PLC与变频器控制电机多段速运行

合集下载

变频器多段调速的PLC控制

变频器多段调速的PLC控制

图5-2-3 变频器多段调速的 PLC控制项目实物模拟接线图
PLC原理及应用
项目实施 (五)程序编写
PLC原理及应用
图5-2-4 变频器多段调速的PLC控制项目状态转移图
项目实施 (五)程序编写
PLC原理及应用
图5-2-5 变频器多段调速的PLC控制项目梯形图程序
项目实施 (五)程序编写
PLC原理及应用
输入端(I)
输出端(O)
外接元件
输入端子
外接元件
输出端子
起动按钮SB1
X0
变频器STF端子
Y0
停止按钮SB2
X1
变频器RH端子
Y1
变频器RM端子
Y2
变频器RL端子
Y3
PLC原理及应用
项目实施
(二)画出PLC的 I/O接线图
PLC原理及应用
图5-2-2 变频器多段调速的PLC控制项目电气接线原理图
项目实施
备注
“1”表示外接开关接通,“0”表示外接开关断开
PLC原理及应用
项目知识准备
2.用PLC控制变频器实现调速的方法
用变频器进行调速,可将变频器的调速参数预先内部设 定,再用变频器的调速输入端子进行选择切换,用PLC进 行控制时,PLC的输出端子控制变频器的调速输入端子, 通过运行PLC程序实现控制。
PLC原理及应用
项目实施
(六)程序调试 2.输入程序并传送到PLC,然后运行调试, 看是否符合要求,否则要检查接线、变频器 参数及PLC程序,直至按要求运行。
(1)按下起动按钮SB1,电动机先以30Hz的速 度运行6s,后转为以40Hz的速度运行10s,再转为 以60Hz的速度运行10s,然后停止运行。运行时观 察变频器显示的频率是否正确。

应用汇川PLC和变频器实现电机十五段调速

应用汇川PLC和变频器实现电机十五段调速

图2 异步电机三段调速的PLC程序流程
3 十五段调速的实现
3.1 控制方案设计 在完成三段电机调速测试的基础上,本研究通过设置MD310变频器端子DI2—DI5的多段模式及
H M I 界 面 ,实 现 异 步 电 机 十 五 段 调 速 。异 步 电 机 十 五 段 速 度 的 设 定 根 据 额 定 转 速 的 比 例 进 行 分 配 ,本 研究设定相邻两段转速之间占额定转速的比例差为6%,异步电机十五段调速的变频器参数设置如表2 所示。实训平台选择的异步电机额定转速为1 500 r/min,异步电机的第一段到第十五段转速的变化为 90~1 350 r/min。假设多段速度选择分为自动和手动两种模式,设置PLC控制电机调速的过程如下: ① 当 按 下 启 动 按 键 时 ,系 统 默 认 自 动 选 择 段 数 模 式 ,电 机 从 第 一 段 转 速 开 始 定 时 运 行 ,定 时 结 束 后 自 动选择第二段转速运行,以此类推,按照顺序进行调速。当电机自动完成十五段调速后,若无其他按键 按下,则电机再次选择第一段转速循环运行。在电机自动调速过程中,如有其他按键按下,则按照按键 功能运行。②如果按下启动按键,选择手动操作模式,该模式主要包括按照输入的段数、按照输入的转 速和按照输入的频率三种调速方式。③在电机运行过程中,任意时刻,只要按下停止按键,电机即停止 运行。选择任一种调速方式,对应的段数、转速和频率均在HMI界面上显示。异步电机十五段调速的按 键地址设置如表3所示。
- 33 -
第32卷
苏州市职业大学学报
基本的实训项目基础上[10-12],可以对实训项目进行拓展和创新,增加已有实训项目的功能或者自行设计 新的实训项目,这既锻炼了学生独立思考和解决问题的能力,又培养了学生的团队协作能力和创新意识。

利用PLC和变频器实现多电机速度同步控制

利用PLC和变频器实现多电机速度同步控制

利用PLC和变频器实现多电机速度同步控制在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。

但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。

下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。

1、利用PLC和变频器实现速度同步控制薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。

在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。

电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。

在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。

印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。

但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。

为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。

牵引电机和印刷电机采用变频调速,其控制框图如图1所示。

在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。

实训8 PLC和变频器联机实现多段速频率控制

实训8 PLC和变频器联机实现多段速频率控制
输出频率与输入端子之间的关系 各输入端子状态 S2 OFF OFF ON S1 OFF ON OFF 输出频率 OFF 固定频率1 固定频率2
ON
ON
固定频率3
实训内容
1、画出硬件接线图
~380V QS +24V SB1 SB2 L1 L2 L3
I0.0 I0.1
Q0.0 Q0.1 Q0.2
5 6 7 +24V 8 9 0V
选择固定频率设定值
(5)控制工艺设置 序号 16 17 18 19 20 21 22 23 参数号 P0003 P0004 P0701 P0702 P0703 P0003 P0004 P1001 出厂值 1 0 1 1 1 1 0 0 设置值 2 7 17 17 1 2 10 10 命令和数字I/O 选择固定频率 选择固定频率 ON接通正转,OFF停止 设用户访问级扩展级 设定值通道和斜坡函数发生器 设置固定频率1(Hz) 说明 设用户访问级扩展级
24
25
P1002
P1003
5
10
20
-50
设置固定频率2(Hz)
设置固定频率3(Hz)
7、运行调试及操作控制
将PLC置于运行模式,开启程序状态监控。 (1)按照变频器外部接线图完成变频器的接线,认真检查, 确保正确无误。
(2)打开电源开关,按照参数功能表正确设置变频器参数。 (3)按下起动按钮SB2,电动机起动并运行在第一段,频 率为10Hz。 (4)延时20s后电动机运行在第二段,频率为20Hz。 (5)再延时10s后电动机反向运行在第三段,频率为50Hz。 (6)按下停止按钮SB1 ,电动机停止运行。
MM420
PLC
M 3~
2、列出I/O地址分配表

