2015-2016学年度上期八年级数学第15章《分式》测试题

合集下载

人教版八年级数学上册第十五章 分式练习(含答案)

人教版八年级数学上册第十五章 分式练习(含答案)

第十五章 分式一、单选题 1.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m-中,是分式的共有( )A .1个B .2个C .3个D .4个2.分式269x -有意义的条件是( ) A .x ≠3 B .x ≠9C .x ≠±3D .x ≠﹣33.若分式201x x -=+,x 则等于( ) A .0B .-2C .-1D .24.下列分式中是最简分式的是( )A .2468x x ++B .22x y x y +-C .22222x y x xy y --+D .22x yx y ++5.已知2340x x --=,则分式24xx x --的值是( ) A .2B .5C .12D .136.计算11()()a a aa等于( ) A .1 B .a 2 C .﹣a D .21a 7.设xy=x ﹣y ≠0,则11x y的值等于( )A .1xyB .y ﹣xC .﹣1D .18.把分式方程311xx x -=+化成整式方程,去分母后正确的是( )A .23(1)1x x +-=B .23(1)(1)x x x x +-=+C .23(1)1x x ++=D .23(1)(1)x x x x -+=+9.如果关于x 的分式方程2122m xx x-=--无解,那么m 的值为( ) A .4B .4-C .2D .2-10.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A .3036101.5x x -= B .3030101.5x x-= C .3630101.5x x-= D .3036101.5x x+=二、填空题11.当x =____时,分式212x x ++没有意义; 12.若x :y =1:2,则x yx y-+=_____. 13.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为___________.14.若数a 使关于x 的不等式组542x x a<⎧⎨-≥⎩有且只有四个整数解,且使关于y 的方程2211y a ay y++=--的解为非负数,则符合条件的正整数a 的值为___________.三、解答题15.将下列分式约分:(1)1232632418a x y a x(2)22969x x x --+(3)()()()()21222122n mn m b a a b a b b a ------16.把下列各式通分: (1)x−y 与22y x y+;(2)293a - ,219a a -- 与269aa a -+.17. (1)|﹣2|﹣1)0+112-⎛⎫ ⎪⎝⎭(2)2a b ⎛⎫- ⎪⎝⎭×(23a b )﹣2÷()12a b -.18.先化简,再求值:22231111x x x x -⎛⎫-÷⎪+-+⎝⎭,其中3x =.19.解分式方程(1)23111y yy y-+=-(2)32 21 x x=+20.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?答案1.C 2.C 3.D 4.D 5.C 6.B 7.C8.B 9.B 10.A 11.2- 12.13- 13.7×10﹣9. 14.2 15.(1)6243a y ;(2)33x x +-;(3)2b a b a --16.(1) x−y=22x y x y-+,2222=y y x y x y ++; (2) ()()223(329333)()3a a a a a +-=--+-;()22()(131393)()33a a a a a a ---=-+-;()()223363)93(3a a aa a a a +=-++-;17.(1)3;(2)5b .18.11x -;x=3时,原式=12,x=-3时,原式=14-.19.(1)13y =;(2)3x =. 20.(1)1.8元;2.5元 (2)2000个。

