八年级数学分式周末作业题及答案

合集下载

初二数学《分式》练习题及答案

初二数学《分式》练习题及答案

分式练习题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列运算正确的是( )A.x 10÷x 5=x 2B.x -4·x=x -3C.x 3·x 2=x 6D.(2x -2)-3=-8x 62. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时.A. B. C. D.11a b +1ab 1a b +ab a b+3.化简等于( )a b a b a b --+A. B. C. D.2222a b a b +-222()a b a b +-2222a b a b -+222()a b a b +-4.若分式的值为零,则x 的值是( )2242x x x ---A.2或-2 B.2 C.-2 D.45.不改变分式的值,把分子、分母中各项系数化为整数,结果是( )52223x y x y -+A. B. C. D.2154x y x y -+4523x y x y -+61542x y x y -+121546x y x y-+6.分式:①,②,③,④中,最简分式有( )223a a ++22a b a b --412()a a b -12x -A.1个 B.2个 C.3个 D.4个7.计算的结果是( )4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭A. - B. C.-1 D.112x +12x +8.若关于x 的方程 有解,则必须满足条件( )x a c b x d-=-A. a≠b ,c≠d B. a≠b ,c≠-d C.a≠-b , c≠d C.a≠-b , c≠-d9.若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( )A.a<3B.a>3C.a≥3D.a≤310.解分式方程,分以下四步,其中,错误的一步是( )2236111x x x +=+--A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上 .(1)-3x ;(2);(3);(4)-;(5) ; (6);(7)-; (8)y x 22732xy y x -x 8135+y 112--x x π-12m .5.023+m 12.当a 时,分式有意义.321+-a a13.若-1,则x+x -1=__________.14.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.15.计算的结果是_________.1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭16.已知u=(u≠0),则t=___________.121s s t --17.当m=______时,方程会产生增根.233x m x x =---18.用科学记数法表示:12.5毫克=________吨.19.当x 时,分式的值为负数.xx --2320.计算(x+y)· =____________.2222x y x y y x+--三、计算题:(每小题6分,共12分)21.; 22..23651x x x x x+----2424422x y x y x x y x y x y x y ⋅-÷-+-+四、解方程:(6分)23.。

八年级上学期数学第14周周末作业

八年级上学期数学第14周周末作业

第十五章 分式测试题(总分120分,时间60分钟)姓名: 成绩:一、选择题(每小题3分,共30分)1、在式子:23123510,,,,,94678xy a b c x y x a x y π+++中,分式的个数是( ) A :2 B :3 C :4 D :52、化简1x x y x ÷⋅的结果是( )A :1 B :xy C :y x D :x y 3、若把分式xy x 23+的x 、y 同时扩大10倍,则分式的值( ) A :扩大10倍B :缩小10倍C :不变D :缩小5倍 4、化简2293m m m --的结果是( ) A :3+m m B :3+-m m C :3-m m D :m m -3 5、对于分式23x -有意义,则x 应满足的条件是( ) A :3x ≥ B :3x > C :3x ≠ D :3x < 6、用科学记数法表示-0.0000064记为( )A :-64×10-7B :-0.64×10-4C :-6.4×10-6D :-640×10-87、若分式112--x x 的值为0,则x 的取值为( )A :1=x B :1-=x C :1±=x D :无法确定 8、下列等式成立的是( )A :9)3(2-=-- B :()9132=-- C :2222b a b a ⨯=⨯-- D :b a a b b a +=--22 9、若方程342(2)a x x x x =+--有增根,则增根可能为( )A :0 B :2 C :0或2 D :1 10、小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等。

设小明打字速度为x 个/分钟,则列方程正确的是( )A :x x 1806120=+B :x x 1806120=-C :6180120+=x xD :6180120-=x x 二、填空题(每小题3分,共30分) 11、计算:=-321)(b a ;=+-203π ; 12、方程xx 527=-的解是 ; 13、分式,21x xy y 51,212-的最简公分母为 ; 14、约分:=-2264xy y x ;932--x x = ; 15、若关于x 的方程211=--ax a x 的解是x=2,则a= ; 16、计算ab b b a a -+-= ; 17、如果分式121+-x x 的值为-1,则x 的值是 ; 18、已知31=b a ,分式ba b a 52-+的值为 ; 19、当x 时,分式21x x -的值为正数; 20、轮船顺水航行46km 和逆水航行34km 所用的时间恰好相等,水的流速是3km/h ,设轮船在静水中的速度是xkm/h ,可列得方程为 。