变频器多段速的PLC控制

变频器多段速的PLC控制

变频器多段速的PLC控制陈竹现代功率电子技术的发展,变频器的性能日新月异,有调速范围宽、调速精度高、动态响应快、运行效率高、功率因数高、操作方便、便于同其他设备接口等一系列优点,使得变频器的用途越来越广。

变频器分为交--交和交--直--交两种形式。

交--交变频器可将工频交流直接转换成频率、电压均可控制的交流;交--直--交变频器则先把工频交流通过整流器转换成直流,然后再把直流转换成频率、电压均可控制的交流,其基本构成如图1所示。

主要由主电路(包括整流器、中间直流环节、逆变器)和控制电路组成。

图1 变频器基本结构整流器主要是将电网的交流整流成直流;逆变器是通过三相桥式逆变电路将直流转换成任意频率的三相交流;中间环节又叫中间储能环节,由于变频器的负载一般为电动机,属于感性负载,运行中中间直流环节和电动机之间总会有无功功率交换,这种无功功率将由中间环节的储能元件(电容器或电抗器)来缓冲;控制电路主要是完成对逆变器的开关控制,对整流器的电压控制以及完成各种保护功能。

1. 认识一台变频器LG公司生产的SV-iG5系列变频器,是一种功能强大、紧凑小巧的经济型变频器,其外观如图2所示。

该系列的变频器具有如下特性:图2 iG5变频器功率/电压等级:~ kW,200-230VAC,1相;~ kW,200-230VAC,三相;~ kW,380-460VAC,三相。

变频器类型:采用IGBT的PWM控制。

控制方式:V/F空间矢量技术内置总线:RS-485,ModBus—RTU内置PID控制,制动单元输出150%转矩防失速功能,8步速控制,三段跳跃频率三个多功能输入,一个多功能输出,模拟输出(0~10V)1~10kHz载波频率虽然iG5的功能提高,但体积确比以前的iG系列减小,更便于安装。

iG5最大减小了总体积的50%,采用小的控制面板和重量较轻的导轨安装。

使用更先进的控制盘结构和系统设计。

广泛应用于纺织、洗涤、加工机械等领域。

『PLC在变频调速中的应用三』变频器多段速调速、PNP与NPN接线

『PLC在变频调速中的应用三』变频器多段速调速、PNP与NPN接线

『PLC在变频调速中的应用三』变频器多段速调速、PNP与NPN接线原创2017-08-27认真PLC技术支持本系列共分四节:变频器的基本知识变频器面板调速变频器多段速模拟量无极调速把PLC与变频器在调速方面的应用基本都介绍了,本系列主要以西门子S7-200系列PLC与MM440变频器为主。

本篇是系列第三讲:多段速多段速在变频器控制中是应用比较广泛的一种调速方式。

本文知识点包括接线图、变频器参数、程序,有条件的可以边看边做实验。

PLC技术是一门实践性技术,多动手多思考进步才快。

用操作面板手动调速比较简单,面板调速不易实现自动控制。

变频器常见的控制方式是,通过端子调整变频器运行模式,本文通过对多段速的应用,介绍端子控制模式。

1、继电器输出型PLC控制多段速例子:用一台继电器输出型CPU,控制一台MM440变频器。

当按下按钮SB1时,电机以5Hz的频率正转。

当按下按钮SB2时,电机以15Hz的频率正转。

当按下按钮SB3时,电机以15Hz的频率反转。

当按下按钮SB4时,电机停止运行。

电动机的技术参数,功率0.06KW、额定转1430r/min、额定电压380V、额定电流0.35A、额定频率50Hz。

设计方案并编写程序。

1.1、主要的软件和硬件配置①软件:STEP 7 MicroWIN V4.0 。

②硬件:变频器MM440一台。

③硬件:CPU226CN一台。

④硬件:三相异步电动机一台。

⑤硬件:编程电缆一根。

电气接线图如下1.2、变频器参数设置根据上图所示设定为:当端子DIN1接通时对应一个频率,当端子DIN1和DIN2同时接通时对应一个频率,当端子DIN3接通时为反转,断开时为正转。

变频器参数较多也比较灵活,当熟悉了参数后可根据自己的工艺随时调整。

本例各个端子功能就根据以上设定。

根据以上配置设定如下参数:P0003=2:专家级P0010=1:修改电机参数P0304=380:额定电压P0305=0.35:额定电流P0307=0.06:额定功率P0310=50:额定频率P0311=1430:额定转速P1000=3:频率源为固定频率P1080=0:电动机最小频率P1082=0:电动机最大频率P1120=10:加速时间:10sP1121=10:减速时间:10sP0700=2:命令源为端子输入P0701=16:固定频率设定值 (直接选择 + ON 命令)P0702=17:固定频率设定值 (直接选择 + ON 命令)P0703=12:反转P1001=5:固定频率1P1001=10:固定频率2P0010=0:运行时为0当Q0.0为1时变频器DIN1接通,电动机以5Hz(固定频率1)的频率运行,固定频率1的设定值在P1001中;当Q0.0和Q0.1同时为1时变频器DIN1和DIN2接通,电动机以15Hz(固定频率1+固定频率2)的频率运行,固定频率2的设定值在P1002中。

