粉末冶金新工艺4

合集下载

粉末冶金成型

粉末冶金成型

4 粉末冶金成型的应用
4.1 信息领域的粉末冶金材料 4.2 能源领域的粉末冶金材料
稀土永磁材料
硅类4.4 军事领域的粉末冶金材料
生物医用材料
武器弹药
5 粉末冶金技术发展前景
5.1 粉末注射成形技术
粉末注射成型零件
5.2 温压成型技术 温压成型技术在制造过程中最主要的技术是如何增强混合 粉末的流动性,提高制成品的性能。
温压成型零件
5.3 烧结硬化技术 烧结硬化技术主要的原理是:在烧结过程中,快速的冷却, 进而可以大幅度提高产品的质量,提高材料强度。
烧结工艺图
1.1 粉末冶金工艺流程图
2 粉末冶金的工艺特点
2.1 粉末冶金工艺的优点 粉末冶金技术能够降低对金属的损耗,并且粉末冶金能够 在生产过程中将一些杂质进行隔离,并且在冶金过程中保 证材料不受到任何污染,从而实现了高纯度的冶金材料。
2.2 粉末冶金与传统材料工艺相比的优点 粉末冶金材料具有以下特点:粉末冶金过程在低熔点下进行, 所以可以得到各种金属的密度差异,具有快速凝固、晶粒 细小均匀,保证组织均匀性能稳定,良好的冷、热加工性 能,且不受合金元素和含量的限制,可以提高强化相的含 量,使材料得以发展。
粉末冶金成型
目录
粉末冶金成型工艺 粉末冶金的工艺特点 粉末冶金成型的方法 粉末冶金成型的应用 粉末冶金技术发展前景
1 粉末冶金成型工艺
粉末冶金成型是指采用 金属或其他粉末材料,经过 混粉、压坯、烧结、成型和 后处理等工艺过程制造各种 多孔、半致密零件与制品的 技术。 粉末冶金零件
3 粉末冶金成型的方法
a. 压制成型 压制成型是将金属粉末或者混合装在钢制压模内,通过模冲 对粉末加压形成压坯的过程。 b. 等静压成型

粉末冶金工艺过程及参数

粉末冶金工艺过程及参数

粉末冶金工艺过程及参数粉末冶金工艺是一种主要用于加工金属及其合金零件,也称为粉末冶金或粉末加工工艺。

它是一种利用粉末金属材料在热能和机械能诱导作用下,经历一系列过程最终形成三维物体,或相当于三维产品,用以取代传统金属切削加工技术的新型数控加工技术。

粉末冶金工艺的工艺过程一般包括:设计──混合──压缩──烧结──焊接──精加工──热处理等。

1、设计从技术上说,首先要完成零件的设计,该设计包括零件的外观形状及内部结构,也就是说要确定每个零件的尺寸大小、几何参数,以及加工方法、表面质量要求等。

2、混合粉末冶金工艺使用粉末金属材料,需要对不同粒径和形状的金属粉末进行混合称重,以保证零件表面抛光度和抗腐蚀性能,并符合相关技术标准,使零件能够达到效果。

3、压缩粉末冶金工艺需要将金属粉末以及一般填充料压缩到特定的形状和尺寸。

压缩的方式又可分为压块法和注型法,压块法是将金属粉末和填充料混合然后经过压缩和烧结从而形成块状的零件,而注型法则是将金属粉末和填充料均匀地注入模具,在模具内进行压实和烧结,从而成型。

4、烧结烧结是粉末冶金工艺中最重要也是最关键的一步。

烧结是给零件提供形状和尺寸,同时还可以改善部件的力学性能、物理性能和物理性能。

它的烧结参数有温度、时间、压力、含气量等,具体的参数要根据零件的材料特性和要求而确定。

5、焊接焊接是在烧结后把多个零件组合在一起,使之成为一个整体零件,焊接可以在零件表面形成一个均匀的钎焊层,从而改善零件的力学性能,并且可以把不同物料,如钢、镍和铝等,进行组合。