八年级数学分式试卷【含答案】

八年级数学分式试卷【含答案】

八年级数学分式试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个选项是分式的定义?A. 分子为0的表达式B. 分子和分母都是整式的表达式C. 分子和分母都是多项式的表达式D. 分子和分母都是单项式的表达式2. 分式$\frac{3x}{x+1}$的分母是什么?A. $3x$B. $x+1$C. $x$D. $3$3. 下列哪个分式是最简分式?A. $\frac{4}{6}$B. $\frac{6}{8}$C. $\frac{8}{10}$D. $\frac{10}{12}$4. 分式$\frac{x+2}{x-3}$的分子是什么?A. $x+2$B. $x-3$C. $x^2-9$D. $x^2+6x+9$5. 下列哪个分式等于1?A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{2}{2}$D. $\frac{3}{3}$二、判断题(每题1分,共5分)1. 分式的分子和分母都是整式。

()2. 分式的值随x的增大而增大。

()3. 分式的值随x的减小而减小。

()4. 分式的值可以等于0。

()5. 分式的值可以等于1。

()三、填空题(每题1分,共5分)1. 分式$\frac{x+1}{x-1}$的分子是______,分母是______。

2. 当x=2时,分式$\frac{x+3}{x-1}$的值为______。

3. 当x=3时,分式$\frac{x-1}{x+2}$的值为______。

4. 分式$\frac{2x+4}{x+2}$可以化简为______。

5. 当x=0时,分式$\frac{x^2+1}{x+1}$的值为______。

四、简答题(每题2分,共10分)1. 请简述分式的定义。

2. 请简述分式的最简形式。

3. 请简述分式的值随x的增大而变化的规律。

4. 请简述分式的值随x的减小而变化的规律。

5. 请简述分式的值可以等于0的条件。

五、应用题(每题2分,共10分)1. 已知分式$\frac{x+1}{x-1}$,当x=2时,求分式的值。

2022-2023学年华东师大版八年级数学下册第四周周末(分式部分)综合作业题(附答案)

2022-2023学年华东师大版八年级数学下册第四周周末(分式部分)综合作业题(附答案)

