运算定律和性质整理
(完整版)加减乘除运算定律
加法
1.加法交换律:a+b = b+a
两个数相加,交换加数的位置,和不变。
2.加法结合律:a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用交换律和结合律: a+b+c = (a+c)+b
减法
1.减法的性质:a–b–c = a–(b+c)
一个数连续减去两个数,可以用第一个数减去后面两个数的和,差不变。
乘法
1.乘法交换律:a×b = b×a
两个数相乘,交换乘数的位置,积不变。
2.乘法结合律:a×b×c = (a×b)×c = a×(b×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
3.乘法运算中综合运用交换律和结合律: a×b×c = ( a×c)×b
4.乘法分配律:(a+b)×c = a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5.乘法分配律的逆运用:a×c+b×c =(a+b)×c
除法
1.除法的性质:a÷b÷c = a÷(b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。
四年级数学简便计算:运算定律和性质
★这篇《四年级数学简便计算:运算定律和性质》,是®⽆忧考⽹特地为⼤家整理的,希望对⼤家有所帮助!1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
⽤字母表⽰:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
⽤字母表⽰:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
⽤字母表⽰:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
⽤字母表⽰:(a×b)×c= a ×( b×c)5、乘法分配律:两个数的和与⼀个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
⽤字母表⽰:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c6、减法的性质1:⼀个数连续减去两个数,可以减去这两个减数的和。
⽤字母表⽰:a-b-c= a -( b+c)a -( b+c) = a-b-c7、减法的性质2:⼀个数连续减去两个数,可以先减去第⼆个减数,再减去第⼀个减数。
⽤字母表⽰:a-b-c= a-c-b8、除法的性质1:⼀个数连续除以两个数,可以除以这两个除数的积。
⽤字母表⽰:a÷b÷c= a ÷( b×c)a ÷( b×c) = a÷b÷c9、除法的性质2:⼀个数连续除以两个数,可以先除以第⼆个除数,再除以第⼀个除数。
⽤字母表⽰:a÷b÷c= a÷ c ÷ b。
运算定律和性质及其应用
运算定律和性质1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
用字母表示:(a×b)×c= a×( b×c)5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c6、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c) a -( b+c) = a-b-c7、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a- c – b8、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a÷( b×c) a÷( b×c) = a÷b÷c9、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷c÷b158+262+138 375+219+381+225 5001-247-1021-232 (181+2564)+2719 378+44+114+242+222 276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+286 3065-738-1065899+344 2357-183-317-357 2365-1086-214497-299 2370+1995 3999+4981883-398 12×25 75×24138×25×4 (13×125)×(3×8) (12+24+80)×50704×25 25×32×125 32×(25+125)88×125 102×76 58×98178×101-178 84×36+64×84 75×99+2×7583×102-83×2 98×199 123×18-123×3+85×123 50×(34×4)×3 25×(24+16)178×99+17879×42+79+79×57 2356-(1356-721)1235-(1780-1665)75×27+19×2 5 31×870+13×310 4×(25×65+25×28)(300+6)x12 25x(4+8) 125x(35+8) (13+24)x884x101 504x25 78x102 25x20499x64 99x16 638x99 999x9999X13+13 25+199X25 32X16+14X32 78X4+78X3+78X3 125X32X8 25X32X125 88X125 72X1253600÷25÷4 8100÷4÷75 3000÷125÷8 1250÷25÷5 1200-624-76 2100-728-772 273-73-27 847-527-273 278+463+22+37 732+580+268 1034+780+320+102 425+14+186214-(86+14)787-(87-29)365-(65+118)455-(155+230) 576-285+85 825-657+57 690-177+77 755-287+87871-299 157-99 363-199 968-599178X101-178 83X102-83X2 17X23-23X7 35X127-35X16-11X3526×39+61×26356×9-56×9 99×55+5578×101-78 52×76+47×76+76 134×56-134+45×134 48×52×2-4×48 25×23×(40+4)999×999+1999 