概率论课后答案1-7章(修改版)

合集下载

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。

并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{Λ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。

故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{Λ===k k X P k,求 };6,4,2{)1(Λ=X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++==ΛΛΛX P 41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

一、习题详解:3.1设二维随机向量(,)X Y 的分布函数为:1222,0,0,(,)0,x y x y x y F x y ----⎧--+≥≥=⎨⎩其他求}{12,35P X Y <≤<≤.解:因为 257(2,5)1222F ---=--+,6512221)5,1(---+--=F5322221)3,2(---+--=F ,4312221)3,1(---+--=F所以 )3,1()3,2()5,1()5,2()53,21(F F F F Y X P +--=≤<≤<==+--=----745672322220.02343.2 盒中装有3个黑球, 2个白球. 现从中任取4个球, 用X 表示取到的黑球的个数, 用Y 表示取到的白球的个数, 求(X , Y ) 的概率分布.解:因为X + Y = 4,所以(X ,Y )的可能取值为(2,2),(3,1)且 0)1,2(===Y X P ,6.053)2,2(452223=====C C C Y X P 4.052)1,3(451233=====C C C Y X P ,0)2,3(===Y X P 故(X ,Y )的概率分布为3.3 将一枚均匀的硬币抛掷3次, 用X 表示在3次中出现正面的次数, 用Y 表示3次中出 现正面次数与出现反面次数之差的绝对值,求(X , Y ) 的概率分布.解:因为|32||)3(|-=--=X X X Y ,又X 的可能取值为0,1,2,3 所以(X ,Y )的可能取值为(0,3),(1,1), (2,1),(3,3)且 81)21()3,0(3====Y X P ,83)21()21()1,1(2113====C Y X P 83)21()21()1,2(1223====C Y X P ,81)21()3,3(3====Y X P故(X ,Y )3.4设二维随机向量(,)X Y 的概率密度函数为:(6),01,02,(,)0,a x y x y f x y --≤≤≤≤⎧=⎨⎩其他 (1) 确定常数a ;(2) 求}{0.5, 1.5P X Y ≤≤(3) 求{(,)}P X Y D ∈,这里D 是由0,0,1x y x y ==+=这三条直线所围成的三角形区域.解:(1)因为dxdy y x a dxdy y x f ⎰⎰⎰⎰--=+∞∞-+∞∞-102)6(),(dx x x a dx y x a ⎰⎰---=---=10221022])4()6[(2])6(21[a dx x a 9)5(210=-=⎰由1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ,得9a =1,故a =1/9.(2) dxdy y x Y X P ⎰⎰--=≤≤5.005.10)6(91)5.1,5.0( dx x dx y y x ⎰⎰--=--=5.005.005.102]89)6(23[91]21)6([91 125)687(5.00=-=⎰dx x (3) 1101{(,)}(,)(6)9xDP X Y D f x y dxdy dx x y dy -∈==--⎰⎰⎰⎰278)1211(181]21)6([9110210102=--=--=⎰⎰-dx x x dx y y x x3.5 设二维随机向量(,)X Y 的概率密度函数为:(2)2,0,0,(,)0,x y e x y f x y -+⎧>>=⎨⎩其他(1) 求分布函数(,)F x y ; (2) 求}{P Y X ≤解:(1) 求分布函数(,)F x y ; 当0,0x y >>,(2)220(,)(,)22(1)(1)yxyxx yu v u v x y F x y f u v dudv e dudv e du e dv e e -+-----∞-∞====--⎰⎰⎰⎰⎰⎰其他情形,由于(,)f x y =0,显然有(,)F x y =0。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。

λσ==)(2X Var故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥ 不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i iXX 。

因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。

记201kk V V==∑,求(105)P V >的近似值。

概率论1至7章课后答案

概率论1至7章课后答案

一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

一、第六章习题详解证明(6.2.1)和式.证明: (1) ∑∑∑===+=+==ni i n i i n i i nb X a n b aX n Y n Y 111)(1)(11b X a b X n a ni i +=+=∑=1)1((2) ∑∑==+-+=--=n i i n i i Yb X a b aX n Y Y n S 12122)]()[(1)(11 2212212)(1)]([1X ni i n i i S a X X n a X X a n =-=-=∑∑==设n X X X ,,,21Λ是抽自均值为μ、方差为2σ的总体的样本, X 与2S 分别为该样本均值。

