(必备)高考数学椭圆与双曲线的性质50条

合集下载

椭圆、双曲线、抛物线知识总结

椭圆、双曲线、抛物线知识总结

一.椭圆二.双曲线四.椭圆、双曲线及抛物线的性质对比(焦点在x轴上)名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2︱)|PF|= 点F不在直线l上,PM⊥l于M标准方程12222=+byax(a>b>0)12222=-byax(a>0,b>0)y2=2px(p>0)图象几何性质范围byax≤≤,ax≥0≥x顶点),0(),0,(ba±±)0,(a±(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0 ))0,2(p轴长轴长2a,短轴长2b实轴长2a,虚轴长2b准线cax2±=2px-=通径abAB22=pAB2=渐近线xaby±=...——知识就是力量,学海无涯苦作舟!——不要担心知识没有用,知识多了,路也好选择,也多选择。

比如高考,高分的同学,填报志愿的时候选择学校的范围大,而在分数线左右的就为难了,分数低的就更加不要说了。

再比如,有了知识,你也可以随时炒老板。

高考数学椭圆与双曲线的经典性质技巧归纳总结

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程高三数学备课组 刘岩老师1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a b y a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤, x b y a ≤≤, 顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率)10(<<=e a ce )10(<<=e a ce 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

高中所有数学公式、高考数学椭圆与双曲线的经典性质50条、三角函数公式大全

高中所有数学公式、高考数学椭圆与双曲线的经典性质50条、三角函数公式大全

高中数学常用公式及结论1元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø 2集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n-个.3二次函数的解析式的三种形式:(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式)(3)零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。

(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)4真值表:同真且真,同假或假 5常见结论的否定形式;原结论 反设词 原结论反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个大于 不大于 至少有n 个 至多有(1n -)个 小于 不小于 至多有n 个 至少有(1n +)个 对所有x ,成立 存在某x ,不成立p 或q p ⌝且q ⌝对任何x ,不成立 存在某x ,成立p 且q p ⌝或q ⌝6四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题 互逆 逆命题 若p则q 若q则p 互 互互 为 为 互 否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p充要条件:(1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠>p ,则P 是q 的充分不必要条件; (3)、p ≠>p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠>p ,且q ≠>p ,则P 是q 的既不充分又不必要条件。

高考数学圆锥曲线的经典性质50条

高考数学圆锥曲线的经典性质50条

*作品编号:DG13485201600078972981* 创作者: 玫霸*椭圆与双曲线的对偶性质--(必背的经典结论)椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=. 6.若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

