE,∴∠F=∠DEC,∴BF CE,故④正确;⑤∵△BDF≌△CDE,∴CE =BF ,故⑤错误;综上分析可知,①③④正确,故C 正确.故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形中线的定义,熟练掌握三角形全等的判定方法并准确识图,是解题的关键.10.B 【解析】【分析】首先把每一项因式分解,然后根据分式的混合运算法则求解即可.【详解】222a b b b a b-⎛⎫⨯ ⎪-⎝⎭=()()()22a b bb a b a b -⨯+-=()a b b a b -+=2a b ab b -+故选:B .【点睛】此题考查了分式的混合运算,解题的关键是先对每一项因式分解,然后再根据分式的混合运算法则求解.11.2【解析】【分析】根据负整指数幂的意义,可得答案.【详解】解:原式2=,故答案为:2.【点睛】本题考查了负整指数幂,负整数指数为正整数指数的倒数.12.65【解析】【分析】由题意直接根据三角形的一个外角等于和它不相邻的两个内角的和进行分析计算即可得出答案.【详解】解:∵∠B=40°,∠C=25°,∴∠CAD=∠B+∠C=40°+25=65°,故答案为:65.【点睛】本题主要考查三角形外角的性质,解题的关键是熟练掌握三角形的一个外角等于和它不相邻的两个内角的和.13.12【解析】【分析】分5作腰和2作腰,两种情形求解即可.【详解】解:当5为等腰三角形的腰时,三边长分别为5,5,2,满足两边之和大于第三边,此时,等腰三角形存在,且周长为5+5+2=12;当2为等腰三角形的腰时,三边长分别为5,2,2,不满足两边之和大于第三边,此时,等腰三角形不存在,综上所述,等腰三角形的周长为12,故答案为12.【点睛】本题考查了等腰三角形的按边分类的周长计算问题,正确进行分类是解题的关键.14.(2)(2)x x x +-【解析】【分析】首先把分母分解因式,然后再确定最简公分母.【详解】解:2114(2)(2)x x x =-+-,则最简公分母为(2)(2)x x x +-,故答案为:(2)(2)x x x +-.【点睛】此题主要考查了最简公分母,关键是掌握如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.15.13【解析】【分析】由AE =BE ,DE 是AB 的垂线得到AD BD =,证明ADF BDF ≅△△,即可得解;【详解】∵AE =BE ,DE 是AB 的垂线,∴AD BD =,90ADE BDE ∠=∠=︒,在ADF 和BDF 中,AD BD ADE BDE DF DF =⎧⎪∠=∠⎨⎪=⎩,∴ADF BDF ≅△△,∴AF BF =,∴AC AF CF BF CF =+=+,∵BF =10cm ,CF =3cm ,∴13AC cm =;故答案是13.【点睛】本题主要考查了全等三角形的判定与性质,准确计算是解题的关键.16.()621031x x-=【解析】【分析】根据单价=总价÷数量结合少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x 的分式方程,此题得解.【详解】依据题意,得:()621031x x -=故答案为:()621031x x-=【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.17.4a b 【解析】【分析】根据整数指数幂的运算进行计算即可.【详解】解:212()a b a b --=422241a a bab a b b --==【点睛】本题考查了整数指数幂的运算,掌握负整数幂的意义是解题的关键.18.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:1-x=-1-2x+4,解得:x=2,经检验x=2是增根,分式方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.a(a﹣2),3【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【详解】解:原式=(1)(1)4521(1) a a a aa a a+----÷--=2(2)(1)12 a a aa a--∙--=a(a﹣2),当a=﹣1时,原式=﹣1×(﹣3)=3.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.8【解析】【分析】根据线段垂直平分线的性质得到AB=BC=6cm,再根据等腰三角形的性质求出得到AE=DE=BE,故可求出DE,AE,故可求解.【详解】∵D是AC边的中点,BD⊥AC,∴BD是线段AC的垂直平分线,AD=12AC=2cm,∴AB=BC=6cm,∴△ABC是等腰三角形∵BD⊥AC∴BD平分∠ABC∴∠ABD=∠CBD∵ED∥BC∴∠EDB=∠CBD∴∠ABD=∠EDB∴BE=DE∵BD ⊥AC∴∠A+∠ABD=∠EDB+∠ADE=90°∴∠A=∠ADE∴AE=DE∴AE=DE=BE∵AB =BC =6cm ,∴AE=DE=BE=3cm∴△ADE 的周长=AE +DE +AD =8cm .【点睛】此题主要考查等腰三角形的判断与性质,解题的关键是熟知垂直平分线的性质与等腰三角形的三线合一.21.证明过程见解析【解析】【分析】根据EF ∥AB ,得到A E ∠=∠,再根据已知条件证明ABC EFD ≅△△,即可得解;【详解】∵EF ∥AB ,∴A E ∠=∠,在ABC 和EFD △中,EF AB E A ED AC =⎧⎪∠=∠⎨⎪=⎩,∴ABC EFD ≅△△,∴DF CB =;【点睛】本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键.22.购买A 种足球单价需要150元,B 种足球单价需要120元.【解析】【分析】根据题意设B 种足球的单价为x 元,进而依据用750元购买A 种足球的个数与用600元购买B 种足球的个数相同建立等量关系,最终求解分式方程即可.【详解】解:设B 种足球的单价为x 元,根据题意,得75060030x x=+,解得x =120.经检验:x =120是原分式方程的解.∴x+30=150.答:购买A 种足球单价需要150元,B 种足球单价需要120元.【点睛】本题主要考查分式方程的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.23.(1)见解析;(2)20【解析】【分析】(1)由题意根据垂线的性质得到∠CED=∠BFD=90°,根据中线的性质得到BD=CD ,从而利用全等三角形的判定定理AAS 进行证明即可;(2)由题意根据三角形中线的性质得到S △ABD=S △ACD ,再由全等三角形的性质得到S △BDF=S △CED ,从而结合图形利用三角形面积之间的关系求解即可.【详解】解:(1)∵CE ⊥AD ,BF ⊥AF ,∴∠CED =∠BFD =90°,∵AD 是△ABC 的中线,∴BD =CD ,在△CED 和△BFD 中,CED BFD CDE BDF CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CED ≌△BFD (AAS );(2)∵AD 是△ABC 的中线,∴S △ABD =S △ACD ,∵S △ACE =8,SCED =6,∴S △ACD =S △ABD =14,∵△BFD ≌△CED ,∴S △BDF =S △CED =6,∴S △ABF =S △ABD+S △BDF =14+6=20.【点睛】本题考查全等三角形的判定与性质,应熟练掌握全等三角形的判定定理及其相关性质,注意运用数形结合的思想方法,从图形中寻找等量关系,与此同时结合三角形中线的性质进行求解.24.(1)①40,20;②10;③∠DAE =12(∠C-∠B),理由见解析;(2)∠DFE =12(∠C ﹣∠B),理由见解析【解析】【分析】(1)①根据三角形内角和求出BAC ∠,然后根据角平分线的定义求出CAD ∠,根据AE ⊥BC ,进而求得∠DAE 的度数;②根据①中的方式求解即可;③根据①中计算过程推到即可;(2)根据三角形内角和以及三角形外角的性质等知识点进行推到即可.