人教版八年级数学上册第十五章《分式》测试带答案解析

人教版八年级数学上册第十五章《分式》测试带答案解析

人教版八年级数学上册第十五章《分式》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.据报道,在新冠疫苗的防重症保护效力下,德尔塔毒株的“突破性感染”占比约为0.00098,将0.00098用科学记数法表示为( ) A .29.810-⨯ B .39.810-⨯C .49.810-⨯D .59.810-⨯2.若分式23x x -+的值等于0,则x 的值是( ) A .2B .﹣2C .3D .﹣33.在某核酸检测任务中,甲医疗队比乙医疗队每小时多检测15人,甲队检测600人所用的时间比乙队检测500人所用的时间少10%.设甲队每小时检测x 人,根据题意,可列方程为( ) A .600500(110%)15x x =⨯-- B .600500(110%)15x x ⨯-=- C .600500(110%)15x x=⨯-- D .600500(110%)15x x⨯-=- 4.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中荧光棒共花费40元,缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x 元( ) A .4030201.5x x-= B .4030201.5x x-= C .3040201.5x x-= D .3040201.5x x-= 5.某班级开展活动共花费2300元,但有4位同学因时间冲突缺席,若总费用由实际参加的同学平均分摊,则每人比原来多支付4元,设原来有x 人参加活动,由题意可列方程( ) A .2300230044x x =++ B .2300230044x x +=+ C .2300230044x x =+- D .2300230044x x +=- 6.代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个7.若关于x 的方程221mx x =+无解,则m 的值为( ) A .0B .4或6C .6D .0或48.数学家斐波那契编写的《算经》中有如下问题,一组人平分90元钱,每人分得若干,若再加上6人,平分120元钱,则第二次每人所得与第一次相同,求第二次分钱的人数.设第二次分钱的人数为x 人,则可列方程为( ) A .90x =120(x +6) B .90(x ﹣6)=120x C .901206x x =+ D .901206x x=- 9.若整数a 使关于x 的不等式组41232x a x x x -≤-⎧⎪⎨--<⎪⎩有且只有2个偶数解,且关于y 的分式方程342122y y ay y --+=--有整数解,则符合条件的所有整数a 的和为( ) A .4 B .8 C .10 D .1210.已知关于x 的方程232x mx +=-解是正数,那么m 的取值范围为( ) A .m >﹣6且m ≠2 B .m <6C .m >﹣6且m ≠﹣4D .m <6且m ≠﹣211.分式方程1112x x x --=+的解为( ) A .=1x -B .1x =C .2x =-D .2x =12.若数a 使关于x 的不等式组51123522x x x a x a-+⎧+≤⎪⎨⎪->+⎩至少有五个整数解,关于y 的分式方程32211a y y--=--的解是非负整数,则满足条件的所有整数a 之和是( ) A .15 B .14 C .8 D .7二、填空题 13.分式方程532x x=-的解是_______. 14.计算:21211a a a +-=++______.15.若关于x 的分式方程7344mx x x +=--无解,则实数m =_________. 16.分式方程3111x x x +=--的解是_______三、解答题17.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.18.解分式方程:1133x x x =-+-. 19.戴口罩可以有效降低感染新型冠状病毒的风险.某学校在本学期开学初为九年级学生购买A 、B 两种口罩,经过市场调查, A 的单价比B 的单价少2元,花费450元购买A 口罩和花费750元购买B 口罩的个数相等. (1)求A 、B 两种口罩的单价;(2)若学校需购买两种口罩共500个,总费不超过2100元,求该校本次购买A 种口罩最少有多少个?20.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?21.2022年北京冬奥会吉祥物“冰墩墩”深受人们的喜欢,为了抓住商机,某商店决定购进A ,B 两种“冰墩墩”纪念品进行销售.已知每件A 种纪念品比每件B 种纪念品的进价高30元.用1000元购进A 种纪念品的数量和用400元购进B 种纪念品的数量相同.求A ,B 两种纪念品每件的进价分别是多少元? 22.计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭23.先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 24.观察下列等式: 第1个等式:1411=332⎛⎫-÷ ⎪⎝⎭;第2个等式:1921=483⎛⎫-÷ ⎪⎝⎭;第3个等式:11631=5154⎛⎫-÷ ⎪⎝⎭;第4个等式:12541=6245⎛⎫-÷ ⎪⎝⎭;第5个等式:13651=7356⎛⎫-÷ ⎪⎝⎭;……按照以上规律,解决下列问题: (1)写出第6个等式:___________;(2)写出你猜想的第n个等式_________(用含n的等式表示),并证明.25.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共100件,且总费用不超过2800元,则最多购买B型学习用品多少件?参考答案:1.C【分析】小于1的正数用科学记数法表示一般形式为10n a -⨯ ,n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00098=9.8410-⨯ 故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤a <10,n 为由原数左边起第一个不为零的数字前面的0的个数. 2.A【分析】根据分式的值为0的条件:分子为0,分母不为0性质即可求解. 【详解】由题意可得:20x -=且30x +≠,解得2,3x x =≠-. 故选A .【点睛】此题主要考查分式为零的条件,解题的关键是熟知分式的性质. 3.A【分析】设甲队每小时检测x 人,根据甲队检测600人所用的时间比乙队检测500人所用的时间少10%,列出分式方程,即可解答. 【详解】设甲队每小时检测x 人,根据题意得,600500(110%)15x x =⨯--, 故选A .【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程. 4.B【分析】若设荧光棒的单价为x 元,根据等量关系“缤纷棒比荧光棒少20根”可列方程求解. 【详解】解:设荧光棒的单价为x 元,则缤纷棒单价是1.5x 元,由题意可得: 4030201.5x x-= 故选:B .【点睛】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.5.D【分析】设原来有x 人参加聚餐,则实际有(x -4)人参加聚餐,根据“总费用由实际参加的同学平均分摊,则每人比原来多支付4元”,列出方程即可解答. 【详解】解:设原来有x 人参加聚餐,则实际有(x -4)人参加聚餐, 根据题意得,2300230044x x +=- 故选:D .【点睛】本题考查由实际问题抽象出分式方程,是重要考点,掌握相关知识是解题关键. 6.B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++, ∴分式有3个, 故选:B .【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 7.D【分析】先将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=, 整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =;当40m -≠时,0x =或210x +=,此时,24x m =-, 解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4; 故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键. 8.D【分析】设第二次分钱的人数为x 人,则第一次分钱的人数为(x -6)人,根据两次每人分得的钱数相同,即可得出关于x 的分式方程,此题得解.【详解】解:设第二次分钱的人数为x 人,则第一次分钱的人数为(x ﹣6)人, 依题意得:906x -=120x .故选:D .【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 9.C【分析】解不等式组得13a-≤x <4,再由题意可得a 的可取值由1,2,3,4,5,6,解分式方程得y =3﹣2a且y ≠2,由此可得符合条件的a 的值有4,6.【详解】解:41?232x a x x x -≤-⎧⎪⎨--<⎪⎩①②, 由①得,x ≥13a -, 由②得,x <4, ∴13a-≤x <4, ∵不等式组有且只有2个偶数解, ∴﹣2<13a-≤0, ∴1≤a <7, ∵a 是整数,∴a 的可取值由1,2,3,4,5,6,342122y y ay y --+=--, 去分母得3y ﹣4+y ﹣2=2y ﹣a , 解得y =3﹣2a ,∵方程有整数解, ∴a 是2的倍数,∵3﹣2a≠2,∴a ≠2,∴a 的取值为4,6,∴符合条件的所有整数a 的和为10, 故选:C .【点睛】本题主要考查了解不等式组和分式方程,解题的关键是掌握解不等式的和分式方程方法. 10.C【分析】先求得分式方程的解(含m 的式子),然后根据解是正数可知m +6>0,从而可求得m >-6,然后根据分式的分母不为0,可知x ≠2,即m +6≠2,由此即可求解. 【详解】将分式方程转化为整式方程得:2x +m =3x -6 解得:x =m +6.∵方程得解为正数,所以m +6>0,解得:m >-6. ∵分式的分母不能为0, ∴x -2≠0,∴x ≠2,即m +6≠2. ∴m ≠-4.故m >-6且m ≠-4. 故选C .【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m 的不等式是解题的关键. 11.A【分析】根据解分式方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,解方程,最后验根即可求解. 【详解】解:1112x x x --=+ 去分母得:(1)(2)(2)x x x x x -+-=+ , 去括号得:22222x x x x x x +---=+ , 合并同类项移项得:22x =- , 系数化为1得:=1x - ,当=1x -时,2()0x x +≠ , ∴ 经检验,=1x -是原方程的根.故选A .【点睛】本题考查了分式方程的求解,注意在去分母时,常数也要乘以公分母,并且最后必须验根,这是解分式方程的易错点和关键点. 12.D【分析】解不等式组,根据整数解的个数判断a 的取值范围;解分式方程,用含a 的式子表示y ,检验增根的情况,再根据解的非负性,确定a 的范围,然后根据方程的整数解,确定符合条件的整数a ,相加即可.【详解】51123522x x x a x a -+⎧+≤⎪⎨⎪->+⎩①② 解不等式①,得x ≤11 解不等式②,得x >a∵不等式组至少有五个整数解 ∴a <732211a y y--=-- 322(1)a y -+=- 122a y -=- 21y a =+12a y +=10y -≠ 1y ∴≠∴112a +≠ ∴1a ≠ ∵0y ≥ ∴102a +≥ ∴1a ≥-∴1<7,1a a -≤≠且,a 为整数又∵12a +为整数 ∴a 可以取-1,3,5∴满足条件的所有整数a 之和是-1+3+5=7 故选:D【点睛】本题考查解不等式组求整数解、解分式方程、正确解不等式组是关键,利用不等式组的解集求参数是中考的常考题型. 13.x =-3【分析】方程两边都乘x (x -2)得出整式方程,求出方程的解,再进行检验即可. 【详解】解:方程两边都乘x (x -2),得 5x =3(x -2), 解得:x =-3,检验:当x =-3时x (x -2)≠0, 所以x =-3是原方程的解, 故答案为:x =-3.【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验. 14.1a -##1a -+【分析】直接利用分式的加减运算法则计算即可.【详解】解:原式=2121a a +-+ =211a a -+ =(1)(1)1a a a +-+=1a -.【点睛】本题考查了分式的加减运算法则,正确掌握分式的加减运算法则是解题的关键. 15.3-或74【分析】将分式方程转化为整式方程,根据分式方程无解,分类讨论求解即可. 【详解】解:由7344mx x x +=--可得:3127mx x +-= 即(3)19m x += 因为分式方程无解,所以,30m +=或4x =由30m +=可得3m =-将4x =代入(3)19m x +=可得,(3)419m +⨯=,解得74m = 故答案为:3-或74【点睛】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.16.x =2【分析】两边都乘以(x -1),去分母,得到x +x -1=3,再移项合并同类项系数化成1,得到化成整式方程的根x =2,检验10x -≠,确定原方程的根为x =2. 【详解】3111x x x +=--, 去分母,得,x +x -1=3移项合并同类项,得,2x =4,系数化成1,得,x =2,检验:当x =2时,12110x -=-=≠,∴x =2是原方程的根,∴故答案为:x =2.【点睛】本题考查了解分式方程,解决问题的关键是熟练去分母,解化成的整式方程,最后须验根.17.甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元【分析】设甲种树苗价格是x 元/棵,则乙种树苗价格是(x +10)元/棵,根据题意列出方程求解即可.【详解】解:设甲种树苗价格是x 元/棵,则乙种树苗价格是(x +10)元/棵, 依题意得:48010x +=360x, 解得:x =30,经检验,x =30是原方程的解,x +10=30+10=40(元),答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.【点睛】本题考查了分式方程的应用,解题关键是设出未知数,根据题目中的等量关系列出方程,注意:分式方程要检验.18.6x =-【分析】观察可得最简公分母是(x +3)(x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程两边同乘以最简公分母()(33)x x +-,得3(3)(3)(3)x x x x x -=+-+-去括号,得22339x x x x -=+-+解方程,得6x =-检验:当6x =-时,(3)(3)0x x +-≠∴原方程的根是6x =-【点睛】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(1)A 、B 两种型号口罩的单价分别为3元、5元;(2)该校本次购买A 种口罩最少有200个.【分析】(1)设A 种口罩的单价为x 元,则B 种口罩的单价为(x +2)元,根据题意列出方程并解答即可;(2)设购买A 种口罩m 个,则购买B 种口罩(500-m )个,利用总价=单价×数量,结合总价不超过2100元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.(1)解:设A 种口罩的单价为x 元,则B 种口罩的单价为(x +2)元, 依题意得:4507502x x =+, 解得:x =3,经检验:x =3是原方程的根,且符合题意,∴x +2=5.答:A 、B 两种型号口罩的单价分别为3元、5元;(2)解:设购买A 种口罩m 个,则购买B 种口罩(500-m )个,依题意得:3m +5(500-m )≤2100,解得:m ≥200.答:该校本次购买A 种口罩最少有200个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 20.40万【分析】设原先每天生产x 万剂疫苗,根据现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天可得方程,解之即可.【详解】解:设原先每天生产x 万剂疫苗,由题意可得:()2402200.5120%x x +=+, 解得:x =40,经检验:x =40是原方程的解,∴原先每天生产40万剂疫苗.【点睛】此题主要考查了分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性.21.A 种纪念品每件的进价是50元,B 种纪念品每件的进价是20元【分析】设A 种纪念品每件的进价是x 元,则B 种纪念品每件的进价是x-30元,根据题意列出分式方程,解方程即可得出答案.【详解】解:设A 种纪念品每件的进价是x 元,则B 种纪念品每件的进价是x-30元, 根据题意列分式方程得,100040030x x =-, 去分母得,1000(30)400x x -=,解得50x =,经检验,50x =是原方程的解,所以A 种纪念品每件的进价为:50(元),B 种纪念品每件的进价为:503020-=(元)答:A 种纪念品每件的进价是50元,B 种纪念品每件的进价是20元.【点睛】本题考查分式方程的实际应用,根据题目中等量关系列出分式方程是解题关键,注意求出解后要进行检验.22.(1)243b ab --1x - 【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.23.32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--= 2232m m m m-⋅-=2m -∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5,∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.24.(1)14961=8487⎛⎫-÷ ⎪⎝⎭ (2)21(1)12(2)1n n n n n n +⎛⎫-÷= ⎪+++⎝⎭,见解析【分析】(1)根据题目中的等式,可以写出第6个等式;(2)根据题目中的等式,可以写出第n 个等式,然后根据分式的乘除法,以及平方差公式因式分解,可以将等号左边的式子化简,从而可以证明结论成立.【详解】(1)解:由题意可得,第6个等式:1497486(1)4889784-÷=⨯=, 故答案为:1496)87(148-÷=; (2)解:猜想:第n 个等式是:()2211(1)2(1)11n n n n n +-÷=++-+, 证明: ()2211(1)2(1)1n n n +-÷++- ()221(2)21n n n n n +-+=⋅++ ()2111n n n +=⋅+1n +∴()2211(1)2(1)11n n n n n +-÷=++-+成立. 【点睛】本题考查数字的变化类规律探究,分式乘除法,掌握发现数字的变化特点,写出相应的式子.分式乘除法法则,平方差公式,规律探究的方法是解题关键.25.(1)A ,B 两种学习用品的单价分别为20元和30元(2)80【分析】(1)设A 种学习用品的单价为x 元,则B 种学习用品的单价为(10)x +元,由题意得18012010x x=+,然后解分式方程解即可; (2)设最多购买B 型学习用品x 件,则购买A 型学习用品()100x -件,由题意得,()30201002800x x +⨯-≤,解不等式即可.【详解】(1)解:设A 种学习用品的单价为x 元,则B 种学习用品的单价为(10)x +元 由题意得18012010x x=+ 去分母得,()18012010x x =+移项合并得,601200x =系数化为1得,20x经检验,20x 是原分式方程的解∴1030x +=元∴A 、B 两种学习用品的单价分别为20元和30元.(2)解:设最多购买B 型学习用品x 件,则购买A 型学习用品()100x -件由题意得,()30201002800x x +⨯-≤解得80x ≤∴最多购买B 型学习用品80件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键在于根据题意正确的列等式与不等式.。