6、精加工精加工指的是将零件的表面处理成符合要求的精度,使其精度达到一定的精度。

一般来说,可以采用两种方法,用机械加工方法或用化学抛光方法,来达到精度的要求。

7、热处理热处理是指将零件在一定温度和一定时间的作用下,利用物理或化学变化,改变或增强零件的物理性能,从而提高零件的使用性能。

粉末冶金工艺是一种重要的加工工艺,由于它比传统加工方法具有更高的效率、更低的成本,可以根据客户的要求制造唯一的三维零件,所以它在工业制造中越来越受到重视。

粉末冶金技术

粉末冶金技术

16
二、粉末冶金成型新技术
动磁压制有可能使电机设计与制造方法产生革 命性变化,由粉末材料一次制成近终形定子与转子, 命性变化,由粉末材料一次制成近终形定子与转子, 从而获得高性能产品,大大降低生产成本。 从而获得高性能产品,大大降低生产成本。 动磁压制正用于开发高性能粘结钕铁硼磁体与 烧结钐钴磁体。 烧结钐钴磁体。由于动磁压制的粘结钕铁硼磁体密 度高,其磁能积可提高15%-20%。 度高,其磁能积可提高15%-20%。 15%
1.动磁压制技术 动磁压制技术
二、粉末冶金成型新技术 动磁压制的优点: 动磁压制的优点: • 由于不使用模具,成型时模壁摩擦减少到0,因而可 由于不使用模具,成型时模壁摩擦减少到0 达到更高的压制压力,有利于提高产品, 达到更高的压制压力,有利于提高产品,并且生产成 本低; 本低; •由于在任何温度与气氛中均可施压,并适用于所有材 由于在任何温度与气氛中均可施压, 由于在任何温度与气氛中均可施压 因而工作条件更加灵活; 料,因而工作条件更加灵活; • 由于这一工艺不使用润滑剂与粘结剂,因而成型产 由于这一工艺不使用润滑剂与粘结剂, 品中不含有杂质,性能较高,而且还有利于环保。 品中不含有杂质,性能较高,而且还有利于环保。
4
一、制粉新技术 2.软磁金属复合粉制备 软磁金属复合粉制备 目前软磁复合材料已得到广泛应用。它们是在 在 纯铁粉颗粒上包覆一层氧化物或热固化树脂进行绝 缘而制成的。在低频应用中,采用粗颗粒铁粉与热固 缘而制成的 化树脂混合,获得高磁导率与低铁损的材料。高频应 用时,颗粒间需要更有效地进行绝缘,因而粒度要更 小,以进一步减少涡流损失。它可制成各向同性的软 磁复合部件,但不需要高温烧结。粉末晶粒度增大时, 磁导率增大,矫顽力降低。
2
一、制粉新技术

粉末冶金工艺简介

粉末冶金工艺简介

粉末冶金工艺简介粉末冶金工艺简介粉末冶金工艺是一种新型的金属制造工艺,它以粉末状的金属材料为原材料,利用热成型和冶金工艺,实现金属制品非切削加工的目的。

此类金属材料更具灵活性,也更加高效。

粉末冶金工艺属于加工性技术,主要是将金属粉末及其他填充物、胶结剂和外加剂制成规定形态的产品。

金属粉末原料可用零件制造法和冶金合金技术来生产,包括合金粉末、精炼粉末和高纯度粉末等,胶结剂主要为各类塑料或助剂,外加剂一般是粉料及浮质料,为了满足不同的要求,开发出多种特殊的粉末冶金新型工艺,如压型粉末冶金(Powder Metallurgy,缩写为PM)、气喷涂粉末冶金(Aerosol Department Powder Metallurgy,缩写为ADPM)、繁杂条纹粉末冶金(Varieties line Powder Metallurgy,缩写为VPM)、三维成型粉末冶金(Three-dimensional shape Powder Metallurgy,简称3DSPM),以及静电烧结粉末冶金等。

根据工艺技术来看,粉末冶金工艺可大致分为热成形工艺和冶金工艺。

热成形工艺为主要工艺,主要将粉末制品编码成所需形态的部品。

常见的有压型工艺、固溶工艺以及超声波热缩封装等。

冶金工艺主要是将热成形了的产品经过熔炼处理,形成熔炼凝固体,以提高产品性能。

熔炼处理采用的热成形主要有一步熔炼法、二步熔炼法、分步熔炼法和完全冶炼法等。

粉末冶金工艺具有许多优势,如产品质量稳定,冲压电阻比其他工艺低;禁止注射缩径范围大,不同部件可在同一模具内一起冲压生产;零件内径精度高,接触口边界容易形成不规则的特征;冲压速度快,无需粒级改变;热成形过程温度较低,工艺条件比较灵活,节约能源。

总的来说,粉末冶金工艺是一种灵活、高效、节能的金属加工技术,可以用于多种行业,并可以制造出材料质量稳定、性能可靠、智能化高度的金属零件。

粉末冶金新技术-烧结

粉末冶金新技术-烧结
18
用SPS制取块状纳米晶Fe90Zr7B3软磁的过程是: 先将由非 晶薄带经球磨制成的50~150μm非晶粉末装入WC/Co合金 模具内,并在SPS烧结机上烧结(真空度1×10-2Pa以下、升温 速度0.09~1.7K/s、温度673~873K、压力590MPa), 再把所 得的烧结体在1×10-2Pa真空下、以3 7K/s速度加热到923K、 保温后而制成。材料显示较好的磁性能:最大磁导率29800、 100Hz下的动态磁导率3430, 矫顽力12A/m。
3
双频微波烧结炉 生产用大型微波烧结炉 已烧结成多种材料:如陶瓷和铁氧体等材料。另 外,在日本又开发出相似的毫米波烧结技术,并成功 地在2023K下保温1h烧结成全致密的AlN材料。
4
2.爆炸压制技术 爆炸压制又称冲击波压制是一种有前途的工艺
方法,它在粉末冶金中发挥了很重要的作用, 爆炸压 制时,只是在颗粒的表面产生瞬时的高温,作用时间 短,升温和降温速度极快。适当控制爆炸参数,使得 压制的材料密度可以达到理论密度的90%以上,甚至 达到99%。
3)快速脉冲电流的加入, 无论是粉末内的放电部位还是焦耳 发热部位, 都会快速移动, 使粉末的烧结能够均匀化。
11
与传统的粉末冶金工艺相比,SPS工艺的特点是:
• 粉末原料广泛:各种金属、非金届、合金粉末,特别是 活性大的各种粒度粉末都可以用作SPS 烧结原科。
• 成形压力低:SPS烛结时经充分微放电处理,烧结粉末表 面处于向度活性化状态.为此,其成形压力只需要冷压烧 结的l/10~1/20。
17
SPS制备软磁材料 通常用急冷或喷射方法可得到FeMe(Nb、Zr、Hf)B的非 晶合金,在稍高于晶化温度处理后, 可得到晶粒数10nm,具有 体心立方结构,高Bs 、磁损小的纳米晶材料。但非晶合金目 前只能是带材或粉末, 制作成品还需要将带材重叠和用树脂固 结, 这使得成品的密度和Bs均变低。近年, 日本采用SPS工艺研 究FeMeB块材的成形条件及磁性能。