【详解】解:(1)①∵∠B =30°,∠C =70°,∴18080BAC B C ∠=︒-∠-∠=︒,∵AD 是∠BAC 角平分线,∴1402CAD BAD CAB ∠=∠=∠=︒,∵AE ⊥BC ,∴90AEC ∠=︒,∴907020CAE ∠=︒-︒=︒,∴402020DAE CAD CAE ∠=∠-∠=︒-︒=︒,故答案为:40,20;②∵∠B =45°,∠C =65°,∴18070BAC B C ∠=-∠-∠=︒︒,∵AD 是∠BAC 角平分线,∴1352CAD BAD CAB ∠=∠=∠=︒,∵AE ⊥BC ,∴90AEC ∠=︒,∴906525CAE ∠=︒-︒=︒,∴352510DAE CAD CAE ∠=∠-∠=︒-︒=︒,故答案为:10;③∠DAE =12(∠C-∠B),理由如下:在△AEC 中,∠AEC+∠C+∠EAC =180°,∴∠EAC =180°-∠AEC-∠C =180°-90°-∠C =90°-∠C ,∴∠DAE =∠CAD-∠EAC =12×(180°-∠B-∠C)=(90°-12∠B-12∠C)-(90°-∠C)=12(∠C-∠B);(2)判断与思考;∠DFE =12(∠C ﹣∠B),理由如下:证明:∵AD 平分∠BAC ,∴∠BAD =01802B C-∠-∠=90°-12(∠C+∠B),∵∠ADC 为△ABD 的外角,∴∠ADC =∠B+90°-12(∠C+∠B )=90°+12(∠B-∠C),∵FE ⊥BC ,∴∠FED =90°,∴∠DFE =90°-[90°+12(∠B-∠C)]=90°-90°-12(∠B-∠C),∴∠DFE =12(∠C-∠B).。
湘教版八年级下册数学期中考试试卷(带答案)
湘教版八年级下册数学期中考试试题一、单选题1.下列汽车标志中既是轴对称图形又是中心对称图形的是A.B.C.D.2.Rt ABC中,∠ACB=90°,AC=6cm,BC=8cm,D为斜边AB的中点,则CD的长是A.3cm B.4cm C.4.8cm D.5cm3.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为A.6B.5C.4D.34.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为A.6B.5C.4D.35.如图,在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是A.∠E=∠CDF B.BE=2CF C.AD=2BF D.EF=DF 6.如图,在 ABC中,∠B=50°,点D在BC上,且AB=BD,AD=CD,则∠C的度数为A .30°B .32.5°C .45°D .60°7.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠ACB=30°,则∠AOB 的大小为A .30°B .60°C .90°D .120°8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形9.如图,∠BAC=90°,AD ⊥BC ,则图中与∠ABD 互余的角有A .2个B .3个C .4个D .5个10.如图,矩形ABCD 的对角线AC 、BD 交于点O .AC =4,∠AOD =120°,则BC 的长为A .3B .4C .3D .2二、填空题11.在ABC 中,5AC =,12BC =,13AB =,则ABC 的面积为________.12.某多边形的每个内角均为120°,则此多边形的边数为____.13.在平行四边形ABCD 中,∠B =70°,则∠D =_______.14.矩形的长为6厘米,宽为8厘米,则它的对角线长为_________.15.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为_____.16.如图,在平行四边形ABCD中,若AB=4,BC=6,∠B=30°,则此平行四边形ABCD 的面积是_______.17.如图,菱形的对角线AC、BD交于点O,E为AD边中点,OE的长为3,则菱形ABCD 的周长为______.18.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则DF的长为____________.三、解答题19.如图,在 ABC中,∠ACB=90°,CD⊥AB于点D,AC=12cm,BC=16cm,求CD 的长.20.如图,DB∥AC,且DB=1AC,E是AC的中点,2(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?21.如图,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,M是 ABC的边BC的中点,已知AB=10,BC=16,MN=4.(1)求证:BN=DN(2)求 ABC的周长.22.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,OE=OF.(1)求证:AE//CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.23.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:O是BD的中点;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=2时,求AE的长.24.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图,并简单叙述理由.(1)在图1中,画出一个平行四边形ABCD,使其面积为6;(2)在图2中,画出一个菱形ABCD,使其面积为4;(3)在图3中,画出一个矩形ABCD,使其邻边不等,且都是无理数.25.已知:正方形ABCD的边长为6,点E,F分别在边AD,边AB的延长线上,且DE=BF.(1)如图1,连接CE,CF,EF,请判断△CEF的形状;(2)如图2,连接EF交BD于M,当DE=2时,求AM的长;(3)如图3,点G,H分别在边AB,边CD上,且EF与GH的夹角为45°时,求DE的长.26.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.参考答案1.C2.D3.A4.D5.B6.B7.B8.C9.A10.C11.30【详解】解:在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=12×5×12=30,故答案为:30.12.6【详解】解:180°-120°=60°,360°÷60°=6.即此多边形的边数为6.故答案为:6.13.70°【详解】∵∠B=70°,∴∠D=70°,故答案为:70°.14.10cm【详解】如图所示:已知CD=6,AD=8,∠D=90°,AC==,∴10∴对角线为:10cm,故答案为:10cm.15.60°【详解】解:延长AB交直线b于点E,∵a∥b,∴∠AEC=∠1=60°,∵四边形ABCD是矩形,∴AB∥CD,∴∠2=∠AEC=60°,故答案为60°.16.12【详解】解:过点A作AE⊥BC于E,∵直角△ABE中,∠B=30°,∴AE=12AB=12×4=2∴平行四边形ABCD面积=BC•AE=6×2=12,故答案为:12.17.24【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∵E为AD边中点,∴OE是Rt△AOD的斜边中线,∴AD=2OE=6,∴菱形ABCD的周长=4×6=24;故答案为:24.18.6.【详解】试题分析:根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可:∵四边形ABCD是矩形,∴AB=DC=8,∠D=90°.∵将矩形ABCD沿CE折叠后,点B落在AD边的F点上,∴CF=BC=10.在Rt△CDF中,由勾股定理得:6=.考点:1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理.19.9.6cm【详解】∵∠ACB=90°,AC=12cm,BC=16cm,∴AB=20cm,根据直角三角形的面积公式,得:9.6AC BC CD cm AB== ,∴9.6CD cm =.20.(1)证明见解析(2)添加AB=BC 【详解】试题分析:(1)要证明BC=DE ,只要证四边形BCED 是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.