证明与2(),()/E X Var X n μσ==. 证:()E X =1212111[()]()()n n E X X X E X X X n n n nμμ++=++==L L ()Var X =22121222111[()]()()n n Var X X X E X X X n n n n nσσ++=++==L L设n X X X ,,,21Λ是抽自均值为μ、方差为2σ的总体的样本,2211()1ni i S X X n ==--∑, 证明: (1) 2S =)(11212X n X n ni i --=∑= (2) 2()E S =2σ= 证:(1) ∑∑==+--=--=n i i i n i i X X X X n X X n S 122122)2(11)(11 ]2)([112112X n X X X n n i i n i i +--=∑∑== ])(2)([11212X n X n X X n n i i +--=∑= )(11212X n X n ni i --=∑=(2) )(11)(2122X n X E n S E n i i --=∑=)]()([11212X nE X E n ni i --=∑= ]})()([])()([{11212X E X Var n EX X Var n ni i i +-+-=∑= )}()({1122122μσμσ+-+-=∑=nn n ni )]()([112222μσμσn n n +-+-=222)(11σσσ=--=n n在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.假设某种类型的电阻器的阻值服从均值 μ=200 欧姆, 标准差σ=10 欧姆的分布, 在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈假设某种设备每天停机时间服从均值μ=4 小时、标准差σ=小时的分布. (1) 求一个月(30天) 中, 每天平均停机时间在1到5小时之间的概率; (2) 求一个月(30天) 中, 总的停机时间不超过115 小时的概率. 解:(1))30/8.041()30/8.045()/1()/5()51(-Φ--Φ=-Φ--Φ≈≤≤nnX P σμσμ1)54.20()85.6(≈-Φ-Φ=(2) )30115()11530(≤=≤X P X P 1271.08729.01)14.1(1)30/8.0430/115(=-=Φ-=-Φ≈设~n T t ,证明()0,2,3,.E T n ==L证:)(n t 分布的概率密度为: +∞<<-∞⎪⎪⎭⎫⎝⎛+Γ+Γ=+-t n x n n n x f n ,1)2/(]2/)1[()(212π,()()E T xf x dx +∞-∞==⎰=112222212211(1)10n n nx x x dx d n n nx n ++--+∞+∞-∞-∞-+∞-∞⎫⎫+=++⎪⎪⎭⎭⎛⎫=+=⎪⎭⎰⎰设总体X ~N(150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤. 解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ=2857.09615.09772.0=-=设某大城市市民的年收入服从均值μ=万元、标准差σ=万元的正态分布. 现 随机调查了100 个人, 求他们的平均年收入落在下列范围内的概率: (1) 大于万元;(2) 小于万元;(3) 落在区间[,] 内.解:设X 为人均年收入,则)5.0,5.1(~2N X ,则)1005.0,5.1(~2N X ,得 (1) )100/5.05.16.1(1)6.1(1)6.1(-Φ-≈≤-=>X P X P0228.09772.01)2(1=-=Φ-=(2) 011)4(1)4()100/5.05.13.1()3.1(=-≈Φ-=-Φ=-Φ≈<X P(3) )100/5.05.12.1()100/5.05.16.1()6.12.1(-Φ--Φ≈<<X P9772.0)6()2(=-Φ-Φ=假设总体分布为N(12,22), 今从中抽取样本125,,,X X X L . 求(1) 样本均值X 大于13的概率; (2) 样本的最小值小于10的概率; (3) 样本的最大值大于15的概率.解:因为 )2,12(~2N X ,所以22~(12,)5X N ,得(1) )5/21213(1)13(1)13(-Φ-≈≤-=>X P X P1314.08686.01)12.1(1=-=Φ-=(2) 设样本的最小值为Y ,则),,,(521X X X Min Y Λ=,于是)10(1)10(≥-=<Y P Y P)10()10()10(1521≥≥≥-=X P X P X P Λ)]21210(1[1)]10(1[15151-Φ-∏-=<-∏-===i i i X P5785.0)8413.0(1)1(1)]1(1[155151=-=Φ∏-=-Φ-∏-===i i(3) 设样本的最大值为Z ,则),,,(521X X X Max Z Λ=,于是)15(1)15(≤-=>Z P Z P)15()15()15(1521≤≤≤-=X P X P X P Λ)21215(151-Φ∏-==i 2923.0)9332.0(1)5.1(1551=-=Φ∏-==i设总体),(~2σμN X ,从中抽取容量样本1216,,,X X X L , 2S 为样本方差. 计算22 2.04S P σ⎧⎫≤⎨⎬⎩⎭. 解 因为),,(~2σμN X 由定理2, 得),1(~)1(21222-⎪⎪⎭⎫ ⎝⎛-=-∑=n XX S n ni i χσσ 所以,1)1(22-=⎪⎪⎭⎫ ⎝⎛-n S n E σ),1(2)1(22-=⎪⎪⎭⎫⎝⎛-n S n D σ于是,)(22σ=S E ).1/(2)(42-=n S D σ 当16=n 时, ,15/2)(42σ=S D 且2222{/ 2.04}{15/30.615}P S P S σσ≤=≤}615.30/15{122>-=σS P99.001.01=-=).578.30)15((201.0=χ第六章 《样本与统计量》定理、公式、公理小结及补充:。

