《高等数学1试题微积分》--(2)
微积分试卷及标准答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分试卷(附答案)
微积分试卷一、填空题(每题3分,共30分) 1、函数)1ln(3-+-=x x y 的定义域是____________.2、设xx f -=11)(则=))(1(x f f ________________. 3、已知654lim25=-+-→x kx x x ,则k =________________. 4、=+-∞→xx x x )11(lim ____________. 5、设函数⎪⎩⎪⎨⎧=≠=0,0,1sin )(x a x xx x f 为),(+∞-∞上的连续函数,则a =____________ . 6、设)(x f 在0=x 处可导,且0)0(=f ,则=→xx f x )(lim 0. 7、已知xxx f +=1)1(,求)(ln x f '= . 8、曲线)1ln(2x y +=的在区间__________________单调减少。
9、若xe-是)(x f 的原函数,则=⎰dx x f x )(ln 2_____________.10、⎰=xdx x ln _____________. 二、单选题(每题3分,共15分)1、下列极限计算正确的是( )A . 111lim 0=⎪⎭⎫ ⎝⎛++→x x x B. e x xx =⎪⎭⎫⎝⎛++→11lim 0C . 1sin lim=∞→x x x D. 11sin lim 0=→xx x2、函数11arctan )(-=x x f 在x =1处是( ).A. 连续B. 可去间断点C. 跳跃间断点D. 第二类间断点3、函数3)(x x f =在区间]1,0[上满足拉格朗日中值定理,则其ξ=( ).A . 3 B.3- C.33-D. 33 4、当0→x 时,与2x 等价的无穷小是( )。
A. 12-xeB. )21ln(x+ C. )cos 1(2x - D.x arctan5、设)()(x f x F =',则下列正确的表达式是( ) A .⎰+=C x f x dF )()( B. C x F dx x f +=⎰)()(C.⎰+=C x f dx x F dx d)()( D. ⎰+='C x f dx x F )()( 三、计算题(每题8分,共32分)1、求极限xx xx x 3220sin sin lim -→2、求曲线x yy x arctan ln22=+所确定的函数)(x f y =在)0,1(处的切线方程。
《微积分》各章习题及详细答案之欧阳道创编
第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的阶无穷小。
4、01sin lim 0=→xx k x 成立的k 为。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin)(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→x x ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xx x +-=11)(α,31)(x x -=β,则当1→x 时有。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小;(C )α与β是同阶无穷小; (D )βα~。
高等数学上册试题及参考答案3篇
高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。
参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。
由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。
微积分1基础试题及答案
微积分1基础试题及答案一、单项选择题(每题3分,共30分)1. 函数y=x^2的导数是:A. 2xB. x^2C. 2x^2D. x答案:A2. 下列哪个函数是偶函数?A. y=x^3B. y=x^2C. y=x^5D. y=x答案:B3. 积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 3/2答案:A4. 函数y=e^x的不定积分是:A. e^x + CC. ln(e^x) + CD. ln(x) + C答案:A5. 函数y=ln(x)的导数是:A. 1/xB. xC. ln(x)D. x^2答案:A6. 函数y=sin(x)的二阶导数是:A. -sin(x)B. cos(x)C. -cos(x)D. sin(x)答案:C7. 函数y=x^3 - 3x^2 + 2x的极值点是:A. x=0B. x=1C. x=2D. x=3答案:B8. 曲线y=x^2在x=1处的切线斜率是:B. 1C. 0D. -1答案:A9. 函数y=x^3 - 6x^2 + 11x - 6的拐点是:A. x=1B. x=2C. x=3D. x=4答案:B10. 积分∫(0到π) sin(x) dx的值是:A. 0B. 2C. πD. -π答案:A二、填空题(每题2分,共20分)1. 函数y=x^3的二阶导数是_______。
答案:6x2. 函数y=cos(x)的不定积分是_______。
答案:sin(x) + C3. 曲线y=ln(x)在x=e处的切线斜率是_______。
答案:1/e4. 函数y=x^2 - 4x + 4的最小值是_______。
答案:05. 函数y=e^(-x)的导数是_______。
答案:-e^(-x)6. 函数y=x^4的不定积分是_______。
答案:x^5/5 + C7. 曲线y=x^3在x=-1处的切线斜率是_______。
答案:-38. 函数y=sin(x)的二阶导数是_______。
微积分试卷及标准答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
高等数学微积分练习题集完整版(含答案)
高等数学微积分练习题集2(含答案)1.求抛物线2x y =与直线02=--y x 之间的最短距离。
2.求点)8,2(到抛物线x y 42=的最短距离。
3.求过点31,1,2(的平面,使它与三个坐标面在第一卦限内所围成的立体体积最小。
4.计算二重积分dxdy xy I D ⎰⎰=2,其中D 是由直线2,==x x y 及双曲线1=xy 所围成的区域。