试题解析:(1)证明:∵E 是AC 中点,∴EC=AC .∵DB=AC ,∴DB ∥EC .又∵DB ∥EC ,∴四边形DBCE 是平行四边形.∴BC=DE .(2)添加AB=BC .理由:∵DB ∥AE ,DB=AE∴四边形DBEA 是平行四边形.∵BC=DE ,AB=BC ,∴AB=DE .∴▭ADBE 是矩形.考点:矩形的判定;平行四边形的判定与性质.21.(1)见解析;(2)44【详解】解:(1)证明:∵AN 平分∠BAC∴∠1=∠2∵BN ⊥AN∴∠ANB=∠AND=90°在△ABN 和△ADN 中,12AN AN ANB AND∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN (ASA ),∴BN=DN .(2)∵△ABN ≌△ADN ,∴AD=AB=10,又∵点M 是BC 中点,∴MN 是△BDC 的中位线,∴CD=2MN=8,故△ABC 的周长=AB+BC+CD+AD=10+16+8+10=44.22.(1)见解析;(2)【详解】解:(1)证明:∵四边形ABCD 是矩形∴OA=OC ,在△AOE 和△COF 中,OA OCAOE COF OE OF=⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (SAS ),∴∠OAE=∠OCF ,∴AE //CF ;(2)∵OA=OC ,OB=OD ,AC=BD ,∴OA=OB ,∵∠AOB=∠COD=60°,∴△AOB 是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt △ABC 中,=∴矩形ABCD 的面积=AB•BC=6⨯=23.(1)见解析;(2)6【详解】解:(1)∵四边形ABCD 是平行四边形,∴DC //AB ,∴∠OBE=∠ODF .在△OBE 与△ODF 中,OBE ODFBOE DOF BE DF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△ODF (AAS ).∴BO=DO ,即O 是BD 的中点;(2)∵EF ⊥AB ,AB //DC ,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°.∴AE=GE∵BD ⊥AD ,∴∠ADB=∠GDO=90°.∴∠GOD=∠G=45°.∴DG=DO ,∴OF=FG=2,由(1)可知,OE=OF=2,∴GE=OE+OF+FG=6,∴AE=6.24.(1)见解析;(2)见解析;(3)见解析【详解】解:(1)在图1中,平行四边形ABCD 如图所示;(2)在图2中,菱形ABCD 如图所示;(3)在图3中,矩形ABCD 如图所示;25.(1)△CEF 是等腰直角三角形,理由见解析;(2)25(3)3.【详解】(1)如图1,△CEF 是等腰直角三角形,理由是:在正方形ABCD 中,BC=DC ,∠FBC=∠D=90°,∵BF=DE ,∴△FBC ≌△EDC ,∴CF=CE ,∠ECD=∠FCB ,∴∠ECF=∠ECB+∠FCB=∠ECB+∠ECD=90°,∴△CEF 是等腰直角三角形;(2)如图2,过E 作EN ∥AB ,交BD 于N ,则EN=ED=2,∵EN ∥AB ,∴∠F=∠MEN ,∵∠BMN=∠EMN ,∴△FBM ≌△ENM ,∴EM=FM ,在Rt △EAF 中,224(62)++5∴AM=125(3)如图3,连接EC 和FC ,由(1)得∠EFC=45°,∵∠EMH=45°,∴∠EFC=∠EMH ,∴GH ∥FC ,∵AF ∥DC ,∴四边形FCHG 是平行四边形,∴由勾股定理得:,∴DE=BF=3.26.(1)见解析;(2)①5;②【详解】(1)∵矩形ABCD 折叠使A ,C 重合,折痕为EF ,∴OA =OC ,EF ⊥AC ,EA =EC ,∵AD ∥AC ,∴∠FAC =∠ECA ,在△AOF 和△COE 中,FAO ECOAO CO AOF COE∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOF ≌△COE ,∴OF =OE ,∵OA =OC ,AC ⊥EF ,∴四边形AECF 为菱形;(2)①设菱形的边长为x ,则BE =BC ﹣CE =8﹣x ,AE =x ,在Rt △ABE 中,∵BE 2+AB 2=AE 2,∴(8﹣x )2+42=x 2,解得x =5,即菱形的边长为5;②在Rt △ABC 中,AC∴OA =12AC =在Rt △AOE 中,AE =5,OE∴EF =2OE =。
湘教版八年级数学上册期中试卷及答案【完整版】
湘教版八年级数学上册期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .115.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.已知2x +3y -5=0,则9x •27y 的值为__________.32|1|0a b -++=,则2020()a b +=_________.4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF=AC ,则∠ABC =________度.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:()()22322323a a b ab a a b ---,其中a ,b 满足()2130a b a b +-+--=3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+的值.4.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE的度数;(2)求∠DAE的度数.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、C5、D6、D7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、2433、14、455、50°6、120三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、483、0.4、(1) ∠BAE=30 °;(2) ∠EAD=20°.5、略6、(1)120件;(2)150元.。
湘教版八年级上册数学期中考试试卷含答案
湘教版八年级上册数学期中考试试题一、单选题1.口罩的熔喷布厚度约为0.000136米,将0.000136用科学记数法表示应为()A .0.136×10﹣3B .1.36×10﹣3C .1.36×10﹣4D .13.6×10﹣52.计算111a a a +--的结果是()A .11aa +-B .﹣1aa +C .﹣1D .1﹣a 3.下列计算正确的是()A .a 2+a 3=a 5B .a 6÷a 2=a 3C .(﹣2)﹣1=2D .(a 2)﹣3=a ﹣64.若分式241x x -+的值为0,则x 的值是()A .±2B .﹣2C .0D .25.可以用来说明命题“若m <n ,则1m >1n ”是假命题的反例是()A .m =2,n =﹣3B .m =﹣2,n =3C .m =﹣2,n =﹣3D .m =2,n =36.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为()A .30°B .40°C .70°D .80°7.如图,在等腰三角形ABC 中,BD 为∠ABC 的平分线,∠A=36°,AB=AC=a ,BC=b ,则CD=()A .2a b+B .2a b-C .a-b D .b-a8.如图,若△ABD ≌△EBC ,且AB =3,BC =7,则DE 的长为()A .2B .4C .10D .39.若a=-0.32,b=-32,c=21(3--,d=01()3,则a 、b 、c 、d 从大到小依次排列的是()A .a <b <c <dB .d <a <c <bC .b <a <d <cD .c <a <d <b10.张老师和李老师同时从学校出发,步行15千米去县城购买文具,张老师比李老师每小时多走1千米,结果比李老师早到30分钟,两位老师每小时各步行多少千米?设李老师每小时走x 千米,依题意,得到的方程是()A .151x +﹣15x =12B .1515112x x =++C .15151x x -+=30D .1515112x x -=-二、填空题11.