人教版九年级数学上册第22章 二次函数单元测试及答案解析【新编辑】
人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案解析
第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案) 1.下列函数中,是二次函数的为( )A . y =2x +1B . y =(x −2)2−x 2C . y =2x 2 D . y =2x(x +1) 2.二次函数y=2(x ﹣1)2+3的图象的对称轴是( ) A . x=1 B . x=﹣1 C . x=3 D . x=﹣33.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( ) A . y=(x +2)2﹣5 B . y=(x +2)2+5 C . y=(x ﹣2)2﹣5 D . y=(x ﹣2)2+5 4.(已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A . 1B . 2C . 3D . 45.已知二次函数y =ax 2−bx −2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( )A . 34或1 B . 14或1 C . 34或12 D . 14或34 6.下列具有二次函数关系的是( )A . 正方形的周长y 与边长xB . 速度一定时,路程s 与时间tC . 三角形的高一定时,面积y 与底边长xD . 正方形的面积y 与边长x7.给出下列四个函数:y=,2x,y=2x,1,y=3x ,x,0,,y=,x 2+3,x,0),其中y 随x 的增大而减小的函数有( )A . 3个B . 2个C . 1个D . 0个8.在直角坐标系xOy 中,二次函数C 1,C 2图象上部分点的横坐标、纵坐标间的对应值如下表: x … ,1 0 1 2 2.5 3 4 … y 1 … 0 m 1 ,8 n 1 ,8.75 ,8 ,5 … y 2…5m 2,11n 2,12.5,11,5…则关于它们图象的结论正确的是()A.图象C1,C2均开口向下B.图象C1的顶点坐标为(2.5,,8.75,C.当x,4时,y1,y2D.图象C1,C2必经过定点(0,,5,9.如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc <0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.11.如图,抛物线y=−23x2+103x+4分别交x轴于A,B两点,与y轴交于点C,动点P从D(0,2)出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为()A.√61B.8C.7D.912.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216二、填空题13.二次函数y,kx2,x,2经过点(1,5),则k,_________.14.若函数y,(m,3)x m2+2m-13是二次函数,则m,______.15.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是______,16.已知抛物线y=ax2+bx+c,a,0)的顶点为(2,4),若点(﹣2,m,,,3,n)在抛物线上,则m_____n(填“,”,“=”或“,”,,17.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.三、解答题18.在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19.二次函数y=,m+1,x2,2,m+1,x,m+3,,1)求该二次函数的对称轴;,2)过动点C,0,n)作直线l,y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;,3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m,20.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:,1,求y与x之间的函数关系式;,2,设商场每天获得的总利润为w(元),求w与x之间的函数关系式;,3,不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?21.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.22.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.23.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案1.D【解析】【分析】先把它们整理成一般形式,再根据二次函数的定义解答.【详解】A选项:一次函数,错误;B选项:原函数可化为:y=-4x+4,一次函数,错误;C选项:不是整式,错误;D选项:原函数可化为:y=2x2+2x,正确.故选:D.【点睛】考查二次函数的定义,一般地,把形如y=ax2+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数. 2.A【解析】【分析】由抛物线解析式可求得其顶点坐标及对称轴.【详解】∵y,2,x−1,2,3,∴抛物线顶点坐标为(1,3),对称轴为x,1,故选:A,【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y,a,x−h,2,k中,对称轴为x,h,顶点坐标为(h,k,,3.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣b<1,2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.5.A【解析】【分析】首先根据题意确定a,b的符号,然后进一步确定a的取值范围,根据a,b为整数确定a,b的值,从而确定答案.【详解】,0,a+b,2=0,依题意知a,0,b2a故b,0,且b=2,a,a,b=a,,2,a,=2a,2,于是0,a,2,∴,2,2a,2,2,又a,b为整数,∴2a,2=,1,0,1, 故a=12,1,32,b=32,1,12,∴ab=34或1,故选A, 【点睛】根据开口和对称轴可以得到b 的范围。
人教版九年级数学上册第22章《二次函数》单元测试题含答案
人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】
人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>a>c7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣79.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为.12.如果函数是关于x的二次函数,那么k的值是.13.当m=时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m=.15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a=.16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.17.已知抛物线y=x2+4x+5的对称轴是直线x=.18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是.20.抛物线y=(x﹣2)2+3的顶点坐标是.三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:(,);(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。
九年级数学上册 第22章 二次函数单元测试卷(含解析)(新版)新人教版
第22章二次函数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3) C.y=(x+4)2﹣x2 D.y=2.(4分)已知二次函数y=a(x﹣h)2+k的图象如图所示,直线y=ax+hk的图象经第几象限()A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四3.(4分)抛物线y=2x2﹣1与直线y=﹣x+3的交点的个数是()A.0个B.1个C.2个D.3个4.(4分)设点(﹣1,y1),(2,y2),(3,y3)是抛物线y=﹣x2+a上的三点,则y1、y2、y3的大小关系为()A.y3>y2>y1B.y1>y3>y2C.y3>y1>y2D.y1>y2>y35.(4分)设一元二次方程(x﹣2)(x﹣3)=m(m>0)的两根分别为α,β.且α<β,则二次函数y=(x﹣2)(x﹣3)的函数值y>m时自变量x的取值范围是()A.x>3或x<2 B.x>β或x<αC.α<x<βD.2<x<36.(4分)已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:则一元二次方程ax2+bx+c=0的一个解x满足条件()A.1.2<x<1.3 B.1.3<x<1.4 C.1.4<x<1.5 D.1.5<x<1.67.(4分)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或68.(4分)将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x元时,获得的利润为y元,则下列关系式正确的是()A.y=(x﹣35)(400﹣5x)B.y=(x﹣35)(600﹣10x)C.y=(x+5)(200﹣5x)D.y=(x+5)(200﹣10x)9.(4分)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m10.(4分)如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()A. B.C.﹣2 D.评卷人得分二.填空题(共4小题,满分20分,每小题5分)11.(5分)抛物线y=﹣2x2﹣1的顶点坐标是.12.(5分)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.13.(5分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是.14.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.评卷人得分三.解答题(共9小题,满分90分)15.(8分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.16.(8分)下表给出了代数式﹣x2+bx+c与x的一些对应值:x …﹣2 ﹣1 0 1 2 3 …﹣x2+bx+c … 5 n c 2 ﹣3 ﹣10 …(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.17.(8分)已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?18.(8分)设方程x2﹣x﹣1=0的两个根为a,b,求满足f(a)=b,f(b)=a,f(1)=1的二次函数f(x).19.(10分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.20.(10分)已知二次函数y=2(x﹣1)(x﹣m﹣3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?21.(12分)已知函数y=﹣x2+mx+(m+1)(其中m为常数)(1)该函数的图象与x轴公共点的个数是个.(2)若该函数的图象对称轴是直线x=1,顶点为点A,求此时函数的解析式及点A的坐标.22.(12分)已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.23.(14分)如图,抛物线y=ax2+bx(a>0,b<0)交x轴于O,A两点,顶点为B(I)直接写出A,B两点的坐标(用含a,b的代数式表示).(II)直线y=kx+m(k>0)过点B,且与抛物线交于另一点D(点D与点A不重合),交y轴于点C.过点D作DE⊥x轴于点E,连接AB,CE,求证:CE∥AB.(III)在(II)的条件下,连接OB,当∠OBA=120,≤k≤时,求的取值范围.xx年九年级上学期第22章二次函数单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据二次函数的定义,逐一分析四个选项即可得出结论.【解答】解:A、y=﹣4x+5为一次函数;B、y=x(2x﹣3)=2x2﹣3x为二次函数;C、y=(x+4)2﹣x2=8x+16为一次函数;D、y=不是二次函数.故选:B.【点评】本题考查了二次函数的定义,牢记二次函数的定义是解题的关键.2.【分析】根据二次函数的图象可以判断a、h、k的符号,然后根据一次函数的性质即可判断直线y=ax+hk的图象经第几象限,本题得以解决.