184+98 695+202 864-199 738-301380+476+120 (569+468)+(432+131)704×25256-147-53 373-129+29 189-(89+74)28×4×25 125×32×259×72×1255001-247-1021-232 (181+2564)+2719 378+44+114+242+222 276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+2863065-738-1065 899+344 2357-183-317-3572365-1086-214 497-299 2370+19953999+498 1883-398 12×25 75×24138×25×4 (13×125)×(3×8)(12+24+80)×5025×32×125 32×(25+125)88×125 102×76178×101-178 84×36+64×84 75×99+2×7598×199 123×18-123×3+85×12350×(34×4)×325×(24+16)178×99+178 79×42+79+79×57375+219+381+225 5001-247-1021-232 (181+2564)+2719378+44+114+242+222 276+228+353+219 (375+1034)+(966+125)(2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+286 3065-738-1065 899+3442365-1086-214 497-2992370+1995 3999+498 1883-39812×25 75×24 138×25×4 (13×125)×(3×8)(12+24+80)×50 704×25 25×32×125 32×(25+125)88×125 102×76 58×98 178×101-178 84×36+64×8475×99+2×75 83×102-83×2 98×199123×18-123×3+85×123 50×(34×4)×3 25×(24+16)178×99+178 79×42+79+79×57 21500÷1257300÷25÷4 8100÷4÷75 16800÷120。
初中数学常用数学公式:运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即ab=ba。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(ab)c=a(bc) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)c=ac+bc 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
小学数学,运算定律与性质
小学数学,运算定律与性质篇一:小学数学常用运算定律小学数学常用运算定律加法交换律: a+b=b+a加法结合律: a+b+c=(a+b)+c a+(b+c)=(a+c)+b乘法交换律:ab=ba乘法结合律: abc=(ab)c=a(bc)=(ac)b乘法分配律: a(b+c)=ab+acab+ac= a(b+c)减法的运算性质:a-b-c=a-(b+c)除法的运算性质:a÷b÷c=a÷(b×c)a÷(b×c)= a÷b÷c= a÷c÷b a÷b×c=a÷(b÷c)a÷(b÷c)= a÷b×c小学数学图形计算公式正方形(C:周长S面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a长方形(C:周长S:面积a:边长)周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2平行四边形(s:面积a:底h:高)面积=底×高s=ah 梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷2圆形(S:面积C:周长л d=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л S=лr2小学数学常用单位和进率质量(重量)单位:1吨=1000千克1千克=1000克长度单位:1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=10分米=100厘米=1000毫米面积单位: 1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米地积单位1亩=10分,1公顷=15亩,1亩≈667平方米, 1公顷=100公亩=10000平方米体积单位:1立方米=1000立方分米,1立方分米=1000立方厘米,1立方厘米=1000立方毫米1升=1000毫升时间单位:1天=24时1时=60分1分=60秒1年=12月1月=3旬(上旬、中旬都是10天,剩下的天数为下旬)篇二:小学数学运算规律基本性质小学数学中一些概念、运算规律、基本性质乘法:1、积的变化规律:一个因数不变,另一个因数乘或除以几,积就相应的乘或除以几。
运算定律和性质
运算定律与性质1、加法运算定律交换律:连加法中,交换两个加法得位置,它们得与不变.例如:96+4=4+96用字母表示:a +b=b+ a同时也适用几个数相加得情况。
例如:28+75+25=25+75+28用字母表示:a + b +c=c+ b+ a结合律:几个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,它们得与不变。
例如:(25+8)+32=25+(8+32)用字母表示:(a+b)+c=(a+ c)+b如果先交换,再结合,可得:a + b+ c=( a + c)+ba+ b + c+ d=( a +d)+(b+c)2、乘法运算定律交换律:在乘法中,交换两个因数得位置,它们得积不变。
例如:12×23=23×12用字母表示:a×b=b×a同时也适用几个数相乘得情况。
例如:12×25×4=4×25×12用字母表示:a×b×c=c×a×b结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再与第一个数相乘,它们得积不变。
例如:25×34×4=(25×4)×34用字母表示:a×b×c=a×(b×c)如先交换,后结合,可得a×b×c=(a×c)×b同时也适用几个数相乘得情况。