2022-2023学年华东师大版八年级数学下册第四周周末(分式部分)综合作业题(附答案)一.选择题1.当分式有意义时,x的取值范围是()A.x>2B.x<2C.x≠2D.x=22.下列式子:①;②;③;④.其中是分式的有()A.0个B.1个C.2个D.3个3.若分式的值为0,则x应满足的条件是()A.x=1B.x≠1C.x=﹣3D.x≠﹣34.下列式子中是分式的是()A.B.C.D.5.如果分式的值等于0,那么m的值为()A.±4B.4C.﹣4D.不存在6.代数式,,,中,分式的个数为()A.1个B.2个C.3个D.4个7.对于非负整数x,使得是一个正整数,则x的个数有()A.3个B.4个C.5个D.6个8.如果把分式中的x和y都扩大2倍,那么分式的值()A.扩大2倍B.缩小C.缩小D.不变9.下列变形从左到右一定正确的是()A.=B.=C.=D.=10.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍11.化简2x÷•的结果是()A.2B.2xy C.D.12.若x﹣y=2xy≠0,则分式=()A.B.C.2D.﹣213.﹣的计算结果为()A.B.C.D.14.若关于x的方程=2有增根,则m的取值是()A.0B.2C.﹣2D.115.若关于x的分式方程=2的解为正数,则m的取值范围是()A.m>﹣3B.m≥﹣3且m≠﹣1C.m≠3 D.m>﹣3且m≠﹣1 16.若关于x的一元一次不等式组的解集为x<﹣2,且关于y的分式方程﹣1的解为负整数,则所有满足条件的整数a的值之和是()A.﹣15B.﹣13C.﹣7D.﹣517.分式方程=的解是()A.x=2B.x=4C.x=6D.x=818.若分式方程+1=的解为正数,则a的取值范围是()A.a>﹣2B.a>﹣2且a≠3C.a<﹣2D.a>﹣2且a≠4 19.若关于x的方程+2=有增根,则m的值是()A.﹣2B.2C.1D.﹣120.三个数20,3﹣2,(﹣3)﹣1中,负数的个数是()A.0个B.1个C.2个D.3个21.下列说法正确的是()A.(π﹣3.14)0没有意义B.任何数的0次幂都等于1C.a2•(2a)3=8a6D.若(x+4)0=1,则x≠﹣422.1纳米等于0.0000000001米,则用科学记数法表示为()A.1×10﹣9米B.1×10﹣7米C.1×10﹣10米D.1×10﹣8米23.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000098m,用科学记数法表示0.0000098是()A.0.98×10﹣5B.9.8×106C.9.8×10﹣5D.9.8×10﹣6二.填空题24.当x=时,分式的值为0.25.若分式的值等于0,则y=.26.化简:=.27.若为整数,那么符合条件的整数x的取值是.三.解答题28.解方程:.29.解分式方程:.30.先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.31.为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?32.为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?参考答案一.选择题1.解:∵分式有意义,∴2﹣x≠0,解得:x≠2,故选:C.2.解:下列式子:①;②;③;④.其中是分式的有③;④共2个.故选:C.3.解:根据题意得x﹣1=0,x+3≠0,∴x=1,故选:A.4.解:A、它的分母中不含有字母,是整式,故本选项不符合题意;B、它是分式,故本选项符合题意;C、它的分母中不含有字母,是整式,故本选项不符合题意;D、它的分母中不含有字母,是整式,故本选项不符合题意;故选:B.5.解:∵分式的值等于0,∴|m|﹣4=0,且m﹣4≠0,解得m=﹣4,故选:C.6.解:代数式,,,中,分式有,,,共有3个.故选:C.7.解:===x+3﹣6+=x﹣3+,∵x为非负整数,分式的结果为正整数,∴x取值为0,1,3,9,∴x的个数有4个,故选:B.8.解:∵的x和y都扩大2倍,∴=,∴分式值不变,故选:D.9.解:A.分子分母同时加1,分式值改变,例如≠,故A不正确;B.分子分母同时乘以c,c≠0,故B不正确;C.分子分母分别平方,分式值可能改变,例如≠,故C不正确;D.分子分母同时除以一个不为零的数,分式值不变,故D正确;故选:D.10.解:=2•,把分式中的x和y都扩大2倍,分式的值扩大2倍,故选:B.11.解:2x÷•=2x••=.故选:C.12.解:原式=,∵x﹣y=2xy≠0,∴原式=﹣=﹣=﹣2,故选:D.13.解:原式=﹣==.故选:C.14.解:当x﹣2=0时,x=2,将分式方程=2两边乘以(x﹣2)得:﹣2+x+m=2(x﹣2),把x=2代入得:﹣2+2+m=2(2﹣2),∴m=0,故选:A.15.解:=2,m+1=2(x﹣1),m+1=2x﹣2,2x=m+1+2,2x=m+3,x=,∵方程的解为正数,∴m+3>0,∴m>﹣3,∵x≠1,∴≠1,∴m≠﹣1,∴m>﹣3且m≠﹣1,故选:D.16.解:,由①得,x<﹣2,由②得x≤,∵不等式组的解集为x<﹣2,∴≥﹣2,∴a≥﹣8,﹣1,2y=a﹣(y+1),2y=a﹣y﹣1,3y=a﹣1,y=,∵方程的解为负整数,∴a=﹣8,﹣5,﹣2,∵y≠﹣1,∴≠﹣1,∴a≠﹣2,∴a的取值为﹣8,﹣5,∴所有满足条件的整数a的值之和是﹣13,故选:B.17.解:去分母得:20=2(x+4),解得:x=6,检验:把x=6代入得:5(x+4)≠0,∴分式方程的解为x=6.故选:C.18.解:去分母得:1+x﹣3=a﹣x,移项,合并同类项得:2x=a+2,系数化1,得:x=,∵关于x的方程+1=的解为正数,∴>0,且≠3,解得:a>﹣2且a≠4.故选:D.19.解:去分母,得:1+2(x﹣2)=﹣(m﹣x),由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程,可得:m=1.故选:C.20.解:20=1,3﹣2=,(﹣3)﹣1=﹣,故负数的个数是1个.故选:B.21.解:A、π﹣3.14≠0,则(π﹣3.14)0有意义,不符合题意;B、任何不为0的实数的0次幂都等于1,不符合题意;C、a2•(2a)3=8a5,不符合题意;D、若(x+4)0=1,则x+4≠0,即x≠﹣4,符合题意.故选:D.22.解:0.0000000001米=1×10﹣10米.故选:C.23.解:0.0000098=9.8×10﹣6.故选:D.二.填空题24.解:∵分式的值为0,∴x+12=0,且x﹣11≠0.解得:x=﹣12,且x≠11.∴x=﹣12.故答案为:﹣12.25.解:若分式的值等于0,则|y|﹣5=0,y=±5.又∵5﹣y≠0,y≠5,∴y=﹣5.若分式的值等于0,则y=﹣5.故答案为﹣5.26.解:原式==1.故答案为:1.27.解:由题意可得,x﹣1为16的约数,∴x﹣1=±1,±2,±4,±8,±16,∴x=﹣15,﹣7,﹣3,﹣1,0,2,3,5,9,17.故答案为﹣15,﹣7,﹣3,﹣1,0,2,3,5,9,17.三.解答题28.解:去分母得:x﹣1=1+3(x﹣2),去括号得:x﹣1=1+3x﹣6,移项合并得:﹣2x=﹣4,解得:x=2,检验:把x=2代入得:x﹣2=0,∴x=2是增根,分式方程无解.29.解:方程两边同时乘以(x+1)(x﹣2)得:x(x﹣2)﹣(x+1)(x﹣2)=1,解得:x=1,检验:当x=1时,(x+1)(x﹣2)≠0,∴x=1是原分式方程的解.30.解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.31.解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,依题意得:=,解得:x=7,经检验,x=7是原方程的解,且符合题意.答:每千克有机大米的售价为7元.32.解:(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,依题意得:+=25,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴4x=60,3x=45.答:一等奖奖品单价为60元,二等奖奖品单价为45元.(2)设购买一等奖奖品m件,二等奖奖品n件,依题意得:60m+45n=1275,∴n=.∵m,n均为正整数,且4≤m≤10,∴或或,∴共有3种购买方案,方案1:购买4件一等奖奖品,23件二等奖奖品;方案2:购买7件一等奖奖品,19件二等奖奖品;方案3:购买10件一等奖奖品,15件二等奖奖品.。