【解答】解:由函数图象可知,y=a(x﹣h)2+k中的a<0,h<0,k>0,∴直线y=ax+hk中的a<0,hk<0,∴直线y=ax+hk经过第二、三、四象限,故选:D.【点评】本题考查二次函数的图象、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3.【分析】根据方程组,转化为一元二次方程,利用根的判别式即可判断;【解答】解:由,消去y得到:2x2+x﹣4=0,∵△=1﹣(﹣32)=33>0,∴抛物线y=2x2﹣1与直线y=﹣x+3有两个交点,故选:C.【点评】本题考查二次函数的性质,解题的关键是学会用转化的思想思考问题,属于中考常考题型.4.【分析】由题意可得对称轴为y轴,则(﹣1,y1)关于y轴的对称点为(1,y1),根据二次函数的增减性可得函数值的大小关系.【解答】解:∵抛物线y=﹣x2+a∴对称轴为y轴∴(﹣1,y1)关于对称轴y轴对称点为(1,y1)∵a=﹣1<0∴当x>0时,y随x的增大而减小∵1<2<3∴y1>y2>y3故选:D.【点评】本题考查了二次函数图象上的点的坐标特征,二次函数的增减性,利用增减性比较函数值的大小是本题的关键5.【分析】依照题意画出图象,观察图形结合二次函数的性质,即可找出结论.【解答】解:依照题意画出图形,如图所示.∵一元二次方程(x﹣2)(x﹣3)=m(m>0)的两根分别为α、β,∴二次函数y=(x﹣2)(x﹣3)的函数值y>m时自变量x的取值范围是x>β或x<α.故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数的图象,依照题意画出图形,利用数形结合解决问题是解题的关键.6.【分析】仔细看表,可发现y的值﹣0.24和0.25最接近0,再看对应的x的值即可得.【解答】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选:C.【点评】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.7.【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【解答】解:当h<2时,有﹣(2﹣h)2=﹣1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;当h>5时,有﹣(5﹣h)2=﹣1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.【点评】本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.8.【分析】根据售价减去进价表示出实际的利润;【解答】解:设这种商品的售价为x元时,获得的利润为y元,根据题意可得:y=(x﹣35)(400﹣5x),故选:A.【点评】此题考查了二次函数的应用,解题的关键是理解“商品每个涨价2元,其销售量就减少10个”.9.【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.【解答】解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.10.【分析】连接OB,过B作BD⊥x轴于D,若OC与x轴正半轴的夹角为15°,那么∠BOD=30°;在正方形OABC中,已知了边长,易求得对角线OB的长,进而可在Rt△OBD中求得BD、OD的值,也就得到了B点的坐标,然后将其代入抛物线的解析式中,即可求得待定系数a的值.【解答】解:如图,连接OB,过B作BD⊥x轴于D;则∠BOC=45°,∠BOD=30°;已知正方形的边长为1,则OB=;Rt△OBD中,OB=,∠BOD=30°,则:BD=OB=,OD=OB=;故B(,﹣),代入抛物线的解析式中,得:()2a=﹣,解得a=﹣;故选:B.【点评】此题主要考查了正方形的性质、直角三角形的性质以及用待定系数法确定函数解析式的方法,能够正确地构造出与所求相关的直角三角形,是解决问题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标,本题得以解决.【解答】解:∵y=﹣2x2﹣1,∴该抛物线的顶点坐标为(0,﹣1),故答案为:(0,﹣1).【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答.12.【分析】由抛物线与x轴只有一个交点,即可得出关于m的一元一次方程,解之即可得出m的值.【解答】解:∵函数y=x2+2x﹣m的图象与x轴有且只有一个交点,∴△=22﹣4×1×(﹣m)=0,解得:m=﹣1.故答案为:﹣1.【点评】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac=0时,抛物线与x轴有1个交点”是解题的关键.13.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.所以方程ax2=bx+c的解是x1=﹣2,x2=1故答案为x1=﹣2,x2=1.【点评】本题考查抛物线与x轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题,属于中考常考题型.14.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.三.解答题(共9小题,满分90分)15.【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16.【分析】(1)把(﹣2,5)、(1,2)分别代入﹣x2+bx+c中得到关于b、c的方程组,然后解方程组即可得到b、c的值;然后计算x=﹣1时的代数式的值即可得到n的值;(2)利用表中数据求解.【解答】解:(1)根据表格数据可得,解得,∴﹣x2+bx+c=﹣x2﹣2x+5,当x=﹣1时,﹣x2﹣2x+5=6,即n=6;(2)根据表中数据得当0≤x≤2时,y的最大值是5.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.17.【分析】(1)根据二次项的系数等于零,一次项的系数不等于零,可得方程组,根据解方程组,可得答案;(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.【解答】解:依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.【点评】本题考查了二次函数的定义,二次函数的二次项的系数不等于零是解题关键.18.【分析】利用一元二次方程的根与系数的关系求得ab=﹣1,a+b=1,a2+b2=(a+b)2﹣2ab=3.根据题意知,二次函数经过点(a,b),(b,a),(1,1).把它们代入二次函数解析式f(x)=kx2+dx+c (k≠0),列出方程组,通过解方程组可以求得k、d、c的值.【解答】解:∵方程x2﹣x﹣1=0的两个根为a、b,∴ab=﹣1,a+b=1,∴a2+b2=(a+b)2﹣2ab=3.设f(x)=kx2+dx+c(k≠0),∵f(a)=b,f(b)=a,f(1)=1,∴,由①﹣②,得(a+b)k+d=﹣1,即k+d=﹣1,④由①+②,得k(a2+b2)+d(a+b)+2c=a+b,即3k+d+2c=1,⑤把④代入③解得c=2.则由⑤得3k+d=﹣3,⑥由③⑥解得,k=﹣1,d=0.故该二次函数是f(x)=﹣x2+2.【点评】本题考查了抛物线与x轴的交点,二次函数解析式的求解及其常用方法,解方程组.解题时要认真审题,仔细解答.19.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.20.【分析】(1)代入y=0求出x的值,分m+3=1和m+3≠1两种情况考虑方程解的情况,进而即可证出:不论m为何值,该函数的图象与x轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标,令其大于0即可求出结论.【解答】(1)证明:当y=0时,2(x﹣1)(x﹣m﹣3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=﹣2时,方程有两个相等的实数根;当m+3≠1,即m≠﹣2时,方程有两个不相等的实数根.∴不论m为何值,该函数的图象与x轴总有公共点;(2)解:当x=0时,y=2(x﹣1)(x﹣m﹣3)=2m+6,∴该函数的图象与y轴交点的纵坐标为2m+6,∴当2m+6>0,即m>﹣3时,该函数的图象与y轴的交点在x轴的上方.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征以及解一元一次不等式,解题的关键是:(1)由方程2(x﹣1)(x﹣m﹣3)=0有解证出该函数的图象与x轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标.21.【分析】(1)表示出根的判别式,判断其正负即可得到结果;(2)先依据抛物线的对称轴方程求得m的值,从而可得到抛物线的解析式,然后利用配方法可求得点A的坐标.【解答】解:(1)∵函数y=﹣x2+mx+(m+1)(m为常数),∴△=m2+4(m+1)=(m+2)2≥0,∴该函数图象与x轴的公共点的个数是1或2.故答案为:1或2.(2)∵抛物线的对称轴是直线x=1,∴=1,解得m=2,∴抛物线的解析式为y=﹣x2+2x+3.y=﹣x2+2x+3═﹣x2+2x﹣1+4=﹣(x﹣1)2+4,∴A(1,4).【点评】本题主要考查的是抛物线与x轴的交点,掌握抛物线与x轴交点个数与△之间的关系是解题的关键.22.【分析】先求出该抛物线的对称轴,然后根据对称轴的位置即可求出a的取值范围.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0∴c≤,∵a≥3,∴﹣<c≤.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象,本题属于中等题型.23.【分析】(Ⅰ)令y=0,可求A点坐标,根据顶点公式可求B点坐标.(Ⅱ)如图作BF⊥AO,根据根与系数关系可求D的横坐标,即可求OC,OE,AF,BF的长度(用a,b,m表示),可证△OEC∽△ABF,即可证AB∥EC(Ⅲ)由∠ABO=120°,根据抛物线的对称性可得∠FBA=60°,可求b的值,则可求B点坐标,直线y=kx+m过B点,可求m与k的关系,由△OEC∽△ABF,可求得的取值范围.【解答】解:(Ⅰ)当y=0时,有ax2+bx=0,解得:x1=0,x2=﹣,∴点A的坐标为(﹣,0).∵抛物线y=ax2+bx=a(x+)2﹣,∴点B的坐标为(﹣,﹣).(II)如图作BF⊥AO∵直线y=kx+m(k>0)与抛物线相交于B,D∴kx+m=ax2+bx∴ax2+bx﹣kx﹣m=0∴x B×x D=﹣∴﹣×x D=﹣∴x D=∴OE=∵C(0,m),B(﹣,﹣),A(﹣,0)∴OC=﹣m,AF=﹣,BF=∴,且∠COA=∠BFA=90°∴△ABF∽△OCE∴∠FAB=∠OEC∴AB∥CE(Ⅲ)∵∠OBA=120°∴∠FBA=60°∴tan∠FBA=∴b=﹣∴B(,﹣)∵直线y=kx+m过B点∴﹣=k+m∴m=﹣﹣k∵△ABF∽△OCE∴∵≤k≤∴≤≤即【点评】本题考查了二次函数综合题,二次函数的性质,相似三角形的判定和性质,通过相似三角形证明角相等是本题的关键.(本资料素材和资料部分来自网络,供参考。
人教版九年级数学上册 第22章 二次函数 单元测试卷(含解析)
人教版九年级数学上册第22章二次函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.抛物线的顶点坐标是A. B. C. D.2.已知二次函数的最小值是,那么m的值等于A. 10B. 4C. 5D. 63.抛物线上两点、,则a、b的大小关系是A. B. C. D. 无法比较大小4.已知a、b、c是的三边长,且关于x的方程的两根相等,则为A. 等腰三角形B. 等边三角形C. 直角三角形D. 任意三角形5.二次函数的图象如图所示,则一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.直线与抛物线在同一平面直角坐标系中的图象大致为A. B.C. D.7.若、为方程的两个实数根,则的值为A. B. 12 C. 14 D. 158.已知二次函数的图象如图,则一次函数的图象大致是A. B. C. D.9.抛物线的对称轴是A. 直线B. 直线C. 直线D. 直线10.将抛物线绕它的顶点旋转,所得抛物线的解析式是.A. B.C. D.二、填空题(本大题共7小题,共21分)11.如果函数是二次函数,那么m的值一定是______.12.已知二次函数的图象的顶点在x轴下方,则实数k的取值范围是.13.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是__________.14.如果抛物线的对称轴是y轴,那么m的值是______ .15.在解一元二次方程时,小明看错了一次项系数b,得到的解为,;小刚看错了常数项c,得到的解为,请你写出正确的一元二次方程______.16.如图,在中,,,AD为BC边上的高,动点P从点A出发,沿方向以的速度向点D运动,过P点作交AC于点E,过E点作于点F,设的面积为,四边形PDFE的面积为,则点P在运动过程中,的最大值为______.17.如图,是二次函数的图象的一部分,给出下列命题:;;的两根分别为和1;.其中正确的命题是________填写正确命题的序号三、解答题(本大题共6小题,共49分)18.