命题“对顶角相等”的逆命题是一个__________命题(填“真”或“假”).12.分式2235,,346a b ab的最简公分母是_____________.13.如图,点P 是等边△ABC 的边BC 上一点,以A 点为圆心,以AP 的长为半径画弧,交AC 于D 点,连接PD ,若∠APD =80°,则∠DPC 的度数为___.14.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.15.若关于x 的方程22x a x ++=﹣1的解为正数,则实数a 的取值范围是___.16.若m 2=3,my =5,则m 6﹣2y 的值是___.17.如图,在△ABC 中,点D .E .F 分别是线段BC 、AD 、CE 的中点,且ABC S =28cm ,则BEF S =____2cm 18.如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数是____________.三、解答题19.计算(1)021|2|(2)()3π--+-+-+(﹣1)2021(2)(﹣3m 2n ﹣2)﹣3÷(﹣2m ﹣2n 4)﹣2(3)2a a 1-﹣a ﹣1(4)223424()()()a a b b ab÷20.解方程(1)21133x x x x =-++(2)2227361x x x x x x +=+--21.先化简,再求值:2112111x x x x +⎛⎫-÷-+-⎝⎭,然后从1-,0,1中选择适当的数代入求值.22.已知:如图点A 、B 、C 在同一直线上,且AM =AN ,BM =BN ,求证:CM =CN .23.若关于x 的方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值?24.在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.25.(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连接AC 和BD ,相交于点E ,连接BC .求∠AEB 的大小;(2)如图2,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小.参考答案1.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000136=1.36×10-4.故选:C.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.C【解析】【分析】通分将原式化简,即可求解.【详解】解:111 111a aa a a-+==----.故选:C【点睛】本题主要考查了分式的加减,熟练掌握利用分式的基本性质进行通分是解题的关键.3.D【解析】【分析】结合幂的乘方与积的乘方、负整数指数幂、同底数幂的除法进行求解即可.【详解】解:A、a2和a3不是同类项,不能合并,该选项不符合题意;B、a6÷a2=a4,原计算错误,该选项不符合题意;C 、(﹣2)﹣1=-12,原计算错误,该选项不符合题意;D 、(a 2)﹣3=a ﹣6,正确,该选项符合题意;故选:D .【点睛】本题考查了幂的乘方与积的乘方、负整数指数幂、同底数幂的除法,解答本题的关键在于熟练掌握各知识点的概念和运算法则.4.D【解析】【分析】根据分式的值为0的条件,可得240x -=,且10x +≠,解出即可.【详解】解:∵分式241x x -+的值为0,∴240x -=,且10x +≠,解得:2x =.故选:D【点睛】本题主要考查了分式的值为0的条件,熟练掌握当分式的分子为0,分母不等于0时,分式的值为0是解题的关键.5.B【解析】【分析】所选取的m 、n 的值符合题设,则不满足结论即作为反例.【详解】解:A 、当m =2,n =﹣3时,1123>-,故m =2,n =﹣3不是是命题“若m <n ,则1m >1n”的反例;B 、当m =−2,n =3时,−12<13,故m =−2,n =3是命题“若m <n ,则1m >1n”的反例;C 、当m =﹣2,n =﹣3时m n >不符合m <n ,故m =﹣2,n =﹣3不是是命题“若m <n ,则1m >1n”的反例;D当m=2,n=3时1123 ,故m=2,n=3不是是命题“若m<n,则1m>1n”的反例;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.解题关键是掌握命题与定理.6.A【解析】【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°−∠A)÷2=70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC-∠ABE=30°,故选:A.【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质与判定,三角形内角和定理,熟练掌握相关性质,运用数形结合思想是解题的关键.7.C【解析】【分析】根据等腰三角形的性质和判定得出BD=BC=AD,进而解答即可.【详解】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC-AD=a-b,故选:C.【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质和判定得出BD=BC=AD解答.8.B【解析】【分析】根据△ABD≌△EBC,且AB=3,BC=7,可以得到BD和EB的长,然后即可得到DE的长,本题得以解决.【详解】解:∵△ABD≌△EBC,且AB=3,BC=7,∴AB=EB=3,BD=BC=7,∴DE=BD−EB=7−3=4,故选:B.【点睛】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.9.C【解析】【详解】解:∵a=-0.09,b=-9,c=9,d=1,∴可得:b<a<d<c.故选C.10.B【分析】设李老师每小时走x 千米,则张老师每小时走()1x +千米,根据题意,即可列出方程.【详解】解:设李老师每小时走x 千米,则张老师每小时走()1x +千米,根据题意得:1515112x x =++.故选:B【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.11.假【解析】【分析】先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【详解】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为:假.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.12.212a b【解析】【分析】找分母各项的系数的最小公倍数,和相同字母的次数最高的项.【详解】解:根据题意:最简公分母为212a b .故答案为:212a b13.20°【解析】在△APD 中,求得∠PAD 的度数,进而求得∠APC 的度数,进而即可求解;【详解】在△APD 中,AP =AD ,∴∠APD =∠ADP =80°∴∠PAD =180°−80°−80°=20°∴∠BAP =60°−20°=40°∴∠APC =∠B +∠BAP =60°+40°=100°∴∠DPC =∠APC−∠APD =100°−80°=20°.故答案为:20°.【点睛】本题主要考查了等腰三角形的性质和等边三角形的性质,题目比较简单,属于基础性题目.14.7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为:7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.15.a <−2【解析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于a的不等式,从而求得a的范围.【详解】解:∵于x的方程22x ax++=−1有解,∴x+2≠0,去分母得:2x+a=−x−2即3x=−a−2解得x=−2 3 a+根据题意得:−23a+>0解得:a<−2故答案是:a<−2.