初二数学分式试题练习及答案

初二数学分式试题练习及答案

初二数学分式试题练习及答案(精练)计算:(分析)本题中有四个分式相加减,如果采用直接通分化成同分母的分式相加减,公分母比较复杂,其运算难度较大.不过我们注意到若把前两个分式相加,其结果却是非常简单的.因此我们可以采用逐项相加的办法.(解)===(知识大串联)1.分式的有关概念设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简2、分式的基本性质(M为不等于零的整式)3.分式的运算分式的`运算法则与分数的运算法则类似.异分母相加,先通分;4.零指数5.负整数指数注意正整数幂的运算性质可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数.分式是初中代数的重点内容之一,其运算综合性强,技巧性大,如果方法选取不当,不仅使解题过程复杂化,而且出错率高.下面通过例子来说明分式运算中的种种策略,供同学们学习参考.1.顺次相加法例1:计算:(分析)本题的解法与例1完全一样.(解)===2.整体通分法(例2)计算:(分析)本题是一个分式与整式的加减运算.如能把(-a-1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式.(解)==.3.化简后通分分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多.4.巧用拆项法例4计算:.分析:本题的10个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整数的积(若a是整数),联想到,这样可抵消一些项.解:原式====5.分组运算法例5:计算:分析:本题项数较多,分母不相同.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便.解:=====(错题警示)一、错用分式的基本性质例1 化简错解:原式分析:分式的基本性质是“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变”,而此题分子乘以3,分母乘以2,违反了分式的基本性质.正解:原式二、错在颠倒运算顺序例2 计算错解:原式分析:乘除是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误.正解:原式三、错在约分例1 当为何值时,分式有意义?[错解]原式.由得.∴时,分式有意义.[解析]上述解法错在约分这一步,由于约去了分子、分母的公因式,扩大了未知数的取值范围,而导致错误.[正解]由得且.∴当且,分式有意义.四、错在以偏概全例2为何值时,分式有意义?[错解]当,得.∴当,原分式有意义.[解析]上述解法中只考虑的分母,没有注意整个分母,犯了以偏概全的错误.[正解],得,由,得.∴当且时,原分式有意义.五、错在计算去分母例3 计算.[错解]原式=.[解析]上述解法把分式通分与解方程混淆了,分式计算是等值代换,不能去分母,..六、错在只考虑分子没有顾及分母例4 当为何值时,分式的值为零.[错解]由,得.∴当或时,原分式的值为零.[解析]当时,分式的分母,分式无意义,谈不上有值存在,出错的原因是忽视了分母不能为零的条件.,得.由,得且.∴当时,原分式的值为零.七、错在“且”与“或”的用法例7为何值时,分式有意义错解:要使分式有意义,须满足.由得,或由得.当或时原分式有意义.分析:上述解法由得或是错误的.因为与中的一个式子成立并不能保证一定成立,只有与同时成立,才能保证一定成立.故本题的正确答案是且.八、错在忽视特殊情况例8 解关于的方程.错解:方程两边同时乘以,即.当时,,当时,原方程无解.分析:当时,原方程变为取任何值都不能满足这个方程,错解只注意了对的讨论,而忽视了的特殊情况的讨论.正解:方程两边同时乘以,得,即当且时,,当或时,原方程无解.感谢您的阅读,祝您生活愉快。