已知二次函数的顶点在直线上,并且图象经过点求这个二次函数的解析式.当x满足什么条件时二次函数随x的增大而减小?19.已知抛物线与x轴交于A,B两点点A在点B的左侧,抛物线的顶点记为C.分别求出点A、B、C的坐标;计算的面积.20.二次函数a,b,c为常数图象如图所示,根据图象解答问题.直接写出过程的两个根.直接写出不等式的解集.若方程有两个不相等的实数根,求k的取值范围.21.如图,是某座抛物线型的隧道示意图.已知路面AB宽24米,抛物线最高点C到路面AB的距离为8米,为保护来往车辆的安全,在该抛物线上距路面AB高为6米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.22.某商店经销一种学生用双肩包,成本价为每个30元.市场调查发现,这种双肩包每天的销售量个与销售单价元有如下关系:设这种双肩包每天的销售利润为w元.求w与x之间的函数关系式;这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?23.如图,抛物线与x轴交于A,B两点,且点A在点B的左侧,直线与抛物线交于A,C两点,其中点C的横坐标为2.求二次函数的解析式;是线段AC上的一个动点,过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值.答案和解析1.【答案】C【解析】解:抛物线的顶点坐标是.故选:C.根据顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.2.【答案】D【解析】【分析】本题考查了二次函数的最值,会用配方法将原式化为顶点式是解题的关键.将二次函数化为顶点式,即可建立关于m的等式,解方程求出m的值即可.【解答】解:原式可化为:,函数的最小值是,,,故选D.3.【答案】A【解析】【分析】本题考查了二次函数图象上点的坐标特征,属于基础题.由题意,抛物线开口向上,抛物线上的点离对称轴越远,对应的函数值就越大,点在对称轴上,即可得到答案.【解答】解:,抛物线开口向上,对称轴是直线,抛物线上的点离对称轴越远,对应的函数值就越大,点在对称轴上,.故选A.4.【答案】C【解析】【分析】方程的两根相等,即,结合直角三角形的判定和性质确定三角形的形状.总结:一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.的三边长满足,由勾股定理的逆定理可知,此三角形是直角三角形.【解答】解:原方程整理得,因为两根相等,所以,即,所以是直角三角形.故选C.5.【答案】D【解析】解:由图象开口向上可知,对称轴,得.所以一次函数的图象经过第一、二、三象限,不经过第四象限.故选:D.根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.6.【答案】C【解析】【分析】本题考查一次函数和二次函数的图象,属于基础题.本题可先由二次函数图象得到字母a的正负,再与一次函数的图象相比较看是否一致.逐一排除.【解答】解:由二次函数的图象可知,此时直线不可能在二、三、四象限,故D可排除;A中,二次函数的对称轴是y轴,可知,此时直线应该经过原点,故A可排除;因为对于,当时,,即抛物线一定经过原点,故B可排除.正确的只有C.故选:C.7.【答案】B【解析】【分析】本题主要考查方程的根与系数的关系,一元二次方程的解,代数式求值的有关知识,属于中档题.根据一元二次方程的解得到,即,则可表示为,根据题意得到,,然后整体代入求值即可.【解答】解:为的实数根,,即,,、为方程的两个实数根,,,.故选B.8.【答案】A【解析】【分析】先由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,再由一次函数的性质解答.本题考查了二次函数图象与系数的关系,一次函数图象与系数的关系.用到的知识点:二次函数,当时,抛物线开口向上;抛物线与y轴交于,当时,与y轴交于正半轴;当,时,一次函数的图象在一、二、三象限.【解答】解:抛物线开口向上,与y轴交于正半轴,,,一次函数的图象经过第一、二、三象限.故选A.9.【答案】D【解析】【分析】本题考查二次函数的对称轴,熟练掌握二次函数的图像与性质是解题的关键.【解答】解:抛物线可以看成是抛物线向上平移3个单位得到的,所以对称轴为y轴,即.故选D.10.【答案】D【解析】【分析】本题考查了二次函数的图象与几何变换,利用了绕定点旋转的规律.根据抛物线解析式间的关系,可得顶点式解析式,根据绕它的顶点旋转,可得顶点相同,开口方向相反,即可得出答案.【解答】解:将y配方得.此抛物线开口向上,顶点为,因为绕的顶点旋转后,新抛物线开口大小,形状不变,开口向下,顶点为,故新抛物线的解析式为,即.故选D.11.【答案】2【解析】解:函数是二次函数,,且,解得:.故答案为:2.直接利用二次函数的定义计算得出答案.此题主要考查了二次函数的定义,正确把握定义是解题关键.12.【答案】【解析】【分析】本题考查了二次函数的图象与系数的关系和抛物线与x轴的交点,能根据题意得出是解此题的关键先根据函数解析式得出抛物线的开口向上,根据顶点在x轴的下方得出,求出即可.【解答】解:二次函数中,图象的开口向上,又二次函数的图象的顶点在x轴下方,1,解得.13.【答案】【解析】【分析】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.先确定抛物线的顶点坐标为,再根据点平移的规律,点经过平移后所得对应点的坐标为,然后利用顶点式写出平移后的抛物线的解析式.【解答】解:抛物线的顶点坐标为,把点向左平移2个单位,再向上平移1个单位后所得对应点的坐标为,所以平移后得到的抛物线的解析式为.故答案为.14.【答案】1【解析】解:的对称轴是y轴,,解得,故答案为:1.由对称轴是y轴可知一次项系数为0,可求得m的值.本题主要考查抛物线的对称轴,掌握抛物线的对称轴为y轴其一次项系数为0是解题的关键.15.【答案】【解析】【分析】本题考查了根与系数的关系:若,是一元二次方程的两根时,,.利用根与系数的关系得到,,然后求出b、c即可.【解答】解:根据题意得,,解得,,所以正确的一元二次方程为.故答案为.16.【答案】72【解析】【分析】本题考查了相似三角形的判定及性质,以及等腰直角三角形的性质,正确表示出和是关键.利用三角形的面积公式以及矩形的面积公式,表示出和,然后确定最值即可.【解答】解:中,,,AD为BC边上的高,,又,则,,,∽,,,,.的最大值为72,故答案为:72.17.【答案】【解析】【分析】本题主要考查对二次函数与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键由图象可知过,代入得到;根据,推出;根据图象关于对称轴对称,得出与x轴的交点是,;由,根据结论判断即可.【解答】解:由图象可知:过,代入得:,正确;,,错误;根据图象关于对称轴对称,抛物线与x轴的交点是,,的两根分别为和1,正确;,,,,,错误.故答案为.18.【答案】解:二次函数的顶点在直线上,并且图象经过点二次函数的顶点为,将和分别代入和,得,解得,,二次函数的解析式为;二次函数的解析式为,对称轴为,又,当时,y随x的增大而减小.【解析】二次函数的顶点为,将和分别代入和,求得b、c,从而得出二次函数的解析式;求得对称轴在对称轴的左侧y随x的增大而减小.本题是一道二次函数的综合题,考查了用待定系数法求二次函数的解析式以及二次函数的性质,是中考热点,难度不大.19.【答案】解:当时,,解得,,点坐标为,B点坐标为;,顶点C的坐标为;的面积.【解析】本题考查了抛物线与x轴的交点:把求二次函数b,c是常数,与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.解方程得A点坐标和B点坐标;把一般式配成顶点式得到顶点C的坐标;利用三角形面积公式计算即可.20.【答案】解:由图象得:的两个根为;由图象得:不等式的解集为;设抛物线解析式为;把代入得:;解得:,抛物线解析式为;方程有两个不相等的实数根;二次函数与有两个交点;可得:k的范围为【解析】此题考查了二次函数与不等式组,抛物线与x轴的交点由图象抛物线与x轴的交点横坐标确定出方程的解即可;由图象确定出不等式的解集即可;利用待定系数法确定出抛物线解析式,设设抛物线解析式为,把代入得:,得到解析式,确定出顶点坐标,方程有两个不相等的实数根,二次函数与有两个交点,即可求出所求k的范围.21.【答案】解:如图,以AB所在直线为x轴,线段AB的中垂线为y轴建立直角坐标系,由题意知,,,,设过点A,B,C的抛物线解析式为:,把点的坐标代入,得,解得:,则该抛物线的解析式为:,把代入,得,解得,,所以两盏警示灯之间的水平距离为:.【解析】本题主要考查的是二次函数的应用,注意利用函数对称的性质来解决问题利用待定系数法求得抛物线的解析式,已知抛物线上距水面AB高为6米的E,F两点,可知E,F两点纵坐标为6,把代入抛物线解析式,可求E,F两点的横坐标,根据抛物线的对称性求EF长.22.【答案】解:,w与x之间的函数解析式;根据题意得:,,当时,w有最大值,最大值是225.当时,,解得,,,不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【解析】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.每天的销售利润每天的销售量每件产品的利润;根据配方法,可得答案;根据自变量与函数值的对应关系,可得答案.23.【答案】解:当时,有,解得:,点A的坐标为;当时,,点C的坐标为.将、代入,得:解得:二次函数的解析式为.设点P的坐标为,则点E的坐标为,.,当时,PE取最大值,最大值为.【解析】本题考查了一次函数图象上点的坐标特征、二次函数的性质、二次函数图象上点的坐标特征、二次函数的最值以及待定系数法求二次函数解析式;解题的关键是:利用一次函数图象上点的坐标特征求出点A、C的坐标;用含m的代数式表示出PE的值.根据点C在x轴上求得点A的坐标,再根据点C的横坐标为2求出点C的纵坐标,把,代入二次函数的解析式,利用待定系数法即可求得函数的解析式;设点P的坐标为,则点E的坐标为,进而可得出,再利用二次函数的性质即可解决最值问题.。
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若二次函数图象的顶点坐标为2,1,且过点()0,3,则该二次函数的解析式为( ) A .()21122x y --= B .()221y x =+- C .()221y x =-- D .()221y x =---2.平面直角坐标系中,抛物线y =12(x +2)(x ﹣5)经变换后得抛物线y =12(x +5)(x ﹣2),则这个变换可以是( )A .向左平移7个单位B .向右平移7个单位C .向左平移3个单位D .向右平移3个单位 3.已知二次函数()2213y x =--,则下列说法正确的是( ) A .y 有最小值0,有最大值-3 B .y 有最小值-3,无最大值 C .y 有最小值-1,有最大值-3 D .y 有最小值-3,有最大值0 4.二次函数()2y x k h =++的图象与x 轴的交点的横坐标分别为-1和3,则()22y x k h =+++的图象与x 轴的交点的横坐标分别为( )A .-3和1B .1和5C .-3和5D .3和5 5.若二次函数2y a x bx c =++的图象经过不同的六点()1,A n -、()5,1B n -和()6,1C n +、()14,D y 和()22,E y 、()32,F y 则1y 、2y 和3y 的大小关系是( ) A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y << 6.已知二次函数()24119y x =--上的两点()()1122,,,P x y Q x y 满足123x x =+,则下列结论中正确的是( ) A .若112x <-,则121y y >>- B .若1112x -<<,则210y y >> C .若112x <-,则120y y >> D .若1112x -<<,则210y y >> 7.已知抛物线()2<0y ax bx c a =++的对称轴为=1x -,与x 轴的一个交点为()2,0.若关于x 的一元二次方程()20ax bx c p p ++=>有整数根,则P 的值有多少个?( )A .1B .2C .3D .48.如图,直线y=x 与抛物线y=x 2﹣x ﹣3交于A 、B 两点,点P 是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x 于点Q ,设点P 的横坐标为m ,则线段PQ 的长度随m 的增大而减小时m 的取值范围是( )﹣1或1<m <3 9.小明周末外出游玩时看到某公园有一圆形喷水池,如图1,简单测量得到如下数据:圆形喷水池直径为20m ,水池中心O 处立着一个圆柱形实心石柱OM ,在圆形喷水池的四周安装了一圈喷头,喷射出的水柱呈拋物线型,水柱在距水池中心4m 处到达最大高度为6m ,从各方向喷出的水柱在石柱顶部的中心点M 处101110.如图,在ABC 中90,3cm,6cm B AB BC ∠=︒==,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ 的面积S 随出发时间t 的函数图象大致是( )A .B . C. D .二、填空题11.抛物线22(1)3y x =---与y 轴交点的纵坐标为12.已知实数x 、y 满足x 2﹣2x +4y =5,则x +2y 的最大值为 .13.