粉末冶金工艺的基本工序(三篇)

粉末冶金工艺的基本工序(三篇)

粉末冶金工艺的基本工序1、原料粉末的制备。

现有的制粉方法大体可分为两类:机械法和物理化学法。

而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。

其中应用最为广泛的是还原法、雾化法和电解法。

2、粉末成型为所需形状的坯块。

成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。

成型的方法基本上分为加压成型和无压成型。

加压成型中应用最多的是模压成型。

3、坯块的烧结。

烧结是粉末冶金工艺中的关键性工序。

成型后的压坯通过烧结使其得到所要求的最终物理机械性能。

烧结又分为单元系烧结和多元系烧结。

对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。

除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。

4、产品的后序处理。

烧结后的处理,可以根据产品要求的不同,采取多种方式。

如精整、浸油、机加工、热处理及电镀。

此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

粉末冶金工艺的基本工序(二)粉末冶金是一种利用粉末作为原料,通过压制、成型、烧结等工艺制备制品的工艺方法。

它具有高效率、高精度和可靠性好等特点,广泛应用于各个领域,包括汽车、航空航天、电子等。

粉末冶金工艺的基本工序包括粉末选料、混合、成型、烧结等。

首先是粉末选料。

粉末冶金工艺中所用的粉末要求颗粒细小、纯度高、形状均匀。

常见的粉末材料包括金属、陶瓷和合金等。

粉末选料的过程中需要考虑到材料的物理化学性质,并进行相应的测试和分析。

接下来是粉末的混合。

混合是将不同种类的粉末按一定比例混合在一起,以获得所需的材料性能。

混合可以通过机械混合、化学方法和物理方法等进行。

在混合过程中,需要控制混合时间和混合速度,以保证混合的均匀性。

然后是成型。

成型是将混合好的粉末放入模具中进行压制或注塑成型。

2020年(冶金行业)粉末冶金新技术新工艺

2020年(冶金行业)粉末冶金新技术新工艺

(冶金行业)粉末冶金新技术新工艺11粉末冶金新技术新工艺11.1概述粉末冶金是制取金属粉末或用金属粉末(或金属粉末和非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的工艺技术。

粉末冶金工艺的第壹步是制取原料粉末,第二步是将原料粉末通过成形、烧结以及烧结后处理制得成品。

典型的粉末冶金产品生产工艺路线如图11-1所示。

粉末冶金的工艺发展已远远超过此范畴而日趋多样化,已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。

粉末冶金技术有如下特点:(1)能够直接制备出具有最终形状和尺寸的零件,是壹种无切削、少切削的新工艺,从而能够有效地降低零部件生产的资源和能源消耗;(2)能够容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是壹种低成本生产高性能金属基和陶瓷基复合材料的工艺技术;(3)能够生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如多孔含油轴承、过滤材料、生物材料、分离膜材料、难熔金属和合金、高性能陶瓷材料等;(4)能够最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织,在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li 合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用;(5)能够制备非晶、微晶、准晶、纳米晶和过饱和固溶体等壹系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能;(6)能够充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是壹种可有效进行材料再生和综合利用的新技术。

近些年来,粉末冶金有了突破性进展,壹系列新技术、新工艺大量涌现,例如:快速冷凝雾化制粉技术、机械合金化制粉技术、超微粉或纳米粉制备技术、溶胶-凝胶技术、粉末注射成形、温压成形、粉末增塑挤压、热等静压、烧结/热等静压、场活化烧结、微波烧结、粉末轧制、流延成形、爆炸成形、粉末热锻、超塑性等温锻造、反应烧结、超固相线烧结、瞬时液相烧结、自蔓延高温合成、喷射沉积、计算机辅助激光快速成形技术等。

粉末冶金成形

粉末冶金成形
致密化
通过烧结过程中的物质迁移和相变,使烧结体内部孔隙减小或消失, 提高其密度和性能。
致密化程度
与烧结温度、时间、气氛等因素有关,需根据产品要求进行控制。
03 粉末冶金成形的关键技术
粉末注射成形技术
定义
粉末注射成形是一种将金属粉末与有机粘结 剂混合,通过注射机注入模具中成形,然后 脱脂和烧结的工艺。
能源领域
粉末冶金技术在风力发电、核能等领 域中用于制造高性能的零部件。
粉末冶金成形的优缺点
材料利用率高,减少材料 浪费;
可生产出形状复杂、精度 高的制品;
优点
01
03 02
粉末冶金成形的优缺点
01
可通过控制成分和工艺参数制备高性能材料;
02
适用于大规模生产。
缺点
03
粉末冶金成形的优缺点
生产过程中易产生粉尘污染; 制品内部可能存在孔隙和缺陷; 部分材料制备成本较高。
等静压成形技术
定义
等静压成形技术是一种利用液体介质传递压力,使金属粉末在各 个方向上均匀受压而成形的工艺。
优点
可生产高精度、高密度、高性能的产品,适用于大规模生产。
应用领域
广泛应用于陶瓷、粉末冶金等领域。
04 粉末冶金成形的材料性能
材料力学性能
硬度
抗拉强度
粉末冶金制品的硬度通常较高,可达到 HRC60以上,这主要得益于其致密的结构 和合金元素的固溶强化作用。
粉末冶金制品具有较高的抗拉强度,通常 在1000MPa以上,这与其致密的结构和晶 粒细化有关。
疲劳性能
韧性
由于其良好的力学性能,粉末冶金制品在 循环载荷下表现出良好的疲劳性能。
粉末冶金制品的韧性与其成分、显微组织 和热处理状态有关,通过合理的工艺控制 可以提高其韧性。