高考数学椭圆与双曲线的经典性质50条

高考数学椭圆与双曲线的经典性质50条

椭圆第一定义第二定义标准方程222a b c -=.若不确定焦点位置时,方程可设为221mx ny += (m >0,n >0,m n ≠).参数方程焦点在x 轴:cos sin x a y b θθ=⎧⎨=⎩(其中θ为参数).面积公式S ab π=.离心率()0,1c e a ===. 焦半径公式通径三角形面积椭圆22221x y a b+=(a >b >0)的左右焦点分别为1F ,2F ,点P 为椭圆上任意一点12F PF θ∠=,则椭圆的焦点角形的面积为1222sin tan 1cos 2F PF S b b θθθ∆==+.切线方程若000(,)P x y 在椭圆22221x y a b +=(a >b >0)上,则过0P 的切线方程是00221x x y ya b +=.若000(,)P x y 在椭圆22221x y a b+=(a >b >0)外,则过0P 作椭圆的两条切线切点为1P 、2P ,则切点弦12P P 的直线方程是00221x x y ya b+=. 中点弦方程在椭圆22221x y a b+=(a >b >0)的不平行于对称轴的弦AB 中点为00(,)M x y ,则0022:1AB AB x y l k a b+⋅=,代入M 坐标,可求出AB k ,进而利用点斜式可求得00:()AB AB l y y k x x -=-.若000(,)P x y 在椭圆22221x y a b+=(a >b >0)内,则被0P 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+.若000(,)P x y 在椭圆22221x y a b +=(a >b >0)内,则过0P 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.双曲线第一定义平面内与两定点1F 、2F 的距离的差的绝对值等于常数2a (2a <12F F 且20a ≠)的点的轨迹叫做双曲线.即:122MF MF a -=.第二定义标准方程其中222a b c +=.若不确定焦点位置时,方程可设为221mx ny += (mn <0).参数方程焦点在x 轴:sec tan x a y b θθ=⎧⎨=⎩(其中θ为参数) 正割1sec cos θθ=.离心率()1,c e a ===+∞. 渐近线双曲线22221x y a b -=的渐近线为b y x a =±双曲线22221y x a b -=的渐近线为ay x b=±.焦半径公式焦点在x 轴上双曲线任意一点00(,)P x y 到焦点的距离:左焦半径10=PF ex a + 右焦半径20=PF ex a -.通径三角形面积双曲线22221x y a b-=(a >0,b >0)的左右焦点分别为1F ,2F ,点P 为双曲线上任意一点12F PF θ∠=,则双曲线的焦点角形的面积为1222sin t 1cos 2F PF S b b co θθθ∆==-.切线方程若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的切线方程是00221x x y ya b -=.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外,则过0P 作双曲线的两条切线切点为1P 、2P ,则切点弦12P P 的直线方程是00221x x y ya b-=. 中点弦方程在双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦AB 中点为00(,)M x y ,则0022:1AB AB x y l k a b-⋅=,代入M 坐标,可求出AB k ,进而利用点斜式可求得00:()AB AB l y y k x x -=-.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则被0P 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过0P 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-.椭圆补充1. 椭圆22221x y a b+=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于1P 、2P 时11A P 与22A P 交点的轨迹方程是22221x y a b-=.2. 过椭圆22221x y a b+=(a >b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B 、C 两点,则直线BC 有定向且2020BC b x k a y =(常数). 3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,1F 、2F 是焦点,12PF F α∠=,21PF F β∠=,则tan cot 22a c a c αβ-=+.4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为1F 、2F ,P (异于长轴端点)为椭圆上任意一点,在12PF F △中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce a αβγ==+.5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为1F 、2F ,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得1PF 是P 到对应准线距离d 与2F 的比例中项. 6. P 为椭圆22221x y a b+=(a >b >0)上任一点,1F 、2F 为两焦点,A 为椭圆内一定点,则21122a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立. 7. 椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 8. 已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+.(2)22OP OQ +的最大值为22224a b a b +.(3)OPQ S ∆的最小值是2222a b a b +.9. 过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M 、N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知椭圆22221x y a b+=(a >b >0),A 、B 是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x ,则22220a b a b x a a---<<.11. 设P 点是椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,1F 、2F 为其焦点记12F PF θ∠=,则 (1)2122||||1cos b PF PF θ=+.(2)122tan 2PF F S b θ∆=.12. 设A 、B 是椭圆22221x y a b+=(a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2)2tan tan 1e αβ=-.(3)22222cot PAB a b S b a γ∆=-. 13. 已知椭圆22221x y a b+=(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e (离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e . 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.双曲线补充1. 双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于1P 、2P 时11A P 与22A P 交点的轨迹方程是22221x y a b+=.2. 过双曲线22221x y a b-=(a >0,b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B 、C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).3. 若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,1F 、2F 是焦点,12PF F α∠=, 21PF F β∠=,则tan cot 22c a c a αβ-=+(或tan cot 22c a c a βα-=+). 4. 设双曲线22221x y a b-=(a >0,b >0)的两个焦点为1F 、2F , P (异于长轴端点)为双曲线上任意一点,在△12PF F 中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce a αγβ==±-.5. 若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为1F 、2F ,左准线为L ,则当1<e1时,可在双曲线上求一点P ,使得1PF 是P 到对应准线距离d 与2F 的比例中项. 6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,1F 、2F 为两焦点,A 为双曲线内一定点,则212AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.8. 已知双曲线22221x y a b-=(a >0,b >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-.(2)22OP OQ +的最小值为22224a b b a -.(3)OPQ S ∆的最小值是2222a b b a -. 9. 过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M 、N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.10. 已知双曲线22221x y a b-=(a >0,b >0),A 、B 是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x ,则220a b x a +≥或220a b x a+≤-.11. 设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,1F 、2F 为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2)122cot 2PF F S b θ∆=.12. 设A 、B 是 双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-.(2)2tan tan 1e αβ=-.(3)22222cot PAB a b S b a γ∆=+. 13. 已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF的中点.14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e (离心率) .(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e . 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.抛物线定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.标准方程设0p >,抛物线的标准方程、类型及其几何性质:参数方程222x pt y pt⎧=⎨=⎩(t 为参数,t R ∈). 抛物线22y px =(0p >)的图像和性质:(1)焦点坐标是:⎪⎭⎫⎝⎛02,p .(2)准线方程是:2p x -=.(3)顶点是焦点向准线所作垂线段中点,顶点平分焦点到准线的垂线段:2p OF OK ==. (4)焦准距:FK p =.(5)焦半径公式:若点),(00y x P 是抛物线px y 22=上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02p PF x =+.(6) 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交11(,)P x y ,22(,)Q x y ,且1QM ⊥准线于点1M ,2PM ⊥准线于点2M ,则①焦点弦长121222p pPQ x x x x p =+++=++.②221212,4p y y p x x =-=.③若直线PQ 的倾斜角为θ,则22sin pPQ θ=.④若F 为抛物线焦点,则有112PF QF p+=.⑤P 、O 、1M 三点共线,Q 、O 、2M 三点共线.(7)通径:过焦点垂直于轴的弦长为2p .这是过焦点的所有弦中最短的.(8)焦半径为半径的圆:以p 为圆心、FP 为半径的圆必与准线相切.所有这样的圆过定点F 、准线是公切线.(9)焦半径为直径的圆:以焦半径FP 为直径的圆必与过顶点垂直于轴的直线相切.所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线.(10)焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切.所有这样的圆的公切线是准线.切线方程若000(,)P x y 在抛物线22y px =(0p >)上,则过0P 的切线方程是00()y y p x x =+.中点弦公式抛物线2:2C x py =上,过给定点00(,)P x y 的中点弦所在直线方程为2000py x x py x -=-.。