今年三月份王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝等进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,当销售单价是 元时,王大伯获得利润最大.14.已知抛物线224y mx mx c =-+ 与x 轴交于点()1,0A -、()2,0B x 两点,则B 点的横坐标2x = .15.已知抛物线的函数关系式:()22212y x a x a a =+-+-(其中x 是自变量).(1)若点()1,3P 在此抛物线上,则a 的值为 .(2)设此抛物线与x 轴交于点()1,0A x 和()2,0B x ,若122x x <<,且抛物线的顶点在直线34x =的右侧,则a 的取值范围为 .16.设二次函数2y ax bx c =++(,a b c ,是常数,0a ≠),如表列出了x ,y 的部分对应值. x … 5- 3- 1 2 3 …y … 2.79- m 2.79- 0n … 则不等式20ax bx c ++<的解集是 .17.二次函数2y ax bx c =++的部分图象如图所示,对称轴为1x =,图象过点A ,且930a b c ++=,以下结论:⊥420a b c -+<;⊥关于x 的不等式220ax ax c -+->的解集为:13x -<<;⊥3c a >-;⊥()21(1)0m a m b -+-≥(m 为任意实数);⊥若点()1,B m y ,()22,C m y -在此函数图象上,则12y y =.其中错误的结论是 .三、解答题设该超市在第x 天销售这种商品获得的利润为y 元.(1)求y 关于x 的函数关系式;(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?21.如图所示,二次函数2y ax bx c =++的图象经过()1,0-、()3,0和()03-,三点.(1)求二次函数的解析式;(2)方程2++=有两个实数根,m的取值范围为__________.ax bx c m(3)不等式23++>-的解集为__________;ax bx c x22.一次足球训练中,小明从球门正前方12m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为8m时,球达到最高点,此时球离地面4m.已知球门高OB为2.58m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.56m处?参考答案:1.C2.C3.B4.A5.D6.B。
九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)
九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数中,是二次函数的是( )A .y =−8xB .y =8xC .y =8x 2D .y =8x −4 2.二次函数y=x 2的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.若抛物线y =ax 2经过点P(−√7,4),则该抛物线一定还经过点( )A .(4,−√7)B .(√7,4)C .(−4,√7)D .(−√7,−4)4.已知二次函数表达式为y =−(x +2)2−1,则下列结论中正确的是( )A .对称轴为直线x =2B .最大值是-1C .顶点坐标为(2,−1)D .图象开口向上5.二次函数y =x 2+bx+3满足当x <﹣2时,y 随x 的增大而减小,当x >﹣2时,y 随x 的增大而增大,则x =1时,y 的值等于( )A .﹣8B .0C .3D .86.点A(−2,y 1),B(4,y 2),C(6,y 3)均在二次函数y =x 2−2x −3的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 1=y 2>y 3C .y >1y 2>y 3D .y >3y 1=y 2 7.二次函数y =ax 2−bx −5与x 轴交于(1,0)、(-3,0),则关于x 的方程ax 2−bx =5的解为( )A .1,3B .1,-5C .-1,3D .1,-38.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,则下列描述正确的是( )A.小球抛出3秒后,速度越来越快B.小球在空中经过的路程是40mC.小球抛出3秒时速度达到最大D.小球的高度h= 30m时,t=1.5s二、填空题9.若二次函数y=ax2的图象开口向上,则a的取值范围是.10.已知抛物线y=−x2+4x+m,若顶点在x轴上,则m=.11.当−2≤x≤1时,二次函数y=(x+m)2+m2+1有最大值4,则实数m的值为.12.二次函数y=−x2+bx+c的部分图像如图所示,由图像可知,方程−x2+bx+c=0的解为.13.某商场经营一种文具,进价为20元/件,当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.那么该文具定价为元时每天的最大销售利润最大.三、解答题14.如图,若二次函数y=x2−x−2的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点.(1)求A、B两点的坐标:(2)若P(m,−2)为二次函数y=x2−x−2图象上一点,求m的值.15.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为6m,桥洞的跨度为12m,如图建立直角坐标系.(1)求这条抛物线的函数表达式.(2)求离对称轴2m处,桥洞离水面的高是多少m?16.如图,抛物线y1=ax2−2x+c与x轴交于A(−1,0)和B(3,0)两点.(1)求此抛物线的解析式;(2)过点A的直线y2=mx+n与抛物线在第一象限交于点D,若点D的纵坐标为5,请直接写出当y2<y1时,x的取值范围是.17.新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?18.如图,抛物线y=−x2+bx+c与x轴交于A、B两点,与y轴交于C点,点A的坐标为(3,0),点C的坐标为(0,3).(1)求b与c的值;(2)求函数的最大值;时,利用函数图象写出m的取值范围.(3)M(m,n)是抛物线上的任意一点,当n≥7419.如图,抛物线y=x2+bx+c与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式及顶点坐标;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)抛物线上是否存在点P使得S△PAB=6?如果存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.C2.A3.B4.B5.D6.D7.D8.A9.a >010.-411.1−√22或−12+√5212.x 1=5 x 2=−113.3514.(1)解:当y=0时,即x 2−x −2=0解得:x 1=-1,x 2=2∴A 点坐标和B 点坐标为 A(−1,0),B(2,0) ;(2)解:把x=m,y=-2代入 y =x 2−x −2 即m 2−m −2=-2,解得:m 1=0,m 2=1.15.(1)解:由题意可得,抛物线顶点坐标为(6,6)设抛物线解析式为y =a(x −6)2+6∵抛物线过点(0,0)∴0=a(0−6)2+6解得a =−16∴这条抛物线所对应的函数表达式为y =−16(x −6)2+6=−16x 2+2x(2)解:由题意可知该抛物线的对称轴为x =6,则对称轴右边2m 处为x =8 将x =8代入y =−16x 2+2x可得y =−16×82+2×8,解得y =163答:离对称轴2m 处,桥洞离水面的高是163m .16.(1)解:把A(−1,0)和B(3,0)代入y 1=ax 2−2x +c得{a +2+c =09a −6+c =0∴{a =1c =−3∴y 1=x 2−2x −3;(2)x >4或x <-117.(1)解:由题意可知:y =(140−x −100)(20+2x)=−2x 2+60x +800∴y 与x 的函数关系式为y =−2x 2+60x +800.(2)解:令−2x 2+60x +800=1200解得x 1=10∴140−x 1=130答:要书店每天盈利1200元,每套书销售定价应定为130元或120元.(3)解:y =−2x 2+60x +800=−2(x −15)2+1250∵−2<0∴当x =15时,y 有最大值1250,此时140−x =140−15=125答:当每套书销售定价为125元时,书店每天可获最大利润。
新人教版九年级数学上册《第22章 二次函数》单元测试卷及答案解析
新人教版九年级数学上册《第22章二次函数》单元测试卷及答案一、选择题1、在同一坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能是()A.B.C.D.2、二次函数的最大值是()A.3 B.4 C.5 D.63、下列y关于x的函数中,一定是二次函数的为()A.B.C.D.4、是二次函数,则=()A.,B.,C.D.5、某同学在用描点法画二次函数的图象时,列出下面的表格:根据表格提供的信息,下列说法错误的是()A. 该抛物线的对称轴是直线B. 该抛物线与轴的交点坐标为C. D. 若点是该抛物线上一点.则6、关于抛物线y=x2 -2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小7、抛物线的部分图象如图所示(对称轴是),如果,那么的取值范围是()A.B.C.或D.或8、二次函数与坐标轴的交点个数为()个。
A.B.C.D.9、已知关于的方程的解为,点是抛物线上的一个点,下列四个点中一定在该抛物线上的是()A.B.C.D.10、已知抛物线的图象如图所示,则下列结论:①;②;③;④.其中正确的结论有()A.①②B.②③C.③④D.②④二、填空题11、已知函数是关于x的二次函数,则m= 。
12、如图是二次函数和一次函数的图象,当,的取值范围是________。
13、已知二次函数的图象开口向下,且经过点,符合条件的一个二次函数的解析式是________。
14、已知点在抛物线上,当时,总有成立,则的取值范围是________。
15、二次函数的图象经过点、,那么________(填“”或“”)。
16、二次函数的最小值是________。
三、解答题17、已知抛物线经过点,且顶点坐标为,求这条抛物线的解析式。
18、已知函数,其中与的平方成正比,是的一次函数,根据表格中的数据,确定的函数式;如果时,函数取最小值,求关于的函数式;在的条件下,写出的最小值。
人教版九年级数学上册第22章《二次函数》单元检测题(含答案)
人教版九年级数学上册第22章《二次函数》单元检测题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.32.抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)3.抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.B.C.﹣4D.44.下列对二次函数y=﹣(x+1)2﹣3的图象描述不正确的是()A.开口向下B.顶点坐标为(﹣1,﹣3)C.与y轴相交于点(0,﹣3)D.当x>−1时,函数值y随x的增大而减小5.抛物线y=2x2﹣4x+c经过三点(﹣3,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2 6.函数y=ax+1与y=ax2+ax+1(a≠0)的图象可能是()A.B.C.D.7.若将双曲线y=向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是()A.0<a<B.<a<1C.1<a<2D.2<a<38.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为,则实心球飞行的水平距离OB的长度为()A.7m B.7.5m C.8m D.8.5m9.在平面直角坐标系中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴只有一个交点,且经过点A(2﹣m,c),B(m+2,c),则△AOB的面积为()A.8B.12C.16D.410.已知经过点(﹣1,0)的二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0;②a﹣b+c<0;③4a+2b+c>0;④2a=b;⑤3a+c<0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.函数y=x2m﹣1+x﹣3是二次函数,则m=.12.已知抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线.13.在函数y=(x﹣1)2+1中,当x>1时,y随x的增大而.(填“增大”或“减小”)14.将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是.15.抛物线y=x2+bx+c的图象上有两点A(1,m),B(5,m),则b的值为.16.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…123456…y…0﹣3﹣4﹣305…则当x=0时,y的值为.17.