5.计算二重积分dxdy e I D y ⎰⎰-=2,其中区域D 由y 轴,直线x y y ==,1所围成。
6.求dxdy y xy I D ⎰⎰+=31,其中D 由2,1,0x y y x ===所围成。
7.求dy e dx x I x y ⎰⎰-=11022。
8.求dxdy y x I D ⎰⎰+=)(,其中D 为224,x y xy ==及1=y 所围成的区域。
9.求σd y x I D⎰⎰+=)|(|,其中D 为:1||||≤+y x 。
10.求dxdy y x I D⎰⎰--=221,其中D :y y x ≤+22。
11.求dxdy y x x I D ⎰⎰--=)2(22,其中D :1)1(22≤+-y x 。
12.设{}x y x y x D ≤+=22),(,求dxdy x D ⎰⎰。
13.计算二重积分dxdy yx y x D ⎰⎰++--222211,其中D 是由圆周122=+y x 及坐标轴所围成的在第一卦限内的闭区域。
14.求ds y x c ⎰+)(,其中c 是以)0,0(O ,)0,1(A ,)1,0(B 为顶点的三角形边界。
15.设L 是半圆周24y x -=上由点)2,0(A 到点)2,0(-B 之间的一段弧。
计算⎰++L ds y x )1(。
16.计算ds y x L ⎰+22,其中L 为圆周222a y x =+(0>a )。
17.计算曲线积分⎰+L ds y x 22,其中L 为圆周x y x =+22。
18.计算曲线积分:dy y x dx y x I L )653()42(-++--=⎰,其中L 是从点)0,0(O 到点)2,3(A 再到点)0,4(B 的折线段。
实用文档之《微积分》各章习题及详细答案
实用文档之"第一章 函数极限与连续"一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题 1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
微积分各章习题及详细答案
《微积分》各章习题及详细答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数x xx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
大一微积分练习题及答案
《微积分(1)》练习题一.单项选择题1.设()0x f '存在,则下列等式成立的有( ) A . ()()()0000limx f x x f x x f x '=∆-∆-→∆ B .()()()0000lim x f xx f x x f x '-=∆-∆-→∆C .()()()00002limx f h x f h x f h '=-+→ D .()()()0000212lim x f h x f h x f h '=-+→2.下列极限不存在的有( )A .201sin lim xx x → B .12lim 2+-+∞→x x x xC . xx e1lim → D .()xx xx +-∞→632213lim3.设)(x f 的一个原函数是x e 2-,则=)(x f ( )A .x e 22--B .x e 2-C .x e 24-D . x xe 22--4.函数⎪⎩⎪⎨⎧>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。
A .跳跃间断点;B .无穷间断点;C .可去间断点;D .振荡间断点5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0<b f a f 时,至少存在一点()b a ,∈ξ,使()0=ξf ; B . 对任何()b a ,∈ξ,有()()[]0lim =-→ξξf x f x ;C . 当()()b f a f =时,至少存在一点()b a ,∈ξ,使()0='ξf ;D .至少存在一点()b a ,∈ξ,使()()()()a b f a f b f -'=-ξ; 6. 已知()x f 的导数在a x =处连续,若()1lim-=-'→ax x f ax ,则下列结论成立的有( )A .a x =是()x f 的极小值点;B .a x =是()x f 的极大值点;C .()()a f a ,是曲线()x f y =的拐点;D .a x =不是()x f 的极值点,()()a f a ,也不是曲线()x f y =的拐点; 二.填空: 1.设⎪⎭⎫⎝⎛=x f y 1arcsin,f 可微,则()='x y 2.若32325-+-=x x x y ,则()=6y3.过原点()1,0作曲线x e y 2=的切线,则切线方程为4.曲线()2142-+=x x y 的水平渐近线方程为 铅垂渐近线方程为 5.设x x f +='1)(ln ,则()='x f ()=x f三.计算题:(1)321lim 221-+-→x x x x (2)32lim +∞→⎪⎭⎫⎝⎛-x x x x(3)xx x x 3sin )1ln(lim 20+→ (4)()[]221ln x y -= 求dy(5)053=-+x y exy求=x dxdy四.试确定a ,b ,使函数()()⎩⎨⎧<-≥+++=0,10,2sin 1x e x a x b x f ax在0=x 处连续且可导。
大学微积分考试题及答案
大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 1D. 2答案:A2. 曲线y=x^3在x=1处的切线斜率是:A. 0B. 1C. 3D. 2答案:C3. 定积分∫(0到1) x dx的值是:A. 0B. 0.5C. 1D. 2答案:B4. 函数f(x)=sin(x)的不定积分是:A. cos(x)B. -cos(x)C. xD. -x答案:B5. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. 2D. ∞答案:B6. 曲线y=e^x与直线x=1所围成的面积是:A. e-1B. 1-eC. 1D. e答案:A7. 函数f(x)=ln(x)的反函数是:A. e^xB. x^eC. 10^xD. x^2答案:A8. 函数f(x)=x^3-3x+2的极值点是:A. 1B. -1C. 2D. 0答案:A9. 函数f(x)=x^2-4x+3的顶点坐标是:A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:A10. 曲线y=x^2与x轴的交点坐标是:A. (0, 0)B. (2, 0)C. (-2, 0)D. (0, 2)答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的拐点是______。