高考数学椭圆与双曲线重要规律定理

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论)清华附中高三数学备课组椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b -=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c -,2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

高考数学中的椭圆与双曲线相关知识点详解

高考数学中的椭圆与双曲线相关知识点详解

高考数学中的椭圆与双曲线相关知识点详解椭圆和双曲线是高中数学中非常重要的概念,它们在解决几何问题和代数问题中都有广泛的应用。

在高考数学中,椭圆和双曲线都是重点考查的内容,因此对于这两个概念,学生需要掌握其相关知识点。

一、椭圆的定义与特征椭圆是平面上一点集合,其到两个不同定点的距离之和等于常数,这两个定点叫做椭圆的焦点。

椭圆上任意一点到这两个定点的距离之和等于椭圆上任意一点到其所在直线的垂足的距离之和。

根据椭圆的定义,我们可以得出以下特征:1. 椭圆上任意一点到两个焦点的距离之和等于常数2a;2. 椭圆的两个直径的长度之和为常数2a;3. 椭圆的两条焦弦的长度之和为常数2a;4. 椭圆的中心点位于两个焦点的中垂线上,中心到两个焦点的距离之和等于常数2a。

二、双曲线的定义与特征双曲线是平面上一点集合,其到两个不同定点的距离之差等于常数。

这两个定点叫做双曲线的焦点。

在双曲线上任意一点到这两个定点的距离之差等于椭圆上任意一点到其所在直线的垂足的距离之差。

双曲线的定义可以得出以下特征:1. 双曲线上任意一点到两个焦点的距离之差等于常数2a;2. 双曲线的两个直径的长度之差为常数2a;3. 双曲线的两条焦弦的长度之差为常数2a。

三、椭圆和双曲线的方程椭圆和双曲线都可以用方程表示。

以椭圆为例,如果椭圆的中心点为(h,k),椭圆的长轴长度为2a,短轴长度为2b,那么椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1而双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1其中,a和b分别代表长轴的长度和短轴的长度。

当a²> b²时,方程表示的是椭圆;当a² < b²时,方程表示的是双曲线;当a² = b²时,方程表示的是圆。

四、椭圆和双曲线的参数方程椭圆和双曲线的参数方程也可以帮助我们更好地了解它们的特征。

高考数学圆锥曲线常用8大结论

高考数学圆锥曲线常用8大结论

高考数学圆锥曲线常用8大结论1. 椭圆的性质椭圆的标准方程为:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$其中,a为椭圆的长半轴,b为椭圆的短半轴。

椭圆具有以下性质:(1) 光滑性:椭圆是一个连续的、光滑的曲线。

(2) 对称轴:椭圆具有两条对称轴,分别与长半轴和短半轴垂直并交于中心点。

(3) 焦点:椭圆有两个焦点F1和F2,且满足F1F2=2a。

(4) 直线:椭圆上的直线方程一般为$Ax+By+C=0$,其中,$A=\dfrac{a^2y^2}{b^2}+\dfrac{b^2x^2}{a^2}$,$B=-2\dfrac{a^2y}{b^2}$,$C=\dfrac{a^2y^2}{b^2}-a^2$。