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c≤n的解集是.18.若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m的值为.三.解答题(共7小题,满分58分)19.(6分)已知y与x2成正比例,并且x=1时y=2.(1)求y与x之间的函数关系式.(2)当x=﹣1时y的值.20.(6分)已知抛物线L:y=(m﹣2)x2+x﹣2m(m是常数且m≠2).(1)若抛物线L有最高点,求m的取值范围;(2)若抛物线L与抛物线y=x2的形状相同、开口方向相反,求m的值.21.(8分)已知抛物线y=ax2﹣4ax+3(a≠0)的图象经过点A(﹣2,0),过点A作直线l 交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.22.(8分)已知二次函数y=x2+2x﹣3.(1)用配方法把这个二次函数化成y=a(x﹣h)2+k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)当﹣4≤x≤0时,结合图象直接写出y的取值范围.23.(8分)如图,学校要用一段长为32米的篱笆围成一个一边靠墙的矩形花圃,墙长为14米.(1)若矩形ABCD的面积为96平方米,求矩形的边AB的长.(2)要想使花圃的面积最大,AB边的长应为多少米?最大面积为多少平方米?24.(10分)已知关于x的二次函数y=x2﹣2ax+a2+2a.(1)当a=1时,求已知二次函数对应的抛物线的顶点和对称轴;(2)当a=2时,直线y=2x与该抛物线相交,求抛物线在这条直线上所截线段的长度;(3)若抛物线y=x2﹣2ax+a2+2a与直线x=4交于点A,求点A到x轴的最小值.25.(12分)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,直线l 与抛物线交于A、C两点,其中点C的横坐标是2.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上找一点P,使得△PBC的周长最小,并求出点P的坐标;(3)在平面直角坐标系中,是否存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:二次函数y=x2﹣2x+3的一次项系数是﹣2,故选:C.2.【解答】解:∵y=﹣(x﹣1)2+3,∴抛物线顶点坐标为(1,3),故选:B.3.【解答】解:∵抛物线y=x2+x+c与x轴只有一个公共点,∴方程x2+x+c=0有两个相等的实数根,∴Δ=b2﹣4ac=12﹣4×1•c=0,∴c=.故选:B.4.【解答】解:A、∵a=﹣1<0,∴抛物线的开口向下,正确,不合题意;B、抛物线的顶点坐标是(﹣1,﹣3),故本小题正确,不合题意;C、令x=0,则y=﹣1﹣3=﹣4,所以抛物线与y轴的交点坐标是(0,﹣4),故不正确,符合题意;D、抛物线的开口向下,对称轴为直线x=﹣1,∴当x>−1时,函数值y随x的增大而减小,故本小题正确,不合题意;故选:C.5.【解答】解:∵y=2x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴x≤2时,y随x增大而减小,∴y1>y2>y3.故选:B.6.【解答】解:由函数y=ax+1与抛物线y=ax2+ax+1可知两函数图象交y轴上同一点(0,1),抛物线的对称轴为直线x=﹣=﹣,在y轴的左侧,A、抛物线的对称轴在y轴的右侧,故选项不合题意;B、抛物线的对称轴在y轴的右侧,故选项不合题意;C、由一次函数的图象可知a>0,由二次函数的图象知道a>0,且交于y轴上同一点,故选项符合题意;D、由一次函数的图象可知a>0,由二次函数的图象知道a<0,故选项不合题意;故选:C.7.【解答】解:双曲线y=向下平移3个单位后的函数为y′=﹣3,∵y′=﹣3交抛物线y=x2于点P(a,b),∴﹣3=a2,整理得,a3+3a﹣2=0,令y=a3+3a﹣2,且y随a的增大而增大.当a=0时,y=﹣2<0,当a=时,y=+﹣2=﹣<0,当a=1时,y=1+3﹣2=2>0,∴若a3+3a﹣2=0,则a的取值范围为:<a<1.故选:B.8.【解答】解:把A代入得:=﹣×9+k,∴k=,∴y=﹣(x﹣3)2+,令y=0得﹣(x﹣3)2+=0,解得x=﹣2(舍去)或x=8,∴实心球飞行的水平距离OB的长度为8m,故选:C.9.【解答】解:∵二次函数y=x2+bx+c的图象经过点A(2﹣m,c),B(m+2,c),∴对称轴为直线x==2,∴﹣=2,∴b=﹣4,∵点A或点B在y轴上,∴AB=4,∵二次函数y=x2+bx+c的图象与x轴只有一个交点,∴b2﹣4c=0,即16﹣4c=0,∴c=4,∴△AOB的面积为:=8.故选:A.10.【解答】解:由图可知,抛物线对称轴是直线x=1,∴﹣=1,即b=﹣2a,∵抛物线开口向下,∴a<0,b=﹣2a>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故①错误;由图可得,抛物线上的点(﹣1,a﹣b+c)在x轴下方,∴a﹣b+c<0,故②正确;∵抛物线对称轴是直线x=1,∴x=0和x=2时,函数值相等,而x=0时c>0,∴4a+2b+c>0,故③正确;∵b=﹣2a,∴④错误;∵a﹣b+c<0,b=﹣2a,∴a﹣(﹣2a)+c<0,即3a+c<0,故⑤正确;∴正确的有②③⑤,共3个,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.【解答】解:∵函数y=x2m﹣1+x﹣3是关于x的二次函数,∴2m﹣1=2,∴m=.故答案为:.12.【解答】解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故答案为:x=2.13.【解答】解:∵函数y=(x﹣1)2+1,∴a=1>0,抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故答案为:增大.14.【解答】解:∵y=x2+x﹣1=(x+)2﹣,∴将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是y=(x++2)2﹣+3,即y=x2+5x+8,故答案为:y=x2+5x+8.15.【解答】解:∵抛物线经过A(1,m),B(5,m),∴抛物线对称轴为直线x=3,∴﹣=3,解得b=﹣6,故答案为:﹣6.16.【解答】解:依据表格可知抛物线的对称轴为x=3,∴当x=0时与x=6时函数值相同,∴当x=0时,y=5.故答案为:5.17.【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣2,p),B(5,q)两点,∴﹣2m+n=p,5m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(2,p),Q(﹣5,q)两点,观察函数图象可知:当﹣5≤x≤2时,直线y=﹣mx+n在抛物线y=ax2+c的上方,∴不等式ax2+mx+c≤n的解集是﹣5≤x≤2.故答案为﹣5≤x≤2.18.【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,﹣4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.三.解答题(共7小题,满分58分)19.【解答】解:(1)∵y与x2成正比例,∴设y=kx2(k≠0),∵当x=1时,y=2,∴2=k•12,解得,k=2,∴y与x之间的函数关系式为y=2x2.(2)∵函数关系式为y=2x2,∴当x=﹣1时,y=2×1=2.20.【解答】解:(1)∵抛物线L有最高点,∴m﹣2<0,∴m<2;(2)∵抛物线L与抛物线y=x2的性状相同,开口方向相反,∴m﹣2=﹣1,∴m=1.21.【解答】解:(1)将A(﹣2,0)代入y=ax2﹣4ax+3得:0=4a+8a+3,解得,∴抛物线为,∵y=﹣x2+x+3=﹣(x﹣2)2+4,∴顶点坐标为(2,4);(2)把B(4,m)代入得,m=﹣4+4+3=3,将A(﹣2,0),B(4,3)代入y=kx+b得,解得,∴直线AB的解析式为,∵顶点的横坐标为2,把x=2代入得:y=2,∴n=4﹣2=2.22.【解答】解:(1)y=x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4,即y=(x+1)2﹣4;(2)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴抛物线与x轴的交点坐标为(﹣3,0),(1,0),当x=0时,y=﹣3,∴抛物线与y轴的交点坐标为(0,﹣3),二次函数的图象如图所示:(3)观察图象得,当x=﹣1时,y取最小值﹣4,当x=﹣4时,y取最大值,代入函数得,y=(﹣4)2+2×(﹣4)﹣3=16﹣8﹣3=5.∴当﹣4≤x≤0时,﹣4≤y≤5.23.【解答】解:(1)设AB为x米,则BC=(36﹣2x)米,由题意得:x(32﹣2x)=96,解得:x1=4,x2=12,∵墙长为14米,32米的篱笆,∴32﹣2x≤14,2x<32,∴9≤x<16,∴x=12,∴AB=12,答:矩形的边AB的长为12米;(2)设AB为x米,矩形的面积为y平方米,则BC=(32﹣2x)米,∴y=x(32﹣2x)=﹣2x2+32x=﹣2(x﹣8)2+128,∵9≤x<16,且﹣2<0,故抛物线开口向下,∴当x=9时,y有最大值是126,答:AB边的长应为9米时,有最大面积,且最大面积为126平方米.24.【解答】解:(1)∵a=1,∴y=x2﹣2ax+a2+2a=x2﹣2x+3=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),对称轴为直线x=1.(2)把a=2代入y=x2﹣2ax+a2+2a得y=x2﹣4x+8,令x2﹣4x+8=2x,解得x1=2,x2=4,把x=2代入y=2x得y=4,把x=4代入y=2x得y=8,∴直线与抛物线交点坐标为(2,4),(4,8),∴线段长度为=2.(3)把x=4代入y=x2﹣2ax+a2+2a得y=16﹣8a+a2+2a=(a﹣3)2+7,∴点A纵坐标为(a﹣3)2+7,∵(a﹣3)2+7≥7,∴点A到x轴最小距离为7.25.【解答】解:(1)∵抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,解得:,∴抛物线的函数表达式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为x=1,∵A、B关于直线x=1对称,所以AC与对称轴的交点为点P,此时C△PBC=PB+PC+BC=AC+BC,此时△BPC的周长最短,∵点C的横坐标是2,y C=22﹣2×2﹣3=﹣3,∴C(2,﹣3),设直线AC的解析式为y=mx+n(m≠0),∴,解得:,∴直线AC的解析式为y=﹣x﹣1,当x=1时,y=﹣1﹣1=﹣2,∴P(1,﹣2);(3)存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形.∵A(﹣1,0),B(3,0),C(2,﹣3),设E(x,y),①当AB为对角线时,则,解得:,∴E(0,3);②当AC为对角线时,解得:,∴E(﹣2,﹣3);③当BC为对角线时,则,解得:,∴E(6,﹣3).综上所述,E点坐标为(0,3)或(﹣2,﹣3)或(6,﹣3)。
九年级数学上册《第二十二章 二次函数》单元测试卷附答案(人教版)