变频器与PLC控制电动机三段速运行的实现

变频器与PLC控制电动机三段速运行的实现

变频器与PLC控制电动机三段速运行的实现田素娟1 王艺龙2 李 松3(1 包头职业技术学院,内蒙古包头014030;2 国网江苏省电力有限公司检修分公司,南京211102;3 内蒙古北方重工集团有限公司,内蒙古包头014030)摘 要:文章主要研究利用西门子V20变频器和S7-200SMART可编程序控制器共同控制电动机实现三段速运行,并且利用Sr20触摸屏来实现人机交互,具体体现在硬件接线的设计、软件的编程与运行、变频器多段速运行时的参数设置等方面的实现方法。

关键词:变频器;PLC;电动机;三段速;触摸屏TheRealizationofThree-stageSpeedOperationofFrequencyConverterandPLCControlMotorTianSujuan1 WangYilong2 LiSong3(1.BaotouVocational&TechnicalCollege,Baotou,InnerMongolia014030;2.StateGridElectricPowerCo.,Ltd.,Nanjing211102;3.NorthernHeavyIndustriesGroupCo.,Ltd.,Baotou,InnerMongolia014030)Abstract:Thearticlestudiestherealizationofthethree-stagespeedoperationbyusingSIEMENSV20converterandS7-200-SMARTprogrammablecontrollertocontrolelectricmotor.TheSr20touchscreenhelpstherealizationofhuman-computerinteractionbydesigningthehardwarewiring,settingtheparameterofsoftwareprogrammingandfrequencycon vertermulti-speedoperation.Keywords:frequencyconverter;PLC;electricmotor;three-stagespeed;touchscreen 交流电动机三种调速方法中的变频调速是通过改变三相交流异步电动机定子供电电压的频率来改变电机的转速,它在运行的经济性、调速的平滑性以及机械特性方面都具有明显的优势,因此它是交流异步电动机比较理想的一种调速方法,也是交流调速的首选方法。

基于PLC和变频器多电机速度同步控制

基于PLC和变频器多电机速度同步控制

基于 PLC和变频器多电机速度同步控制摘要:本文从事基于PLC和变频器多电机速度同步控制研究,在对PLC控制技术、变频器控制进行特点分析、控制技术分析后,以1台计算机、1台PLC、两台变频器为硬件,结合模糊PID补偿算法实现多电机速度同步控制系统设计,仅以本文研究成果,再使阅读者了解多电机速度同步控制实现方法同时,促进工业领域良性发展。

关键词:PLC控制系统;变频器;模糊PID随我国经济飞速发展,对工业生也提出更高的要求,越来越多生产工况下,需要实现多电机同步控制,而如何实现这一目标,并确保控制系统具备良好性能,始终为工业领域技术人员、学者深度研究问题。

PLC技术与变频器技术,目前广泛应用于工业自动控制领域,而探索基于PLC与变频器的多电机速度同步控制,则是促进我国工业生产企业生产水平提升、生产技术优化的重要研究举措。

1.PLC与变频器控制分析1.1PLC控制技术PLC控制系统,具有能耗低、体积小、安装便捷、功能强大特点,其内部设有大量编程元件,这些元件都能够被用户有效使用,且能够面向各项设备发挥不同的控制功能。

相比传统的机电控制模式,PLC控制系统有着更高的性价比优势,同时PLC技术可同互联网技术融合,形成强大的分散控制能力,实现面向系统、设备的统筹管理。

此外,多数情况下,PLC会利用梯形图语言,在面向设备、系统进行控制阶段设计梯形图程序,统筹管理阶段PLC则会利用顺序控制开展设计。

目前,PLC控制系统已被广泛应用我国工业生产企业,常见基于PLC的控制系统如生产流水线机械手臂、自动零部件安装、全自动生产送料系统等[1]。

1.2变频器控制技术变频器控制技术下,包含V/F控制、转差频率控制,矢量控制、直接转库控制。

其中,V/F控制,又可称为恒压频比控制方法,其控制原理是在保持电压/频率值恒定基础上,确保磁通恒定,继而获取系统运行所需的转矩特性。

V/F控制隶属开环控制的一种,无须设置速度传感器,且控制电路十分简化。

运用PLC和变频器实现电机多段调速

运用PLC和变频器实现电机多段调速

运用 PLC和变频器实现电机多段调速摘要:近年变频调速技术获得良好的发展空间,其控制精度突出、调速便捷、节能效果突出,可以达到直流电动机调速状态。

但是在现代农业与工作快速发展的背景下,在自动化控制方面的要求更为严格,仅仅借助变频器调速已经无法进一步提高生产效率与质量,所以需要对PLC、变频器以及其他自动化工控设备进行综合使用,同时借助组态软件、人机界面等开展远程监控,是现代控制技术的主要发展方向。

PLC是对通信、自动化控制以及计算机等技术进行融合的技术设备,因为其低成本、维修便捷、抗干扰能力突出、可靠性高、组合灵活等特点,在自动化领域具有重要作用,在自动化控制中有着广泛应用。

关键词:PLC;变频器;调速1 PLC与变频器概述1.1 PLC概述PLC工作形式较为直观,采用循环扫描的方式。

借助编程软件将用户程序输入、储存到PLC用户储存器中,PLC工作过程中对用户程序进行执行,在操作过程中,无法同时操作多个,需要根据分时原理开展。

由此,即能够借助PLC正常运行执行程序。

工作流程主要涵盖以下阶段,采样输入、执行程序以及刷新输出。

在PLC编程语言中,梯形图是应用较多的形象,PLC电路符号、表达方式和继电器电路原理图较为相似。

为了提高PLC抗干扰水平,引进了相关硬件和软件抗干扰手段。

PLC虽然具有较高科技含量,然而实际操作中并不复杂,同时调试和维护工作也较为便捷。

1.2 变频器概述变频器涵盖主电路与控制电路等零部件,可以借助下式进行变频原理表述:,对极对数P进行调整,能够实现电动机调速的目的,对S进行调整能够实现电机转差率调速,对f1进行调整能够促使异步电机电源频率发生变化。