初二数学分式试题答案及解析

初二数学分式试题答案及解析

初二数学分式试题答案及解析1.下列运算正确的是()A.B.C.D.【答案】D.【解析】A、,分母的所有项都变号,故A错误;B、分子分母都乘以或除以同一个不为0的数分式的值不变,故B错误;C、分子分母都除以(x-y),故C错误;D、分子分母都除以(x-1),故D正确.故选D.【考点】分式的基本性质.2.若分式的值是0,则x = __________.【答案】 1【解析】由x2-1=0可得x=±1,又x+1≠0,所以x≠-1,所以x=1【考点】分式值为0的条件3.已知【答案】【解析】∵∴x=2y∴原式=【考点】分式的化简求值4.(1)已知计算结果是,求常数m的值;(2)已知计算结果是,求常数A、B的值.【答案】(1)3;(2).【解析】先把拨给条件进行通分,然后利用恒等式的性质进行计算即可求值. (1)∵=,又∵=,∴(2)∵,又∵=,∴.∴.【考点】1.分式的化简;2.解二元一次方程组.5.若,则x的取值范围是_______.【答案】x<1.【解析】由绝对值的定义和分式有意义的条件入手求解.试题解析:由题意得x-1≤0且x-1≠0即x≤1,且x≠1所以x<1.考点: 分式的基本性质.6.如果分式有意义,那么的取值范围是()A.>1B.<1C.≠1D.=1【答案】C【解析】由题,1-x≠0, x≠1,选C.分式有意义的条件是分母不为零,由题,1-x≠0, x≠1,选C.【考点】分式有意义的条件.7.计算:﹣.【答案】【解析】原式利用同分母分式的减法法则计算,约分即可得到结果.解:原式===.点评:此题考查了分式的加减法,分式的加减运算关键是通分,通分的关键是找最简公分母.8.将分式约分时,分子和分母的公因式是.【答案】2a【解析】观察分子分母,提取公共部分即可.解:分式约分时,分子和分母的公因式是:2a.故答案为:2a.点评:此题主要考查了约分,注意:找出分子分母公共因式时,常数项也不能忽略.9.在式子中,分式的个数有()A.2B.3C.4D.5【答案】B【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:分式有:,,9x+工3个.故选B.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.10.把分式中的、都扩大3倍,那么分式的值().A.扩大3倍B.缩小3倍C.扩大9倍D.不变【答案】A【解析】由题意把、代入原分式,再把化简结果与原分式比较即可作出判断.解:由题意得则分式的值扩大3倍故选A.【考点】分式的基本性质点评:本题属于基础应用题,只需学生熟练掌握分式的基本性质,即可完成.11.已知=,则的值为__________。

分式练习题 (2)

分式练习题 (2)

分式练习题 石牛初中八年级周末作业2013/12/19一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ;2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1;(5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负.(7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x ax +-无意义,则b ______3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________;(2)若分式33x x --的值为零,则x = ;(3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________;(4)若)0(54≠=y y x ,则222y y x -的值等于________;(5)分式392--x x 当x __________时分式的值为零;(6)当x __________时分式xx2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0;(8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零;(11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为(13)当x________时,1x x x-- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。

初二分式练习题及答案

初二分式练习题及答案

分式练习题1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+(4)x y x y x xy x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111x x x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。

(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xy x -++ 的值。

(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。

(4)已知0132=+-a a ,求142+a a 的值。

4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求cb b a -+-11的值。

5、解下列分式方程:(1)xx x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。

8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒 按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售 价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本, 并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批 发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按 定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两 次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若 赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。