【点睛】本题主要考查了分式方程的解的符号的确定,正确求解分式方程是解题的关键.16.27 25【解析】【分析】根据幂的运算公式即可求解.【详解】∵m2=3,my=5,∴m6﹣2y=(m2)3÷(my)2=33÷52=27 25.故答案为:27 25.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.17.2.【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.解:∵点D 是BC 的中点,∴ABD S =ADC S △=12ABC S =4,∵点E 是AD 的中点,∴ABE S =12ABD S =2,ACE S =12ADC S △=2,∴ABE S +ACE S =4,∴BCE S =8-4=4,∵点F 是CE 的中点,∴BEF S =12BCE S =12×4=2.故答案为:2.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等(同)底等(同)高的三角形的面积相等.18.360【解析】【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【详解】解:∵∠1是△ABG 的外角,∴∠1=∠A+∠B ,∵∠2是△EFH 的外角,∴∠2=∠E+∠F ,∵∠3是△CDI 的外角,∴∠3=∠C+∠D ,∵∠1、∠2、∠3是△GIH 的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.【点睛】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.19.(1)11;(2)1014427m n --;(3)11a -;(4)3256a 【解析】【分析】(1)分别根据绝对值的性质,零指数幂的定义,负整数指数幂的定义以及有理数的乘方的定义计算即可;(2)根据整式混合运算法则计算可求解;(3)根据分式的混合运算法则即可求出答案;(4)根据分式的混合运算法则即可求出答案.【详解】(1)021|2|(2)()3π--+-+-+(﹣1)2021=2+1+91-,11=;(2)(﹣3m 2n ﹣2)﹣3÷(﹣2m ﹣2n 4)﹣2664811274m n m n --⎛⎫⎛⎫=-÷ ⎪ ⎪⎝⎭⎝⎭,1014427m n -=-;(3)2a a 1-﹣a ﹣1()()21111a a a a a +-=---,2211a a a -+=-,11a =-;(4)223424()()()a a b b ab ÷432644256a a b b a b=÷ ,462344256a b b a a b= ,3256a =.【点睛】本题主要考查有理数的混合运算,整式的混合运算,分式的混合运算,绝对值,负整数指数幂,乘方,掌握运算法则是解题的关键.20.(1)34x =;(2)37x =【解析】【分析】(1)把分式方程转化为整式方程,即可求解,再验根即可.(2)两边同乘以最简公分母(1)(1)x x x +-,即可把分式方程转化为整式方程,即可求解,再验根即可.【详解】解:(1)21133x x x x =-++,()()312131x x x x x +-=++,()()()3163131x x x x x +-=++,两边同时乘以()31x +得:633x x x =+-,43x =,34x =,经检验34x =是原方程的根.(2)2227361x x x x x x +=+--,()()()()73611+11x x x x x x x +=+--,两边同乘以(1)(1)x x x -+得:()()()()()()()()71316111111x x x x x x x x x x x x x -++=+-+-+-,7(1)3(1)6x x x x -++=,277336x x x x -++=,271030x x -+=,()()1730x x --=,10x -=或730x -=,解得:1231,7x x ==,∵220,10x x x -≠-≠,∴1x ≠,∴37x =,经检验37x =是原方程的根.【点睛】本题考查求解分式方程,一元二次方程.把分式方程转化为整式方程是解题关键,且需要注意验根.21.22x +,1【解析】【分析】根据分式的运算法则进行运算求解,最后代入0x =求值即可.【详解】解:原式112(1)(1)(1)(1)(1)(1)⎡⎤+-+=-÷⎢⎥-+-+-+⎣⎦x x x x x x x x x 11(1)(1)(1)(1)2⎡⎤+-+-+=⨯⎢⎥-++⎣⎦x x x x x x x 2(1)(1)(1)(1)2⎡⎤-+=⨯⎢⎥-++⎣⎦x x x x x 22x =+.∵x+1≠0且x-1≠0且x+2≠0,∴x≠-1且x≠1且x≠-2,当0x =时,分母不为0,代入:原式2=102=+.【点睛】本题考查分式的加减乘除混合运算,解题的关键是掌握运算顺序为:先算乘除,再算加减,有括号先算括号内的;另外本题选择合适的数时要注意选择的数不能使分母为0.22.见解析【解析】【分析】先证出MAB NAB ≅ 进而得到MAB NAB ∠=∠,再证出AMC ANC ≅ 即可得出结论.【详解】解:∵AM =AN ,BM =BN ,AB AB =,∴MAB NAB ≅ ,∴MAB NAB ∠=∠,∵AM =AN ,AC AC =,∴AMC ANC ≅ ,∴CM =CN .【点睛】本题考查全等三角形的判定与性质,解题关键是掌握全等三角形的判定与性质.23.5a =-或12-或2-.【解析】【分析】方程1221(1)(2)x x ax x x x x ++-=+--+可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+,利用方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值.【详解】解:方程1221(1)(2)x x ax x x x x ++-=+--+可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+,∴−1−2x=ax+2,把1代入可得a=−5,2代入可得a=12-,此时方程无解;又a=−2时方程无解,∴a=−5或12-,或−2,【点睛】本题考查分式方程,解题的关键是熟练掌握分式方程的化简.24.(1)60(2)24【解析】【分析】本题主要考查分式方程的应用.等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.【详解】解:(1)设乙工程队单独完成这项工程需要x 天,根据题意得:1011(20140x x ++⨯=解之得:x=60,经检验:x=60是原方程的解.所以乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y 天,根据题意得:(114060+)y=1,解之得:y=24,所以两队合做完成这项工程所需的天数为24天.25.(1)60°;(2)60°【解析】【详解】试题分析:(1),由△DOC和△ABO都是等边三角形,且点O是线段AD的中点,可得OD=OC=OB=OA,∠1=∠2=60°,∠4=∠5,从而利用外角的性质可得∠AEB=∠4+∠6=∠4+∠5=∠2=60°;(2)由△DOC和△ABO都是等边三角形,且点O是线段AD的中点,可得OD=OC=OB=OA,∠1=∠2=60°,∠4=∠5,∠6=∠7,根据三角形内角和可得∠5=∠6,从而利用外角的性质可得∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2.解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.。
湘教版八年级数学上册期中考试及答案【完美版】