一般情况下,调整电源频率是调速的主要方法。

借助科学分析三相异步电机和相关等效电路,获得:E1=ΔU+U1,基于E1和f1较大的情况,定子漏阻抗会减少,可以不计算ΔU,即可以获得定子电压,因此。

借助相关推理公式与科学计算能够获得:U1/f1=常数,即可以借助控制U1对E1进行控制。

plc与变频器多段速度控制系统的设计毕业设计说明书[管理资料]

plc与变频器多段速度控制系统的设计毕业设计说明书[管理资料]

常州轻工职业技术学院电子电气工程系毕业设计常州轻工职业技术学院题 目 PLC 与变频器多段速度控制系统的设计姓 名学 号 1036623116班 级 10自动试点班指导教师职 称 副 教 授日 期 2013年5月毕业设计(论文)说明书中文摘要本文主要简介了可编程控制器与变频器在现代工业调速方面的应用。

着重讲解了多段调速的使用。

硬件上使用的是三菱可编程控制器中的FX3U-48M和三菱变频器。

如今,变频调速已被公认为是最理想、最有发展前途的调速方式之一,采用变频器构成变频调速传动系统能满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求。

变频器的作用是改变交流电机供电的频率和幅值,因而改变其运动磁场的周期,达到平滑控制电动机转速的目的。

变频调速器调速不仅操作方便,故障率低,且节能效果明显,优于调压调速、变级调速、滑差调速、串级调速、整流子调速和液力偶合器调速等。

并且变频调速在电动机运行时很容易实现电动机的正、反转。

只需要改变变频器内部逆变管的开关顺序,即可实现输出换相,也不存在因换相不当而烧毁电动机的问题。

通过可编程控制器来控制变频器调速,是现代工业应用最为广泛的调速方法之一,所以本文主要研究的就是通过可编程控制器来控制变频器改变交流电机供电的频率和幅值,从而改变其运动磁场的周期,达到平滑控制电动机转速的目的。

关键词:可编程控制器,变频器,工业调速,变频调速ABSTRACTThis paper mainly introduces the programmable controller and inverter in modern industrial control on multiple segments hardware is used on Mitsubishi programmable controller in FX3U-48M and Mitsubishi , VVVF has been recognized as the most ideal, the most promising control one way, using PLC variable frequency speed control system can meet the needs of improving labor productivity, improve product quality, improve the degree of automation equipment, improve the quality of life and improve the living environment and other requirements.Inverter AC motor power supply is used to change the frequency and amplitude, and thus change its motion magnetic cycle, so as to achieve the smooth control of motor speed conversion speed governor has the advantages of convenient operation, low failure rate, and has obvious energy-saving effect, better than the voltage regulating speed, variable speed control, slip control, cascade control, speed control and hydraulic coupler speed variable frequency speed regulation in the motor run time is easy to achieve the motor is, need to change the frequency converter inverter tube inside the switching sequence, you can achieve the output exchange phase, there is no improper burning of the electric motor by phase change problems.Through the programmable controller to control the frequency converter, is a modern industrial application is most wide speed regulation method, so this paper mainly studies is that through the programmable controller to control the frequency converter to change the frequency and amplitude of the AC motor power supply, so as to change the moving magnetic field cycle, so as to achieve the smooth control of motor speed to.Keywords:Programmable controller, inverter, industrial control, variable frequency speed regulation目录第一章概述 (6)课题背景 (6)PLC的发展历程 (6)PLC的分类 (6)PLC的应用领域 (8)变频器基本原理与应用 (8)课题的目的和意义 (9)课题的目的 (9)课题的意义 (11)课题任务及要求 (11)课题的主要任务 (12)课题的主要要求 (12)第二章设计内容简介 (13)课题目前研究及应用现状 (13)设备的结构分析 (13)第三章PLC实现的过程 (15)工作流程 (15)工作过程叙述 (15)工作过程示意图 (15)PLC的I/O分配表 (15)PLC控制的设备清单及原理图 (17)元器件设备清单 (17)PLC控制的原理图 (17)梯形图及程序指令表 (18)梯形图 (18)程序指令表 (23)第四章控制装置的柜屛设计及安装调试 (27)元件安装图 (27)控制柜与操作屏设计图 (28)参考文献 (30)致谢 (31)第一章概述课题背景可编程逻辑控制器,英文称Programmable Logic Controller,简称PLC,它是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应用而设计,PLC由CPU,存储器、I/0接口、内嵌的精简高效操作系统组成。

plc控制变频器多段速运行

plc控制变频器多段速运行

plc控制变频器多段速运行
一控制要求:
1:利用三菱PLC控制富士FRNIC5000G11系列变频器进行多段速运行,启动后变频器以5HZ的输出频率正传运行20s——15HZ反转运行30s——30HZ反转运行10s——40HZ正转运行20s——50HZ反转运行40s——45HZ正传运行25s——然后又以5HZ正传运行20s,依次循环运转;
2:电机可以随时停止
3:模拟热继电器故障,故障时变频器立即停机,并报警,报警指示灯闪烁10s,然后变频器复位,报警灯熄灭,变频器又正常运行
二控制电路接线图:
三:变频器内代码预置:
F02=1 ,F36=0,F01=0,E02=0,E03=1,E04=2; C05=5HZ, C06=15HZ, C07=30HZ, C08=40HZ,C09=50HZ, C10=45HZ, 此处代码设置并不唯一,提供的只供参考。