(5) 参数方程:椭圆的参数方程为$x=a\cos\theta$,$y=b\sin\theta$,其中,$0\leq\theta<2\pi$。

2. 双曲线的性质(4) 渐进线:双曲线的渐进线是直线方程为$y=\pm\dfrac{b}{a}x$的两条直线。

$y=ax^2+bx+c$其中,a不等于0。

(2) 对称轴:抛物线的对称轴是$y=-\dfrac{b}{2a}$。

(3) 焦点:抛物线具有一个焦点F,满足到该点的距离等于焦距。

(5) 参数方程:抛物线的参数方程为$x=t$,$y=at^2+bt+c$。

5. 双曲线方程的标准形式其中,(h,k)为双曲线的中心点坐标,a为双曲线的半轴长,b为双曲线的半轴短。

7. 拋物線切线式拋物線的方程式為因此,在拋物線上一點$(x_0, y_0)$的斜率為則該點的切線方程為$y-y_0 = k(x-x_0)$8. 判别式公式判別式公式可以判別二次曲線的形状,公式如下:$D = \begin{vmatrix} A & B/2 \\ B/2 & C \end{vmatrix}$若$D>0$,則方程表示的圖形是双曲线;。

高考数学 椭圆性质大全(92条结论)

高考数学 椭圆性质大全(92条结论)