湘教版八年级数学上册期中考试及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.4的算术平方根为( )A .2±B .2C .2±D .22.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2< D .x 3<8.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .9.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .2B .4C .3D 1010.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <5,化简2(1)x -+|x-5|=________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,在一次测绘活动中,某同学站在点A 的位置观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向900米处,船C 在点A 南偏东15°方向1200米处,则船B 与船C 之间的距离为______米.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.解不等式组3(2)2513212x x x x +≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点E 处,FC 交AD 于F .(1)求证:△AFE ≌△CDF ;(2)若AB =4,BC =8,求图中阴影部分的面积.5.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、D5、A6、B7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、k<6且k≠33、如果两个角互为对顶角,那么这两个角相等4、40°5、36、1500三、解答题(本大题共6小题,共72分)1、x=32、-3.3、–1≤x<34、(1)略;(2)10.5、略.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
湘教版八年级上册数学期中考试试卷带答案
湘教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.若分式293x x -+的值为0,则x 的值为( ) A .0B .3C .3-D .3或3- 2.下列各式:2a b -,3x x -,5y π+,a b a b +-,1m (x -y)中,是分式的共( ) A .1个B .2个C .3个D .4个 3.如果把分式2x x y -中的x 和y 都扩大5倍,那么分式的值是( ) A .扩大5倍B .扩大10倍C .不变D .缩小5倍 4.分式11x --可变形为( ). A .11x -- B .11x + C .11x -+ D .11x - 5.A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .4848944x x +=+- B .4848944+=+-x x C .48x +4=9 D .9696944+=+-x x 6.已知ABC ∆中,6AB =,4BC =,那么边AC 的长可能是下列哪个值( )A .2B .5C .10D .117.如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3等于( )A .50°B .30°C .20°D .15°8.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( )A .35°B .40°C .45°D .50°9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积等于( )A .10B .7C .5D .410.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD二、填空题 11.用科学记数法表示:0.00002015=_________.12.化简:211x x x x -=--_________________. 13.若分式方程144-=--x m x x 无解,则m =__________. 14.有下面四根长度为3厘米,4厘米,5厘米,7厘米的木棒,选取其中3根组成三角形,则可以组成三角形共有___________个.15.已知x y xy +=,则代数式()()1111x y x y+---的值为___________. 16.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的大小是_________度.17.如图,在ABC ∆中,D 、E 分别是AB ,AC 上面的点,若已知12∠=∠,BE CD =,9AB =,2AE =,则CE =_________.18.如图,△ABC 中,AB=AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40cm ,24cm ,则AB=_______cm .三、解答题19.计算:230120.1252004|1|2-⎛⎫--⨯++- ⎪⎝⎭20.先化简,再求值:222111a a a a -+⎛⎫÷- ⎪⎝⎭,其中,2a =.21.解方程:(1)143x x =+(2)23 11xx x+= --22.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.23.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF ;(2)AB∥DE.24.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.25.某火车站北广场将于2018年底投入使用,计划在广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?参考答案1.B【分析】由分式的值为0的条件,即可求出答案.【详解】解:根据题意,则2903x x -=+,∴290x ,∴29x =,∴3x =±,∵30x +≠,∴3x ≠-.∴3x =;故选:B .【点睛】本题考查了分式的值为0的条件,解题的关键是正确求出x 的值.2.C【分析】形如AB,其中A、B均是整式,且B中有字母的式子是分式,根据定义即可解答.【详解】满足分式定义的有:3xx-、a ba b+-、1m(x-y),故选:C.【点睛】此题考查分式的定义,熟记定义并运用解题是关键. 3.C【详解】解:当x和y都扩大5倍时,原式=1025()x xx y x y=--,则分式的大小不变故选:C.【点睛】本题考查分式的性质.4.D【分析】根据分式的性质逐项进行化简即可.【详解】解:1111=1(1)11 x x x x-==----+-,故选项A、B、C均不符合题意,选项D符合题意,故选:D.【点睛】本题考查分式的性质,涉及带负号的化简,掌握相关知识是解题关键.5.A【分析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:484x+,逆流航行时间为:484x-,∴可得出方程:4848944x x+=+-,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.6.B【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】解:根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,则边AC的长可能是5.故选:B.【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.7.C【分析】如图,首先运用平行线的性质求出∠4,然后借助三角形的外角性质即可求出∠3的度数.【详解】解:由题意得:∠4=∠2=40°;由外角定理得:∠4=∠1+∠3,∴∠3=∠4﹣∠1=40°﹣20°=20°,故选C.【点睛】本题考查三角形外角的性质、平行线的性质,解题的关键是牢固掌握三角形外角的性质、平行线的性质.8.A【详解】∵AB =AD , ∴∠ADB =∠B =70°.∵AD =DC , ∴12C DAC ADB ∠=∠=∠=35°.故选A.9.C【详解】试题分析:如图,过点E 作EF ⊥BC 交BC 于点F,根据角平分线的性质可得DE=EF=2,所以△BCE 的面积等于1152522BC EF ⨯⨯=⨯⨯=,故答案选C .考点:角平分线的性质;三角形的面积公式.10.D【详解】试题分析:添加A 可以利用ASA 来进行全等判定;添加B 可以利用SAS 来进行判定;添加C 选项可以得出AD=AE ,然后利用SAS 来进行全等判定.