答案:(2, -2)2. 曲线y=x^2-4x+3与y轴的交点坐标是______。
答案:(0, 3)3. 函数f(x)=x/(x^2+1)的不定积分是______。
答案:(1/2)*ln(x^2+1)+C4. 函数f(x)=cos(x)的泰勒展开式(仅考虑x=0处的前三项)是______。
答案:1 - (x^2)/2! + (x^4)/4!5. 曲线y=ln(x)在x=e处的切线方程是______。
答案:y=1/e*x-1/e三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x^2+2x-1在区间[0, 2]上的最大值和最小值。
微积分试题及答案
一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求02lim x x→等于()A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x=-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+C 、2y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、__________2、、2(1))lim()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、limββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( )四、计算题(每题6分)1、1sin xy x=求函数 的导数 2、21()arctan ln(12f x x x x dy =-+已知),求3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin limsin x x xx x→-求 5、计算 6、210lim(cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100Rx x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x x xdx='=+-++=3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x xx x x xx x x x xx x →→→--∴==当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:2201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxxx x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x a aL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则y '' +0 -+++y↘拐点↘无定义↘极值点↗渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x MM M xf A x f A xεεξε→∞→∞=∴∀>∃>>-<><<>∴-<=当时,有取=,则当0时,有即2、证明:[]()1()0,1(0)10,(1)100,1()0,1()(1)0,(0,1)()0,110,1x x x f x xe f x f f e f e f x x e x f x xe ξξξξ=-=-<=->∈=='=+>∈∴-令在()上连续由零点定理:至少存在一个(),使得即又则在上单调递增方程在()内有且仅有一个实根。
高等数学微积分练习题集全套(含答案)
高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.dx19.计算定积分I=0.a⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学1试题微
积分》--(2)
work Information Technology Company.2020YEAR
大一《高等数学A 》
一、单项选择题)
1.设()1,10,1x f x x ⎧≤⎪=⎨>⎪⎩,则()()()
f f f x =( ) A. 0 B. 1 C. 1,10,1x x ⎧≤⎪⎨>⎪⎩ D.0,11,1
x x ⎧≤⎪⎨>⎪⎩ 2.设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得( )
A.()f x 在(0,)δ内单调增加.
B.()f x 在(,0)δ-内单调减小.
C.对任意的(0,)x δ∈有()(0)f x f >
D.对任意的(,0)x δ∈-有()(0)f x f >.
3.设0x →时,tan sin e e x x -与n x 是同阶无穷小,则n 为( )
A. 1
B. 2
C. 3
D.4 4.在(),-∞+∞内方程1
142cos 0x x x +-=( )
A.无实根
B.有且仅有一个实根
C.有且仅有两个实根
D.有无穷多个实根
5.设()f x 对任意x 均满足()()1f x af x +=,且()0f b '=,其中a b ≠为非0非1的常
数,则( )
A.()f x 在1x =处不可导
B.()f x 在1x =处可导,且()1f a '=
C.()f x 在1x =处可导,且()1f b '=
D.()f x 在1x =处可导,且()1f ab '=
6.设()()f x f x =--,(),x ∈-∞+∞,且在()0,+∞内()()0,0f x f x '''><,则在(),0-∞
内( )
A.()()0,0f x f x '''>>
B.()()0,0f x f x '''><
C.()()0,0f x f x '''<>
D.()()0,0f x f x '''<<
二、填空题(每小题4分,共24分)
7.设函数()f x 可表示成()()()f x F x G x =+,其中()F x 为偶函数,()G x 为奇函数,则()F x = ,()G x = .