例如:25×5×4×2=(25×4) ×(2×5)用字母表示:a×b×c×d=(a×d)×(b×c)分配律:两个数得与或者两个数得差与一个数相乘可以用这个数分别去乘两个数,再把两个积相加或相减。
例如:(25+16)×4=25×4+16×4(25-16)×4=25×4—16×4用字母表示:(a + b)×c=a×c + b×c(a – b)×c=a×c- b×c3、加减混合运算性质(1)在加减混合运算中,改变运算顺序,结果不变。
四年级运算定律公式归纳
一、加法定律加法定律是指加法运算中的一些基本规律和性质。
1.加法结合律加法结合律是指用不同的顺序加三个数得到的和是相同的。
即:(a+b)+c=a+(b+c)。
例如:(2+3)+4=9,2+(3+4)=92.加法交换律加法交换律是指两个数相加的和与它们的顺序无关。
即:a+b=b+a。
例如:3+5=5+33.加法零律加法零律是指任何数加上0,得到的结果仍是原来的数。
即:a+0=a。
例如:2+0=2二、减法定律减法定律是指减法运算中的一些基本规律和性质。
1.减法的定义减法的定义是指a-b等于一个数c,使得b+c等于a。
即:a-b=c,b+c=a。
例如:5-2=3,2+3=52.减法与加法的关系减法可以通过加法来表示。
即:a-b=a+(-b)。
例如:5-3=5+(-3)。
三、乘法定律乘法定律是指乘法运算中的一些基本规律和性质。
1.乘法结合律乘法结合律是指用不同的顺序乘三个数得到的积是相同的。
即:(a×b)×c=a×(b×c)。
例如:(2×3)×4=24,2×(3×4)=242.乘法交换律乘法交换律是指两个数相乘的积与它们的顺序无关。
即:a×b=b×a。
例如:3×5=5×33.乘法分配律乘法分配律是指一个数与两个数的和相乘,等于这个数分别与这两个数相乘后的和。
即:a×(b+c)=(a×b)+(a×c)。
例如:2×(3+4)=(2×3)+(2×4)。
4.乘法零律乘法零律是指任何数乘以0,得到的结果是0。
即:a×0=0。
例如:2×0=0。
四、除法定律除法定律是指除法运算中的一些基本规律和性质。
1.除法的定义除法的定义是指a除以b等于一个数c,使得b乘以c等于a。
即:a÷b=c,b×c=a。
例如:6÷2=3,2×3=62.除法与乘法的关系除法可以通过乘法来表示。
8个运算定律的含义
8个运算定律的含义
运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。
既是重要的数学规律,也是数学运算固有的性质。
1、加法交换律
两个数相加,交换加数的位置,和不变。
a+b=b+a
2、加法结合律
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c)
3、减法的性质
减去一个数,等于加这个数的相反数。
a-b=a+(-b)。
连续减去两个数,等于减去这两个数的和。
a-b-c=a-(b+c)。
减去一个数再加上一个数,等于减去这两个数的差。
a-b+c=a+(c-b)
4、乘法交换律
两个数相乘,交换因数的位置,积不变。
ab=ba
5、乘法结合律
三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。
(ab)c=a(bc) 6、乘法分配律
分配律是乘法运算的一种简便运算,可用于分数、小数中。
主要公式为(a+b)c=ac+bc。
两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,积不变,这叫做乘法分配律。
7、乘法的其他运算性质
一个因数扩大若干倍,另一个因数缩小若干倍,其积不变。
8、除法的性质
商不变性质:被除数和除数同时扩大或缩小相同的倍数,(0除外),商不变。
连续除去两个数,等于除去这两个数的积。
a÷b÷c=a÷(b×c)。
小学四年级数学7个运算定律
小学四年级数学7个运算定律一、加法交换律两个数相加,交换两个加数的位置,和不变,叫做加法交换律。
a+b=b+a二、加法结合律三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。
这叫做加法结合律。
a+b+c=(a+b)+c或a+b+c =a+(b+c)三、减法性质(1)在减法中,被减数、减数同时加上或者减去一个数,差不变。
a-b=(a+c)-(b+c)或a-b=(a-c)-(b-c)(2)在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。
反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。
a-b=(a+c)-b=差+c或a-b=(a-c)-b=差-ca-b=a-(b+c)=差-c或a-b=a-(b-c)=差+c(3)在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。
a–b-c= a-(b + c)四、乘法交换律两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。
a×b = b×a五、乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。
这叫做乘法结合律。
a×b×c =(a×b)×c或a×b×c = a×(b×c)六、乘法分配律两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。
这叫做乘法分配律。
(a + b) ×c= a×c+b×c 或(a - b)×c= a×c-b×c七、乘法的其他运算性质一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。
a×b = (a×c) ×( b÷c)八、除法的运算性质(1)商不变性质,两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。
四则运算定律概念及公式
四则运算定律概念及公式
四则运算是指加法、减法、乘法和除法这四种基本运算。
四则运算定律是指这四种基本运算中的一些性质和规则。
1.加法定律:
-交换律:对于任意的实数a和b,a+b=b+a。
-结合律:对于任意的实数a、b和c,(a+b)+c=a+(b+c)。
2.减法定律:
-减法与加法的关系:对于任意的实数a、b和c,如果a+b=c,那么c-b=a。
3.乘法定律:
-交换律:对于任意的实数a和b,a*b=b*a。