1—7章概率论课后习题及答案

1—7章概率论课后习题及答案

第一章 随机事件及其概率§1.1-2 随机试验、随机事件1. 多项选择题:⑴ 以下命题正确的是 ( ) A .()()AB AB A =; B .,A B AB A ⊂=若则;C .,A B B A ⊂⊂若则;D .,A B A B B ⊂=若则.⑵某学生做了三道题,以i A 表示“第i 题做对了的事件”)3,2,1(=i ,则该生至少做对了两道题的事件可表示为 ( ) A .123123123A A A A A A A A A ; B .122331A A A A A A ; C .122331A A A A A A ; D .123123123123A A A A A A A A A A A A .2. A 、B 、C 为三个事件,说明下述运算关系的含义:⑴ A ; ⑵ B C ; ⑶ AB C ; ⑷ A B C ; ⑸ AB C ; ⑹ABC .3. 一个工人生产了三个零件,以i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正 品、次品的事件.试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品.§1.3-4 事件的概率、古典概型1. 多项选择题:⑴ 下列命题中,正确的是 ( ) A .B B A B A =;B .B A B A =;C .C B A C B A = ;D .()∅=)(B A AB . ⑵ 若事件A 与B 相容,则有 ( ) A .()()()P AB P A P B =+; B .()()()()P A B P A P B P AB =+-;C .()1()()P A B P A P B =--;D .()1()()P A B P A P B =-.⑶ 事件A 与B 互相对立的充要条件是 ( ) A .()()()P AB P A P B = ; B .()0()1P AB P AB ==且;C .AB A B =∅=Ω且;D . AB =∅.2. 袋中有12只球,其中红球5只,白球4只,黑球3只. 从中任取9只,求其中恰好有4只红球,3只白球,2只黑球的概率.3. 求寝室里的六个同学中至少有两个同学的生日恰好同在一个月的概率.4. 10把钥匙中有三把能打开门,今任取两把,求能打开门的概率.5. 将三封信随机地放入标号为1、2、3、4的四个空邮筒中,求以下概率:(1) 恰有三个邮筒各有一封信;(2)第二个邮筒恰有两封信;(3)恰好有一个邮筒有三封信.6. 将20个足球球队随机地分成两组,每组10个队,进行比赛.求上一届分别为第一、二名的两个队被分在同一小组的概率.§1.5 条件概率1. 多项选择题:⑴ 已知0)(>B P 且∅=21A A ,则( )成立.A .1(|)0P AB ≥; B .1212(()|)(|)(|)P A A B P A B A B =+;C .12(|)0P A A B =;D . 12(|)1P A A B =.⑵ 若0)(,0(>>B P A P )且)(|(A P B A P =),则( )成立.A .(|)()PB A P B =;B .(|)()P A B P A =;C .,A B 相容;D .,A B 不相容.2. 已知61)|(.41)|(,31)(===B A P A B P A P ,求)(B A P3. 某种灯泡能用到3000小时的概率为0.8,能用到3500小时的概率为0.7.求一只已用到了3000小时还未坏的灯泡还可以再用500小时的概率.4.两个箱子中装有同类型的零件,第一箱装有60只,其中15只一等品;第二箱装有40只,其中15只一等品.求在以下两种取法下恰好取到一只一等品的概率:⑴将两个箱子都打开,取出所有的零件混放在一堆,从中任取一只零件;⑵从两个箱子中任意挑出一个箱子,然后从该箱中随机地取出一只零件.5.某市男性的色盲发病率为7 %,女性的色盲发病率为0.5 % .今有一人到医院求治色盲,求此人为女性的概率.(设该市性别结构为男:女=0.502:0.498)6.袋中有a只黑球,b只白球,甲、乙、丙三人依次从袋中取出一只球(取后不放回),分别求出他们各自取到白球的概率.§1.6 独立性1. 多项选择题 :⑴ 对于事件A 与B ,以下命题正确的是( ).A .若B A 、互不相容,则B A 、也互不相容;B .若B A 、相容,则B A 、也相容;C .若B A 、独立,则B A 、也独立;D .若B A 、对立,则B A 、也对立. ⑵ 若事件A 与B 独立,且0)(,0)(>>B P A P , 则( )成立.A .(|)()PB A P B =;B .(|)()P A B P A =;C .B A 、相容;D .B A 、不相容.2. 已知C B A 、、互相独立,证明C B A 、、也互相独立.3. 一射手对同一目标进行四次独立的射击,若至少射中一次的概率为8180,求此射手每次射击的命中率.*4. 设C B A 、、为互相独立的事件,求证B A AB B A -、、 都与C 独立.5. 甲、乙、丙三人同时各用一发子弹对目标进行射击,三人各自击中目标的概率分别是0.4、0.5、0.7.目标被击中一发而冒烟的概率为0.2,被击中两发而冒烟的概率为0.6,被击中三发则必定冒烟,求目标冒烟的概率.6. 甲、乙、丙三人抢答一道智力竞赛题,他们抢到答题权的概率分别为0.2、0.3、0.5 ;而他们能将题答对的概率则分别为0.9、0.4、0.4.现在这道题已经答对,问甲、乙、丙三人谁答对的可能性最大.7. 某学校五年级有两个班,一班50名学生,其中10名女生;二班30名学生,其中18名女生.在两班中任选一个班,然后从中先后挑选两名学生,求(1)先选出的是女生的概率;(2)在已知先选出的是女生的条件下,后选出的也是女生的概率.第二章 一维随机变量及其分布§2.1 离散型随机变量及其概率分布1.填空题:⑴ 当c = 时()/,(1,,)P X k c N k N ===是随机变量X 的概率分布,当c = 时()(1)/,(1,,)P Y k c N k N ==-=是随机变量Y 的概率分布; ⑵ 当a = 时)0,,1,0(!)(>===λλ k k a k Y P k是随机变量Y 的概率分布; ⑶ 进行重复的独立试验,并设每次试验成功的概率都是0.6. 以X 表示直到试验获得成功时所需要的试验次数,则X 的分布律为; ⑷ 某射手对某一目标进行射击,每次射击的命中率都是,p 射中了就停止射击且至多只 射击10次. 以X 表示射击的次数,则X 的分布律为; ⑸ 将一枚质量均匀的硬币独立地抛掷n 次,以X 表示此n 次抛掷中落地后正面向上的次数,则X 的分布律为 .2.设在15只同类型的零件中有2只是次品,从中取3次,每次任取1只,以X 表示取出的3只中次品的只数. 分别求出在 ⑴ 每次取出后记录是否为次品,再放回去;⑵ 取后不放回,两种情形下X 的分布律.3.一只袋子中装有大小、质量相同的6只球,其中3只球上各标有1个点,2只球上各标有2个点,1只球上标有3个点.从袋子中任取3只球,以X 表示取出的3只球上点数的和. ⑴ 求X 的分布律;⑵ 求概率(46),(46),(46),(46)P X P X P X P X <≤≤<<<≤≤.4.某厂有7个顾问,假定每个顾问贡献正确意见的可能性都是6.0. 现在为某件事的可行与否个别地征求每个顾问的意见,并按多数顾问的意见作决策.求作出正确决策的概率.5.袋子中装有5只白球,3只黑球,从中任取1只,如果是黑球就不放回去,并从其它地方取来一只白球放入袋中,再从袋中取1只球. 