九年级数学上册《第二十二章二次函数》单元测试卷附答案(人教版)一、单选题1.下列各式中表示二次函数的是()+1B.y=2−x2A.y=x2+1x−x2D.y=(x−1)2−x2C.y=1x22.将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=5(x+2)2+3B.y=5(x+2)2−3C.y=5(x−2)2+3D.y=5(x−2)2−33.抛物线y=x2−2x−3与x轴的两个交点间的距离是()A.-1 B.-2 C.2 D.44.已知(2,5)、 (4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是()B.x=2 C.x=4 D.x=3A.x=−ab5.不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A.y=2x2B.y=-x C.y=-2x D.y=x6.已知函数y=1x2-x-12,当函数y随x的增大而减小时,x的取值范围是()2A.x<1 B.x>1 C.x>-4 D.-4<x<67.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x …−20 1 3 …y … 6 −4−6−4…下列选项中,正确的是()A.这个函数的开口向下B.这个函数的图象与x轴无交点C.当x>2时,y的值随x的增大而减小D.这个函数的最小值小于68.二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是 ( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1,3D.当-1<x<3时,y<09.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5 B.10 C.1 D.210.如图,是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面上升1m时,水面的宽为()A.2 m B.2m C. m D.3m二、填空题11.不论m取任何实数,抛物线y=x2+2mx+m2+m−1的顶点都在一条直线上,则这条直线的解析式是.12.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).13.抛物线y=x2−6x+c与x轴只有一个交点,则c=.14.已知抛物线y=a(x﹣h)2+k与x轴交于(﹣2,0)、(4,0),则关于x的一元二次方程:a(x ﹣h+3)2+k=0的解为.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.三、解答题16.已知二次函数的图象经过(-6,0),(2,0),(0,-6)三点.(1)求这个二次函数的表达式;(2)求这个二次函数的顶点坐标.17.在平面直角坐标系xOy中,抛物线y=ax2−4ax+1 .(1)若抛物线过点A(−1,6),求二次函数的表达式;(2)指出(1)中x为何值时y随x的增大而减小;(3)若直线y=m与(1)中抛物线有两个公共点,求m的取值范围.18.如图,抛物线y=a x2 +c与直线y=3相交于点A,B,与y相交于点C(0,-1),其中点A的横坐标为-4.(1)计算a,c的值;(2)求出抛物线y=ax 2 +c与x轴的交点坐标;19.如图一,抛物线y=ax2+bx+c过A(−1,0)B(3.0),C(0,√3)三点(1)求该抛物线的解析式;(2)P(x1,y1),Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD,CB,点F为线段CB的中点,点M,N分别为直线CD和CE上的动点,求ΔFMN周长的最小值.20.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55 60 65 70销售量y(千克)70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A.点B重合),过点P作直线PD⊥x轴于点D,交直线AB 于点E.当PE=2ED时,求P点坐标;(3)点P是直线上方的抛物线上的一个动点,求ΔABP的面积最大时的P点坐标.参考答案1.B2.B3.D4.D5.B6.A7.D8.D9.D10.A11.y=−x−112.<13.914.x1=−515.2516.(1)解:设抛物线y=ax2+bx+c把(-6,0),(2,0),(0,-6)三点代入解析式,得{36a+6b+c=0 4a+2b+c=0c=−6解得∴抛物线的解析式为:y=12x2+2x−6(2)解:y=12x2+2x−6=12(x+2)2−8∴抛物线的顶点坐标为:(-2,-8).17.(1)解:把点A(-1,6),代入y=ax2−4ax+1得:6=a×(−1)2−4a×(−1)+1解得a=1∴二次函数的表达式y=x2−4x+1(2)解:二次函数y=x2−4x+1对称轴x=2∵a=1>0∴二次函数在对称轴左边y随x的增大而减小∴当x≤2是y随x的增大而减小;(3)解:∵直线y=m与y=x2−4x+1有两个公共点∴一元二次方程m=x2−4x+1有两不等根即一元二次方程x2−4x+1−m=0有两不等根∴Δ>0∴42−4×1×(1−m)>0解得m>−318.(1)解:设y=a x2 -1把(-4,3)代入得:3=a(-4) 2 -1∴a= 14∴y= 14x 2 -1∴a= 14,c=-1(2)解:y= 14x 2 -1=0∴x=±2∴(-2,0),(2,0)19.(1)解:∵抛物线y=ax2+bx+c过A(−1,0)B(3,0) C(0,√3)三点∴{a−b+c=09a+3b+c=0c=√3解得:a=−√33,b=2√33,c=√3;∴抛物线的解析式为:y=−√33x2+2√33x+√3(2)解:抛物线的对称轴为x=1,抛物线上与Q(4,y2)相对称的点Q′(−2,y2) P(x1,y1)在该抛物线上y1≤y2,根据抛物线的增减性得:∴x1≤−2或x1≥4答:P点横坐标x1的取值范围:x1≤−2或x1≥4.(3)解:∵C(0,√3),B(3,0)∴OC=√3,OB=3∵F是BC的中点∴F(32,√3 2)当点 F 关于直线 CE 的对称点为 F ′ ,关于直线 CD 的对称点为 F ′′ ,直线 F ′F ′′ 与 CE 、 CD 交点为 M,N ,此时 ΔFMN 的周长最小,周长为 F ′F ′′ 的长,由对称可得到: F ′(32,3√32) , F ′′(0,0) 即点 O F ′F ′′=F ′O =(32)(3√32)=3即: ΔFMN 的周长最小值为320.(1)解:设y 与x 之间的函数表达式为 y =kx +b ( k ≠0 ),将表中数据(55,70)、(60,60)代入得:{55k +b =7060k +b =60解得: {k =−2b =180∴y 与x 之间的函数表达式为 y =−2x +180 ;(2)解:由题意得: (x −50)(−2x +180)=600整理得 :x 2−140x +4800=0解得 x 1=60,x 2=80答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)解:设当天的销售利润为w 元,则:w =(x −50)(−2x +180)=−2(x ﹣70)2+800∵﹣2<0∴当 x =70 时w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.21.(1)解:∵点B (4,m )在直线y =x +1上∴m =4+1=5∴B (4,5)把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =025a +5b +c =0解得{a =−1b =4c =5∴抛物线解析式为y =−x 2+4x +5;(2)解:设P (x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|∵PE =2ED∴|−x 2+3x +4|=2|x +1|当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (2,9);当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (6,−7);综上可知P 点坐标为(2,9)或(6,−7);(3)解:∵点P 是直线上方的抛物线上的一个动点设(x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =−x 2+4x +5−(x +1)=−x 2+3x +4∴ΔABP = S ΔAEP + S ΔEBP = 12×PE ×(x B −x A ) = 12×(−x 2+3x +4)×5= −52(x −32)2+1258 ∴当x= 32 , ΔABP 的面积最大把x= 32 代入y =−x 2+4x +5,解得y= 354故P ( 32 , 354 ).。
人教版九年级上册数学第22章《二次函数》单元测试卷(含答案解析)
第 1 页 共 18 页 人教版九年级上册数学第22章《二次函数》单元测试卷满分120分姓名:___________班级:___________学号:___________成绩:___________一、选择题(每小题3分,共30分)1.下列函数中,属于二次函数的是A .y=x–3B .y=x 2–(x+1)2C .y=x (x–1)–1D .21y x = 2.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3) 3.将抛物线y ()2321y x =+-向右平移2个单位长度,再向上平移3个单位长度,所得的抛物线为( )A .232y x =+B .()2342y x =++ C .()2353y x =+- D .234y x =- 4.在同一坐标系中,二次函数2y ax bx =+与一次函数y ax a =-的图象可能是( ) A .B .C .D . 5.已知两点M (6,y 1),N (2,y 2)均在抛物线y =ax 2+bx +c (a ≠0)上,点P (x 0,y 0)是抛物线的顶点,若y 0≤y 2<y 1,则x 0的取值范围是( )A .x 0<4B .x 0>﹣2C .﹣6<x 0<﹣2D .﹣2<x 0<2 6.在平面直角坐标系中,若函数()222y k x kx k =--+的图象与坐标轴共有三个交点,则下列各数中可能的k 值为( )A .1-B .0C .1D .2第 2 页 共 18 页 7.若二次函数y=(m+1)x 2-mx+m 2-2m -3的图象经过原点,则m 的值必为( ) A .-1或3 B .-1 C .3 D .-3或18.如图,以40m /s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t ﹣5t 2.下列叙述正确的是( )A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m 9.如图,边长为2cm 的等边ABC ∆中,动点P 从点A 出发,沿着A B C A →→→的路线以1/cm s 的速度运动,设点P 运动的时间为x 秒,2y AP =,则能表示y 与x 的函数关系的大致图象是( )A .B .C .D . 10.已知二次函数y =ax +bx +c (a ≠0)的图象如图所示,以下结论中正确的个数是( ) ①abc >0、②3a >2b 、③m (am +b )≤a ﹣b (m 为任意实数)、④4a ﹣2b +c <0.A .1B .2C .3D .4第 3 页 共 18 页 二、填空题(每小题4分,共24分)11.若y=+a+3+x |a|﹣1+3x+2是二次函数,则a 的值为__+12.二次函数y =(m ﹣1)x 2的图象开口向下,则m _____.13.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大.14.抛物线2(1)1y k x x =--+与x 轴有交点,则k 的取值范围是___________________.15.某同学用描点法y=ax 2+bx+c 的图象时,列出了表:x … ﹣2 ﹣1 0 1 2 … y… ﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y 值,则这个错误的y 值是_______.16.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD ,设AB 为x 米,则菜园的面积y (平方米)与x (米)的关系式为_____.(不要求写出自变量x 的取值范围)三、解答题(共7小题,共66分)17.(7分)已知抛物线y =ax 2+bx +c 经过(﹣1,0),(0,﹣3),(2,3)三点. (1)求这条抛物线的表达式;(2)写出抛物线的开口方向、对称轴和顶点坐标18.(本题8分)已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;。
新人教版数学九年级上册《第22章二次函数》单元测试(含答案)
第22章 二次函数 单元测试班级___________姓名___________学号_____ 一、选择题(每小题3分,共36分)1. 抛物线2(+23y x =--)的对称轴和顶点坐标是( ). A. x =2 , (2,3) B. x = —2 , (2,—3) C. x =2 , (—2,—3) D. x = —2 , (—2,—3)2. 已知二次函数26y x x m =-+的最小值为1,那么m 的值等于( ). A. 1 B. 10 C. 4 D.63. 已知二次函数y = ax 2 +bx+c 的图象如图所示,对称轴 为x =1,下列结论中正确的是( ). A.ac >0 B. b < 0 C. 24b ac -<0 D. 2a +b =04.抛物线2)1(2++=x y 上两点(0,a )、(-1,b ),则a 、b 的大小关系是( ) A .a >b B . b >a C . a=b D 5.如右图, 抛物线顶点坐标是P(1,3),则函数y 随自变量的增大而减小的x 的取值范围是 A. x ≥3 B. x ≤3C. x ≥1D. x ≤16. 函数y=ax 2 +bx+c (a ≠0)的解析式满足右图所示,那么直线y = acx+b 的图象不经过( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限7..已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )xyMOyxOA .B .C .D . 8.关于二次函数y =ax 2 +bx+c 的图象有下列命题:① 当C=0时,函数图象经过原点.② 当C>0且函数的图象开口向下时,图象必与x 轴有两个交点.③ 函数图象最高点的纵坐标是244ac b a-.④ 当b =0时,函数的图象关于y 轴对称. 其中正确命题的个数是( ).A. 1个B. 2个C. 3个D. 4个9. 已知如右图,直线y = x 与二次函数y= ax 2 —2x —1 的图象的一个交点M 的横坐标为1,则a 的值为( ).A. —2B. 1C. 3D. 4 10. 如图,在平面直角坐标系中,抛物线221x y =经过平移得到抛物线x x y 2212-=,其对称轴与两段抛物线所围成的阴影部分的面积是( )A .2 B. 4C. 8D. 1611.