8.01lim ln x x a x a
→-= . 9.设(
)10,0x f x x a bx x ⎧-<⎪=⎨⎪+≥⎩
,则当a = ,b = 时,()f x 处处可导。
10.设()y f x =由方程2e cos e 1x y xy +-=-所确定,则曲线()y f x =在()0,1处的法线方
程为 .
11.设()f u 可导,函数()y y x =由()22y x x y f x y +=+所确定,则d y = .
12.设()f x 有任意阶导数且()2()f x f x '=,则()()n f x = .(n>2)
三、解答题(每小题9分,共27分)
13.求极限sin sin sin lim sin x t x t x t x -→⎛⎫ ⎪⎝⎭,记此极限为()f x ,求()f x 的间断点,并指出其
类型.
14.设4211x y f x ⎛⎫+= ⎪+⎝⎭
,(
)f x '=d d y x . 15.已知()23e x f x x =+在1x =处()16e f '=+,()f x 有反函数()x ϕ,求()3e ϕ'+.
四、证明题(每小题9分,共18分)
16.设()010,1sin 1n n x x x -==+-,1,2,n =,证明数列{}n x 收敛,并求lim n n x →∞。
17.设()f x 在[]0,1上二次可微,且()()010f f ==,证明:存在()0,1ξ∈,使
()()20f f ξξξ'''+=.
五、应用题(本题7分)
18.溶液自深18cm 顶直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中,开始时漏斗中盛满了溶液。
已知当溶液在漏斗中深为12cm 时,其表面下降的速度为1cm/s ,问此时圆柱形筒中溶液表面上升的速度为多少?
参考答案
一、单项选择题:
1. B
2. C,
3. C,
4. C,
5. D,
6. A.
二、填空题:
7.()()11[()()];[()()]22
F x f x f x
G x f x f x =+-=-- 8.1
9.11,28
a b ==, 10.220x y -+=,
11.()()22221122222ln d d ln 2y x y x x yf x y y x y x y
y x yx x x y xy f x y ++'+-⋅-⋅⋅='+⋅-+;
12.()()1!()n n f x n f x +=
三、解答题:
13.解:()sin sin exp lim 1e sin sin sin x x t x t x f x x t x →⎧⎫⎛⎫=-⋅=⎨⎬ ⎪-⎝⎭⎩⎭
,
间断点为()π0,1,2,
x k k ==±±。
因为()0lim e x f x →=,所以0x =为第一类间断点,其余间断点属于第二类,无穷
间断点。
14.解:令4211x u x +=+,则()
22d 42d 1u x x x x =-+,所以 ()()44222222d d d 142121ln d d d 1111y y u x x x f x x x u x x x x x ⎧⎫⎡⎤⎛⎫++⎪⎪⎢⎥'==-=-⋅⎨⎬ ⎪⎢⎥++⎝⎭++⎪⎪⎩⎭⎣⎦。
15.解:因()13e f =+,所以,()3e 1ϕ+=,()()113e 16e
f ϕ'+=
='+。
四、证明题:
16.证明:()101sin 010x x =+->=,01x ≤<。
假设1n n x x ->和01n x ≤<,则()()11sin 1sin 10n n n n x x x x +--=--->和101n x +≤<,所以lim n n x →∞
存在。
设lim n n x c →∞
=,在()11sin 1n n x x -=+-两边令n →∞,有()1sin 1c c =+-,所以10c -=,即1c =。
17.证明:令()()F x xf x =。
在[]0,1上,()()()F x f x xf x ''=+,
()()010F F ==,由罗尔定理,存在()0,1c ∈,使()0F c '=。
又()()000F f '==,()()()2F x f x xf x '''''=+,[]0,1x ∈,再对()F x '应用罗尔定理,存在()()0,0,1c ξ∈⊂,使()0F ξ''=,即()()20f f ξξξ'''+=。
五、应用题:
18.解:设漏斗在时刻t 的水深为h (cm ),筒中的水深为H (cm ),则漏斗中水面半径满足 618r h =,即13
r h =。
设盛满溶液时漏斗的体积为201π6183
V =⋅⋅,则有
()2201ππ53
V r h H t -=⋅ 上式两边对t 求导,得 2d 1d 25d 9d H h h t t =-。
代入()d 1cm /s d h t
=-,12cm h =,得圆柱形容器中溶液表面上升的速度为 ()()22d 121410.64cm /s d 9255H t ⎛⎫=-⋅⋅-== ⎪⎝⎭。