如此继续下去,直到取到白球为止. 求直到取到白球为止时所需的取球次数X 的分布律.§2.2 连续型随机变量及其概率分布1.多项选择题:以下函数中能成为某随机变量的概率密度的是 ( )A .⎪⎩⎪⎨⎧<<=它其20,0,cos )(πx x x f ; B .⎪⎩⎪⎨⎧<<=它其πx x x f 0,0,2cos )( ; C .⎪⎩⎪⎨⎧<<-=它其22,0,cos )(ππx x x f ; D .⎩⎨⎧<<=它其10,0,)(x xe x f x . 2.设随机变量X 的概率分布律如右,求X 的分布函数及)32(),30(),2(≤≤<<≤X P X P X P .3.设一只袋中装有依次标有数字-1、2、2、2、3、3的六只球,从此袋中任取一只球,并以X 表示取得的球上所标有的数字.求X 的分布律与分布函数.4.设连续型随机变量X 的概率密度如右,试求:⑴ 系数A ;⑵ X 的分布函数;⑶ (0.10.7)P X <<5.设连续型随机变量X ⑴ 系数k ;⑵ X 的概率密度;⑶ (||0.5)P X <.6.设连续型随机变量X 的分布函数为()arctan ()F x A B x x R =+∈,试求:⑴ 系数A 与B ;⑵ X 的概率密度;⑶ X 在区间(,)a b 内取值的概率.§2.31.设离散型随机变量X 的分布律如右,求12,22,12+=-=+=X W X V X U 的分布律.2.设随机变量X 的概率密度为,0,0,)(<≥⎩⎨⎧=-x x e x f x 求随机变量X e Y =的概率密度.3.设随机变量X 在区间(0,)π上服从均匀分布,求:⑴ 随机变量2ln Y X =-的概率密度;⑵ 随机变量sin Z X =的分布函数与概率密度.4.设连续型随机变量X 的概率密度为2/2()()x f x e x R -=∈,求||Y X =的密度.*5.设1()F x 与2()F x 分别为两个随机变量的分布函数,证明:当0,0a b ≥≥且1a b +=时,)()()(21x bF x aF x +=φ可以作为某个随机变量的分布函数.§2.4 一维随机变量的数字特征1.一批零件中有9件合格品与3件次品,往机器上安装时任取一件,若取到次品就弃置一边. 求在取到合格品之前已取到的次品数的期望、方差与均方差.2.设随机变量X 的概率密度为||()0.5,,x f x e x -=-∞<<+∞求,EX DX .3.设随机变量X 的概率密度为2(1),01(),0,x x f x -≤≤⎧=⎨⎩其它求EX 与DX .4.某路公汽起点站每5分钟发出一辆车,每个乘客到达起点站的时刻在发车间隔的5分钟内均匀分布.求每个乘客候车时间的期望(假定汽车到站时,所有候车的乘客都能上车).5.某工厂生产的设备的寿命X(以年计)的概率密度为/400.25,()0,x xef xx->⎧=⎨<⎩,工厂规定,出售的设备若在一年之内损坏可以调换.若出售一台设备可赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望.*6.某工厂计划开发一种新产品,预计这种产品出售一件将获利500元,而积压一件将损失2000元. 而且预测到这种产品的销售量Y(件)服从指数分布(0.0001)E. 问要获得利润的数学期望最大,应生产多少件产品?第三章 多维随机变量及其分布§3.1 二维随机变量1.设随机变量),(Y X 只取下列数组中的值:)0,0(、)1,1(-、)31,1(-、)0,2(且相应的概率依次为61、31、121、125.求随机变量),(Y X 的分布律与关于X 、Y 的边缘分布律.2.一只口袋中装有四只球,球上分别标有数字1、2、2、3. 从此袋中任取一只球,取后不放回,再从袋中任取一只球.分别以X 与Y 表示第一次、第二次取到的球上标有的数字,求X 与Y 的联合分布律与关于X 、Y 的边缘分布律.3.设随机变量),(Y X 的概率密度,其它+∞≤≤+∞≤≤⎩⎨⎧=+-y x ce y x f y x 0,0,0,),()(2 试求:⑴ 常数c ;⑵ ),(Y X 的分布函数),(y x F ;⑶ }1{≤+Y X P .4.设随机变量),(Y X 的概率密度为 4.8(2),01,0(,)0,y x x y xf x y -≤≤≤≤⎧=⎨⎩,其它求关于X 、Y 的边缘概率密度.5.设随机变量),(Y X 在G 上服从均匀分布,其中G 由x 轴、y 轴及直线12+=x y 所围成,试求:⑴ ),(Y X 的概率密度),(y x f ;⑵ 求关于X 、Y 的边缘概率密度.*6.设某班车起点站上车的人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<乘客中途下车与否相互独立,并以Y 表示在中途下车的人数.求:⑴ 在发车时有n 个乘客的条件下,中途有m 人下车的概率;⑵ (,)X Y 的分布律.§1.设随机变量X 与Y 相互独立右表给出二维随机变量),(Y X 律及边缘分布律中的部分数值.试将 其余数值填入表中的空白处.2.设随机变量),(Y X 分布律如右:⑴ a 、b 、c 时X 与Y 相互独立?⑵写出),(Y X 的分布律与边缘分布律.3.设随机变量X 在1、2、3、4四个整数中等可能地取值,而随机变量Y 在X ~1中等可能地取一个整数.求:⑴=X 2时Y ,的条件分布律;⑵=Y 1时X ,的条件分布律.4.设随机变量),(Y X 的概率密度为其它0,0,0,),()(>>⎩⎨⎧=+-y x e y x f y x .⑴ 求)|(|x y f X Y ;⑵ 求)|(|y x f Y X ;⑶ 说明X 与Y 的独立性.*5. 箱子中装有12只开关(其中2只是次品),从中取两次,每次取一只,并定义随机变量如下:0,1,X ⎧=⎨⎩若第一次取出的是正品若第一次取出的是次品; 0,1,Y ⎧=⎨⎩若第二次取出的是正品若第二次取出的是次品 ,试在放回抽样与不放回抽样的两种试验中,求关于X 与Y 的条件分布律,并说明X 与Y 的独立性.* 6.设随机变量),(Y X 的概率密度为,||,10(,)0,cy x x f x y <--<<⎧=⎨⎩,其它求参数c 与条件概率密度)|(,)|(||y x f x y f Y X X Y .§3.31. 设),(Y X 的分布律如右,求 ⑴0|3{,}2|2{====X Y P Y X P ⑵ ),max(Y X V =的分布律;⑶ ),min(Y X U =的分布律;⑷ Y X W +=的分布律.2.设X 与Y 是相互独立的随机变量,它们分别服从参数为1λ、2λ的泊松分布. 证明Y X Z +=服从参数为21λλ+的泊松分布.3.设随机变量X 与Y 相互独立,且都服从参数为0.25p =的两点分布,记随机变量Z 为1,0,X Y Z X Y +⎧=⎨+⎩为奇数,非为奇数求X 与Z 的联合分布律与EZ .4.设随机变量X 与Y 相互独立,其概率密度分别为321100,,(),(),32000,0,yxX Y x y e e f x f y x y --⎧⎧≥≥⎪⎪==⎨⎨<<⎪⎪⎩⎩求随机变量U X Y =+的概率密度.5.某种商品一周的需求量X 是一个随机变量,其概率密度为⎩⎨⎧≤>=-0,0,)(x x xe x f x .设各周的需求量是相互独立的,试求:⑴ 两周;⑵ 三周的需求量的概率密度.6.设某种型号的电子管的寿命(以小时记)近似地服从(1160)E 分布. 随机地选取4只,将其串联在一条线路中,求此段线路的寿命超过180小时的概率。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。