椭圆92条结论1.122PF PF a +=2.标准方程22221x y a b += 3.111PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆22221x y a b+=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.10.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.11.若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则22OM AB b k k a⋅=-.13.若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.14.若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.15.若PQ 是椭圆22221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==.16.若椭圆22221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b +=+;(2)L =17.给定椭圆1C :222222b x a y a b +=(a >b >0), 2C :222222222()a b b x a y ab a b-+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 2222002222(,)a b a b x y a b a b---++. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为椭圆(或圆)C:22221x y a b+= (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a +⋅=-⋅-. 19.过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y =(常数). 20.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan 2F PF S b γ∆=,2(tan )2b P c γ± . 21.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan tan 22a c a c αβ-=+. 22.椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c ,00(,)M x y ).23.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当11e ≤<时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2122||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.25.椭圆22221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k-≤+. 26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 28.P 是椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是2211sin e ϕ=+. 29.设A,B 为椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22221x y a b+=相交于,P Q ,则AP BQ =.30.在椭圆22221x y a b +=中,定长为2m (o <m≤a )的弦中点轨迹方程为()2222222221()cos sin x y m a b a b αα⎡⎤=-++⎢⎥⎣⎦,其中tan bxayα=-,当0y =时, 90α=. 31.设S 为椭圆22221x y a b+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,记|AB|=l ,00(,)M x y 是AB中点,则当l S ≥Φ时,有20max ()2a l x c e =-222(c a b =-,c e a =);当l S <Φ时,有0max ()x =0min ()0x =.32.椭圆22221x y a b+=与直线0Ax By C ++=有公共点的充要条件是22222A aB bC +≥.33.椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 34.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则21122||||P A P A b ⋅=. 36.已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最小值为22224a b a b +;(3)OPQ S ∆的最小值是2222a ba b +. 37.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a MN OP a b+=+. 39.设椭圆22221x y a b+=(a >b >0),M(m,o) 或(o, m)为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为对称轴上的两顶点)的交点N 在直线l :2a x m =(或2b y m=)上.40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设椭圆方程22221x y a b +=,则斜率为k(k≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=-.43.设A 、B 、C 、D 为椭圆22221x y a b+=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在椭圆上,则22222222cos sin cos sin PA PB b a PC PD b a ββαα⋅+=⋅+. 44.已知椭圆22221x y a b+=(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤+±⎣⎦=+±). 45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.46.过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.47.设A (x 1 ,y 1)是椭圆22221x y a b +=(a >b >0)上任一点,过A 作一条斜率为2121b x a y -的直线L ,又设d 是原点到直线 L的距离, 12,r r 分别是Aab =.48.已知椭圆22221x y a b +=( a >b >0)和2222x y a bλ+=(01λ<< ),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB│=|CD│.49.已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.50.设P 点是椭圆22221x y a b +=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b θ∆=.51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶点,连结AP 和AQ 分别交相应于过H 点的直线MN :x n =于M ,N 两点,则()222290()a n m a m MBN a mb n a --∠=⇔=++.52.L 是经过椭圆22221x y a b+=( a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||PH b =时取等号).53.L 是椭圆22221x y a b+=( a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离心率,EPF α∠=,H 是L与X 轴的交点c 是半焦距,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||abPH c=时取等号).54.L 是椭圆22221x y a b+=( a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且仅当||PH =.55.已知椭圆22221x y a b+=( a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,将A 、B 与椭圆左焦点F 1连结起来,则2222112(2)||||a b b F A F B a -≤⋅≤(当且仅当AB ⊥x 轴时右边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).56.设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b a γ∆=-. 57.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与这椭圆相交于P 、Q 两点,则180PAB QAB ∠+∠=.58.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PAB QAB ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是椭圆22221x y a b+=的长轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P 的轨迹是双曲线22221x y a b -=. 60.过椭圆22221x y a b+=( a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则2222282()||||ab a b AB CD a b a +≤+≤+. 61.到椭圆22221x y a b +=( a >b >0)两焦点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()x a y b ±+=.62.到椭圆22221x y a b +=( a >b >0)的长轴两端点的距离之比等于a cb -(c 为半焦距)的动点M 的轨迹是姊妹圆222()()a b x y e e±+=.63.到椭圆22221x y a b +=( a >b >0)的两准线和x 轴的交点的距离之比为a cb -(c 为半焦距)的动点的轨迹是姊妹圆22222()()a bx y e e±+=(e 为离心率).64.已知P 是椭圆22221x y a b+=( a >b >0)上一个动点,',A A 是它长轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a+=.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆22221x y a b +=( a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率为2121b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且//BC x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆2222()1x a y a b-+=( a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab a b +.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y a b a b-+=++(0)x ≠. 69.(,)P m n 是椭圆2222()1x a y a b-+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m a b n b a a b a b +--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是 22224222222222222[()]()()()ab a m b n a b n a b x y a b a b a b ++--+-=+++(x m ≠且y n ≠).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆22221x y a b+=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是222241(0)x y y a b+=≠.72.设点00(,)P x y 为椭圆22221x y a b +=( a >b >0)的内部一定点,AB 是椭圆22221x y a b+=过定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max 2()(||||)a b a y b x PA PB b -+⋅=.当弦AB 垂直于长轴所在直线时,22222200min 2()(||||)a b a y b x PA PB a -+⋅=.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切. 74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c. 76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例. 81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行. 83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长. 84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e. 86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线. 87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89. 已知椭圆22221(0,0)x y a b a b +=>>(包括圆在内)上有一点P ,过点P 分别作直线b y x a =及by x a=-的平行线,与x 轴于,M N ,与y 轴交于,R Q .,O 为原点,则:(1)222||||2OM ON a +=;(2)222||||2OQ OR b +=.90. 过平面上的P 点作直线1:b l y x a =及2:bl y x a=-的平行线,分别交x 轴于,M N ,交y 轴于,R Q .(1)若222||||2OM ON a +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.(2)若222||||2OQ OR b +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>. 91. 点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,则:122abS S +=.92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记 OMQ∆与ONR ∆的面积为12,S S ,已知122abS S +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>.椭圆性质92条证明1.椭圆第一定义。

(完整版)高考数学椭圆与双曲线的经典性质50条

(完整版)高考数学椭圆与双曲线的经典性质50条

椭圆与双曲线的对偶性质--(必背的经典结论)高三数学备课组椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

高考数学圆锥曲线必备50条

高考数学圆锥曲线必备50条

必背的经典结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y ab+=.6. 若000(,)P x y 在椭圆22221x y ab+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y ab+=.7. 椭圆22221x y ab+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F P F S b γ∆=.8. 椭圆22221xya b+=(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y ab+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b KAB-=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y ab a b+=+.13. 若000(,)P x y 在椭圆22221x y ab+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y abab+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y ab-=.6. 若000(,)P x y 在双曲线22221x yab -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x xy y ab-=.7. 双曲线22221x y ab-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F P F S b co γ∆=.8. 双曲线22221x yab-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-.当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22221x y ab-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则202y a x b KK ABOM =⋅,即0202y a x b K AB =。