粉末冶金工艺

粉末冶金工艺

粉末冶金工艺过程粉末冶金材料是指不经熔炼和铸造,直接用几种金属粉末或金属粉末与非金属粉末,通过配制、压制成型,烧结和后处理等制成的材料。

粉末冶金是金属冶金工艺与陶瓷烧结工艺的结合,它通常要经过以下几个工艺过程:一、粉料制备与压制成型常用机械粉碎、雾化、物理化学法制取粉末。

制取的粉末经过筛分与混合,混料均匀并加入适当的增塑剂,再进行压制成型,粉粒间的原子通过固相扩散和机械咬合作用,使制件结合为具有一定强度的整体。

压力越大则制件密度越大,强度相应增加。

有时为减小压力合增加制件密度,也可采用热等静压成型的方法。

二、烧结将压制成型的制件放置在采用还原性气氛的闭式炉中进行烧结,烧结温度约为基体金属熔点的2/3~3/4倍。

由于高温下不同种类原子的扩散,粉末表面氧化物的被还原以及变形粉末的再结晶,使粉末颗粒相互结合,提高了粉末冶金制品的强度,并获得与一般合金相似的组织。

经烧结后的制件中,仍然存在一些微小的孔隙,属于多孔性材料。

三、后处理一般情况下,烧结好的制件能够达到所需性能,可直接使用。

但有时还需进行必要的后处理。

如精压处理,可提高制件的密度和尺寸形状精度;对铁基粉末冶金制件进行淬火、表面淬火等处理可改善其机械性能;为达到润滑或耐蚀目的而进行浸油或浸渍其它液态润滑剂;将低熔点金属渗入制件孔隙中去的熔渗处理,可提高制件的强度、硬度、可塑性或冲击韧性等。

粉末冶金工艺的优点1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。

2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。

用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。

3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。

金属冶炼中的粉末冶金技术

金属冶炼中的粉末冶金技术
金属粉末制备
粉末冶金技术还可以用于制备金属粉末,如铁粉、铝粉等。这些粉末可以用于 制造各种金属制品,如零件、工具和结构件等。
粉末冶金在金属合金化中的应用
合金化原理
粉末冶金技术通过控制原料粉末的成分和比例,可以制备出 具有特定性能的合金材料。通过调整合金元素的种类和含量 ,可以优化材料的力学性能、物理性能和化学性能。
粉末冶金技术在风力发电、核能、太阳能 等领域有广泛应用,能够制备高性能的零 部件和材料。
02
粉末冶金技术的基本 原理
粉末的制备
原材料选择
根据所需金属的性质和用途,选 择合适的原材料。
物理法
通过机械研磨、气体雾化、电解沉 积等方法将原材料细化成粉末。
化学法
通过化学反应将原材料分解为粉末 ,如氢还原法、化学气相沉积等。
合金制备方法
粉末冶金技术中的熔融混合法、机械合金化法和化学共沉淀 法等可用于制备各种合金材料,如不锈钢、镍基高温合金和 钛合金等。
粉末冶金在金属复合材料制备中的应用
金属基复合材料
粉末冶金技术可以用于制备金属基复 合材料,如铝基复合材料、钛基复合 材料和钢基复合材料等。这些复合材 料由两种或多种材料组成,具有优异 的力学性能和物理性能。
高强度与轻量化
粉末冶金技术能够制备高强度、轻量化的 金属零件,有助于提高产品的性能和降低
能耗。
可制造复杂结构零件
粉末冶金技术能够制造具有复杂内部结构 和精细特征的金属零件,满足各种工程应 用的需求。
环保友好
粉末冶金技术采用低能耗、低污染的生产 方式,减少了传统金属冶炼过程中产生的 废气、废水和废渣。
粉末冶金技术的快速发展,开始应用 于大规模生产和制备高性能材料。
粉末冶金技术的应用领域

粉末冶金工艺流程

粉末冶金工艺流程

粉末冶金工艺流程
粉末冶金是采用通过把金属材料分解为粉末形式,然后采用合金工艺进行成型制造的一种新型加工金属技术。

它利用传统冶金方法和粉末冶金工艺,以及最新推出的金属热回压成型工艺,将金属以三维形状成型,从而制造出符合要求的金属零件。

这种工艺在当今技术革新中发挥了十分重要的作用,它不仅具有节约材料和节能等优点,还能够实现密密麻麻的构造设计。

粉末冶金的工艺流程大致可以分为:粉末服务、粉末搅拌、成型压制、焊接和表面处理几个步骤。

其中,粉末加工是粉末冶金工艺的第一步,也是最重要的步骤,包括选料、粉碎、筛选、干燥和粉碎,并采用特殊装置将粉末服务于粉末搅拌机中。

粉末服务完成之后,将在粉末搅拌机中进行搅拌,以将不同成分的粉末混合在一起,形成复合粉末。

然后,采用成型压制工艺将粉末冶金以三维形状压制成型,实现金属零件的成型。

这种工艺有效提高了材料利用率,节省了材料和能源消耗。

最后,采用焊接工艺将一系列零件组装在一起,形成整体,然后对产品的外表和内部进行表面处理,使其表面光洁,均匀,以及防腐功能,以满足用户的各种要求。

综上所述,粉末冶金工艺是一种复杂的制造工艺,其中包括粉末加工、粉末搅拌、成型压制、焊接和表面处理等几个步骤,根据产品的功能和使用要求,可以选择不同的加工工艺,所制成的产品具有良好的性能,节约能源和节能,能够满足各个领域的需求。