将抛物线221216y x x =-+绕它的顶点旋转180︒,所得抛物线函数表达式是( ).2.212+16A y x x =-- 2.2+1216B y x x =--2.2+1219C y x x =-- 2.2+1220D y x x =--12.如图,矩形ABCD 中,AB =2,BC=1,O 是AB 的中点,PDC动点P 从B 点开始沿着边BC ,CD 运动到点D 结束.设BP=x ,OP=y ,则y 关于x 的函数图象大致为( )A BC D二、填空题:(每小题3分,共24分)13.已知(2)2my m x =-+是y 关于x 的二次函数,那么m 的值为__________. 14. 请写出一个开口向下,对称轴是直线1x =的抛物线的解析式 ________. 15. 已知抛物线y = ax 2 +bx+c 的图象与x 轴有两个交点,那么一元二次方程ax 2 +bx+c=0的根的情况是____________________.16. 如果将二次函数y=2x 2 的图象沿x 轴向左平移1个单位,再沿y 轴向上平移2个单位,那么所得图象的函数解析式是_______ ___.17.已知抛物线的对称轴为直线x =2,与x 轴的一个交点为(—1,0),则与x 轴的另一个交点为 .18.二次函数y =ax 2 +4x+a 的最大值为3,求a =________.19.如图,是二次函数 y =ax 2+bx +c(a≠0)的图象的一部 分, 给出下列命题 :①a +b+c=0; ②b >2a ; ③ax 2+bx+c =0的两根分别为-3和1; ④a -2b +c >0其中正确的命题是 . (填写正确命题的序号)2020已知圆的半径为10m ,当半径减小x (m)时,圆的面积就减小y (m 2 ),y 是x 的函数解析式为___ __________,定义域为______ ______.三、解答题:(共40分)21.已知抛物线的顶点(3,—1)且过点(4,1),求二次函数的解析式.22.已知抛物线y = 2x 2 —3x+m (m 为常数)与x 轴交于A,B 两点,且线段AB 的长为12 .(1) 求m 的值;(2) 若该抛物线的顶点为P ,若⊿ABP 的面积为2.求m 的值23. 已知函数22y x mx =-的顶点为点D .(1)求点D 的坐标(用含m 的代数式表示);(2)求函数22y x mx =-的图象与x 轴的交点坐标;(3)若函数22y x mx =-的图象在直线y=m 的上方,求m 的取值范围.24.已知二次函数y = 2x 2 -4x -6.(1)用配方法将y = 2x 2 -4x-6化成y = a (x -h) 2 + k 的形式; (2)在所给的平面直角坐标系中,画出这个二次函数的图象; (3)当x 取何值时,y 随x 的增大而减少?(4)当- 2﹤x ﹤3时,观察图象直接写出函数y 的取值范围.25.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为2020,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.26阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x ≤m ,求二次函数267y x x =-+的最大值.他画图研究后发现,1x =和5x =时的函数值相等,于是他认为需要对m 进行分类讨论.他的解答过程如下:∵二次函数267y x x =-+的对称轴为直线3x =, ∴由对称性可知,1x =和5x =时的函数值相等. ∴若1≤m <5,则1x =时,y 的最大值为2; 若m ≥5,则m x =时,y 的最大值为267m m -+. 请你参考小明的思路,解答下列问题:(1)当2-≤x ≤4时,二次函数1422++=x x y (2)若p ≤x ≤2,求二次函数1422++=x x y(3)若t ≤x ≤t +2时,二次函数1422++=x x y 的最大值为31,求t 的值.27. 已知二次函数21:2L y x bx c =-++与x 轴交于A (1,0)、B (3,0)两点;二次函数22:43L y kx kx k =-+(k ≠0)的顶点为P.15x =3O xy(1)请直接写出:b=_______,c=___________; (2)当90APB ∠=,求实数k 的值;(3)若直线15y k =与抛物线2L 交于E ,F 两点,问线段EF 的长度是否发生变化?如果不发生变化,请求出EF 的长度;如果发生变化,请说明理由.28.在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y 轴的直线l 与抛物线交于两点A (1x ,1y ),B (2x ,2y ),其中01<x ,02>x ,与y 轴交于点C ,求BC -AC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP =OQ ,直接写出点Q 的坐标.解:参考答案:一、选择题:(每小题3分,共36分)三、解答题:(共40分)21:解:设解析式为2()y a x h k =-+ 将顶点(3,—1)代入得2(3)1y a x =--将点(4,1)代入求得a =2………………………….2’解析式为221217y x x =-+………………………………………..2’22.解: (1)m=1…………………2’(2)192()28ABP S m ∆=⨯⨯-=98m -………………………………………….1’m= 258………………………………………………….1’23.解:(1)顶点坐标2(,)m m -…………………………1’(2)120,2x x m ==,所以与x 轴的交点坐标是(0,0)(2,0)m ……………………2’ (3)10m -<<………………………………………1’24.解:(1)22(1)8y x =--………………….1’ (2)画图…………………….1’ (3)1x <……………………………….1’(4) 810y -≤≤…………………………………..1’25.以CD 中点为原点,建立平面直角坐标系………………….1’ C(-100,0)D(100,0)A(-50,150)B(50,150)2y ax c =+0100001502500a ca c=+=+ ……………………………………………..1’由此得到150a =-,C=2020…………………………………..2’ 答:拱门最大高度为2020……………………………………….1’26.(1)49.………………….1’(2)当 4p <-时,最大值为17;…………………………………………..1’当42p -≤<时,最大值为2241p p ++………………………………………………1’ (3) t =—5,1……………………………………………..2’27.解:(1)b=8,c=-6………………………………2分(2)在二次函数1L 中,对称轴为822(2)x =-=⨯-在二次函数2L 中,对称轴为422kx k-=-= ∴点P 也在1L 的对称轴上∴AP=BP ………………………………3分 ∵∠APB=90°∴△APB 为等腰直角三角形,且点P 为直角顶点 ∴11(31)122P y AB ==-= ∴1P y =±………………………………4分11∵点P 为2L 的顶点∴243(4)4P k k k y k k--==- ∴1k -= ∴1k =±………………………5分 (3) 判断:线段EF 的长度不变化(填“变化”或“不变化”)。
人教版九年级上册数学第二十二章二次函数(单元测试)(含答案)
人教版九年级上册数学第二十二章二次函数(单元测试)一、单选题1.二次函数222=++y x x 的图象的对称轴是( )A .=1x -B .2x =-C .1x =D .2x =2.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( )A .有最大值4B .有最小值4C .有最大值6D .有最小值63.已知抛物线22()1y x =-+,下列结论错误的是( )A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大4.已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .2 5.已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( )A .5-或2B .5-C .2D .2-6.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的函数表达式为()20y ax bx c a =++≠,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是( )A .第7秒B .第9秒C .第11秒D .第13秒7.已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为( )A .B .C .D .8.王刚在练习投篮,篮球脱手后的运动轨迹近似为如图所示的抛物线20.2 2.25y x x =-++,已知篮圈高3.05米,王刚投篮时出手高度OB 为2.25米,若要使篮球刚好投进篮圈C ,则投篮时王刚离篮圈中心的水平距离为( )A .2米B .3米C .4米D .5米二、填空题 9.已知函数221y mx mx =++在32x -上有最大值4,则常数m 的值为 __.10.已知抛物线(1)(5)y x x =--与x 轴的公共点坐标是12(,0),(,0)A x B x ,则12x x +=_______.11.如图,王先生在一次高尔夫球的练习中,在O 处击球,其飞行路线满足抛物线211655y x x =-+,其中()m y 是球的飞行高度,()m x 是球飞出的水平距离,结果球离球洞的水平距离还有4m .(1)球飞行的最大水平距离为_____________m ;(2)若王先生再一次从O 处击球,要想让球飞行的最大高度不变且球刚好进洞,则球的飞行路线满足的抛物线解析式为_____________.12.如图是二次函数2y x bx c =++的图像,该函数的最小值是__________.13.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣3,6),B (1,3),则方程ax 2﹣bx ﹣c =0的解是_________.三、解答题(1)求抛物线的解析式;(2)抛物线上是否存在点P,使PBC的面积是BCD△面积的4倍,若存在,请直接写出点P的坐标:若不存在,请说明理由.15.如图,抛物线y=a(x﹣2)2+3(a为常数且a≠0)与y轴交于点A(0,53).(1)求该抛物线的解析式;(2)若直线y=kx23(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;(3)当﹣4<x≤m时,y有最大值43m,求m的值.16.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.17.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.18.某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;m>),公司为回馈消费者,规定该商品售价x不得超过55(元(3)因疫情期间,该商品进价提高了m(元/件)(0/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m 的值.19.如图,在平面直角坐标系中,抛物线2y ax x m=++(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P的坐标.参考答案:1.A2.D3.D4.A5.B6.B7.C8.C9.38或3-10.611. 16 2166412525y x x =-+ 12.4-13.x 1=﹣3,x 2=114.(1)2=23y x x --(2)存在,()115,1P ,()215,1P15.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 16.(1)260(5080)4203(80140)x x y x x -<⎧=⎨-<⎩;(2)2230010400(5080)354016800(80140)x x x W x x x ⎧-+-<=⎨-+-<⎩17.(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元18.(1)3300y x =-+;(2)售价60元时,周销售利润最大为4800元;(3)5m = 19.(1)2142y x x =+- (2)(-2,-4)(3)P 点坐标为:(-1,3),(-1,-5),(127--,,(127--,。
人教版九年级上册数学第22章 二次函数 单元测试卷(含答案解析)