初二数学分式试题答案及解析

初二数学分式试题答案及解析

初二数学分式试题答案及解析1.化简的结果是()A.B.C.D.【答案】A.【解析】原式=,故选A【考点】分式的化简.2.先化简,再求值:,其中,.【答案】1.【解析】先根据分式混合运算的法则把原式进行化简,再把a、b的值代入进行计算即可.试题解析:原式===,当,时,原式=.【考点】分式的化简求值.3.使代数式有意义的x的取值范围是.【答案】且x≠3.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠3.【考点】1.二次根式有意义的条件;2.分式有意义的条件.4.下列分式是最简分式的是()A.B.C.D.【答案】D.【解析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.A、;B、;C、;D、的分子、分母都不能再分解,且不能约分,是最简分式.故选D.【考点】最简分式.5.(1)计算:(2)解方程:.【答案】(1)x (2)无解【解析】(1)括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)原式=•=x;(2)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,经检验x=2是增根,原分式方程无解.点评:此题考查了解分式方程,以及分式的混合运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.将分式约分时,分子和分母的公因式是.【答案】2a【解析】观察分子分母,提取公共部分即可.解:分式约分时,分子和分母的公因式是:2a.故答案为:2a.点评:此题主要考查了约分,注意:找出分子分母公共因式时,常数项也不能忽略.7.化简的结果()A.x+y B.x-y C.y-x D.-x-y【答案】A【解析】先根据平方差公式对分子部分因式分解,再根据分式的基本性质约分即可.解:,故选A.【考点】分式的基本性质点评:本题属于基础应用题,只需学生熟练掌握分式的基本性质,即可完成.8.当x____________时,分式有意义。

初二数学分式试题答案及解析

初二数学分式试题答案及解析

初二数学分式试题答案及解析1.下列运算正确的是()A.B.C.D.【答案】D【解析】A、,故A选项错误;B、,故B选项错误;C、,故C选项错误;D、,故D选项正确,故选D.【考点】约分2. (1)关于x的方程2x一3=2m+8的解是负数,求m的取值范围.(2)如果代数式有意义,求x的取值范围.【答案】(1) ;(2) .【解析】(1)首先解关于x的方程,然后根据方程的解是负数即可得到一个关于m的不等式,求得m的范围.(2)根据二次根式有意义的条件:被开方数是非负数以及分母不等于0即可求解.试题解析:(1)由已知解得,根据题意得:<0,解得.(2)由已知3x+8>0,则.【考点】1.一元一次方程的解;2.分式和二次根式有意义的条件;3.解一元一次不等式.3.如果分式中的x、y都扩大到原来的3倍,那么分式的值( )A.扩大到原来的3倍B.扩大到原来的6倍C.不变D.不能确定【答案】C【解析】因为,所以分式的值不变.故选C.【考点】分式的基本性质.4.有一道题“先化简,再求值:.其中a =-”马小虎同学做题时把“a = -”错抄成了“a =”,但他的计算结果却与别的同学一致,也是正确的,请你解释这是怎么回事?【答案】理由见解析.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,即可做出判断.原式===.因为当a = -或a =时,的结果均为5,所以马小虎同学做题时把“a = -”错抄成了“a =”也能得到正确答案9.【考点】分式的化简求值.5.下列运算中正确的是()A.B.C.D.【答案】C.【解析】分子分母同时乘以一个不为零的数,分式的值不变,由题,=x3,A错误,B选项不能约分,B 错误,C选项, ,C正确,D不能约分,D错误,选C.【考点】分式的计算.6.如果代数式x-2y的值为3,那么分式的值为_______。

【答案】【解析】先对分子部分根据完全平方公式因式分解,再整体代入求值即可.解:当时,.【考点】分式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.7.不改变分式的值,使分子、分母的第一项系数都是正数,则= .【答案】【解析】先对分子、分母根据相反数的性质提取“-”号,再根据分式的基本性质约分即可.解:.【考点】分式的基本性质点评:本题属于基础应用题,只需学生熟练掌握分式的基本性质,即可完成.8.若分式的值为0,则b的值为A.1B.-1C.±1D.2【答案】A【解析】分式的值为0的条件:分式的分子为0且分母不为0时,分式的值为0.由题意得,解得,则故选A.【考点】分式的值为0的条件点评:本题属于基础应用题,只需学生熟练掌握分式的值为0的条件,即可完成.9.若,则=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档