粉末冶金的工艺流程

粉末冶金的工艺流程

粉末冶金的工艺流程
粉末冶金,又称粒子冶金,是一种大部分金属和合金都能通过粉末形式得到的冶金技术。

这种技术,可以达到质量特别高的要求,因此在航空航天、汽车工业以及其它机械制造中应用非常广泛。

粉末冶金的工艺流程分为两个主要部分:粉末冶金和粉末非金属加工。

首先,粉末冶金要求将合金粉末装入加工设备中,并经过加热和熔化处理,以获得凝固的金属块。

一般来说,这种方法使用的是通过将合金粉末与特定的熔融物质混合而成的新型金属颗粒。

熔炼后的金属颗粒会被做成一定的形状,如型材、薄板和棒材等。

接着,粉末非金属加工是一种以粉末为原料的零件生产工艺,涉及到粉末的成型和加工。

它使用粉末材料的粒度、物理性质和介电性质等特性,共同影响加工精度和成型性能。

一般来说,这种方法将合金粉末按照一定的设计形状压制成型,然后再进行零件组装。

最后,把各零件进行拼接和粘合等后续处理,以形成完整的零件。

粉末冶金技术也可以用于制造由复合材料组成的新型材料。

比如,粉末冶金技术可以将金属粉末和复合材料混合,然后再进行熔炼,制成新型的复合材料。

这种材料具有金属的耐蚀性和复合材料的强度和易加工性等特点,可以用于高压力的零件制造。

综上所述,粉末冶金工艺流程和粉末非金属加工是一种结合熔炼、冶金和非金属加工技术的制造方法,可以生产高质量和复杂多样的零件。

它具有节能、环保、高效等特点,近年来得到了越来越多的应用。

- 1 -。

粉末冶金工艺及材料

粉末冶金工艺及材料

粉末冶金工艺及材料粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。

但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。

粉末冶金材料和工艺与传统材料工艺相比,具有以下特点:1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。

2.提高材料性能。

用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。

3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。

提高材料利用率,降低成本。

粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni 等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。

随着粉末冶金生产技术的发展,粉末冶金及其制品将在更加广泛的应用。

1粉末冶金基础知识⒈1粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。

1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。

2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。

实际的粉末往往是团聚了的颗粒,即二次颗粒。

图7.1.1描绘了由若干一次颗粒聚集成二次颗粒的情形。

实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。

粉末冶金工艺流程

粉末冶金工艺流程

粉末冶金工艺流程粉末冶金是一种利用金属粉末或者金属粉末与非金属粉末混合后,再经过成形和烧结等工艺制备金属材料的工艺方法。

粉末冶金工艺流程包括原料制备、混合、成型、烧结和后处理等几个主要步骤。

首先,原料制备是粉末冶金工艺流程的第一步。

在原料制备过程中,需要选择合适的金属粉末和非金属粉末作为原料,并对原料进行粉碎、筛分和混合等处理,以保证原料的均匀性和适应性。

接下来是混合步骤。

在混合过程中,将金属粉末和非金属粉末按一定的配比混合均匀,以确保成品的化学成分和性能达到要求。

混合过程中需要注意控制混合时间和混合方式,以避免原料的分层和堆积现象。

成型是粉末冶金工艺流程的第三步。

在成型过程中,将混合后的粉末通过压制或注射成型等方式,制备成所需形状的坯料。

成型过程中需要注意控制成型压力、温度和速度等参数,以保证坯料的密度和形状的精度。

烧结是粉末冶金工艺流程的第四步。

在烧结过程中,将成型后的坯料在高温条件下进行烧结,使粉末颗粒之间发生扩散和结合,最终形成致密的金属材料。

烧结过程中需要控制烧结温度、气氛和时间等参数,以确保成品的密度和性能达到要求。

最后是后处理步骤。

在后处理过程中,对烧结后的成品进行表面处理、热处理和精密加工等工艺,以提高成品的表面质量和机械性能,最终得到符合要求的粉末冶金制品。

总的来说,粉末冶金工艺流程包括原料制备、混合、成型、烧结和后处理等几个主要步骤。

通过精心控制每个步骤的工艺参数,可以制备出具有优异性能和复杂形状的金属材料,广泛应用于汽车、航空航天、医疗器械和电子等领域。

粉末冶金工艺的发展将为材料制备和加工领域带来新的机遇和挑战。

粉末冶金加工工艺

粉末冶金加工工艺

粉末冶金加工工艺嘿,朋友们!今天咱来聊聊粉末冶金加工工艺,这可真是个神奇又有趣的玩意儿呢!你想想啊,就好像我们小时候玩泥巴,把泥巴捏成各种形状,这粉末冶金不也差不多嘛,不过可比玩泥巴高级多啦!粉末冶金就是把各种金属粉末当成我们的“神奇泥巴”,然后通过一系列的操作,让它们变成我们想要的东西。