2016年秋人教版八年级数学上《第15章分式》单元测试含答案

2016年秋人教版八年级数学上《第15章分式》单元测试含答案

第15章分式一、解答题1.2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?2.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路1200 米;(2)求原计划每小时抢修道路多少米?3.济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.4.在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?5.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?6.联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?7.从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?8.高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.9.为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.10.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?11.自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.12.端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?13.宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?14.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?15.为充分利用雨水资源,幸福村的小明家和相邻的爷爷家采取了修建蓄水池、屋顶收集雨水的做法.已知小明和爷爷家的屋顶收集雨水的面积、蓄水池的容积和蓄水池已有水的量如表:气象预报即将会下雨,为了收集尽可能多的雨水,下雨前需从爷爷家的蓄水池中抽取多少立方米的水注入小明家的蓄水池?16.某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?17.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?18.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?19.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?20.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.21.某中学要进行理、化实验加试,需用九年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.(1)如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?(2)如果一、二的工作效率不变,先由二班单独整理,时间不超过20分钟,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟?22.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.23.某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?24.大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.25.某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?26.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B 型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A 型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?27.某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?28.甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问:甲、乙每小时各做多少面彩旗?29.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?30.2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?第15章分式参考答案一、解答题(共30小题)1. 2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.2.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路1200 米;(2)求原计划每小时抢修道路多少米?【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.3.济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.【解答】解:设普通快车的速度为xkm/h,由题意得:﹣=4,解得:x=80,经检验:x=80是原分式方程的解,3x=3×80=240,答:高铁列车的平均行驶速度是240km/h.4.在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?【解答】解:设原来每天改造管道x米,由题意得:+=27,解得:x=30,经检验:x=30是原分式方程的解,答:引进新设备前工程队每天改造管道30米.5.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?【解答】解:设到2015年底,全市将有租赁点x个,根据题意可得:×1.2=,解得:x=1000,经检验得:x=1000是原方程的根,答:到2015年底,全市将有租赁点1000个.6.联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?【解答】解:(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,由题意得, =150+30,解得:x=60,经检验:x=60是原分式方程的解,且符合题意,则x﹣10=60﹣10=50,答:第一次购买了60台电风扇,则第二次购买了50台电风扇;(2)第一次获利:(250﹣150)×60+(250﹣150﹣30)×50=6000+3500=9500(元).答:商场获利9500元.7.从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?【解答】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,﹣=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.8.高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.【解答】解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.9.为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.【解答】解:设原计划平均每月的绿化面积为xkm2,实际平均每月的绿化面积是1.5xkm2,由题意得﹣=2解得:x=10经检验x=10是原方程的解,答:原计划平均每月的绿化面积为10km2.10.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?【解答】解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需x+30元,由题意得=×2解得:x=50经检验x=50是原方程的解,x+30=80答:一个A品牌的足球需50元,则一个B品牌的足球需80元.(2)设此次可购买a个B品牌足球,则购进A牌足球(50﹣a)个,由题意得50×(1+8%)(50﹣a)+80×0.9a≤3260解得a≤31∵a是整数,∴a最大等于31,答:华昌中学此次最多可购买31个B品牌足球.11.自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.【解答】解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.12.端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?【解答】解:设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得: =,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.13.宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解答】解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:x+2x﹣600=6600,解得:x=2400,2x﹣600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原分式方程的解,26﹣a=26﹣14=12,答:安排14人种植A花木,12人种植B花木.14.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?【解答】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得: =,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.15.为充分利用雨水资源,幸福村的小明家和相邻的爷爷家采取了修建蓄水池、屋顶收集雨水的做法.已知小明和爷爷家的屋顶收集雨水的面积、蓄水池的容积和蓄水池已有水的量如表:气象预报即将会下雨,为了收集尽可能多的雨水,下雨前需从爷爷家的蓄水池中抽取多少立方米的水注入小明家的蓄水池?【解答】解:下雨前需从爷爷家的蓄水池中抽取x立方米的水注入小明家的蓄水池,由题意得=,解得:x=6,经检验:x=6是所列方程的根.答:下雨前需从爷爷家的蓄水池中抽取6立方米的水注入小明家的蓄水池.16.某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?【解答】解:设钢笔单价x元/支,由题意得:﹣=30,解得:x=10,经检验:x=10是原分式方程的解,1.5x=1.5×10=15.答:钢笔、毛笔的单价分别为10元,15元.17.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.18.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.19.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.20.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.【解答】解:(1)设原计划每天生产的零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,。

初中八年级数学上册第十五章分式单元检测习题(含答案) (99)

初中八年级数学上册第十五章分式单元检测习题(含答案) (99)

初中八年级数学上册第十五章分式单元检测习题(含答案)把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x - 【答案】C【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x -4)=2(x+2)(x -2).考点:因式分解.21.下列方程:①315x -=;②32x =;③1152x x +=+;④252x x+=.其中是分式方程的有( ).A .①②B .②③C .③④D .②③④ 【答案】D【解析】【分析】根据分式方程的定义:分母中含有字母的方程叫做分式方程,进行判断即可.【详解】①分母中不含未知数,故不是分式方程;②③④分母中含未知数x ,故是分式方程;故选:D.【点睛】本题考查分式方程的辨别,掌握分式方程的定义是解题的关键.22x 的取值范围是( ) A .x >3B .x ≥3C .x ≠3D .x <3【答案】A【解析】【分析】 分式的分母不等于零,二次根式的被开方数是非负数,则x ﹣3>0.由此求得x 的取值范围.【详解】解:依题意得:x ﹣3>0.解得x >3.故选:A .【点睛】 a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0【答案】B【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.下列变形不正确的是( )A .3344a a a a --=-- B .3223b a a bc c --+=- C .22b a b a c c-++=- D .221111a a a a--=-- 【答案】C【解析】【分析】根据分式知识依次判断即可.【详解】 A 、()()333=444a a a a a a ----=----,故A 选项正确; B 、()233223ab b a a bc c c-+--+==-,故B 选项正确; C 、()222b a b a b a c c c---+-==-,故C 选项错误; D 、()()222111111a a a a a a----==----,故D 选项正确; 故选C.本题是对分式知识的考查,熟练掌握分式知识是解决本题的关键.25.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【解析】【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】 解:原式=()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭ 2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()m m n m n m n m m n =⋅+-=+- 1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.下列式子变形中,正确的是( )A .1122b a b a +=++B .22142a a a -=-- C .()222422a a a a +-=-- D .11b b a a---= 【答案】C【分析】根据分式的运算法则对各选项依次进行判断即可解答.【详解】A .1122b b a b a b++=++,故错误; B .22214(2)(2)2a a a a a a --==-+-+,故错误; C .()222(2)(2)4222a a a a a a a ++--==---,故正确; D .11b b a a--+=-,故错误;故选C. 【点睛】本题考查分式的变形,解题的关键是正确理解分式的运算法则.27.在代数式2222123252,,,,,33423x x xy x x x x +-+中,分式共有( ). A .2个B .3个C .4个D .5个【答案】B【解析】【分析】 根据分式定义:如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式进行分析即可.【详解】 解:代数式21325,,42x x x x ++是分式,共3个, 故选:B .此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以字母,也可以不含字母,亦即从形式上看是A B的形式,从本质上看分母必须含有字母.28.把分式22x x y+中的x 和y 都扩大3倍,分式的值( ) A .不变B .扩大3倍C .缩小3倍D .扩大9倍【答案】B【解析】 把分式22x x y +中的x 和y 都扩大3倍后可得,()()222393233322x x x x y x y x y==⨯+++,所以分式的值扩大3倍.29.已知函数y x 的取值范围是( )A .x ≥2B .x >3C .x ≥2且x ≠3D .x >2 【答案】C【解析】【分析】二次根式的被开方数≥0,故x ﹣2≥0;分式的分母≠0,故x ﹣3≠0。