λσ==)(2X Var 故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。

因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var 由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。

记201k k V V ==∑,求(105)P V >的近似值。

概率论与数理统计课后习题答案1-8章_习题解答

概率论与数理统计课后习题答案1-8章_习题解答

第一章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B 解:(1)()()A B AB AB AB B B ==, (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。

本文档将提供《概率论与数理统计》课后习题的详细答案。

2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。

b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。

1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。

【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。

所以,P(A ∩ B) = 【答案】0.2。

b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。

【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。

所以,P(B) = 【答案】1.67。

第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。

b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。

概率论课后答案1-7章(修改版)

概率论课后答案1-7章(修改版)

第1章 随机变量及其概率1,写出下列试验的样本空间:连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412131425=C C C C ; (2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。

8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ⋃,)|(),|(AB A P B A AB P ⋃.(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。

同济大学版概率论和数理统计修改版答案解析

同济大学版概率论和数理统计修改版答案解析

概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )A B (D )A B4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A](A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A](A )C A C B ; (B )C AB ;(C )C AB C B A BC A ; (D )A B C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互不相容或互斥 。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。

λσ==)(2X Var故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥ 不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i iXX 。

因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i =L ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。

记201kk V V==∑,求(105)P V >的近似值。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

一、第六章习题详解6.1 证明(6.2.1)和(6.2.2)式.证明: (1) ∑∑∑===+=+==ni i n i i n i i nb X a n b aX n Y n Y 111)(1)(11b X a b X n a ni i +=+=∑=1)1((2) ∑∑==+-+=--=n i i n i i Yb X a b aX n Y Y n S 12122)]()[(1)(11 2212212)(1)]([1X ni i n i i S a X X n a X X a n =-=-=∑∑==6.2设n X X X ,,,21Λ是抽自均值为μ、方差为2σ的总体的样本, X 与2S 分别为该样本均值。

证明与2(),()/E X Var X n μσ==. 证:()E X =1212111[()]()()n n E X X X E X X X n n n nμμ++=++==L L ()Var X =22121222111[()]()()n n Var X X X E X X X n n n n nσσ++=++==L L6.3 设n X X X ,,,21Λ是抽自均值为μ、方差为2σ的总体的样本,2211()1ni i S X X n ==--∑, 证明: (1) 2S =)(11212X n X n ni i --=∑= (2) 2()E S =2σ= 证:(1) ∑∑==+--=--=n i i i n i i X X X X n X X n S 122122)2(11)(11 ]2)([112112X n X X X n n i i n i i +--=∑∑== ])(2)([11212X n X n X X n n i i +--=∑= )(11212X n X n ni i --=∑=(2) )(11)(2122X n X E n S E n i i --=∑=)]()([11212X nE X E n ni i --=∑= ]})()([])()([{11212X E X Var n EX X Var n ni i i +-+-=∑= )}()({1122122μσμσ+-+-=∑=nn n ni )]()([112222μσμσn n n +-+-=222)(11σσσ=--=n n6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值μ=200 欧姆, 标准差σ=10 欧姆的分布,在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈6.6 假设某种设备每天停机时间服从均值μ=4 小时、标准差σ=0.8小时的分布. (1) 求一个月(30天) 中, 每天平均停机时间在1到5小时之间的概率; (2) 求一个月(30天) 中, 总的停机时间不超过115 小时的概率. 解:(1))30/8.041()30/8.045()/1()/5()51(-Φ--Φ=-Φ--Φ≈≤≤nnX P σμσμ1)54.20()85.6(≈-Φ-Φ=(2) )30115()11530(≤=≤X P X P 1271.08729.01)14.1(1)30/8.0430/115(=-=Φ-=-Φ≈6.7 设~n T t ,证明()0,2,3,.E T n ==L证:)(n t 分布的概率密度为: +∞<<-∞⎪⎪⎭⎫⎝⎛+Γ+Γ=+-t n x n n n x f n ,1)2/(]2/)1[()(212π,()()E T xf x dx +∞-∞==⎰=112222212211(1)10n n nx x x dx d n n nx n ++--+∞+∞-∞-∞-+∞-∞⎫⎫+=++⎪⎪⎭⎭⎛⎫=+=⎪⎭⎰⎰6.8 设总体X ~N(150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤. 解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ=2857.09615.09772.0=-=6.9 设某大城市市民的年收入服从均值μ=1.5万元、标准差σ=0.5万元的正态分布. 现 随机调查了100 个人, 求他们的平均年收入落在下列范围内的概率: (1) 大于1.6万元;(2) 小于1.3万元;(3) 落在区间[1.2,1.6] 内.解:设X 为人均年收入,则)5.0,5.1(~2N X ,则)1005.0,5.1(~2N X ,得 (1) )100/5.05.16.1(1)6.1(1)6.1(-Φ-≈≤-=>X P X P0228.09772.01)2(1=-=Φ-=(2) 011)4(1)4()100/5.05.13.1()3.1(=-≈Φ-=-Φ=-Φ≈<X P(3) )100/5.05.12.1()100/5.05.16.1()6.12.1(-Φ--Φ≈<<X P9772.0)6()2(=-Φ-Φ=6.10 假设总体分布为N(12,22), 今从中抽取样本125,,,X X X L . 求 (1) 样本均值X 大于13的概率; (2) 样本的最小值小于10的概率; (3) 样本的最大值大于15的概率.解:因为 )2,12(~2N X ,所以22~(12,)5X N ,得(1) )5/21213(1)13(1)13(-Φ-≈≤-=>X P X P1314.08686.01)12.1(1=-=Φ-=(2) ?设样本的最小值为Y ,则),,,(521X X X Min Y Λ=,于是)10(1)10(≥-=<Y P Y P)10()10()10(1521≥≥≥-=X P X P X P Λ)]21210(1[1)]10(1[15151-Φ-∏-=<-∏-===i i i X P5785.0)8413.0(1)1(1)]1(1[155151=-=Φ∏-=-Φ-∏-===i i(3) ?设样本的最大值为Z ,则),,,(521X X X Max Z Λ=,于是)15(1)15(≤-=>Z P Z P)15()15()15(1521≤≤≤-=X P X P X P Λ)21215(151-Φ∏-==i 2923.0)9332.0(1)5.1(1551=-=Φ∏-==i6.11设总体),(~2σμN X ,从中抽取容量样本1216,,,X X X L , 2S 为样本方差. 计算22 2.04S P σ⎧⎫≤⎨⎬⎩⎭. 解因为),,(~2σμN X 由定理2, 得),1(~)1(21222-⎪⎪⎭⎫ ⎝⎛-=-∑=n XX S n ni i χσσ 所以,1)1(22-=⎪⎪⎭⎫ ⎝⎛-n S n E σ),1(2)1(22-=⎪⎪⎭⎫⎝⎛-n S n D σ于是,)(22σ=S E ).1/(2)(42-=n S D σ 当16=n 时, ,15/2)(42σ=S D 且2222{/ 2.04}{15/30.615}P S P S σσ≤=≤}615.30/15{122>-=σS P99.001.01=-=).578.30)15((201.0=χ第六章 《样本与统计量》定理、公式、公理小结及补充:。