高考数学椭圆知识点总结

高考数学椭圆知识点总结

高考数学椭圆知识点总结在高考数学中,椭圆是一个重要的几何图形,掌握椭圆的相关知识点对于解题非常有帮助。

下面将对高考数学中与椭圆相关的知识点进行总结。

一、椭圆的定义和性质椭圆是一个平面上的封闭曲线,其定义是到两个固定点(焦点)的距离之和等于常数的点所构成的集合。

椭圆具有以下性质:1. 焦点和准线:椭圆的两个焦点在椭圆的长轴上,准线则是连接两个焦点并且垂直于长轴的直线。

2. 焦距和半长轴:椭圆的两个焦点之间的距离称为焦距,焦距的一半称为半焦距。

椭圆的长轴是过焦点的直线,长轴的一半称为半长轴。

3. 直径:椭圆的直径是通过椭圆两个焦点的直线段,并且垂直于长轴的。

二、椭圆的标准方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)是椭圆的中心坐标,a和b分别是椭圆的半长轴和半短轴的长度。

三、椭圆的参数方程和焦点坐标椭圆的参数方程为x = h + a*cosθ,y = k + b*sinθ,其中θ是0到2π的参数。

椭圆的焦点坐标为(h+c, k)和(h-c, k),其中c是半焦距的长度。

四、椭圆的离心率和短焦距椭圆的离心率是一个描述椭圆形状的重要指标,计算公式为e = c/a,其中c是焦距的长度,a是半长轴的长度。

离心率小于1的椭圆被称为椭圆形,离心率等于1的椭圆被称为抛物线,离心率大于1的椭圆被称为双曲线。

椭圆的短焦距的长度可以通过短焦距的平方等于长焦距的平方减去椭圆的半长轴的平方来计算。

五、椭圆和直线的方程椭圆的方程和直线的方程可以相交、相切或者相离。

椭圆和直线相交时,可以通过联立椭圆的方程和直线的方程求解交点的坐标。

六、椭圆的面积和周长椭圆的面积可以通过公式A = πab来计算,其中a和b分别是椭圆的半长轴和半短轴的长度。

椭圆的周长近似于公式C ≈ 2π√(2a²+b²)/2。

综上所述,掌握高考数学中与椭圆相关的知识点对于解题至关重要。

高考数学双曲线知识点

高考数学双曲线知识点

高考数学双曲线知识点高考是每一个学生都要经历的一道重要关卡,而其中的数学科目又是让很多学生头疼的一门必修课。

数学考试中最常见的几何图形之一便是双曲线,它是一种非常重要的知识点,而且在现实生活中也有着广泛的应用。

在本文中,我们将详细探讨高考数学中的双曲线知识点。

首先,我们来了解一下双曲线的定义。

双曲线是一种具有两个分离的曲线分支的平面曲线。

与椭圆和抛物线相比,它们的特点是曲线分支无限延伸,并且与对称轴有一个焦点和一个顶点。

数学上,我们通常以坐标轴和方程的形式描述和表示双曲线。

双曲线的标准方程有两种形式:水平方程与垂直方程。

水平方程的一般形式为(x-h)^2/a^2-(y-k)^2/b^2=1,其中(h,k)为顶点坐标,a为横轴长度的一半,b为纵轴长度的一半。

垂直方程的一般形式为(y-k)^2/a^2-(x-h)^2/b^2=1,其中(h,k)为顶点坐标,a为纵轴长度的一半,b为横轴长度的一半。

我们可以通过这两种方程形式来确定双曲线的位置和形状。

另外,双曲线还有几个重要的性质和特点。

首先,双曲线的中心是指曲线对称的中心点,它位于双曲线两个分支的交点处。

其次,双曲线的对称轴是指通过中心点的一条直线,它将双曲线分为两个对称的部分。

双曲线的焦点是指双曲线上离中心最近的点,焦距是指从中心到焦点的距离。

焦点和焦距是双曲线与椭圆和抛物线的重要区别之一。

最后,双曲线还有一个重要的性质是渐近线。

渐近线是指曲线在趋于无穷远时的趋势线,双曲线有两条渐近线,分别与双曲线的两个分支趋于平行。

在高考数学中,我们需要掌握双曲线的图像特点、方程的转化和曲线的性质运用等方面的知识。

同时,还需要能够应用双曲线解决实际问题。

举一个简单的例子,假设有一座桥,桥下为限高,而桥上的双曲线形状的拱桥正好能容纳卡车通过。

那么,我们就可以利用双曲线的性质,通过求解方程来确定双曲线的参数,从而确定桥下的限高。

双曲线作为数学中的一种几何图形,不仅在高考中经常出现,而且在现实生活中也有着广泛的应用。

高考数学复习:圆锥曲线

高考数学复习:圆锥曲线

高考数学复习:圆锥曲线考点一:椭圆、双曲线、抛物线知识点1椭圆1、椭圆的定义(1)平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a >|F 1F 2|时,M 点的轨迹为椭圆;②当2a =|F 1F 2|时,M 点的轨迹为线段F 1F 2;③当2a <|F 1F 2|时,M 点的轨迹不存在.2、椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b2=1(a >b >0)图形性质范围-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性对称轴:坐标轴;对称中心:原点顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b,0),B 2(b,0)离心率e =ca,且e ∈(0,1)a ,b ,c 的关系c 2=a 2-b 23、椭圆中的几个常用结论(1)过椭圆焦点垂直于长轴的弦是最短的弦,长为2b2a ,过焦点最长弦为长轴.(2)过原点最长弦为长轴长2a ,最短弦为短轴长2b .