考点:三角形全等的判定11.2.015×10﹣5.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,指数n是由原数左边起第一个不为零的数字前面的0的个数所决定.这里a=2.015,n=5,【详解】解:0.00002015=2.015×10﹣5.故答案为2.015×10﹣5.12.x【分析】由分式的运算法则进行化简,即可得到答案.【详解】解:221(1111)x x xxx x xx xxx-=----==--.故答案为:x.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则进行解题.13.3【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【详解】解:方程去分母得:m=x﹣1,解得:x=m+1,∴当x=4时分母为0,方程无解,即m+1=4,∴m=3时方程无解.故答案为:3【点睛】本题考查了分式方程无解的条件,将分式方程的增根代入整式方程得出关于m的方程是解答此题的关键.14.3判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】选3厘米,4厘米,5厘米时,3+4>5,故可以;选3厘米,4厘米,7厘米时,3+4=7,故不可以;选3厘米,5厘米,7厘米时,3+5>7,故可以;选4厘米,5厘米,7厘米时,4+5>7,故可以,有3个可以组成,故答案为:3.【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.15.0【分析】用xy 代换x +y 化简即可.【详解】 解:()()1111x y x y+--- =()[1]x y x y xy xy +--++(由x y xy +=,得用xy 代换x +y 得) =(1)110xy xy xy xy--+=-= 故答案为:0.【点睛】此题是分式求值,考查整体代入的数学方法.16.60【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A ,然后利用角平分线的定义计算即可.【详解】∵∠ACD=∠B+∠A ,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE 平分∠ACD ,∴∠ACE=60°,故答案为60.17.7【分析】根据条件证明()ABE ACD AAS ≅△△,由全等的性质得到9AC AB ==和2AD AE ==,就可以求出CE 的长.【详解】解:在ABE △和ACD △中,12BAE CAD BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ACD AAS ≅△△,∴9AC AB ==,2AD AE ==,∴927CE AC AE =-=-=.故答案是:7.【点睛】本题考查全等三角形,解题的关键是掌握全等三角形的性质和判定.18.16.【详解】试题分析:首先根据DE 是AB 的垂直平分线,可得AE =BE ;然后根据△ABC 的周长=AB +AC +BC ,△EBC 的周长=BE +EC +BC =AE +EC +BC =AC +BC ,可得△ABC 的周长-△EBC 的周长=AB ,据此求出AB 的长度是多少即可.解:DE 是AB 的垂直平分线,∴AE =BE ;∵△ABC 的周长=AB +AC +BC ,△EBC 的周长=BE +EC +BC =AE +EC +BC =AC +BC ,∴AB =△ABC 的周长−△EBC 的周长,∴AB =40−24=16(cm).故答案为16.19.5.【分析】由乘方、零指数幂、绝对值、以及有理数乘法的运算法则进行计算,即可得到答案.【详解】 解:230120.1252004|1|2-⎛⎫--⨯++- ⎪⎝⎭=480.12511-⨯++=4111-++=5.【点睛】本题考查了乘方、零指数幂、绝对值、以及有理数乘法的运算法则,解题的关键是熟练掌握运算法则进行解题.20.化简结果为1a a --,值为12- 【分析】先算减法,再计算除法,然后把a 的值代入化简后的式子计算即可.【详解】 解:222111a a a a -+⎛⎫÷- ⎪⎝⎭ =22211a a a a a-+-÷ =22(1)111a a a a a a a a--⋅==--- 当2a =时,原式=112a a --=- 【点睛】 本题考查了分式的化简求值是基本题型,熟练掌握分式的混合运算法则是解题的关键.21.(1)1x =(需要检验);(2) 12x =(需要检验)【分析】(1)先去分母,然后移项合并,再进行检验,即可得到答案;(2)先把分式方程进行整理,然后去分母,移项合并,再进行检验,即可得到答案.【详解】解:(1)143x x =+,∴34x x +=,∴1x =;检验:当1x =时,30x +≠;∴1x =是原分式方程的解;(2)2311xx x +=--, ∴2311x x x -=--, ∴231x x -=-,∴233x x -=-, ∴12x =; 检验:当12x =时,10x -≠, ∴12x =是原分式方程的解;【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意需要检验. 22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF , 即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF为等腰三角形.23.见解析.【分析】(1)根据垂直得出∠ACB=∠DFE=90°,结合BC=EF,AC=DF得出三角形全等;(2)根据三角形全等得出∠B=∠DEF,根据同位角相等,两直线平行得到答案.【详解】解:(1)∵AC⊥BC,DF⊥EF ∴∠ACB=∠DFE=90°又∵BC=EF AC=DF∴△ABC≌△DEF(2)∵△ABC≌△DEF∴∠B=∠DEF∴AB∥DE(同位角相等,两直线平行)【点睛】本题考查三角形全等的性质与应用,平行线的判定.24.(1)30°;(2)4.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【详解】(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC 是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.25.(1)A 4200棵,B 2400棵;(2)A 14人,B 12人.【详解】试题分析:(1)首先设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得等量关系:种植A ,B 两种花木共6600棵,根据等量关系列出方程,再解即可;(2)首先设安排a 人种植A 花木,由题意得等量关系:a 人种植A 花木所用时间=(26-a )人种植B 花木所用时间,根据等量关系列出方程,再解即可.试题解析:(1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得: x +2x -600=6600,解得:x =2400,2x -600=4200,答:B 花木数量为2400棵,则A 花木数量是4200棵;(2)设安排a 人种植A 花木,由题意得:420024006040(26)a a =-, 解得:a =14,经检验:a =14是原分式方程的解,26-a =26-14=12,答:安排14人种植A 花木,12人种植B 花木.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版数学八年级上册期中测试A 卷一、选择题(4×9=36分)1.若点P(m,n)在第二象限,则点Q(-m,-n)在………( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限2.若9,422==b a ,且0>ab ,则b a -的值为 ( )A .5±B . 1±C . 5D . 1-3.下列说法不正确的是 ( )A .51251±的平方根是; B .3273-=-C .()21.0-的平方根是±0.1 ; D .的算术平方根是819-4.将点A(5,-2)按如下方式进行平移:先向上平移2个单位,再向左平移4个单位,则点A平移后的坐标为…………………………………………………………( ) A. (7,-6) B. (9,0) C. (1,-4) D.(1,0) 5.函数xx y -=1 自变量x的取值范围是………………….…………….….…( )A. 全体实数B. x>0C. x≥0且x≠1D.x>16.若m+n <0,mn >0。