四:PLC 梯形图程序
说明:M为三菱PLC的辅助继电器,T为PLC内部定时器,T0-T199共200点是100ms定时器,如T0 K200表示定时时间是20s。

备注说明:此富士变频器最多可调15段速,控制端子是按照二进制代码排列,即变频器最多有四个端子控制。

感性趣的爱好者可试着加计数器进去,进行循环有限次的控制。

此程序系本人初学PLC所编写,较为罗嗦,已经经过了实验的检验。

有不妥或不合理的地方请多多指正。

PLC控制变频器多段速的编程方法设计

PLC控制变频器多段速的编程方法设计

PLC控制变频器多段速的编程方法设计摘要:随着工业自动化的不断发展,PLC(可编程逻辑控制器)和变频器的应用越来越广泛。

变频器作为控制电机转速的重要设备,在许多工业领域中起着关键作用。

本文旨在研究和设计一种基于PLC的控制方法,实现变频器多段速控制。

首先对PLC和变频器的工作原理进行介绍,然后分析多段速控制的需求和优势。

接下来,提出了一种基于PLC编程的多段速控制方法,并详细说明了程序设计的步骤和关键要点。

最后,通过实验验证了该方法的可行性和有效性,并讨论了实验结果和进一步改进的可能性。

关键词:PLC;变频器;多段速控制;编程方法;引言:随着工业自动化水平的提升和生产流程的复杂化,对于电机的精确控制要求越来越高。

变频器作为一种常用的电机控制装置,通过调节电机的频率和电压,实现对电机转速的精确控制。

在许多工业领域中,如制造业、化工、石油和天然气等,多段速控制是一种常见的需求。

本文旨在研究和设计一种基于PLC的控制方法,以实现变频器多段速控制。

通过深入研究PLC和变频器的工作原理,分析多段速控制的需求和优势,并设计一套可行的编程方法,以提供给相关领域的工程师和技术人员参考和应用。

一、PLC和变频器的工作原理1.1 PLC的工作原理PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的设备。

它由中央处理器、存储器、输入/输出模块和通信接口等组成。

PLC的工作原理基于扫描周期,即循环地执行一系列的输入、处理和输出操作。

在PLC中,输入模块接收来自传感器、按钮、开关等的信号,将其转换为数字信号,然后传递给中央处理器。

中央处理器根据预先编写的程序,对输入信号进行逻辑处理和判断,然后根据程序的逻辑和条件,控制输出模块输出相应的信号。

输出信号可以控制执行器、电磁阀、电机等设备的状态和动作。

PLC的工作原理可归纳为以下几个步骤:1. 输入信号采集:PLC的输入模块采集来自传感器或外部设备的信号,如开关状态、传感器检测到的物理量等。

变频技术及其应用单元2 任务2 PLC控制变频器的多段速调速控制

变频技术及其应用单元2 任务2 PLC控制变频器的多段速调速控制

3.多段速度说明 1 当多段速度信号接通时,其优先级别高于主速度。 2 只有3段速度设定的场合,2段设定以上同时被选择时,低速
信号的设定频率优先,即以低速设定的信号频率运行。
3 Pr.24~Pr.27和Pr.232~Pr.239之间的设定没有优先级别。 4 运行期间参数值可以被改变。 5 当Pr.180~Pr.186改变端子分配时,其他功能可能受影响。设
一、分配输入点和输出点,写出I/O通道地址分配表 根据任务控制要求,可确定PLC需要5个输入点,14个
输出点,其I/O通道分配表见下表。
二、画出PLC控制变频器接线图
三、程序设计 本任务的梯形图
本任务的梯形图ຫໍສະໝຸດ 四、程序输入 启动MELSOFT系列GX Developer编程软件,首先创建新文件名,
任务2 PLC控制变频器的多段速调速控制
学习目标
1. 熟悉变频器和PLC实现组合控制的形式。 2. 掌握实现多段速调速的方法。 3. 理解多段速各参数的意义。 4. 能够进行PLC与变频器的连接和控制程序的编制。 5. 能独立完成PLC和变频器联机实现电动机多段速 运行电路的安装与调试。
一、多段速度相关知识 用变频器实现电动机的多段速控制,可通过开启、关闭外部触点信 号(RH、RM、RL)实现。通过RH、RM、RL的开关信号组合,最
表1
2.4段以上的多段速度设定(Pr.24~Pr.27,Pr.232~Pr.239) 通过RH、RM、RL、REX信号的组合可以进行速度4~15段速度的设定 。且在Pr.24~Pr.27,Pr.232~Pr.239设定运行频率。(初始值的状态为 不可以使用4速~15速设定。)REX信号输入所使用的端子应在Pr.178~ Pr.189(输入端子功能选择)设定为“8”,来进行端子功能的分配。

PLC编程实例西门子PLC控制变频器实现3段速控制电路

PLC编程实例西门子PLC控制变频器实现3段速控制电路

PLC编程实例西门子PLC控制变频器实现3段速控制电路发现更多电气知识电气达人今天和大家一起学习西门子PLC控制变频器实现3段速控制电路,首先我们先看下原理图。

从上面的原理图中我们先来分析下所需要的元件都有哪些,给大家做了个图片:Pr.77:参数禁止写入选择:参数值为1(停止过程中可以写入)ALLC:功能:参数全部清除:设定值为1(参数恢复初始值)。