2016年秋人教版八年级上第十五章分式检测题含答案解析

2016年秋人教版八年级上第十五章分式检测题含答案解析

2016年秋人教版八年级上第十五章分式检测题含答案解析(本检测题满分:100分,时刻:90分钟) 一、选择题(每小题3分,共30分) 1.下列各式中,分式的个数为(x y a3 , 2x 1,卄 1,A. 53a匚,B.41 2x y)1 x 22 1 y ,x 2 x 3C.3D.22. (2016 -湖南衡阳中考) )A.全体实数如果分式一-有意义,则x 的取值范畴是(B. xC.x=1D.x3. (2015 •山西中考)化简a 二址4/ a - b A.宀 B.-^a- b a- b 4. (2016 •河北中考)下列运算结果为 A.1-;B. • b b 的结果是(C.旦a +b x-1的是( C .2洛 D.-^a + bD.x 2 x 25.若分式x 1的值为零,则的值为(C.6. (2016 •四川南充中考)某次列车平均提速 20 km/h.用相同的时刻,列车提速前行驶400 km ,提速后比提速前多行驶100 km.设提速前列车的平均速度为xkm/h ,下列方程正确的是A.400 * 妣= 4C : 删-106K - 20 C 7.关于下列讲法, 2x- y ①n 的值是零;④ 错误的个数是x 2 1 是分式;;②当x 1时,x a a b a 1 a _ b :⑤ x y) _ 冨成立;③当忙—旳寸,分式i x x y ; @2 x 厂 3.20.21. 三、 解答题(共46分) 2(6分)约分:(1)二乞 a 2 4a 4 (4分)通分:丁 ,二 xx x 1 19. —;(2) 2x 1' a 212 m 2m 1__" 21 m二、填空题(每小题3分,共24分) 11. (2015 -湖北黄冈中考)运算512. 将下列分式约分:(1)二= 2a 3b 6ab 28x13.运算-2 2 =c b c14. 有一个分式,三位同学分不讲出了它的一些特点,甲:分式的值不 可能为0;乙:分式有意义时 的取值范畴是 工士 1;丙:当=-2时,分式 的值为1.请你写出满足上述全部特点的一个分式:215. 已知踊二佃",则m 2=. xyz mrxm nmn16若彳4 5 0,则仝亠■二.445 x 2y 3z -------------------------------17. 代数式1有意义时,x 应满足的条件是ix 118. 为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树,由于青年团员的支持,每日比原打算多种20棵,结果提早4天完成任务,咨询原打算每天种植多少棵树?设原打算每天种植棵树,按照题意可列方程 ________A.611B.528.把 x- 2 ,(x- 2)(x+ 3) ,(x ・ A.最简公分母是(x 2)( +3) 2C (x- 2)( x+ 3) (x- 2)(x+ 3)2D (x+ 3f (x- 2)( x+ 3)9. (2015 •江西中考)下列运算正确的是( )D.W 1 1a 1,则 w=(B. a 2(a2)C.4D.3+ 3f 通分的过程中,不正确的是( x+ 3)2)2B x X 22(x-2)(x+3)2A.⑵芳=詞 C 丄+亠=-1 a- b b- a 10若「 —a 24 2 a A. a 2(a 2)•——=-1a + 1)C. a 2(a 2)D. a 2(a2)h 桫 ;⑵-亠丰的结果是a + b匸 7m n 二2实际劳动中每小时植树的数量比原打算多 20%,结果提早2小时完成任务, 求原打算每小时种植多少棵树?第十五章分式检测题参考答案 1. C 解析:由分式的定义,知 a,孕,一1一为分式,其他的不2x 1 b 2x y是分式.2. B 解析:因为分式昌有意义,因此 冷1工0,解得x ".3. A 解析:2 2 22 22y x 1x 4y(5)xy x 2y x22. (5 分) 23. (6 分)24. (9 分) 其中x 、2 1 .25. (6 分)(2016 •上海中考)解方程: 1 1若--,求 x y , (2015 •上海中考) 14飞一 F -冲=1. 2x 3xy 2y 占 的值. (2016 •新疆中考)xx 2 4x 4 某学校为绿化环境,打算种植 600棵树,2a + 2ab+b b _ (a+ b) b _ a+ b b _ a+ b- b_ a 3 4 5 6 7a -b a- b (a+ b)(a- b)a- b a- b a- b a- b a- b4 B 解析:选项A中,原式二,故A项错误;选项B中,原式二二=x-1,故B项正确;选项C中,原式二x(x-1)=二-,故C项错误;选项D中,原式二=x+1,故D项错误.2 o5 C 解析:若分式x x 2的值为零,则•• 且因此x 1 |x = 2,6 A 解析:按照题意得,题目中存在的等量关系为:提速前列车行驶400 km所用的时刻等于提速后列车行驶500 km所用的时刻,即二匚7莎,故选A.7 B 解析:零不是分式,故①不正确;当x 1时,^x-1成立,故②正确;x 3当"-:卡时,分式収| 3的分母|x|-:i = 0,分式无意义,故③不正确;a 复b 1= ab b 3x2- X ?2-a a a( x + y) + =— xy xy ,故⑤不正确;x 2- x ,故⑥不正确.1 ab b 2,故④不正确; 4- 2x-'3x 4- 5x ' 2^8. DB.亠x- 2C. -解析:A.最简公分母为(斗2) (H +3) 2,正确;(分子、分母同乘 色+引?),通分正确; (分子、分母同乘 ),通分正确;2(X+ 3)1(x- 2)(x+3)x+33T(x- 2)( x+ 3)(x- 2)(x + D.通分不正确,分子应为2 (时-2) =2盖-4.故选D . (2a2) 3=23(a2)3=8a6; -a2b2 - 3ab3=-3(a2 - a) - (b2 - b3)9.C 解析:=-3a3b5; b a abbaa 2 1. 1a a 1 10.Da ab 1). J a ab a b (a 1)(a 解析:Tb a(a b) =-1 ; 1‘a ba b综上,只有选项 a41 a2 a 2 2C 正确.a 2 wa 2 a 2• • w 11. 七 a - ba +b = 1 b a- b .12. (1)2 13. A T3b3_14. x 2;j解析:ba 2-b 2(a + b)( a- b)a + b- aa + b(a + b)( a- b)53(1)右 X23 8x2a b c 3, 22c c b 6ab解析:由题意, 解析:6ab 2 2a 3b ⑵35m nm 5n⑵ 5 解析:彰c b(答案不唯独),仪卜1等,答案不唯独.15.97因此^亠2m n m nm mn m n8 m n m16. — 解析:设- 11 因此丄丄x 2y 3z17. X M 士 1解析:由题意知分母不能为 0,二 凶-1工0,二工士 1.18.960卫型 4 解析:按照“原打算完成任务的天数 实际完成x x 20任务的天数AT ”列方程即可.依题意列方程为19.解: (1)二宁沪匕;(2) m 22m a 14a(4n 1)2(a 2)(1 m a 22X + 1 x 2 - 1 解析:因为 '2m ~2~ m2 m ,因此mm m n-2 nn m n m n4km n y z Ik 54k 8k 15ka3b 3c可知所求分式能够是4「,n m n m 2n m n nm n 44k 0•则3n I n 3n n 9n8k 811k 11.m 2m2nm n7 27.960 車 4. x x 203 x 2- 120•解:因为-11 x 因此J 1x x与__- 的最简公分母是卜?-=.x x 2x 11 x 12 x |x 1) x x < 1 ~2 2 "4 2 - x 2x 1 (x 1)斤x 121.解: (1) 原a 式1= y a 2 a 2 _a (2) 原式=a a 1 aa 2a 1(3) 原式=a 21 a 2 a 2 a 22 a 2 27~2 2 a a • 1 a 原式二a 1 1 =x 2y x 2y(4) a 1 a 1 xy11 =(5) 原式二x 2y x x 2y2 2a a 1 1a 1= a 1 .y22.解:去分母,得m 瓦」|-4, 移项,整理得-x-2=0, 解方程,得'1=2/:=-1. 经检验:=2是增根,舍去;=-1是原方程的根.因此,原方程的根是x=-1.1123. 解:因为--■因此因此 2x 3xy y2y 2 x y 3xy因此 x 2xy y (x y) 2xy 24. 解:丿 - x x x 1 4x 役 x 2上 2x 2 x 2 x 2 x 2 当x 2 1时,原式V2 1 225. x 棵树, 按照题意,得 解得x=50,检验:彳 x=50 时(1+20%)X Mx=50是分式方程的解.x 2x 2 2 4xy 3xy xy 1 2xy 2xy 4xy 4 x 2 x 1 y x x 2 、2 1 2 1 .2 1'2 1.答:原打算每小时种植50棵树.。

人教版八年级数学(上)第15章分式试卷含答案

人教版八年级数学(上)第15章分式试卷含答案

人教版八年级数学(上)第15章分式试卷含答案一、单选题1.某市从今年1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,今年7月的水费则是30元.已知小丽家今年7月的用水量比去年12月的用水量多.设该市去年居民用水的价格为元,根据题意下列方程正确的是()A.B.C.D.2.某工厂计划每天烧煤吨,实际每天少烧吨,则吨煤可多烧()天A.B.C.D.3.下列各式,正确的是()A.;B.;C.;D..4.2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n 为()A.﹣5B.﹣6C.5D.65.能使分式有意义的条件是()A.B.C.D.6.下列约分:①=;①=;①=;①=1;①=a-1;①=-其中正确的有()A.2个B.3个C.4个D.5个7.下列命题中:①已知两实数a、b,如果a>b,那么a2>b2;①同位角相等,两直线平行;①如果两个角是直角,那么这两个角相等;①如果分式无意义,那么x=﹣;这些命题及其逆命题都是真命题的是()A.①①B.①①C.①①D.①①8.若函数有意义,则()A .B.C.D.9.冠状病毒是一大类病毒的总称,该病毒粒子呈不规则形状,近期发现的冠状病毒呈球形或椭圆形,平均直径在0.00000011m将0.00000011用科学记数法表示为()A.B.C.D.10.若a m=8,a n=2,则a m﹣n的值等于()A.3B.4C.8D.12二、填空题11.若,则mn=_______.12.若关于x的分式方程有整数解,m的值是.13.新冠病毒(2019-nCoV)是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60-220nm,平均直径为。