(3)与椭圆x 2a 2+y 2b 2=1(a >b >0)有共同焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(λ>-b 2).(4)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2,即点P 为短轴端点时,θ最大;②S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).知识点2双曲线1、双曲线的定义(1)平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离之差的绝对值为非零常数2a (2a <2c )的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.(2)集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a <|F 1F 2|时,M 点的轨迹是双曲线;②当2a =|F 1F 2|时,M 点的轨迹是两条射线;③当2a >|F 1F 2|时,M 点不存在.2、双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈Ry ≤-a 或y ≥a ,x ∈R对称性对称轴:坐标轴,对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞)实、虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2(c >a >0,c >b >0)3、双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b2a ,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线PA ,PB 斜率存在且不为0,则直线PA 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则,其中θ为∠F 1PF 2.(6)等轴双曲线①定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.②性质:a =b ;e =2;渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.(7)共轭双曲线①定义:若一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.②性质:它们有共同的渐近线;它们的四个焦点共圆;它们的离心率的倒数的平方和等于1.知识点3抛物线1、抛物线的定义:满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等;(3)定点不在定直线上.2、抛物线的标准方程与几何性质焦半径(其中P (x 0,y 0))|PF |=x 0+p 2|PF |=-x 0+p 2|PF |=y 0+p 2|PF |=-y 0+p23、抛物线中的几何常用结论(1)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦.①以弦AB 为直径的圆与准线相切.②以AF 或BF 为直径的圆与y 轴相切.③通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.(2)过x 2=2py 的准线上任意一点D 作抛物线的两条切线,切点分别为A ,B ,则直线AB 【题型1圆锥曲线的定义及应用】容易忽视圆锥曲线定义的限制条件,在椭圆的定义中,对常数加了一个条件,即常数大于12F F 。

专题50 双曲线-高考数学复习资料(解析版)

专题50 双曲线-高考数学复习资料(解析版)
2
的取值范围是( )
33 -, A. 3 3
22 22 -, C. 3 3
33 -, B. 6 6
23 23 -, D. 3 3
【答案】 A
【解析】 因为 F1(- 3,0),F2( 3,0),x20-y20=1,所以M→F1·M→F2=(- 3-x0,-y0)·( 3-x0,-y0) 2
=x20+y20-3<0,即 3y20-1<0,解得-
a2 b2
的垂线,垂足为 A,且交 y 轴于 B,若 A 为 BF 的中点,则双曲线的离心率为( )
A. 2
B. 3
C.2
6 D.
2
【答案】 A
π -1
【解析】
由题易知双曲线
C
的一条渐近线与
x
π 轴的夹角为 ,故双曲线
C
的离心率
e=
cos
4
= 2.
4
x2 y2 3.(2019·宁夏模拟)设 P 是双曲线 - =1 上一点,F1,F2 分别是双曲线的左、右焦点,若|PF1|=9,则
b 2a,即 =
2,所以该双曲线
a
a
b 的渐近线方程为 y=± x=± 2x.
a
c 法二 由 e= =
a
b2
b
b
1+ a = 3,得 = 2,所以该双曲线的渐近线方程为 y=± x=± 2x.
a
a
(2)(2017
山东)在平面直角坐标系
xOy
中,双曲线
x2 a2
y2 b2
1(a
0,b
0)
的右支与焦点为 F
F1
的直线与双曲
线的上下两支分别交于点 B,A,若△ABF2 为等边三角形,则双曲线的渐近线方程为( )