先来说说这金属粉末是怎么来的吧。

就好像我们要做面包得先有面粉一样,这些金属粉末就是我们的“原料”。

它们可以通过各种方法得到,比如把大块的金属打碎啦,或者通过一些特殊的工艺制造出来。

这些粉末细细的,就像我们吃的面粉一样。

有了粉末,接下来就得让它们“团结”起来呀。

这就像是搭积木,得把一块块积木堆在一起才能变成一个完整的东西。

在粉末冶金里,我们就用各种方法让粉末紧密地结合在一起。

可以通过施加压力,把粉末压成我们想要的形状,就像我们用力压泥巴一样。

或者用一些特殊的方法,让粉末在高温下“融合”在一起,变得坚不可摧。

然后呢,经过一番加工,我们的“作品”就初步成型啦。

但这还不够完美呀,还得给它“打扮打扮”。

就像我们出门要穿漂亮衣服一样,我们要对这些成型的东西进行各种处理,让它们表面更光滑、更漂亮,性能也更好。

你说这粉末冶金神奇不神奇?它能做出各种各样我们想象不到的东西。

小到一个小小的齿轮,大到汽车上的零件,都可能是通过粉末冶金做出来的。

而且啊,它还有很多好处呢!比如说,它可以节省材料,因为粉末可以充分利用,不会像传统加工方法那样浪费很多。

还有啊,它能做出一些很复杂的形状,这要是用其他方法可就难啦!你想想看,如果没有粉末冶金,我们的生活得少多少有趣的东西呀!那些精巧的零件、好用的工具,说不定都没办法这么容易地生产出来呢。

所以说呀,粉末冶金可真是个了不起的工艺。

咱再回过头来想想,这粉末冶金不就像是一个魔法师吗?把那些小小的金属粉末变成了各种各样有用的东西。

它在我们看不见的地方默默工作,为我们的生活提供了那么多便利。

怎么样,是不是对粉末冶金加工工艺有了新的认识和了解呀?下次你再看到那些金属制品的时候,说不定就会想起这神奇的粉末冶金工艺呢!反正我是觉得它超级厉害的,你们觉得呢?。

粉末冶金制粉新工艺

粉末冶金制粉新工艺

粉末冶金制粉新工艺粉末冶金制粉工艺是最近新出现的冶金工艺,也被称为冲击型冶金法,它是一种用来不断研究新材料和加工方法的工艺性能优良的重要工艺流程。

粉末冶金制粉的主要原料一般是由矿石、废料熔炼金属或者金属合金的粉末,其中的添加物一般是以热喷涂技术从外部添加到合金中,以改变其组成和性能;预收粉末通常应采用连续的研磨机和粉末冶金工艺,使其中的粒径达到要求。

粉末冶金制粉工艺是以熔融分离或点焊的方法结合粉末冶金方法,利用电弧焊技术或工艺(包括电弧渗透焊技术,埋弧熔接技术或等离子辅助金属气相熔覆技术)来生产多孔机械零件。

这一工艺不但可以减少表面缺陷、减少机械加工环节,而且可以改变机件的特性,进一步提高机件的加工效率。

粉末冶金制粉工艺具有众多优势,如粉末可以通过不规则的空气流体来反复混合,并具有灵活的粒径控制,可在较短的时间内获得较小的粒径,只能生产加工更精细的零部件,可以满足精密零件制造。

粉末冶金制粉工艺在现代制造业发展迅速,得到了广泛的应用,但同时也存在着一些问题,如受工艺抗击性的影响,它的均匀性比其他冶金方法更差,这是由于针对细小粒度的粉末,分散性和反应性不够,在实际应用中,一些细小分散的粉末可能会因不均匀的反应而形成多孔的有害物质。

粉末冶金制粉工艺在不断研发日趋多元新材料,改变传统冶金工艺中复杂的工序,已经受到了广泛的关注和赞誉。

简单、快捷、低成本是粉末冶金制粉工艺的最大优势,将来有望成为制造行业的主流方式。

Powder metallurgy sintering process is a newly emerging metallurgical process, also called impact metallurgy, is a key process with excellent process performance to continuously study new materials and processing methods.The main raw materials of powder metallurgy sintering process are generally powders of ore, waste metal or metal alloy produced by smelting, and the additives are generally added to the alloy from the outside by thermal spraying technology to change its composition and performance. The pre-receiving powder should generally use continuous grinding machines and powder metallurgy process to make its particle size meet the requirements.Powder metallurgy sintering process combines powder metallurgical method with melting separation or spot welding method, and uses arc welding technology or process (including arc infiltration welding technology, buried arc welding technology or plasma assisted metal gas phase coating technology) to produce porous mechanical parts. This process not only reduces surface defects and reduces machining links, but also can change the characteristics of parts and further improve the machiningefficiency of parts.Powder metallurgy sintering process has many advantages, such as powder can be repeatedly mixed by irregular air fluid and has flexible particle size control, and can obtain smaller particles in a short time. It can only produce more finely processed parts and meet the requirements of precision parts manufacturing.Powder metallurgy sintering process has developed rapidly in modern manufacturing industry, and has been widely used, but at the same time, there are also some problems, such as the influence of process impact resistance, its homogeneity is worse than other metallurgical methods, which is due to the small particle size of powder, Poor dispersion and reactivity may form harmful substances with porous structure due to uneven reaction in practical application.Powder metallurgy sintering process has been widely concerned and praised for its continuous research and development of multi-material new materials and change of complex processes in traditional metallurgical process. Simple, fast, low-cost is the biggest advantage of powder metallurgy sintering process, which is expected to become the mainstream way in manufacturing industry in the future.。

粉末冶金制粉新工艺

粉末冶金制粉新工艺

粉末冶金制粉新工艺
粉末冶金是一种重要的金属加工工艺,其加工能力高,产品准确,耐用性强,被广泛应用于各行各业。

随着经济的发展,粉末冶金工艺也在不断进步,研制新型的粉末冶金技术,以满足不同行业的需求。

本文主要介绍一种新型的粉末冶金工艺粉末冶金制粉新工艺。

粉末冶金制粉新工艺是一种综合运用粉末冶金技术和粉体技术
的制作工艺。

主要运用粉末冶金技术将原材料冶炼成金属粉末,然后利用粉体技术,将粉末冶金制品加工成满足要求的固体颗粒。

优点:首先,粉末冶金制粉新工艺可以让原料更充分地发挥潜能,提高加工效率,有助于节省原料成本;其次,新工艺可以提高制粉品质,提升产品可靠性;再者,新工艺也可以减少污染,帮助我们建设一个更美好的环境。