人教版数学八年级上册第15章《分式》综合检测题(含答案)

 人教版数学八年级上册第15章《分式》综合检测题(含答案)

人教版数学八年级上册第15章《分式》综合检测题(含答案)一、精心选一选,慧眼识金(每小题3分,共30分) 1.若分式12x x -+的值为零,则x 的值是( ). A .0 B .1 C .-1 D .-22.计算22()ab a b-的结果是( ).A .aB .bC .1D .b - 3.下列分式的运算中,其中结果正确的是( ).A .112ab a b +=+ B .3232()a a a = C .22a b a b a b+=++ D .231693a a a a -=-+-. 4.下列各式中,与分式aa b--的值相等的是( ). A .a a b + B .a a b --- C .a b a - D .a b a--5.如果分式12-x 与33+x 的值相等,则x 的值是( ).A .9B .7C .5D .36.计算a b a b b a a +⎛⎫-÷⎪⎝⎭的结果为( ).A .a ba +B .a ba- C .a b b + D .a bb- 7.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .8a b -分钟 B .8a b +分钟 C .8a bb-+分钟 D .8a bb--分钟 8.解分式方程3422xx x+=--时,去分母后得( ).A . 34(2)x x -=-B . 34(2)x x +=-C . 3(2)(2)4x x x -+-=D . 34x -=9.有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ).A .9001500300x x =+B .9001500300x x =+ C .9001500300x x =- D .9001500300x x =-10.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-”.小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ).A .小明B .小亮C .小芳D .没有正确的 二、耐心填一填,一锤定音(每小题3分,共30分)11.写出一个分母含有两项,且能够进行约分的分式:__________. 12.当x =______时,分式232x x --的值为1. 13.当3x =时,分式22444x x x --+的值为________.14.某商品的进价为x 元,售价为120元,则该商品的利润率可表示为________.15.小明手中的卡片上写有23y x ⎛⎫- ⎪⎝⎭,小亮手中的卡片上写有32x y ⎛⎫- ⎪⎝⎭,则这两个分式的乘积为__________. 16.分式方程542332x x x+=--的解是 . 17.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v =1f.若6f =厘米,8v =厘米,则物距u = 厘米.18.已知111x y -=,则分式2322x xy y x xy y+---的值为________. 19.A 、B 两地相距50千米,甲骑摩托车,乙骑自行车从A 地到B 地,已知甲骑摩托车的速度是乙骑自行车速度的2.5倍,因此乙比甲早出发1.5小时却迟到1小时,则乙的速度为_______. 20.在实数范围内定义一种运算“⊕”,其规则为11a b a b⊕=+,根据这个规则,方程(1)0x x ⊕+=的解为____________.三、细心做一做,马到成功(共60分) 21.(每小题3分,共9分)计算下列各题:(1)22232481535a b ab m m -÷ (2)2411111a a a a a a +-+---+ (3)329632-÷--+m m m m22.(每小题4分,共8分)解下列方程 (1)10522112x x x +=-- (2)2233111x x x x +-=-+-23.(6分)先化简,再求值:2201011211a a a a ⎛⎫÷+ ⎪-+-⎝⎭. 其中6a =.24.(6分)先化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,请你为a 任选一个适当的数代入求值.25.(6分)A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用的时间与B 型机器人搬运800千克所用时间相等,求两种机器人每小时分别搬运多少千克化工原料?26.(8分)对于试题:“先化简,再求值:23111x x x----,其中2x =.”小亮写出了如下解答过程:因为2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+=--+-+ ②()3122x x x =--+=-. ③所以当2x =时,原式2222=⨯-=. ④ (1)小亮的解答在哪一步开始出现错误:_______(直接填序号)(2)从②到③是否正确:__________;若不正确,错误的原因是____________. (3)请你写出正确的解答过程.27.(8分)用你发现的规律解答下列问题.111122=-⨯;1112323=-⨯;1113434=-⨯┅┅(1)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (2)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.28.(9分)海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.答案:一、精心选一选,慧眼识金1.B .点拨:当分子为零,分母不为零时,分式的值为零.2.B .点拨:22222()ab a b b a b a b-==. 3.D .点拨:2233169(3)3a a a a a a --==-+--.4.C .点拨:同时改变分子、分母的符号,分式的值不变. 5.A .点拨:由题意构造方程,得12-x =33+x . 6.D .点拨:22a b a b a ba ab b a a ab a b b +--⎛⎫-÷=⋅= ⎪+⎝⎭.7.C .点拨:此人打电话的时间为81a b -⎛⎫+⎪⎝⎭分钟.8.A .点拨:方程两边同时乘以()2x -得,()342.x x -=- 9.B .点拨:利用两块试验田的面积相同列方程. 10.C .点拨:小明错在符号上,小亮错在去分母上. 二、耐心填一填,一锤定音11.答案不惟一,例如:2242m m m-+12.1.点拨:根据题意,得2312x x -=-,解得1x =. 13.5.点拨:化简原式=22x x +-,再把3x =代入求值.14.120100%x x-⨯. 点拨:利润率=100%⨯利润进价.15.89x y -. 点拨:322323288399y x y x xx y x y y ⎛⎫⎛⎫⎛⎫-⋅-=⋅-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.16.1x =. 点拨:方程两边同乘以(23)x -,得54(23)x x -=-,解得1x =. 17.24. 点拨:由题意可得11186u +=,解得24u =. 18.13-. 点拨:由条件得x y xy -=-,故原式()()23231223x y xy xy xy x y xy xy xy-+-+===-----.19.12千米/小时. 点拨:设乙的速度为x 千米/小时,可列方程50502.52.5x x-=. 20.12x =-. 点拨:根据题意,得11(1)1x x x x ⊕+=++,则可得方程1101x x +=+.三、细心做一做,马到成功21.(1)原式22232435158a b m m ab =⋅=-76am-. (2)原式2222224114(1)(1)111111a a a a a a a a a a a a +-+-=-+=-+--+---=0. (3)原式=63313(3)(3)233m m m m m m m m -+⋅=+=++-++. 22.(1)方程两边同乘以21x -,得()105221x x -=-,解得43x =. 经检验43x =是原方程的解. 所以原方程的解为43x =. (2)方程两边同乘以()()11x x +-,得()()21313x x x +--=+,解得1x =.经检验1x =是原方程的增根,应舍去. 所以原方程无解. 23.2201011211a a a a ⎛⎫÷+ ⎪-+-⎝⎭2201011(1)1a a a a -+=÷--220101(1)a a a a -=⨯-20101a =-. 当6a =时,原式20102010402161a ===--. 24.原式=22()()2()a b a b a ab b a a b a +-++÷-=2()a b a a a b +⋅+ =1a b+.当1b =-时,若取3a =,则原式111312a b ===+-. 25.设A 型机器人每小时搬运化工原料x 千克,则B 型机器人每小时搬运(20)x -千克.根据题意,得100080020x x =-,解这个方程,得100x =. 经检验100x =是方程的解,所以2080x -=.答:A 、B 两种机器人每小时分别搬运化工原料100千克和80千克.26.(1)①.(2)不正确,把分母去掉了. (3)正确的解答为:2313111(1)(1)(1)(1)x x x x x x x x x --+-=+---+-+ ()()222111x x x x -==+-+. 当2x =时,原式22213==+.27.(1)1+n n. (2)由于1111......133557(21)(21)n n ++++⨯⨯⨯-+ =)7151(21)5131(21)311(21-+-+-+…+)121121(21+--n n =)1211(21+-n =12+n n. 根据题意,得12+n n =3517,解得17=n .经检验17=n 是方程的根,所以17=n .28.设该公司今年到台湾采购苹果的成本价格为x 元/公斤.根据题意列方程,得100000100000200002x x-=,解得 2.5x =. 经检验 2.5x =是原方程的根.当 2.5x =时,25x =答:实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤.。