Pr.79:功能:操作模式选择:设定值为3(外部与面板PU组合运行)。

Pr.178:功能:正转运行STF:参数值60(为端子STF设置为正转运行指令功能)。

Pr.184:功能:端子4输入选择AU:参数值:4(讲AU端子设置为端子4输入有效无效选择,只有当ON时候才有效)。

数字输入公共端SD:数字输入的公共端入SD,STF,STOP等数字量输入。

模拟量公共端5:频率设定信号端子2,14的公共端子,ON状态输入有效Pr.267:功能:端子4频率输入模式选择:参数值:2(在端子4-5之间输入0-10V信号有效)。

Pr.195:功能:多功能端子功能选择:参数设定99(端子异常时候输出我们选用的是常开点A1,C1)。

接下来就需要把程序传到PLC中,程序给大家截图了:原理分析:一、变频合闸1.闭合总电源空开QF1,PLC控制电源QF3,以及变频器输入接触器控制电源QF2,控制器PLC是将输出输出的电压信号(0-10V) 或电流信号(4-20mA)转换成中间变量(0-32000)。

程序中把频率10HZ,20HZ,40HZ,换算成了6400,12800,25600.2.变频器上电,按下变频器合闸按钮SB1,梯形图中的I0.0闭合,输出继电器Q0.0得电,PLC外接接点Q0.0与1L接点接通,主交流接触器KM线圈得电,主触点闭合,变频器得电。

同时梯形图中Q0.0动合触点闭合自锁,保证KM持续吸合。

3.根据参数表设定好变频参数二、PLC控制变频运行按下变频器运行按钮SB3,梯形图中的I0.2闭合,输出继电器Q4.0得电,PLC外接接点Q4.0与2L接通,变频端子STF与SD端子闭合,同时Q4.0常开点闭合自锁,梯形图中所有的Q4.0都闭合,准备多段速运行三、3段速运行1.按下频率1按钮SB5,梯形图中的I0.4闭合,上升沿触发并输出,内部继电器M0.0,M0.1,M0.2复位一次,各频率输出复位,同时内部继电器M0.0得电,将频率1赋值给了PLC的模拟量输出,输出2V的电压加在与变频器外接端子的4和5上,变频器按照频率10HZ 运行。

基于三菱PLC和变频器的多段速控制应用

基于三菱PLC和变频器的多段速控制应用

基于三菱PLC和变频器的多段速控制应用三菱PLC系统在应用过程中离不开变频器的辅助,而变频器中不同端子的相互组合在很大程度上决定了该系统的运行频率,其中以RH端子、RM端子和RL端子为主要参数代表,不同的端子组合所代表的运行频率之间存在较大的差异性,如何科学合理的控制PLC系统和变频器是笔者将要与大家进行探究的主要问题。

标签:三菱PLC;变频器;多段速控制一、三菱PLC系統设计三菱PLC系统主要是由主单元、PLC构件、变频器、电机设备、负载检测设备、位置检测设备等构件共同组成,其在应用过程中主要经过以下几项流程操作:第一,由系统内部的主单元根据系统的功能特性发出相应的指令,控制系统在接收到该指令后在第一时间内做出启动或者停止的指令操作;第二,通过对三菱PLC系统具体位置的诊断要求对其输送频率进行适当的调整,确保输送频率的设定符合相应的运行标准;第三,当三菱PLC系统在运行过程中所承担的负载达到一定的极限值时,该系统的位置信息会直接传输至PLC的数据处理中心,为工作人员的故障诊断和维护提供相应的理论依据[1]。

二、变频器分析(一)七段速控制该控制方法是三菱PLC系统的变频器在实际应用中经常采用的一种运行控制方法,主要是指工作人员通过对变频器内不同的信号端子进行相互组合,如表1所示,从而更好的加强对变频器内RH端子、RM端子、RL端子的控制力度,通过这种方法可以显著提高变频器的应用效率,因此该方法也得到了广泛的应用。

(二)参数设置目前市场上比较常见的变频器的频率设定范围大多在Pr.4- Pr.6或者Pr.24- Pr.27范围内,其中变频器在实际应用过程中常见的默认频率为50Hz、30Hz、10Hz 等等,变频器的功能使用要求不同,其所对应的频率数值也会具有较大的差异性,因此工作人员在设定变频器的参数值时,需要综合考虑变频器的使用范围以及对变频器功能特性的要求,在此基础上将变频器的频率参数调至合理的范围之内,以求达到较为理想的应用效果[2]。

PLC实现变频调速器多电机控制

PLC实现变频调速器多电机控制

PLC实现变频调速器多电机控制【摘要】本文主要介绍了PLC在工业控制中的应用以及变频调速器在电机控制中的作用。

结合实际案例,详细阐述了PLC如何实现变频调速器对多台电机的控制,并介绍了多电机控制系统的搭建过程。

在PLC程序设计与调试部分,结合具体步骤和注意事项,指导读者如何正确进行系统的调试与运行。

文章最后讨论了PLC技术在多电机控制中的优势,以及未来发展前景。

通过本文的介绍,读者能够全面了解PLC在变频调速器多电机控制方面的应用和原理,为相关行业从业人员提供了有益的参考和指导。

【关键词】PLC、变频调速器、多电机控制、工业控制、程序设计、调试、优势、发展展望1. 引言1.1 背景介绍本文将探讨如何利用PLC实现变频调速器多电机控制,介绍其原理和搭建方法,从而为工业自动化生产提供更可靠、高效的控制方案。