概率论课后习题答案1~7章

概率论课后习题答案1~7章

习题一1. 略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3. 略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB). 【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0, P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=5332131313131352C C C C/C8. 对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;(3)求五个人的生日不都在星期日的概率.【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)=517=(17)5 (亦可用独立性求解,下同)(2)设A2={五个人生日都不在星期日},有利事件数为65,故P(A2)=5567=(67)5(3) 设A3={五个人的生日不都在星期日}P(A3)=1-P(A1)=1-(17)59. 略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n<N).试求其中恰有m件(m≤M)正品(记为A)的概率.如果:(1)n件是同时取出的;(2)n件是无放回逐件取出的;(3)n件是有放回逐件取出的.【解】(1)P(A)=C C/Cm n m nM N M N--(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N种,n次抽取中有m次为正品的组合数为C m n种.对于固定的一种正品与次品的抽取次序,从M件正品中取m件的排列数有P m M种,从N-M件次品中取n-m件的排列数为P n mN M--种,故P(A)=C P PPm m n mn M N MnN--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P(A)=C CCm n mM N MnN--可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为N n种,n次抽取中有m次为正品的组合数为C m n种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有M m种取法,n-m次取得次品,每次都有N-M种取法,共有(N-M)n-m种取法,故()C ()/m m n mnnP A M N M N-=-此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为()C 1mn mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故232322()()()35P A A P A P A =+=14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1)1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3)2112()0.80.30.20.70.38P A A A A =⨯+⨯=15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1)223151115()()22232p C ==(2)1342111C ()()22245/325p ==16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212333()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】4111152222410C C C C C 131C 21p =-=18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1)()0.1()0.2()0.5P AB p B A P A ===(2)()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22. 从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+-0.70.510.70.60.54-==+-24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球} 由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知 (1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27. 在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29. 某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得()()(|)(|)()()(|)()(|)()P AD P A P D A P A D P D P A P D A P B P D B P C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31. 设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为(0.8)0.1n ≤故 n ≥11 至少必须进行11次独立射击.32. 证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】(|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835. 已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1)3101100C (0.35)(0.65)0.5138kk k k p -===∑(2)10102104C (0.25)(0.75)0.2241k k k k p -===∑36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1)2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1)111p n =-(2)23!(3)!,3(1)!n p n n -=>-(3)12(1)!13!(2)!;,3!!n n p p n n n n --''===≥38. 将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率 【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】11P 1,1,2,,P k n k n p k n n--===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====,24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42. 将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此213319()1()()181616P A P A P A =--=--=或12143323C C C 9()416P A ==43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率. 【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246. 证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得 ()(),()()P AC P BC P C P C ≥即有()()P AC P BC ≥同理由(|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率. 【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A nn P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j n n kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n k n n nn n n n--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+ 111(1)C (1)n n k nn n+---- 48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知(),()m nP B P B m n m n==++1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrr m m m n m n m n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

概率论和数理统计学1至7章课后答案解析

概率论和数理统计学1至7章课后答案解析

一、第六章习题详解6.1 证明(6.2.1)和(6.2.2)式.证明: (1) ∑∑∑===+=+==ni i n i i n i i nb X a n b aX n Y n Y 111)(1)(11b X a b X n a ni i +=+=∑=1)1((2) ∑∑==+-+=--=n i i n i i Yb X a b aX n Y Y n S 12122)]()[(1)(11 2212212)(1)]([1X ni i n i i S a X X n a X X a n =-=-=∑∑==6.2设n X X X ,,,21 是抽自均值为μ、方差为2σ的总体的样本, X 与2S 分别为该样本均值。

证明与2(),()/E X Var X n μσ==. 证:()E X =1212111[()]()()n n E X X X E X X X n nn n μμ++=++==()Var X =22121222111[()]()()n n Var X X X E X X X n nnn nσσ++=++==6.3 设n X X X ,,,21 是抽自均值为μ、方差为2σ的总体的样本,2211()1ni i S X X n ==--∑, 证明: (1) 2S =)(11212X n X n ni i --=∑= (2) 2()E S =2σ= 证:(1) ∑∑==+--=--=n i i i n i i X X X X n X X n S 122122)2(11)(11 ]2)([112112X n X X X n n i i n i i +--=∑∑== ])(2)([11212X n X n X X n n i i +--=∑=)(11212X n X n ni i --=∑= (2) )(11)(2122X n X E n S E n i i --=∑=)]()([11212X nE X E n ni i --=∑= ]})()([])()([{11212X E X Var n EX X Var n ni i i +-+-=∑= )}()({1122122μσμσ+-+-=∑=nn n ni )]()([112222μσμσn n n +-+-=222)(11σσσ=--=n n6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值 μ=200 欧姆, 标准差σ=10 欧姆的分布,在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率.解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P9772.0)2()25/10200204(=Φ=-Φ≈6.6 假设某种设备每天停机时间服从均值μ=4 小时、标准差σ=0.8小时的分布. (1) 求一个月(30天) 中, 每天平均停机时间在1到5小时之间的概率; (2) 求一个月(30天) 中, 总的停机时间不超过115 小时的概率. 解:(1))30/8.041()30/8.045()/1()/5()51(-Φ--Φ=-Φ--Φ≈≤≤nnX P σμσμ1)54.20()85.6(≈-Φ-Φ=(2) )30115()11530(≤=≤X P X P 1271.08729.01)14.1(1)30/8.0430/115(=-=Φ-=-Φ≈6.7 设~n T t ,证明()0,2,3,.E T n ==证:)(n t 分布的概率密度为: +∞<<-∞⎪⎪⎭⎫⎝⎛+Γ+Γ=+-t n x n n n x f n ,1)2/(]2/)1[()(212π,()()E T xf x dx +∞-∞==⎰=112222212211(1)10n n nx x x dx d n n nx n ++--+∞+∞-∞-∞-+∞-∞⎫⎫+=++⎪⎪⎭⎭⎫=+=⎪⎭⎰⎰6.8 设总体X ~N(150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤. 解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ=2857.09615.09772.0=-=6.9 设某大城市市民的年收入服从均值μ=1.5万元、标准差σ=0.5万元的正态分布. 现 随机调查了100 个人, 求他们的平均年收入落在下列围的概率: (1) 大于1.6万元; (2) 小于1.3万元; (3) 落在区间[1.2,1.6] .解:设X 为人均年收入,则)5.0,5.1(~2N X ,则)1005.0,5.1(~2N X ,得 (1) )100/5.05.16.1(1)6.1(1)6.1(-Φ-≈≤-=>X P X P0228.09772.01)2(1=-=Φ-=(2) 011)4(1)4()100/5.05.13.1()3.1(=-≈Φ-=-Φ=-Φ≈<X P(3) )100/5.05.12.1()100/5.05.16.1()6.12.1(-Φ--Φ≈<<X P9772.0)6()2(=-Φ-Φ=6.10 假设总体分布为N(12,22), 今从中抽取样本125,,,X X X . 求(1) 样本均值X 大于13的概率; (2) 样本的最小值小于10的概率; (3) 样本的最大值大于15的概率.解:因为 )2,12(~2N X ,所以22~(12,)5X N ,得(1) )5/21213(1)13(1)13(-Φ-≈≤-=>X P X P1314.08686.01)12.1(1=-=Φ-=(2) 设样本的最小值为Y ,则),,,(521X X X Min Y =,于是)10(1)10(≥-=<Y P Y P)10()10()10(1521≥≥≥-=X P X P X P)]21210(1[1)]10(1[15151-Φ-∏-=<-∏-===i i i X P5785.0)8413.0(1)1(1)]1(1[155151=-=Φ∏-=-Φ-∏-===i i(3) 设样本的最大值为Z ,则),,,(521X X X Max Z =,于是)15(1)15(≤-=>Z P Z P)15()15()15(1521≤≤≤-=X P X P X P)21215(151-Φ∏-==i 2923.0)9332.0(1)5.1(1551=-=Φ∏-==i6.11设总体),(~2σμN X ,从中抽取容量样本1216,,,X X X , 2S 为样本方差. 计算22 2.04S P σ⎧⎫≤⎨⎬⎩⎭.解 因为),,(~2σμN X 由定理2, 得),1(~)1(21222-⎪⎪⎭⎫ ⎝⎛-=-∑=n X X S n ni i χσσ 所以,1)1(22-=⎪⎪⎭⎫ ⎝⎛-n S n E σ),1(2)1(22-=⎪⎪⎭⎫⎝⎛-n S n D σ于是,)(22σ=S E ).1/(2)(42-=n S D σ 当16=n 时, ,15/2)(42σ=S D 且2222{/ 2.04}{15/30.615}P S P S σσ≤=≤}615.30/15{122>-=σS P99.001.01=-=).578.30)15((201.0=χ第六章 《样本与统计量》定理、公式、公理小结及补充:。