-结合律:对于任意的实数a、b和c,(a*b)*c=a*(b*c)。
4.除法定律:
-除法与乘法的关系:对于任意的实数a、b和c(其中b和c不为零),如果a*b=c,那么c/b=a。
-倒数:对于任意的非零实数a,存在一个实数b,使得a*b=1,这个b被称为a的倒数,记作1/a。
此外,还有一些其他的四则运算定律:
5.零元素:
-加法的零元素:对于任意的实数a,a+0=a。
-乘法的零元素:对于任意的实数a,a*0=0。
6.乘法的单位元:
-乘法的单位元:对于任意的实数a,a*1=a。
7.分配律:
-左分配律:对于任意的实数a、b和c,a*(b+c)=a*b+a*c。
-右分配律:对于任意的实数a、b和c,(a+b)*c=a*c+b*c。
以上是四则运算的一些基本定律和公式。
在进行四则运算时,这些定律和公式可以帮助我们简化和优化计算过程,提高计算的准确性和效率。
小学公式及运算律
小学数学公式及运算律一、运算定律:1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3.乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5.乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:从一个数里连续减去几个数,等于从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) ;一个数减去一个数再加上一个数,等于减去这两个数的差a-b+c=a-(b-c) 。
7.除法的运算性质:a÷(b×c) = a÷b÷c;a÷(b÷c)=a÷b×c ;(a+b)÷c= a÷c+b÷c;(a-b)÷c= a÷c-b÷c二、分数四则运算法1、分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变;异分母的分数相加减,先通分,然后再加减;带分数加减,把整数部分和分数部分分别相加减,再把所得的数合并起来。
2、分数乘法:分数乘整数,分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
3、分数除以一个数(0除外),等于分数乘以这个数的倒数。
小学数学7个运算定律
一、加法交换律两个数相加,交换两个加数的位置,和不变,叫做加法交换律。
a+b=b+a二、加法结合律三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。
这叫做加法结合律。
a+b+c=(a+b)+c=a+(b+c)三、减法性质在减法中,被减数、减数同时加上或者减去一个数,差不变。
a-b=(a+c)-(b+c) ab=(a-c)-(b-c)在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。
反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。
在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。
a –b -c = a - (b + c) 公式扩展:a – ( b – c ) = a - b + c即:加括号或者减括号,只需要注意()前面的符号是–号的,括号里的符号就要改变,像这种a + b – c =a+ (b - c)前面的符号是+号的,括号里的符号就不变注意这个。
公式延伸:这个公式里,a、b、c都可以是单一个数字,也可以其他数相乘的积。
例如扩展作业里的那题999 x 998 – 998 x 997 – 997 x 996 + 996 x 995 这题可以理解成下面的形式:A–b–c + d 这里把c和d这部分加括号就变成A–b– ( c –d ) 即:999 x 998 – 998 x 997 – ( 997 x 996 – 996 x 995 )四、乘法交换律两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。
a×b = b×a五、乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。
这叫做乘法结合律。
a×b×c = a×(b×c)六、乘法分配律两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。
运算定律及简便运算
运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b) +c=a+(b+c) 加法的这两个定律往往结合起来一起使用。
如:165 + 93 + 35 = 93+(1 65 + 35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
axb=bxa2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(axb ) xc =ax (bxc)乘法的这两个定律往往结合起来一起使用。
如:12 5X78X8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b) xc=axc+bxc (a—b)xc=axc—bxc乘法分配律的应用:①类型一:(a+b) Xc(a—b) X c=aXc+bXc二aXc—bXc②类型二:aXc+bXc aX c—b X c=(a+b) Xc= (a-b) Xc③类型三:aX99+a aXb-a=aX (99+1)=aX (b-1)④类型四:aX99aX102=aX (100-1)=aX (100+2)=aX100-aXl=aX100+aX2三、简便计算1.连加的简便计算:①使用加法结合律(把和是整十、整百、整千、的结合在一起)②个位:1与9, 2与8, 3与7, 4与6, 5与5,结合。
③十位:0与9, 1与8, 2与7, 3与6, 4与5,结合。
2.连减的简便计算:①连续减去儿个数就等于减去这儿个数的和。
如:106-26-74二106- (26+74)②减去儿个数的和就等于连续减去这儿个数。
(完整版)加减乘除运算定律
加法
1.加法交换律:a+b = b+a
两个数相加,交换加数的位置,和不变。
2.加法结合律:a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用交换律和结合律: a+b+c = (a+c)+b
减法
1.减法的性质:a–b–c = a–(b+c)