1.2 研究意义多多电机控制系统的搭建,实现了多电机的同步运行和相互协调,提高了工业生产效率和质量。

通过PLC实现变频调速器多电机控制,可以实现对多个电机的统一控制,并且可以灵活调整电机的运行速度和功率,满足不同生产场景的需求。

PLC技术在多电机控制中的优势在于其稳定性高、可编程性强、易于维护和升级等特点,能够有效提高生产线的可靠性和自动化水平,降低生产成本,提升企业竞争力。

未来随着工业自动化水平的不断提高,PLC技术在多电机控制领域的应用也将不断拓展和深化。

可以预见的是,基于PLC的多电机控制系统将更加智能化和网络化,能够实现远程监控和管理,实现生产过程的数字化转型。

随着数据处理和人工智能技术的发展,PLC技术在多电机控制中的优势将更加凸显,为工业生产带来更大的效益和升级。

深入研究和应用PLC实现变频调速器多电机控制的技术,对提升工业生产效率和质量,推动工业智能化进程具有重要的研究意义和实践价值。

2. 正文2.1 PLC在工业控制中的应用PLC在工业控制中的应用十分广泛,它可以用于各种工业领域中,包括制造业、能源行业、交通运输等。

第4讲 PLC和变频器控制电动机实现15段速运行

第4讲 PLC和变频器控制电动机实现15段速运行
第4讲 PLC与变频器 控制电动机实现15段速运行
一、项目描述 、项目实现
一、项目描述
按下电动机启动按钮, 电动机启动运行在5Hz所对应的转速;延时 10s后, 电动机升速运行在10Hz对应的转速, 再延时10s后, 电动机继 续升速运行在20Hz对应的转速;以后每隔10s, 则速度按下图依次变化 , 一个运行周期完后会自动重新运行。按下停止按钮, 电动机停止运 行。
二、项目实现
1、MM440变频器的设置 MM440变频器数字输入“5”、“6”、“7”、“8” 端子通过P0701、 P0702、P0703.P0704参数设为15 段固定频率控制端,每一频段的频率分别由P1001~ P1015参数设置。变频器数字输入“16”端子设为 电动机运行、停止控制端,可由P0705参数设置。
2 恢复变频器工厂默认值, P0010设为30, P0970设为1。按 下变频器操作面板上的“P”键, 变频器开始复位到工厂 默认值。
3 电动机参数按如下所示设置, 电动机参数设置完后, 设 P0010为0, 变频器当前处于准备状态, 可正常运行。
4 P0003设为1, 访问级为标准级; P0010设为1, 快速调试 ;
5 P0100设为0, 功率以kW表示, 频率为50Hz; P0304设为 230, 电动机额定电压;
6 P0305设为1, 电动机额定电流; P0307设为0.75, 电动机 额定功率; P0310设为50, 电动机额定频率; P0311设为 1460, 电动机额定转速;
7 P3900设为1, 结束快速调试, 进入“运行准备就绪”。
3.PLC程序设计
PLC程序应包括以下控制:
当按下正转启动按钮SB1时,PLC的Q0.4应置位为ON,允许电动机运 行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)任务书毕业设计(论文)题目PLC与变频器控制电机多段速运行专业: 11机电一体化姓名:孙大鹏毕业设计(论文)工作起止时间:毕业设计(论文)的内容要求:1、采用西门子的S7-300型PLC 作为核心控制器进行步进电机控制系统的设计;2、并且设计出了系统结构图、程序指令、梯形图以及输入输出端子的分配方案;3、同时根据步进电机调速控制系统总体控制要求和特点,确定PLC 的输入输出分配,并进行现场调试指导教师(签名):年月日毕业设计开题报告一、课题设计(论文)目的及意义目前,我国的能源消费仅次于美国,位列世界第二,但国民生产总值却排在第八位左右,其中最重要的原因之一就是单位产值能耗太大。

我国具有各类风机约780 万台,水泵 4000 万台,空压机 560 万台,这些装置又占去了电机耗电的一半以上。

由于这些设备一般均采用恒速驱动,每年造成大量能源浪费。

国家在<十一五>规划中指出:坚持开发节约并重、节约优先,按照减量化、再利用、资源化的原则,大力推进节能节水节地节材,加强资源综合利用,完善再生资源回收利用体系,全面推行清洁生产,形成低投入、低消耗、低排放和高效率的节约型增长方式。

实行有利于资源节约的价格和财税政策。

强化节约意识,鼓励生产和使用节能节水产品、节能环保型汽车,发展节能省地型建筑,形成健康文明、节约资源的消费模式。

我国对交流变频调速技术的研究起步较晚,到上个世纪 90 年代才有产品出现,采用的控制技术几乎都还只是 V/F 控制,调速性能根本无法与国外产品相比。

目前在中、低压交流传动中,变频器的使用越来越多,而我国在研究矢量控制系统所需的各种硬件条件已经具备,如已出现的智能化功率器件(IPM),其电压等级、开关频率都有很大的提高;数字化控制元件也已出现单指令周期 10ns 的高速数字信号处理器(DSP)和几乎能完成一个系统功能的专用集成电路。

变频调速已成为电动机调速的最新潮流,有其自身的特点和优点,随着交流电动机变频技术的日趋完善和推广应用,特别是在矿用大功率高压设备中的绞车、提升机、通风机、带式输送机等矿用设备上的应用效果则更加明显。

对耗电大、生产环境恶劣的煤炭行业推广应用变频技术更具有现实意义。

本课题以 PLC 和变频器控制交流调速为研究对象,设计出基于 PLC 和变频器控制交流调速系统的实验装置。

本论文的选题不论是从理论上还是从实践上都有十分重要的意义。

二、课题设计(论文)提纲1、设计流程。

2、选择适合的传感器以及相关硬件。

3、线路的设计以及PLC的选择三、课题设计(论文)思路、方法及进度安排1、参阅相关产品的技术资料,如步进电机调速的设计方法等,拟确定各结构设计方案,从而能实现步进电机的功能。