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上第十五章《分式》单元检测卷(含答案)(7)一、选择题(每题3分,共18分)1.下列运算错误的是( )A.()()122=-a b b a -B.1-=+--ba b a C.b a b a b a b a 321053.02.05.0-+=-+ D.ab a b b a b a +-=+- 2.若分式43+-x x 的值为0,则( ) A .3=x B .0=x C .3-=x D .4-=x3.化简aa 3,正确的结果为( ) A .a B .a 2 C .a -1 D .a -24.分式方程121+=x x 的解为( )A. 3=xB. 2=xC. 1=xD. 1-=x5.若1-=x , 2=y ,则y x y x x 8164222---的值等于( ) A. 171- B. 171 C. 161 D. 151 6.某电子元件厂准备生产4 600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )A .333.123002300=+x xB .333.123002300=++x x xC .333.146002300=++x x xD .333.123004600=++xx x 二、填空题(每题4分,共32分)7.在代数式2x ,1+x x ,y x +2,3x 中,是分式的是_________________. 8.使式子111-+x 有意义的x 的取值范围是___________. 9.计算:=+++1212x x x _____________. 10.已知x =1是分式方程xk x 311=+的根,则实数k =_________. 11.观察下列按顺序排列的等式:a 1=311-,a 2=4121-,a 3=5131-, a 4=6141-,…,试猜想第n 个等式(n 为正整数)a n =_________. 12.对于非零的两个实数a ,b ,规定a ⊗b =a b 11-,若1⊗(x +1)=1,则x 的值为__________.13.已知k ac b b c a c b a =+=+=+,则k 的值是__________. 14.若关于x 的方程x m x x 21051-=--无解,则m =_________. 三、解答题(16题6分,19、20题每题10分,其余每题8分,共50分)15.(1)计算:a a a a a 1212+-÷⎪⎭⎫ ⎝⎛-;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.46222---+x x x )2)(2(6)2)(2()2(2-+---+-=x x x x x x ………第一步 6)22+--=x x (………………………第二步642+--=x x …………………………第三步2+=x ……………………………………第四步小明的解法从第______步开始出现错误,请写出正确的化简过程.16.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造分式,然后进行化简,并求当a =6,b =3时该分式的值.17.如果实数x 满足0322=-+x x ,求代数式11212+÷⎪⎪⎭⎫ ⎝⎛++x x x 的值.18.解方程:(1)14122=---x x x ;(2)x x x x x x x 22222222--=-+-+.19.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3 000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价的10%的价格销售.乙超市销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2 100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.20.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案及点拨第十五章过关自测卷一、1.D 点拨:根据添括号法则、分式的符号变化法则、分式的基本性质逐一验证四个选项进行选择.因为()()()()12222=--=--b a b a a b b a ,所以排除A ;因为()1-=++-=++-=+--ba b a b a b a b a b a ,所以排除B ;因为()()b a b a b a b a b a b a 32105103.02.0105.03.02.05.0-+=⨯-⨯+=-+,所以排除C ;因为-=+-b a b a ab a b +-,所以应选D.2.A 点拨:分式43+-x x 的值为0的条件是分子03=-x ,分母04≠+x ,∴3=x .分式的值为0,则分式的分子为0,分母不为0.3.B 点拨:利用分式的基本性质进行约分.分式的约分,先确定公因式,然后把公因式约去.4.C 点拨:去分母化为整式方程求解,并进行检验.5.D 点拨:先化简,再求值. 原式()()()()()yx y x y x y x y x y x y x x 818888882+=-+-=-++-=,当2,1=-=y x 时,原式1512811=⨯+-=.故选D.6.B 点拨:甲车间每天生产电子元件x 个,则乙车间每天生产电子元件 1.3x 个,甲、乙两车间每天共生产电子元件(x +1.3x )个,根据题意可得方程为333.123002300=++xx x . 二、7. 1+x x 点拨:因为3,2,2xy x x +的分母不含字母,所以它们都不是分式,而是整式;因为1+x x的分母含有字母,所以它是分式.8. x ≠1 点拨:分式有意义的条件是分母不为0,故1-x ≠0,所以x ≠1.9.2 点拨:原式()2112122=++=++=x x x x . 10.61 点拨:把x =1代入分式方程得13111k =+,所以61=k . 11.211+-n n 12.21- 点拨:根据规定,得()11111-+=+⊗x x ,所以1111=-+x ,解得21-=x .经检验,21-=x 是原分式方程的解.13.1-或2 点拨:(1)当a ,b ,c 不相等时,由已知可得,22c ac b ab +=+①,22a ac b bc +=+②;①-②得,()a c b +-=,代入原式得1-=k ; (2)当a =b =c 时,2=k .所以1-=k 或2.14. 8- 点拨:原方程可化为()5251--=--x mx x ,方程两边都乘()52--x ,得()m x =--12,解得22--=m x ,∵方程无解,∴()052=--x ,∴5=x ,∴522=--m ,解得8-=m . 分式方程无解的情况就是出现了增根,而这个增根产生的原因就是在从分式方程转化为整式方程时方程两边都乘了个0,据此可以得出增根的值,从而可以求得未知字母的值.三、15.解:(1)原式()111122-+=-⋅-=a a a a a a . (2)二;()()()()()()()()()22222642226222246222-++=-++--=-+---+-=---+x x x x x x x x x x x x x x x x .21-=x 16.解:共有六种计算方法,分别是:(1)333222ba b a b ab a -=-+-,当a =6,b =3时,原式=1.(2)交换(1)中分式的分子和分母的位置,结果也为1.(3)33322ba b a b a +=--,当a =6,b =3时,原式=3.(4)交换(3)中分式的分子和分母的位置,结果为31.(5)22222b a b ab a -+-b a b a +-=,当a =6,b =3时,原式=31.(6)交换(5)中分式的分子和分母的位置,结果为3.点拨:任写一种即可.17.解:原式()22112222++=+⋅+++=x x x x x x ,∵0322=-+x x ,∴322=+x x ,∴原式=3+2=5.18.解:(1)方程两边同乘()()22-+x x ,去分母得()()()2212-+=-+x x x x .解得23-=x .检验:当23-=x 时,()()022≠-+x x ,所以23-=x 是原分式方程的解. (2)方程两边同乘()2-x x ,去分母得()()()222222-=+-+-x x x x x ,解得21-=x . 经检验,21-=x 是原分式方程的根. 19.解:(1)设苹果进价为每千克x 元. 由题意,得x 400+10%21004003000=⎪⎭⎫⎝⎛-x x ,解得x =5.经检验,x =5是原方程的根.答:苹果进价为每千克5元.(2)由(1)知:每个超市苹果总量为60053000=(千克),甲超市大、小苹果售价分别为10元和5.5元. ∴乙超市获利:1650525.510600=⎪⎭⎫⎝⎛-+⨯(元).∵2 100>1 650, ∴甲超市的销售方式更合算.点拨:(1)由题意得等量关系“大苹果的利润+小苹果的利润=2 100元”,其中“利润=数量×每千克的利润”. 在这个问题中,涉及基本数量关系“进价=数量×每千克的进价”,据此可直接设未知数,即设苹果进价为每千克x 元,并用未知数表示出所进苹果的数量,即两超市分别购进苹果x3000千克,从而利用等量关系构建方程模型解决问题;(2)先计算乙超市的获利,再进行比较即可. 20.解:(1)设乙队单独做需要z 天才能完成任务,由题意得120140130=⨯⎪⎭⎫⎝⎛++z z .解得z =100.经检验,z =100是原方程的解. 答:乙队单独做需要100天才能完成任务.(2)由题意得⎪⎪⎩⎪⎪⎨⎧=+,70,15,110040<<y x y x (x ,y 都是正整数)∴⎪⎩⎪⎨⎧-,15,7025100<<x x (x 是正整数) 解得12<x <15(x 是正整数). ∴正整数x =13或14.当x =13时,x y 25100-=不是整数,应舍去;当x =14时,6525100=-=x y ,符合条件.∴甲实际做了14天,乙实际做了65天.点拨:(1)根据甲、乙的工作量的和等于工作总量,列方程求解; (2)结合已知条件分别列出不等式、等式,最后求出满足题意的解.人教版八年级数学(上册)第15章分式单元检测卷(附带答案)一.选择题(共12小题,满分36分,每小题3分) 1.(3分)在代数式x ,,﹣,,中,分式的个数有( )A .1个B .2个C .3个D .4个2.(3分)下列分式的值,可以为零的是( ) A .B .C .D .3.(3分)使分式的值等于0的x 的值是( )A .x =﹣或x =B .x =﹣C.x=D.x=或x=﹣4.(3分)下列等式中不一定成立的是()A.B.C.D.5.(3分)化简的结果是()A.B.C.D.6.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的7.(3分)分式,的最简公分母是()A.a B.b C.ab D.a2b 8.(3分)在分式,,中,最简分式有()A.0个B.1个C.2个D.3个9.(3分)若表示一个整数,则整数n可取值的个数是()A.6B.5C.4D.3个10.(3分)把分式方程去分母可得()A.3x﹣5)﹣(x﹣5)(x﹣3)+1=0B.3x﹣5+(x+5)(x﹣3)+(x+5)(x﹣5)=0C.3(x﹣5)﹣(x+5)(x﹣3)+(x+5)(x﹣5)=(x+5)(x﹣5)D.3(x﹣5)﹣(x+5)(x﹣3)+(x+5)(x﹣5)=011.(3分)下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1D.(1﹣)÷=112.(3分)从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定二.填空题(共6小题,满分24分,每小题4分)13.(4分)当x时,的值是零.14.(4分)当时,分式没有意义.15.(4分)计算:+=.16.(4分)若分式的值为负数,则x的取值范围是.17.(4分)如果2<a<3,则的值是.18.(4分)某校师生到距离学校15千米的工地参加义务劳动,一部分人骑自行车,出发40分钟后,其余的人乘汽车出发,结果同时到达.已知汽车的速度是自行车的3倍,设骑自行车的人的速度是x千米/时.则可得方程.三.解答题(共8小题,满分60分)19.(8分)计算:(1)(2)20.(8分)解方程:(1)1﹣=(2)﹣=.21.(6分)一汽船顺流航行46千米和逆流航行34千米的时间和恰好等于它在静水中航行80千米的时间,已知水流速度是2千米/时,求汽船在静水中航行的速度.22.(6分)已知关于x的方程有增根,则k为多少?23.(6分)已知=2,求代数式的值.24.(8分)列分式方程解应用题:“六一”儿童节前,某玩具商店根据市场调查,用2 500元购进一批儿童玩具,上市后很快脱销,接着又用4 500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.①求第一批玩具每套的进价是多少元?②如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?25.(9分)已知:x2+1=4x(x≠0),求①x2②(x﹣)2③x4+.26.(9分)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程中甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数;(3)甲工程队独做一天需1000元,乙工程队独做一天需600元,这项工程要求在30天内完成,请你设计方案,你的方案中哪种最省钱?人教版八年级数学上册第15章分式单元检测参考答案一.选择题(共12小题,满分36分,每小题3分)1.B.2.D.3.C.4.C.5.D.6.B.7.C.8.B.9.A.10.D.11.C.12.C.二.填空题(共6小题,满分24分,每小题4分)13.=4.14.x=4.15..16.x<.17.﹣1.18.﹣=.三.解答题(共8小题,满分60分)19.解:(1)原式=×=1;(2)原式=++=+=.20.解:(1)去分母得:x2﹣25﹣x﹣5=x2﹣5x,解得:x=,经检验x=是分式方程的解;(2)去分母得:3x+3﹣2x+2=1,解得:x=﹣4,经检验x=﹣4是分式方程的解.21.解:设汽船在静水中航行的速度为x千米/时,根据题意得:+=,解得:x=,经检验,x=是所列分式方程的解.答:汽船在静水中航行的速度为千米/时.22.解:∵关于x的方程有增根,∴x﹣3=0,则x=3,∵原方程可化为4x=13﹣k,将增根x=3代入得k=1.23.解:∵=2,∴xy=2(x+y),∴====﹣1.24.解:①设第一批玩具每套的进价是x元,根据题意可得:×1.5=,解得:x=50,经检验x=50是分式方程的解,符合题意.答:第一批玩具每套的进价是50元;②设每套售价是y元,×1.5=75(套).50y+75y﹣2500﹣4500≥(2500+4500)×25%,解得:y≥70,答:如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是70元.25.解:①∵x2﹣4x+1=0,∴x2=4x﹣1,∴x2+========14;②(x﹣)2=x2+﹣2=14﹣2=12;③x4+x﹣4=x4+=(x2+)2﹣2=142﹣2=194.26.解:(1)设乙工程队单独完成这项工程需要x天,根据题意得:+×(10+20)=1,解之得:x=60,经检验:x=60是原方程的解,答:乙工程队单独完成这项工程所需要的天数为60天.(2)根据题意得:1÷(+)=24.答:两队合做完成这项工程所需的天数为24天.(3)∵甲独做或乙独做在时间上均不符合,选择甲乙合作,①甲乙做的时间相同,都做24天需要的钱数为24×(1000+600)=38400(元);②甲做30天,则乙做(1﹣)÷=15天;需要的钱数为:1000×30+15×600=39000元; ③乙做30天,则甲做(1﹣)÷=20天,需要的钱数为:600×30+1000×20=38000元. 甲做20天,乙做30天,最省钱.人教版八年级数学上册第十五章分式单元测试题一、选择题(共10小道,每小题3分,共30分)1、(2019•广西贵港)若分式的值等于0,则x 的值为( )A .±1B .0C .﹣1D .12. 下列运算中,错误..的是( ). A.(0)a ac c b bc =≠ B. 1a b a b--=-+ C.0.55100.20.323a b a ba b a b ++=-- D. x y y x x y y x --=++ 3. ( 2019兰州市) 化简:12112+-++a a a = ( ) A. a -1 . B. a+1 . C.11+-a a . D. 11+a . 4.若分式x yx y+-中的x ,y 的值变为原来的100倍,则此分式的值( ). A .不变 B .是原来的100倍 C .是原来的200倍 D .是原来的11005.若2(a +与1b -互为相反数,则1b a-的值为( )AB 1C 1D .16.如果2ab=,则2222a ab b a b -++= ( ). A .45 B .1 C .35D .2 7.(2019甘肃陇南)下面的计算过程中,从哪一步开始出现错误( )A .①B .②C .③D .④【分析】直接利用分式的加减运算法则计算得出答案.8.化简(a ﹣1)÷(﹣1)•a 的结果是( ) A .﹣a 2 B .1C .a 2D .﹣19. (2019▪黑龙江哈尔滨)方程=的解为( ) A .x =B .x =C .x =D .x =10 。