一个数连续减去两个数,可以用第一个数减去后面两个数的和,差不变。
乘法
1.乘法交换律:a×b = b×a
两个数相乘,交换乘数的位置,积不变。
2.乘法结合律:a×b×c = (a×b)×c = a×(b×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
3.乘法运算中综合运用交换律和结合律: a×b×c = ( a×c)×b
4.乘法分配律:(a+b)×c = a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5.乘法分配律的逆运用:a×c+b×c =(a+b)×c
除法
1.除法的性质:a÷b÷c = a÷(b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。
运算定律公式
运算定律公式
数学的运算定律公式是如下:
1、加法交换律:一个加法算式中,两个和交换位置再相加,和不变,这就是加法的交换律。
字母公式:a+b=b+a。
2、加法结合律:一个加法算式中,前两个数相加或者是后两个数相
加和不变,这就是加法的结合律。
3、减法性质:一个数连续减去两个数,可以用这个数减去另外两个
数的和。
字母表示:a-b-c=a-(b+c)。
4、乘法交换律:在一个乘法算式中,两个因数交换位置在相乘,积
不变,这就是乘法的交换律。
字母表示:a*b=b*c。
5、乘法的结合律:一个乘法算式中,前两个数相乘或者是后两个数
相乘积不变,这就是乘法的结合律。
字母表示:a*b*c=a*(b*c)。
6、乘法的分配律:一个乘法算式中,一个数乘以两个数的和,可以
分别相乘再相加,这就是乘法的分配律。
字母表示:a*(b+c)=a*b+a*c。
7、乘法分配律的逆运算:一个数乘另一个数的积加它本身乘另一个
数的积,可以把另外两个数加起来再乘这个数。
字母表示:
a*b+a*c=a*(b+c)。
8、商不变性质:被除数和除数同时乘或除以一个相同的数(0除外),商不变。
分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。
字母表示:a÷b=(ac)÷(bc)=(a÷c)÷(b÷c) (c≠0
b≠0)。
运算定律及简便运算
运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b)+c=a+(b+c) 加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。
如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c乘法分配律的应用:①类型一:(a+b)×c (a-b)×c= a×c+b×c = a×c-b×c②类型二:a×c+b×c a×c-b×c=(a+b)×c =(a-b)×c③类型三:a×99+a a×b-a= a×(99+1) = a×(b-1)④类型四:a×99 a×102= a×(100-1) = a×(100+2)= a×100-a×1 = a×100+a×2三、简便计算1.连加的简便计算:①使用加法结合律(把和是整十、整百、整千、的结合在一起)②个位:1与9,2与8,3与7,4与6,5与5,结合。
运算定律
运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。
3.乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
5.乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。
6.减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。
运算法则1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
5.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
运算性质
运算定律和性质1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
用字母表示:(a×b)×c= a ×( b×c)5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c6、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c) a -( b+c) = a-b-c7、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a- c – b8、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a ÷( b×c) a ÷( b×c) = a÷b÷c9、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷ c ÷ b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算定律
和性质
定义
字母公式
举例(不唯一)
加法交换律
两个数相加,交换加数的位置,和不变,这叫做加法交换律。
aபைடு நூலகம்b=b+a
1+2=2+1
加法结合律
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
(a+b)+c=a+(b+c)
(1+2)+3=1+(2+3)
减法性质
一个数连续减去几个数,可以看作这个数减去几个数的和,这叫做减法性质。
a-b-c=a-(b+c)
3-2-1=3-(2+1)
乘法交换律
两个数相乘,交换两个因数的位置,积不变,这叫做乘法交换律。
a×b=b×a
1×2=2×1
乘法结合律
三个数相乘,先乘两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
(a×b)×c=a×(b×c)
(1×2)×3=1×(2×3)
乘法分配律
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
(a+b)×c=a×c+b×c
(1+2)×3=1×3+2×3
除法性质
一个数连续除以几个数,可以看作这个数除以这几个数的积,这叫做除法性质。
a÷b÷c=a÷(b×c)
3÷2÷1=3÷(2×1)