2、要从各种方案中选择合适的方案,分析出各方案的优缺点,综合优化各种设计方案,从而确定出本次设计的最后设计方案。

3、要完成步进电机的设计与校核。

4、完成总装配图,零件图,部件图设计和说明书的撰写。

进度安排1、调研及收集相关资料;2、方案设计、审查和确定,撰写开题报告;3、绘制图纸和撰写设计说明书;4、统一打印;5、提交图纸,说明书,审图及修改,毕业答辩。

四、课题设计(论文)参考文献;[1] 魏志精.可编程控制器应用基础.电子工业出版社,2003[2] 周恩涛.可编程控制器原理及其在液压系统中的应用.机械工业出版社.[3] 廖常初.PLC基础及应用.北京:机械工业出版社,2003[4] 杨长能,张兴毅.可编程序控制器基础及应用.重庆:重庆大学出版社.1992,31-52[5] 袁秀英.组态软件技术.北京:电子工业出版社.2003,6-37,154-159[6] 北京昆仑通态自动化软件科技有限公司.MCGS用户指南[7] 胡健,西门子S7-300, 机械工业出版社,2007,2目录目录II摘要 (IIII)引言 (3)1 PLC和变频器 (4)1.1 PLC的介绍 (4)1.1.1 PLC的结构及特点 (4)1.1.2 PLC的工作原理 (5)1.1.3 PLC的应用 (6)1.1.4 PLC发展趋势 (6)1.2 变频器的介绍 (7)1.2.1 变频器的工作原理 (7)1.2.2 变频器的控制方式 (8)1.2.3 变频器的应用 (9)1.3 PLC与变频器的组合 (9)2系统功能设计的分析与总体方案 (10)2.1 系统功能设计的分析 (10)2.2 设计要求 (10)2.3 设计思路 (10)3 控制设计 (11)3.1 变频器功能参数设置与操作 (11)3.2 变频器参数设置 (12)3.3 PLC程序设计 (13)参考文献 (18)附录A 变频器内部原理框图 (19)附录B 硬件连接图 (20)致谢错误!未定义书签。

摘要可编程控制器(PLC)是一种数字运算与操作的控制装置。

PLC作为传统继电器的替代产品,广泛应用于工业控制的各个领域。

由于PLC可以用软件来改变控制过程,并有体积小,组装灵活,编程简单,抗干扰能力强及可靠性高等特点,特别适用于恶劣环境下运行。

随着电力电子技术以及控制技术的发展,交流变频调速在工业电机拖动领域得到了广泛应用;可编程控制器PLC作为替代继电器的新型控制装置,常常被用于现场数据采集和设备的控制。

本文介绍了基于PLC的变频器调速系统。

将现在应用最广泛的PLC和变频器综合起来主要功能实现了变频调速。

首先通过设置给定输入给PLC,再通过PLC控制变频器,再经由变频器来控制电机,随后将电机的转速反馈给PLC,经比较后输出给变频器从而实现无静差调速,控制运算主要由PLC和变频器来完成,执行元件为变频器和电机。

关键词:PLC;变频器;变频调速引言调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。

在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业中,具有举足轻重的作用。

调速控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。

可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继续计算机、自动控制技术和通信技术为一体的新型自动装置。

它具有抗干扰能力强,价格便宜,可靠性强,编程简朴,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。

变频调速已被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。

用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。

1 PLC和变频器1.1 PLC的介绍1.1.1 PLC的结构及特点(1) PLC的结构如下①电源PLC的电源在整个系统中起着十分重要的作用。

如果没有一个良好的、可靠的电源系统是无法正常工作的,因此PLC的制造商对电源的设计和制造也十分重视。

一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去②中央处理单元(CPU)中央处理单元(CPU)是PLC的控制中枢。

它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。

当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。

等所有的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。

为了进一步提高PLC的可靠性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。

这样,即使某个CPU出现故障,整个系统仍能正常运行。

③存储器存放系统软件的存储器称为系统程序存储器。

存放应用软件的存储器称为用户程序存储器。

④输入输出接口电路现场输入接口电路由光耦合电路和微机的输入接口电路,作用是PLC与现场控制的接口界面的输入通道。

2、现场输出接口电路由输出数据寄存器、选通电路和中断请求电路集成,作用PLC通过现场输出接口电路向现场的执行部件输出相应的控制信号。

⑤功能模块如计数、定位等功能模块。

⑥通信模块如以太网、RS485、Profibus-DP通讯模块等。

(2) PLC其特点如下:①可靠性高,抗干扰能力强传统的继电器控制系统中使用了大量的中间继电器、时间继电器。

由于触点接触不良,容易出现故障。

PLC用软件代替大量的中间继电器和时间继电器,仅剩下与输入和输出有关的少量硬件,接线可减少到继电器控制系统的1/10~1/100,因触点接触不良造成的故障大为减少。

高可靠性是电气控制设备的关键性能。

PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。

例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。

一些使用冗余CPU的PLC的平均无故障工作时间则更长。

从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。

此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。

在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。

这样,整个系统具有极高的可靠性也就不奇怪了。

②硬件配套齐全,功能完善,适用性强PLC发展到今天,已经形成了大、中、小各种规模的系列化产品,并且已经标准化、系列化、模块化,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。

PLC的安装接线也很方便,一般用接线端子连接外部接线。

PLC有较强的带负载能力,可直接驱动一般的电磁阀和交流接触器,可以用于各种规模的工业控制场合。

除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。

近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。

加上PLC通信能力的增强及人机界面技术的发展,使用PLC 组成各种控制系统变得非常容易。

③易学易用,深受工程技术人员欢迎PLC作为通用工业控制计算机,是面向工矿企业的工控设备。

它接口容易,编程语言易于为工程技术人员接受。

梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。

相关文档
最新文档