2015-2016年人教版八年级数学上第15章分式同步练习题及答案

2015-2016年人教版八年级数学上第15章分式同步练习题及答案

八年级数学上册第15章分式同步练习题一、选择题1.下列式子是分式的是()A. B. C. D.2.等于()A.aB.C. D.3.列分式中是最简分式的是()A. B. C. D.4.把分式中的a、b都扩大6倍,则分式的值()A.扩大12倍B.不变C.扩大6倍D.缩小6倍5.若,则的值是()A. B. C. D.6.使代数式有意义的x的取值范围是()A.x≥0B.C.x取一切实数D.x≥0且7.计算的结果是()A. B. C.3 D.﹣38.当x= 时,分式的值为0.二、填空题9.分式方程的解是.10.方程的解为.11.要使有意义,则x的取值范围是.12.分式的值为零时,实数a、b满足条件.13.若分式方程的解为正数,则a的取值范围是.14.若分式的值为零,则x= .15.符号“”称为二阶行列式,规定它的运算法则为:,请你根据上述规定求出下列等式中的值.若,那么。

16.化简(1+)÷的结果为 .三、计算题17.(1)计算:()﹣1﹣(﹣1)2015﹣(π﹣3.14)0+|﹣5|(2)先化简÷(a+1)+,然后在﹣1,1,2中选一恰当值代入求值.18.解方程:.19.先化简,再求值:,其中x=.20.先化简,然后从的范围内选取一个合适的整数作为的值代入求值.四、解答题21.某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.(1)甲、乙两队单独完成建校工程各需多少天?(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?22.问题:当a为何值时,分式无意义?小明是这样解答的:解:因为,由a-3=0,得a=3,所以当a=3时,分式无意义.你认为小明的解答正确吗?如不正确,请说明错误的原因.23.先化简,再求值:,其中x是方程x2-2x=0的根.24.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?参考答案1.B.2.B.3.A.4.C.5.C.6.D7.A8.19.x=-410.x=411.x>3.12.a=b且a≠﹣1.13.a<8,且a≠4.14.2.15.416.1.17.(1)7;(2)原式=;当a=2时,原式=5.18.x=-.19.+1;3.20.化简得,当x=0时,原式=.(或当x=-2时,原式=)21.(1)甲单独完成建校工程需180天,乙单独完成建校工程需120天;(2)乙工程队平均每天的施工费用最多1.2万元.22.不正确,理由见解析.23.-1.24.(1)第一批购进书包的单价是80元.(2)商店共盈利3700元.。

【人教版】2016年八年级上:第15章《分式》全章检测题(含答案)

【人教版】2016年八年级上:第15章《分式》全章检测题(含答案)

第十五章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2015·黔西南州)分式1x -1有意义,则x 的取值范围是( B ) A .x>1 B .x ≠1 C .x<1 D .一切实数2.下列各分式与b a相等的是( C ) A .b 2a 2 B .b +2a +2C .ab a 2D .a +b 2a 3.下列分式的运算正确的是( D )A .1a +2b =3a +bB .(a +b c )2=a 2+b 2c 2C .a 2+b 2a +b =a +bD .3-a a 2-6a +9=13-a4.(2015·泰安)化简(a +3a -4a -3)(1-1a -2)的结果等于( B ) A .a -2c B .a +2 C .a -2a -3 D .a -3a -25.若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( A ) A .5 B .-5 C .3 D .-36.已知a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,比较a ,b ,c ,d 的大小关系,则有( C )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b7.学完分式运算后,老师出了一道题“化简:x +3x +2+2-x x 2-4”. 小明的做法是:原式=(x +3)(x -2)x 2-4-x -2x 2-4=x 2+x -6-x -2x 2-4=x 2-8x 2-4; 小亮的做法是:原式=(x +3)(x -2)+(2-x)=x 2+x -6+2-x =x 2-4;小芳的做法是:原式=x +3x +2-x -2(x +2)(x -2)=x +3x +2-1x +2=x +3-1x +2=1. 其中正确的是( C )A .小明B .小亮C .小芳D .没有正确的8.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m>2 B .m ≥2 C .m ≥2且m ≠3 D .m>2且m ≠39.(2015·鄂尔多斯)小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x 本笔记本,则根据题意可列方程( B )A .24x +2-20x =1B .20x -24x +2=1C .24x -20x +2=1D .20x +2-24x=1 10.如果a ,b ,c 是非零实数,且a +b +c =0,那么a |a|+b |b|+c |c|+abc |abc|的所有可能的值为( A )A .0B .1或-1C .2或-2D .0或-2二、填空题(每小题3分,共24分)11.已知空气的单位体积质量是0.001 239 g /cm 3,则用科学记数法表示该数为__1.239×10-3__.12.当x =1时,分式x -b x +a 无意义;当x =2时,分式2x -b 3x +a的值为0,则a +b =__3__. 13.计算:(a 2b)-2÷(2a -2b -3)-2=__4a 8b 8__(结果只含有正整数指数幂). 14.(2015·长沙)方程5x =7x -2的解是x =__-5__. 15.若b a -b =12,则3a 2-5ab +2b 22a 2+3ab -6b 2的值是__23__. 16.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y的值是__-32__. 17.轮船在顺流中航行64 km 与在逆流中航行34 km 一共用去的时间,等于该船在静水中航行180 km 所用的时间.已知水流的速度是每小时3 km ,求该船在静水中的速度.设该船在静水中的速度为x km /h ,依题意可列方程__64x +3+34x -3=180x__. 18.(2015·黑龙江)关于x 的分式方程m x 2-4-1x +2=0无解,则m =__0或-4__. 三、解答题(共66分)19.(12分)计算或化简: (1)38-2-1+|2-1|; (2)2x x 2-4-1x -2; (3)3-a 2a -4÷(a +2-5a -2). 解:原式=12+2 解:原式=1x +2 解:原式=-12a +620.(8分)解分式方程: (1)1x -x -2x =1; (2)12x -1=12-34x -2. 解:x =32解:x =321.(10分)化简求值:(1)(2015·淮安)先化简(1+1x -2)÷x -1x 2-4x +4,再从1,2,3三个数中选一个合适的数作为x 的值,代入求值;解:原式=x -2,当x =3时,原式=1(注意x =1,2时分式无意义)(2)已知x 2x 2-2=3,求(11-x -11+x )÷(x x 2-1+x)的值. 解:原式=-2x 2,由已知得x 2=3,∴原式=-2322.(6分)当x 取何值,式子3(2x -3)-1与12(x -1)-1的值相等. 解:令3(2x -3)-1=12(x -1)-1,∴32x -3=12(x -1),解得x =34.经检验,x =34是原方程的解,∴当x =34时,式子3(2x -3)-1与12(x -1)-1的值相等23.(8分)(2015·宜宾)近年来,我国逐步完善养老金保险制度,甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?解:设乙每年缴纳养老保险金为x 万元,则甲每年缴纳养老保险金为(x +0.2)万元.根据题意得15x +0.2=10x,解得x =0.4,经检验,x =0.4是分式方程的解,且符合题意,∴x +0.2=0.4+0.2=0.6(万元),则甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元24.(10分)小明去离家2.4 km 的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min ,于是他立即步行(匀速)回家取票,在家取票用时2 min ,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min ,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?解:(1)设步行的速度为x 米/分钟,则骑自行车的速度为3x 米/分钟.依题意得2400x -24003x=20,解得x =80,则小明步行的速度是80米/分钟(2)来回取票总时间为2400x +24003x+2=42(分钟)<45(分钟),故能在球赛开始前赶到体育馆25.(12分)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)解:(1)设甲队单独完成需x 天,则乙队单独完成需1.5x 天,由题意得120x +1201.5x=1,解得x =200,经检验,x =200是原方程的解,且符合题意,∴1.5x =300,则甲队单独完成需200天,乙队单独完成需300天(2)设甲队每天的施工费为y 元,则200(y +150×2)≤300(10000+150×2),解得y ≤15150,即甲队每天施工费最多为15150元。