概率论与数理统计学1至7章课后答案解析

概率论与数理统计学1至7章课后答案解析

第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。

并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2 设离散型随机变量的概率分布为,2,1,}{Λ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7 和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯=2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{Λ===k k X P k,求 };6,4,2{)1(Λ=X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++==ΛΛΛX P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。

概率论课后习题

概率论课后习题

第一章 概率论的基本概念(一)1、多选题:⑴ 以下命题正确的是( )。

A B A AB a =)()(.Y ; A AB B A b =⊂则若,.;A B B A c ⊂⊂则若,.; B B A B A d =⊂Y 则若,..⑵ 某学生做了三道题,i A 表示第i 题做对了的事件)3,2,1(=i ,则至少做对了两道题的事件可表示为( ). ;.;.133221321321321A A A A A A b A A A A A A A A A a Y Y Y Y ..;.321321321321133221A A A A A A A A A A A A d A A A A A A c Y Y Y Y Y2、A 、B 、C 为三个事件,说明下述运算关系的含义:.)6(.)5(.)4(.)3(.)2(.1ABC C B A C B A C B A C B A Y Y )(3、个工人生产了三个零件,i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正、次品的事件。

试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品。

4、下列命题中哪些成立,哪些不成立: ⑴B B A B A Y Y =;⑵ B A B A Y =;⑶ C B A C B A =Y ;⑷ ()∅=)(B A AB ;⑸ AB A B A =⊂则若;⑹ A B B A ⊂⊂则若。

(二)1、选择题:⑴ 若事件A 与B 相容,则有( ))()()(.B P A P B A P a +=Y ; )()()()(.AB P B P A P B A P b -+=Y ; )()(1)(.B P A P B A P c --=Y ; )()(1)(.B P A P B A P d -=Y⑵ 事件A 与B 互相对立的充要条件是( ),1)(0)(.),()()(.===B A P AB P b B P A P AB P a Y 且∅=Ω=∅=AB d B A AB c .,..Y 且2、袋中有12个球,其中红球5个,白球4个,黑球3个。

《概率论与数理统计1—7章》答案详解

《概率论与数理统计1—7章》答案详解

第一章 基本概念记录检查结果。

件产品也就停止检查,者查满件次品就停止检查,或如果查出“次品”,正品”,不合格的盖上行检查,合格的盖上“对某工厂生产的产品进取的次数;次品全部取出,记录抽只),直到将取一只(取出后不放回只是次品,每次从中任只产品中有个球;,从中同时取出、、、、分别为个外形相同的球,编号一个口袋中有掷一颗骰子;出一个样本空间:试对下列随机试验各写42)4(3310)3(3543215)2()1(.1件产品这两种情况件是次品和查满样本空间包括查出=代表次品代表正品,数字)用数字(个是次品部抽出,总能抽出只产品全抽取的次数是把取出的都是次品;最多最少抽取的次数是每次,,,,,,,=)(种=个球进行组合,有个球中选=)(=)解:(42)}1,1,1,1(),1,0,1,1(),1,1,0,1(),0,1,1,1(),0,0,1,1(),0,1,0,1(),0,1,1,0(),0,0,1(),0,1,0(),0,0{(014310}109876543{31035)}5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1{(2}6,5,4,3,2,1{135ΩΩΩΩC (4) 漏一点 ( 0,1,1,1)集表示。

个事件用样本空间的子这出厂”、“不予出厂”“再作检查”、“降级出厂”、样本空间,并将“正常厂。

试写出这一试验的件以上次品就不允许出级后出厂;若有件次品则将这批产品降查;若有件次品就再作进一步检有批产品正常出厂;若件产品全合格就允许这件产品来做检查,若任意取出批产品中检查方法,约定,从这前的最后检查,用抽样工厂对一批产品作出厂422144.2)}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0(),0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0(),0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0(),1,1,1,1{()}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0{()}0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0{()}0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0{()}1,1,1,1{(01=⋃⋃⋃=Ω===DC B AD C B A D C B A ==“不予出厂”=“降级出厂”;=“再作检查”;=“正常出厂”;设代表次品代表正品,数字解:用数字个发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 随机变量及其概率1,写出下列试验的样本空间:连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412131425=C C C C ; (2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。

8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ⋃, )|(),|(AB A P B A AB P ⋃.(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。

连续取球4次,求第一、二次取到白球且第三、四次取到红球的概率。

解:(1)由题意可得7.0)()()()(=-+=⋃AB P B P A P B A P ,所以313.01.0)()()|(===B P AB P B A P , 515.01.0)()()|(===A P AB P A B P ,75)()()()]([)|(=⋃=⋃⋃=⋃B A P A P B A P B A A P B A A P ,71)()()()]([)|(=⋃=⋃⋃=⋃B A P AB P B A P B A AB P B A AB P , 1)()()()]([)|(===AB P AB P AB P AB A P AB A P 。