缺点:粉末冶金工艺的投入较大,需要专业的技术人员,复杂的工艺流程,会比一般的加工方式花费更多的时间;而且,粉末冶金制粉新工艺还存在一定的风险,比如温度控制不当,冶炼的过程中会受到影响。

综上所述,粉末冶金制粉新工艺是一种将粉末冶金技术和粉体技术结合在一起的制粉工艺,具有成本低、效率高、节省资源和减少污染等优点,但也存在一定的风险,需要专业的技术人员参与和投入,时间消耗较多。

考虑到综合因素,合理使用粉末冶金制粉新工艺可以提高加工效率,提升产品品质,节省资源,减少污染,为节能减排、保护环境作出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
3.温压成型技术
特点 : (3)脱模压力小 温压工艺脱模压力(Slide pressure)约为10~20MPa,而常 规工艺却高达55~75MPa,其降低幅度超过60%。低的脱模 压力意味着温压工艺易于压制形状复杂的铁基P/M零件和减 小模具磨损从而延长其使用寿命。
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
4.流动温压技术 将上述两种方法结合起来,混合粉末在 压制温度下就可转变成为流动性很好的黏 流体,它既具有液体的所有优点,又具有很 高的黏度。混合粉末的流变行为使得粉末 在压制过程中可以流向各个角落而不产生 裂纹。
昆明理工大学材料与冶金学院 胡劲
b)双向压制
压坯密度沿高度方向的分布图
a)填充粉料
b)双向压坯
c)上冲模复位
d)顶出坯块
双向压制粉末冶金坯块工步示意图
粉末的压制一般在普通机械式压力机或液压机上进行。 常用的压力机吨位一般为500~5000kN。
传统压制技术的局限
1、模具要求高,占用生产成本比例大;
2、所加工部件尺寸受到限制;
3、部件密度分布不均匀;
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
1.动磁压制技术 动磁压制有可能使电机设计与制造方法产生革 命性变化,由粉末材料一次制成近终形定子与转子, 从而获得高性能产品,大大降低生产成本。 动磁压制正用于开发高性能粘结钕铁硼磁体与 烧结钐钴磁体。由于动磁压制的粘结钕铁硼磁体密
度高,其磁能积可提高15%-20%。
高速压制压坯径向弹性后效很小, 脱模力较低;
高速压制的密度较均匀, 其偏差小于0.01g/cm3。
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
3.温压成型技术
温压技术是近几年新发展的一项新技术。它 是在混合物中添加高温新型润滑剂,然后将粉末 和模具加热至423K左右进行刚性模压制,最后采 用传统的烧结工艺进行烧结的技术,是普通模压 技术的发展与延伸,被国际粉末冶金界誉为 “开 创铁基粉末冶金零部件应用新纪元”和“导致粉 末冶金技术革命”的新型成型技术。
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
3.温压成型技术
特点 : (4)表面精度高 由于温压工艺使压坯密度升高,而且温压中处于粘流态的润 滑剂具有良好的“整平”作用,因此它可以使铁基粉末冶金 零件表面精度提高2个IT等级,使纳米晶硬质合金粉末压坯 表面精度提高3个IT等级。
昆明理工大学材料与冶金学院 胡劲
昆明理工大学材料与冶金学院 胡劲
3.温压成型技术
其与传统模压工艺主要区别之处在于压制过程中将粉末和模
具加热到一定的温度,温度通常设定在130~150℃范围以内,
可使铁基粉末冶金零件密度提高0.15~0.4g/cm3,粉末压坯 相对密度可达到98-99%。在该工艺中,为了充分发挥在压制 过程中的颗粒重排和塑性变形等温压致密化机制,往往需要 优化原料粉末设计(如形状、粒度组成的选择),通过退火
2.压制成形 压模压制是将置于压模内的松散粉 末施加一定的压力后,成为具有一定 尺寸、形状和一定密度、强度的压坯。
粉末的压缩过程一般采用压坯密 度 —— 成形压力曲线来表示。压坯密 度变化分为三个阶段。滑动阶段:在 压力作用下粉末颗粒发生相对位移, 填充孔隙,压坯密度随压力增加而急 剧增加;二是粉末体出现压缩阻力, 即使再加压其孔隙度不能再减少,密 度不随压力增高而明显变化;三是当 压力超过粉末颗粒的临界压力时,粉 末颗粒开始变形,从而使其密度又随 压力增高而增加。
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
动磁压制的优点: • 由于不使用模具,成型时模壁摩擦减少到0,因而可
达到更高的压制压力,有利于提高产品,并且生产成
本低;
•由于在任何温度与气氛中均可施压,并适用于所有材
料,因而工作条件更加灵活; • 由于这一工艺不使用润滑剂与粘结剂,因而成型产 品中不含有杂质,性能较高,而且还有利于环保。
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
1.动磁压制技术 许多合金钢粉用动磁压制做过实验,粉末中不 添加任何润滑剂,生坯密度均在95%以上。动磁压 制件可以在常规烧结条件下进行烧结,其力学性能
高于传统压制件。动磁压制适用于制造柱形对称
的近终形件、薄壁管、纵横比高的零件和内部形
状复杂的零件。
制能量通过压模传给粉末进行致密化。重锤的质量