八年级数学上册第十五章分式检测题含答案.doc

八年级数学上册第十五章分式检测题含答案.doc

第十五章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·湘潭)分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.(2016·巴中)一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B )A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D )A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.(2016·新疆)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.(2016·南充)计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x__.13.(2016·湖州)方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.(2016·毕节)若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.(2016·眉山)已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分)17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(2016·玉林)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)(2016·德州)a 2-b 2a ÷(a -2a -b2a ).解:a +ba -b18.(6分)(2016·巴中)x 2+x x 2-2x +1÷(2x -1-1x).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)(2016·吉林)2x +3=1x -1;解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)(2016·襄阳)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程? (2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x)=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y×130≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程。

人教版八年级上数学第十五章分式检测题含答案解析

人教版八年级上数学第十五章分式检测题含答案解析

第十五章 分式检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列各式中,分式的个数为( )3x y -,21ax -,错误!未找到引用源。

,3a b -,12x y +,12x y +,2123x x =-+. A.5 B.4 C.3 D.22.(2016·湖南衡阳中考)如果分式错误!未找到引用源。

有意义,则x 的取值范围是( ) A.全体实数 B. x 错误!未找到引用源。

C.x =1 D.x 错误!未找到引用源。

3.(2015·山西中考)化简22222a ab b ba b a b ---++的结果是( ) A.a a b - B.b a b - C.a a b+ D.ba b+ 4.(2016·河北中考)下列运算结果为x -1的是( ) A.1-错误!未找到引用源。

B.错误!未找到引用源。

·错误!未找到引用源。

C.错误!未找到引用源。

÷错误!未找到引用源。

D.错误!未找到引用源。

5.若分式122+--x x x 的值为零,则错误!未找到引用源。

的值为( )A.错误!未找到引用源。

或错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

6.(2016四川南充中考)某次列车平均提速20 km/h.用相同的时间,列车提速前行驶 400 km ,提速后比提速前多行驶100 km.设提速前列车的平均速度为x km/h ,下列方程正确的是( )A.错误!未找到引用源。

=错误!未找到引用源。

B.错误!未找到引用源。

=错误!未找到引用源。

C.错误!未找到引用源。

=错误!未找到引用源。

D.错误!未找到引用源。

=错误!未找到引用源。

7.对于下列说法,错误的个数是( )①2πx y -是分式;②当1x ≠时,2111x x x -=+-成立;③当错误!未找到引用源。

时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-.A.6B.5C.4D.38.把12x -,()()123x x -+,()223x +通分的过程中,不正确的是( ) A.最简公分母是(错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15章《分式》单元测试题
(时间60分钟 满分120分)
班级 姓名 成绩
一、选择题(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在相应的位置上.
1. 下列式子:①x 2;②y x y x 22321-;③41-;④a +51;⑤5
n m -.其中是分式的是( ) A .①③④ B .①②⑤ C .③⑤ D .①④
2、使式子1
x 1-有意义的x 的取值范围为( ) A .x ≠0 B .x ≠1 C .x ≠-1 D .x ≠±1
3、下列变形不正确的是( )
A .x-1122x x x -=---
B .-b-a a b c c +=-
C .-a+b a b c c +=-
D .22
x -112323x x x
-=--- 4. 与分式
2
3.015.0+-x x 的值,始终相等的是( ) A 、2315+-x x B 、203105+-x x C 、2032+-x x D 、2315 5.下列各式中,正确的是( )
A .3355x x y y --
=- B .a b a b c c +-+-= C . a b a b c c ---=- D . a a b a a b -=-- 6.下列判断错误的是( )
A .代数式错误!未找到引用源。

是分式
B .当错误!未找到引用源。

时,分式错误!未找到引用源。

的值为0
C .当错误!未找到引用源。

时,分式错误!未找到引用源。

有意义
D .当错误!未找到引用源。

时,分式错误!未找到引用源。

没有意义
7、下列各式是最简分式的是( )
A .a 84
B .a b a 2
C . y
x -1 D .22a b a b -- 8.方程
2
344222+=---x x x x 的增根是( ) A.2 B.2- C.2或2- D.4 9、某饭馆用320元钱到商场去购买“白猫”洗洁精,经过还价,每瓶便宜0.5元,结果比用原价买多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为 ( )
A .320320200.5x x -=-
B .320320200.5x x -=-
C .3203200.520x x -=-
D .3203200.520x x
-=-
10.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x 千米/小时,则所列方程正确的为( )
A .+=
B .﹣=
C .+10=
D .﹣10=
二、填空题(本大题6个小题,每小题4分,共24分)在每小题中,请将答案填在横线上.
11.1纳米=0.000000001米,则2纳米用科学记数法表示为 米.
12.当x 时,分式15x -无意义;当m = 时,分式211
m m --的值为零. 13.各分式
1
21,1,11222++---x x x x x x 的最简公分母是 . 14.已知x y =32;则x y x y -+= _________. 15.已知23(1)(2)12
x A B x x x x -=+-+-+,则A =______,B =________. 16.已知:15a a +=,则422
1a a a ++=_____. 三、解答题(本大题3个小题,每小题6分,共18分)解答时每小题必须给出必要的演算过程或推理步骤.
17. 计算:(1) ())1
020161175π-⎛⎫---+ ⎪⎝⎭
18. 解分式方程:
2112-=-x x 19、解方程:(1)512552x x x
+=--;
四、解答题(本大题3个小题,每小题7分,共21分)解答时每小题必须给出必要的演算过程或推理步骤. 20.化简:19)1(9
61222--⨯+÷++-a a a a a a
21、若311=-y x ,则求y
xy x y xy x ----2232的值.
22. 某校为美化校园,计划对面积1800㎡的区域进行绿化,安排甲、乙两个工程队完成。

已知加队每天完成绿化面积是乙队每天完成绿化面积的2倍,并且在独立完成面积为100㎡的绿化时,甲队比乙队少用1天 求甲、乙两队每天能完成绿化的面积分别是多少㎡?
五. 解答题:(本题共3题,每小题9分,共27分)解答时每小题必须给出必要的演算过程或推理步骤.
23. 先化简,再求值: 错误!未指定书签。

,其中a 是满足不等组⎩⎨
⎧>>-3
227a a 的整数解.
24.先化简,再求值:1
122444222--⎪⎪⎭⎫ ⎝⎛----+÷+--x x x x x x x x ,其中x 满足032=--x x 。

25、已知某项工程由甲、乙两队合作12天可以完成,共需工程费用13800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费比乙队多150元。

⑴甲、乙两队单独完成这项工程分别需要多少天;
⑵若工程管理部分决定从两个队中选一个队单独完成此项工程,以节约资金的角度考虑,应选择哪个工程队?请说明理由。

相关文档
最新文档