(2)设)4,3,2,1(=i A i 表示“第i 次取到白球”这一事件,而取到红球可以用它的补来表示。

那么第一、二次取到白球且第三、四次取到红球可以表示为4321A A A A ,它的概率为(根据乘法公式))|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==⨯⨯⨯=。

10,一医生根据以往的资料得到下面的讯息,他的病人中有5%的人以为自己患癌症,且确实患癌症;有45%的人以为自己患癌症,但实际上未患癌症;有10%的人以为自己未患癌症,但确实患了癌症;最后40%的人以为自己未患癌症,且确实未患癌症。

以A 表示事件“一病人以为自己患癌症”,以B 表示事件“病人确实患了癌症”,求下列概率。

(1))(),(B P A P ;(2))|(A B P ;(3))|(A B P ;(4))|(B A P ;(5))|(B A P 。

解:(1)根据题意可得%50%45%5)()()(=+=+=B A P AB P A P ;%15%10%5)()()(=+=+=A B P BA P B P ;(2)根据条件概率公式:1.0%50%5)()()|(===A P AB P A B P ; (3)2.0%501%10)()()|(=-==A P A B P A B P ; (4)179%151%45)()()|(=-==B P B A P B A P ; (5)31%15%5)()()|(===B P AB P B A P 。

14,一种用来检验50岁以上的人是否患有关节炎的检验法,对于确实患关节炎的病人有85%的给出了正确的结果;而对于已知未患关节炎的人有4%会认为他患关节炎。

已知人群中有10%的人患有关节炎,问一名被检验者经检验,认为他没有关节炎,而他却有关节炎的概率。

解:设“一名被检验者经检验认为患有关节炎”记为事件A ,“一名被检验者确实患有关节炎”记为事件B 。

根据全概率公式有%1.12%4%90%85%10)|()()|()()(=⨯+⨯=+=B A P B P B A P B P A P , 所以,根据条件概率得到所要求的概率为%06.17%1.121%)851%(10)(1)|()()()()|(=--=-==A P B A P B P A P A B P A B P 即一名被检验者经检验认为没有关节炎而实际却有关节炎的概率为17.06%.15,计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。

已知一程序因打字机发生故障而被破坏了,求该程序是在A,B,C 上打字的概率分别为多少?解:设“程序因打字机发生故障而被破坏”记为事件M ,“程序在A,B,C 三台打字机上打字”分别记为事件321,,N N N 。

则根据全概率公式有 025.004.01.005.03.001.06.0)|()()(31=⨯+⨯+⨯==∑=i i i N M P N P M P ,根据Bayes 公式,该程序是在A,B,C 上打字的概率分别为24.0025.001.06.0)()|()()|(111=⨯==M P N M P N P M N P ,60.0025.005.03.0)()|()()|(222=⨯==M P N M P N P M N P ,16.0025.004.01.0)()|()()|(333=⨯==M P N M P N P M N P 。

21,用一种检验法检测产品中是否含有某种杂质的效果如下。

若真含有杂质检验结果为含有的概率为0.8;若真不含有杂质检验结果为不含有的概率为0.9,据以往的资料知一产品真含有杂质或真不含有杂质的概率分别为0.4,0.6。

今独立地对一产品进行了3次检验,结果是2次检验认为含有杂质,而一次检验认为不含有杂质,求此产品真含有杂质的概率。

(注:本题较难,灵活应用全概率公式和Bayes 公式)解:设“一产品真含有杂质”记为事件A ,“对一产品进行3次检验,结果是2次检验认为含有杂质,而1次检验认为不含有杂质”记为事件B 。

则要求的概率为)|(B A P ,根据Bayes 公式可得)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=又设“产品被检出含有杂质”记为事件C ,根据题意有4.0)(=A P ,而且8.0)|(=A C P ,9.0)|(=A C P ,所以384.0)8.01(8.0)|(223=-⨯⨯=C A B P ;027.09.0)9.01()|(223=⨯-⨯=C A B P故,9046.01698.01536.0027.06.0384.04.0384.04.0)|()()|()()|()()|(==⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 第二章随机变量及其分布2,水自A 处流至B 处有3个阀门1,2,3,阀门联接方式如图所示。

当信号发出时各阀门以0.8的概率打开,以X 表示当信号发出时水自A 流至B 的通路条数,求X 的分布律。

设各阀门的工作相互独立。

解:X 只能取值0,1,2。

设以)3,2,1(=i A i 记第i 个阀门没有打开这一事件。

则)}(){()}({}0{3121321A A A A P A A A P X P ⋃=⋃==)()()()()()()(}{}{}{32131213213121A P A P A P A P A P A P A P A A A P A A P A A P -+=-+= 072.0)8.01()8.01()8.01(322=---+-=,类似有512.08.0)()}({}2{3321321=====A A A P A A A P X P , 416.0}2{}0{1}1{==-=-==X P X P X P ,综上所述,可得分布律为6,(1)设一天内到达某港口城市的油船的只数X~)10(π,求}15{>X P(2)已知随机变量X~)(λπ,且有5.0}0{=>X P ,求}2{≥X P 。

解:(1)0487.09513.01}15{1}15{=-=≤-=>X P X P ;(2)根据5.01}0{1}0{=-==-=>-λe X P X P ,得到2ln =λ。

所以1534.02/)2ln 1(5.01}1{}0{1}2{≈-=--==-=-=≥-λλe X P X P X P 。

8,一教授当下课铃打响时,他还不结束讲解。

他常结束他的讲解在铃响后的一分钟以内,以X 表示铃响至结束讲解的时间。

设X 的概率密度为⎩⎨⎧≤≤=他其100)(2x kx x f , (1)确定k ;(2)求}31{≤X P ;(3)求}2141{≤≤X P ;(4)求}32{>X P 。

解:(1)根据3)(1102k dx kx dx x f ===⎰⎰+∞∞-,得到3=k ; (2)271313}31{33/102=⎪⎭⎫ ⎝⎛==≤⎰dx x X P ; (3)64741213}2141{332/14/12=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==≤≤⎰dx x X P ;(4)27193213}32{313/22=⎪⎭⎫ ⎝⎛-==>⎰dx x X P 。

9,设随机变量X 的概率密度为⎩⎨⎧≤≤=他其1000003.0)(2x x x f ,求t 的方程04522=-++X Xt t 有实根的概率。

相关文档
最新文档