与冲击时的速度决定压制能量与致密化程度。
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
2.高速压制
高速压制的另一个特点是产生多重冲击
波,间隔约0 3s的一个个附加冲击波将密度 不断提高。这种多重冲击提高密度的一个优
点是,可用比传统压制小的设备制造重达5kg
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
1.动磁压制技术 动磁压制的亚毫秒压制过程有助于保持材
料的显微结构不变,因而也提高了材料性能。
对于象W、WC与陶瓷粉末等难压制材料,动
磁压制可达到较高的密度,从而降低烧结收缩 率。目前许多动磁压制的应用已接近工业化
阶段,第一台金成型新技术
流动温压工艺主要特点如下:
(1)可成形零件的复杂几何形状。国外已利用
常规温压工艺成功制备出了一些形状较复杂的粉
末冶金零件,如汽车传动转矩变换器涡轮毂、连杆
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
3.温压成型技术
特点 : (2)生坯强度高 常规工艺的生坯强度约为10~20MPa,温压压坯的强度则为 25~30MPa,提高了1.25-2倍。生坯强度的提高可以大大降 低产品在转移过程中出现的掉边、掉角等缺陷,有利于制备 形状复杂的零件;同时,还有望对生坯直接进行机加工,免 去烧结后的机加工工序,降低了生产成本。这一点在温压烧结连杆制备中表现得尤为明显。
第二章 粉末压制成形新技术
成形方法
成形是粉末冶金工艺的重要步骤。成形的目的是制得 具有一定形状、尺寸、密度和强度的压坯。粉末冶金常用 的成形方法如下所示。模压成形是最基本方法。
成形 无压成形
加压成形
松 装 烧 结
粉 浆 浇 注
模 压 成 形
热 压 成 形
等 静 压 成 形
轧 制 成 形
离 心 成 形
a) 压制前
b) 压制后
a)单向压制
b) 双向压制
用石墨粉作隔层的单向压坯
压坯密度沿高度分布图
为了改善压坯密度的不均匀性,一般采取 以下措施:
1)减小摩擦力:模具内壁上涂润滑油或采用内 壁更光洁的模具; 2)采用双向压制以改善压坯密度分布的不均匀 性; 3)模具设计时尽量降低高径比。
a)单向压制
模压示意图
压坯密度与压力
压坯密度分布不均匀:用石墨粉作隔层的单向压制实 验,得到如图5-4所示的压坯形状,各层的厚度和形状均发 生了变化,由图5-5可知在任何垂直面上,上层密度比下层 密度大;在水平面上,接近上模冲的断面的密度分布是两 边大,中间小;而远离上模冲的截面的密度分别是中间大, 两边小。 因为粉末体在压模内受力后向各个方向流动,于是引 起垂直于压模壁的侧压力。侧压力引起摩擦力,会使压坯 在高度方向存在明显的压力降。
或扩散退火处理以改善粉末塑性,以及往粉末中掺入高性能
高温润滑剂(添加量通常为0.6wt%)。
昆明理工大学材料与冶金学院 胡劲
3.温压成型技术
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
3.温压成型技术
特点 : •(1)密度高且分布均匀 常规一次压制-烧结最高密度一般为7.1g/cm3左右,温压一 次压制-烧结密度可达到7.40-7.50 g/cm3,温压二次压制-烧 结密度可高达7.6g/cm3左右。温压工艺中高性能润滑剂保 证了粉末与模壁之间具有较低的摩擦系数,使得压坯密度分 布更加均匀,采用温压工艺制备齿轮类零件时齿部与根部间 的密度差比常规压制工艺低0.1~0.2g/cm3。
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
2.高速压制 瑞典开发出粉末冶金用高速压制法。这可能是
粉末冶金工业的又一次重大技术突破。高速压制采
用液压冲击机,它与传统压制有许多相似之处,但关 键是压制速度比传统快500~1000倍,其压头速度高 达2~30m/s,因而适用于大批量生产。液压驱动的 重锤(5~1200kg)可产生强烈冲击波,0.02s内将压
零件的密度得到了较好的提高,从而大大提高了铁基等粉
末冶金制品的可靠性,因此温压技术在汽车制造 机械制造、 武器制造等领域存在着广阔的应用前景。
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
4.流动温压技术 流动温压技术以温压技术为基础,并结合了金 属注射成形的优点,通过加入适量的微细粉末和
加大润滑剂的含量而大大提高了混合粉末的流动
性、填充能力和成形性, 这一工艺是利用调节粉 末的填充密度与润滑剂含量来提高粉末材料的成 形性。它是介于金属注射成形与传统模压之间的 一种成形工艺。
昆明理工大学材料与冶金学院 胡劲
第二章 粉末冶金成型新技术
4.流动温压技术
流动温压技术的关键是提高混合粉末的流动性,主要通过 两种方法来实现: 第一种方法是:向粉末中加入精细粉末。这种精细粉末能够 填充在大颗粒之间的间隙中,从而提高了混合粉末的松装密度。 第二种方法是:比传统粉末冶金工艺加入更多的粘结剂和润 滑剂,但其加入量要比粉末注射成形少得多。粘结剂或润滑剂的 加入量达到最优化后,混合粉末在压制中就转变成一种填充性很 高的液流体。
以上的大零件。 高速压制适用于制造阀座、气门导管、 主轴承盖、轮毂、齿轮、法兰、连杆、轴套 及轴承座圈等产品。
相关文档
最新文档