则一次函数y=mx+n 的图像不经过…………….….…( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限7.一次函数y=mx+n 与y=mnx (mn ≠0),在同一平面直角坐标系的图像是……( )A. B. C. D.8.某游泳池分为深水区和浅水区,每次消毒后要重新注满水,假定进水管的速度是均匀的,那么游泳池内水的高度h随时间t变化的图像是………………..………….….…( )学校: 班级: 姓名: 学号:x y o x y o x y o x y oA. B. C. D.9.下列各曲线中,不能表示y是x的函数的是…………….…………….…( )A. B. C. D.二、填空题(4×6=24分)10. 16的算术平方根是 ;3125-==-32 , 25-的相反数11. 已知一次函数图像如图,写出它的解析式是12. 函数y=-2x+3的图像是由直线y=-2x向 平移 个单位得到的。
13. 已知031a 2=++-b , 则b a += .14. 点(21,y1 ),(2,y2 )是一次函数y=-21x-3图像上的两点, 则y1 y2 。
(填“>”、“=”或“<”)15. 一次函数y=-21x+3的图像与坐标轴 围成三角形的面积是 。
三、解答题(6+8+10=24分)16. 用图像法解二元一次方程组{152=-=+y x y xth oth oth othox y o x y o x y o x y o xy o-2 117.已知函数y=(8—2m)x+m -2(1)若函数图象经过原点,求m的值(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.(3)若这个函数是一次函数,且图象经过一、二、三象限, 求m的取值范围.18.正比例函数y=2x的图像与一次函数y=-3x+k的图像交于点P(1,m),求:(1)k的值。
(2)两条直线与x轴围成的三角形的面积。
四、综合运用(6+10=16分)19.某汽车加油站储油45000升,每天给汽车加油1500升,那么储油量y(升)与加油x(天)之间的关系式是什么?并指出自变量的取值范围。
20. 有一天,龟、兔进行了600m 赛跑。
如图表示龟兔赛跑的路程S(m )与时间t(min )的关系, 根据图像回答以下问题:(1)赛跑中,兔子共睡了多长时间? ( 2 ) 写出乌龟跑的路程S(m)与 时间t(min)的函数关系式。
(3)赛跑开始后,乌龟在第几分钟时从睡觉的兔子旁经过?湘教版数学八年级上册期中测试B 卷一.选择题(每题3分,共30分)1. 在3125,0,52.3,3,311,414.1,2,25 π-中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个 2. 下列说法不正确的是 ( )A .51251的平方根是; B .3273-=- C .()21.0-的平方根是±0.1 ; D . 的算术平方根是8193. 一个正数的平方根为m -2与12+m ,则m 的值为 ( )A .31 B . 31或3- C . 3- D . 3 4. 若9,422==b a ,且0 ab ,则b a -的值为 ( )O 10 20 30 40 50 60 600500400300200100t S 龟 兔xy0 第5题图A .5±B . 1±C . 5D . 1-5. 已知点P(3,-2)与点Q 关于y 轴反射,则点Q 的坐标为( )A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)6. 李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )7.点A (2,m)和点B (-4,n)都在直线y =321+-x 上,则m 与n 的大小关系应是( ) A .m > n B.m < n C.m = n D.条件不够,无法确定 8.已知一次函数y=kx+b(k ≠0)的草图如右所示,则下列结论正确的是( )A .k>0,b>0B .k>0,b<0C .k<0,b>0D .k<0,b<0二、填空题(每题3分,共24分)9. 16的算术平方根是 ;25-的相反数 ;=-32 . 10. 比较大小,填>或<号: 23 32;11. 函数xx y -=2 自变量x的取值范围是 .12.已知y与x-3成正比例,当x=4时,y=—3。
y与x之间的函数关系式为 。
13.点(21,y1 ),(2,y2 )是一次函数y=21x-3图像上的两点,则y1 y2 。
(填“>”、“=”或“<”)14. 已知函数y=1-3x ,则函数y 随x 的增大而 . 15. 一次函数y= -2x+4的图象与x 轴交点坐标是 .16、设a 是倒数等于本身的数,b 是最大的负整数,c 是平方根等于本身的数,则=++c b a .三. 计算(每题6分,共36分) 17.(1). 44.18125+- (2).已知010222=-++b b a ,求b a +.18. 正比例函数y=2x的图像与一次函数y=-3x+k的图像交于点P(1,m),求:(1)k的值。
(2)两条直线与y 轴围成的三角形的面积。
19. 求下列各式中的x .(1) 02783=+x (2)()33312=-x20. 某蜡烛点燃后按下表规律燃烧。
点燃时长x (分钟) 6 8 10 蜡烛长度y (厘米)17.413.810.2(1)观察表中数据,你能求出y 与x 的函数表达式吗?,若能并确定自变量的取值范围。
(2)这根蜡烛原来多长?,全部点燃需多少分钟?四.综合题21. (10分) 王勤准备租用一辆出租车搞个体营运,现有甲乙两家出租车公司可以和他签订合同,设汽车每月行驶x 千米,应付给甲公司的月租费1y 元,应付给乙公司的月租费是2y 元, 1y 、2y 与x 之间的函数关系的图象如图所示,请根据图象回答下列问题: (1)分别求出1y 、2y 与x 之间的函数关系式(2)若王勤估计每月行驶的路程为2300千米/时,租哪家合算?22. 已知羊角塘服装厂有A 种布料70m ,B 种布料52m ,现计划用这两种布料生产甲、乙两种型号的时装共80套,已知做一套甲型号的时装需用A 种布料0.6m ,B 种布料0.9m ,可获利润45元;做一套乙型号的时装需用A 种布料1.1m ,B 种布料0.4m ,可获利润50元,若生产乙型号的时装x 套,用这批布料生产这两种型号的时装所获的总利润为y 元。
(1)求y(元)与x(套)之间的函数关系式,并求自变量x 的取值范围; (2) 羊角塘服装厂在生产这批时装时,当乙型号的时装为多少套时,所获总利润最大?最大总利润是多少?答案A 卷1.D2.B3.D4.D5.C6.A7.C8.B9.D 10. 4,-5,3-2,52-.11. y=2x-2. 12. 上, 3. 13.212-14. 15. 9. 16. X=2, y=1. 17. (1) m=2 (2) 4m (3) 42 m18. (1) k=5 (2) 35. 19.y=1500x (30x 0≤≤)20. (1) 40min (2) y=10x (600≤≤x ) (3) 10x=200,x=20min. B 卷1.B2.A3.D4.A5.B6.C7.B8.C9. 23,52,2-- 10. 11. 40x ≠≥x 且 12. Y=-3x+9 13. 14. 减小 15. (2,0) 16. 0或-217.(1)5.7 (2) 105105--+-或 18. (1) k=5 (2) 2.5 19. (1)x=-1.5 (2) x=6或x=020. y=-2.2x+30.6 (2) 30.6cm, 约13.9min21.12505.0,34y 121+==x y x )( (2) 租用乙公司的车合算。
22. (1)y=45(80-x)+50x 即y=5x+3600(2) 0.6(80-x)+1.1x ≤70○1 0.9(80-x)+0.4x ≤52○2由○1得x ≤44,由○2得x ≥40.所以44x 40≤≤ ,取x=44(套) . 所以 (元)38203600445)44(=+⨯==f y。