高考数学中的椭圆形与双曲线

高考数学中的椭圆形与双曲线

高考数学中的椭圆形与双曲线椭圆形和双曲线是高中数学中的一些重要知识点,而在高考数学中,也是经常被考察的难点。

这些曲线形状各异,但是在多年的教学实践中,我们可以发现它们之间存在着一些共性和联系。

本文将从这些方面对椭圆形和双曲线进行深入的探讨。

一、基本概念首先,我们需要明确椭圆形和双曲线的基本概念。

椭圆形是一个闭合曲线,通常可以看做一个长方形的两个顶点之间的点集。

这个长方形的长短轴分别为a和b,其方程一般写作(x²/a²)+(y²/b²)=1。

而双曲线则是两个分离曲线连成的一个形状,一般来说,它可以看做平面上所有离定点F1和F2距离之差等于2a的点的集合。

它的方程一般写作(x²/a²)-(y²/b²)=1。

二、椭圆形和双曲线的公共特征虽然椭圆形和双曲线的形状差别很大,但是它们在数学理论中是非常相似的。

这是因为它们都属于一类称为“锥体曲线”的曲线。

锥体曲线的一个基本特征是它们是由一个截面与一个两端都有点的圆锥相交而形成的。

具体来说,椭圆形和双曲线都可以看做锥体曲线中的一种,它们的方程都可以写成像上文中提到的那样的标准式。

此外,它们也有一些共性特征,比如都具有对称性等等。

三、椭圆形和双曲线的不同特征虽然椭圆形和双曲线有不少共性特征,但是它们之间的不同点也是很明显的。

首先,我们可以看到它们的形状就不同,椭圆形是一个闭合的几何形状,而双曲线则是一个开口向两侧的形状。

另外,它们的方程也有差别,椭圆形的方程是一个含有加号的二次函数,而双曲线的方程则是一个含有减号的二次函数。

这就导致它们的奇点也不同,椭圆形的奇点在轴的两端,而双曲线的奇点则是在焦点F1和F2处。

四、高考数学中的应用在高考数学中,椭圆形和双曲线都是比较重要的知识点,经常会被考察到。

这时候,学生需要掌握一些相关方法和技巧,比如化简方程、求极值、求导数等等。

举个例子来说,如果考到一道关于椭圆形的题目,比如给出某个椭圆形的方程,要求求出其长短轴长度或者离心率等参数,学生需要使用相关的数学方法进行求解。

高中所有数学公式、高考数学椭圆与双曲线的经典性质50条、三角函数公式大全

高中所有数学公式、高考数学椭圆与双曲线的经典性质50条、三角函数公式大全

高中数学常用公式及结论1 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø2 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n-个.3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x ax bx c a =++≠;(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。

(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)4 真值表: 同真且真,同假或假5 常见结论的否定形式;原结论 反设词 原结论反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个大于 不大于 至少有n 个 至多有(1n -)个 小于 不小于 至多有n 个 至少有(1n +)个 对所有x ,成立 存在某x ,不成立p 或q p ⌝且q ⌝对任何x ,不成立 存在某x ,成立p 且q p ⌝或q ⌝6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题 互逆 逆命题 若p则q 若q则p 互 互互 为 为 互 否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆与双曲线的对偶性质--(必背的经典结论)椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=. 8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

12. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-.13. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-.椭圆与双曲线的对偶性质--(会推导的经典结论)高三数学备课组椭 圆1. 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2. 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点,12PF F α∠=, 21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e ≤21-时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y a b--+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 8. 已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b+. 9. 过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a ---<<. 11. 设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b γ∆=. 12. 设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b a γ∆=-. 13. 已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.椭圆与双曲线的对偶性质--(会推导的经典结论)高三数学备课组双曲线1. 双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.2. 过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).3. 若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1,F2是焦点, 12PF F α∠=, 21PF F β∠=,则t a n t 22c a co c a αβ-=+(或t a n t 22c a co c a βα-=+). 4. 设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.5. 若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,1离d 与PF 2的比例中项.6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b -=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A aB bC -≤.8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥. (1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQS ∆的最小值是2222a b b a -. 9. 过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-.11. 设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b γ∆=.12. 设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b aγ∆=+.13.已知双曲线221a b-=(a>0,b>0)的右准线l与x轴相交于点E,过双曲线右焦点F的直线与双曲线相交于A、B两点,点C在右准线l上,且BC x⊥轴,则直线AC经过线段EF 的中点.14.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16.双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).17.双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18.双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.。

相关文档
最新文档