人教版九年级上册数学第22章 二次函数 单元测试卷一.选择题(30分)1.在同一平面直角坐标系中,函数2y ax bx =+与y ax b =+的图象不可能是( )A .B .C .D .2.已知函数212(13)(5)8(38)x y x x <⎧=⎨-+⎩的图象如图所示,若直线3y kx =-与该图象有公共点,则k 的最大值与最小值的和为( )A .11B .14C .17D .203.抛物线23y x =+上有两点1(A x ,1)y ,2(B x ,2)y ,若12y y <,则下列结论正确的是()A .120x x <B .210x x <C .210x x <或120x x <D .以上都不对4.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是( )A .y =(200﹣5x )(40﹣20+x )B .y =(200+5x )(40﹣20﹣x )C .y =200(40﹣20﹣x )D .y =200﹣5x5.下列对二次函数2(1)3y x =-+-的图像描述不正确的是( ) A .开口向下 B .顶点坐标为(1,3)-- C .与y 轴相交于点(0,3)-D .当?1x >时,函数值y 随x 的增大而减小6.抛物线2y x x c =++与x 轴只有一个公共点,则c 的值为( ) A .14-B .14C .4-D .47.已知二次函数2y x bx c =++的图象与x 轴的两个交点分别是(,0)n 和(4,0)n -+,且抛物线还经过点1(4,)y -和2(4,)y ,则下列关于1y 、2y 的大小关系判断正确的是( ) A .21y y =B .21y y <C .12y y <D .12y y8.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h =at 2+bt ,其图象如图所示,若小球发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )A .第3秒B .第3.5秒C .第4秒D .第4.5秒9.已知23(0)y ax bx a =++≠的对称轴为直线2x =,与x 轴的其中一个交点为(1,0),该函数在14x 的取值范围,下列说法正确的是( ) A .有最小值0,有最大值3 B .有最小值1-,有最大值3 C .有最小值3-,有最大值4D .有最小值1-,有最大值410.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A的坐标为16(0,)9,则实心球飞行的水平距离OB的长度为()A.7m B.7.5m C.8m D.8.5m二、填空题(每题4分,共24分) 11.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小12.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.13.如图,在平面直角坐标系中,抛物线y=﹣x2+3x与x轴正半轴交于点A,其顶点为P,将点P绕点O旋转180°后得到点C,连结PA、PC、AC,则△PAC的面积为.。
人教新版九年级数学上册第22章《 二次函数》单元测试卷【含答案】
人教新版九年级数学上册第22章《二次函数》单元测试卷一.选择题1.若y=(2﹣m)是二次函数,则m等于()A.±2B.2C.﹣2D.不能确定2.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x23.下列函数中是二次函数的是()A.y=3x﹣1B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣14.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.5.抛物线y=x2﹣2x+3的对称轴为()A.直线x=﹣1B.直线x=﹣2C.直线x=1D.直线x=26.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣17.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.二.填空题11.若是二次函数,则m=.12.如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是.13.如图所示,在同一坐标系中,作出①y=3x2;②y=x2;③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).14.若y=(m﹣1)x|m|+1﹣2x是二次函数,则m=.15.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.16.若y=(m2+m)是二次函数,则m的值等于.17.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.18.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.19.已知抛物线y=ax2与y=2x2的形状相同,则a=.20.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.三.解答题21.函数是关于x的二次函数,求m的值.22.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?23.画出二次函数y=x2的图象.24.已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m,c的值;(2)求二次函数图象的对称轴和顶点坐标.25.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?26.已知是x的二次函数,求出它的解析式.27.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?答案与试题解析一.选择题1.解:根据二次函数的定义,得:m2﹣2=2解得m=2或m=﹣2又∵2﹣m≠0∴m≠2∴当m=﹣2时,这个函数是二次函数.故选:C.2.解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选:D.3.解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.4.解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是直线x=0,∴只有B符合要求.故选:B.5.解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选:C.6.解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选:A.7.解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.二.填空题11.解:∵是二次函数,∴,解得m=﹣2.故﹣2.12.解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.故2π.13.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.14.解:由y=(m﹣1)x|m|+1﹣2x是二次函数,得,解得m=﹣1.故﹣1.15.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.16.解:根据二次函数的定义,得:,解得:m=2.故2.17.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.18.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.19.解:∵抛物线y=ax2与y=2x2的形状相同,∴|a|=2,∴a=±2.故答案为±2.20.解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.三.解答题21.解:由题意可知解得:m=2.22.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.23.解:函数y=x2的图象如图所示,24.解:(1)∵点A(﹣1,m)在函数y=﹣2x的图象上,∴m=﹣2×(﹣1)=2,∴点A坐标为(﹣1,2),∵点A在二次函数图象上,∴﹣1﹣2+c=2,解得c=5;(2)∵二次函数的解析式为y=﹣x2+2x+5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6,∴对称轴为直线x=1,顶点坐标为(1,6).25.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.26.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.27.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:X﹣10123y03430图象如右.(2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.。
人教版九年级数学上册《第二十二章 二次函数》单元测试卷(附答案)
人教版九年级数学上册《第二十二章二次函数》单元测试卷(附答案)一、选择题1.下列函数中是二次函数的是( )A. y=3x−1B. y=3x2−1C. y=(x+1)2−x2D. y=x3+2x−32.已知点A(−3,y1),B(2,y2),C(3,y3)在抛物线y=2x2−4x+c上,则y1、y2、y3的大小关系是( )A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y2>y3>y13.在同一直角坐标系中,一次函数y=−kx+1与二次函数y=x2+k的大致图象可以是( )A. B. C. D.4.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. y=3(x−1)2−2B. y=3(x+1)2−2C. y=3(x+1)2+2D. y=3(x−1)2+25.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )A. (72,0) B. (3,0) C. (52,0) D. (2,0)6.如图,在△ABC中∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( )A. 19cm2B. 16cm2C. 15cm2D. 12cm27.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度ℎ(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…ℎ08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=92;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是( )A. 1B. 2C. 3D. 48.小飞研究二次函数y=−(x−m)2−m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=−x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当−1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是( )A. ①B. ②C. ③D. ④9.如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为( )A. −1B. −3C. −5D. −710.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1−m,−1−m]的函数的一些结论,其中不正确的是( )A. 当m=−3时,函数图象的顶点坐标是(13,8 3 )B. 当m>0时,函数图象截x轴所得的线段长度大于32C. 当m≠0时,函数图象经过同一个点D. 当m<0时,函数在x>1时,y随x的增大而减小4二、填空题11.请写出一个二次函数表达式,使其图象的对称轴为y轴:______.12.某个函数具有性质:当x<0时,y随x的增大而增大,这个函数的表达式可以是________(只要写出一个符合题意的答案即可).13.若关于x的方程x2−2ax+a−2=0的一个实数根为x1≥1,另一个实数根x2≤−1,则抛物线y=−x2+ 2ax+2−a的顶点到x轴距离的最小值是______.14.若二次函数y=ax2+bx+c的x与y的部分对应值如表,则当x=−1时,y的值为______.x−7−6−5−4−3−2y−27−13−335315.抛物线y=−x2+bx+c的部分图象如图所示,则关于x的一元二次方程−x2+bx+c=0的解为______.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(−1,p),B(4,q)两点,则关于x的不等式mx+n> ax2+bx+c的解集是________.17.如图,在平面直角坐标系中,二次函数y=−12x2+2x+2的图象与x轴、y轴分别交于A、B、C三点,点D是其顶点,若点P是x轴上一个动点,则CP+DP的最小值为.18.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=−12x2的图象,则阴影部分的面积是________.19.如图,拋物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在抛物线上,则4a−2b+c的值为________.20.当a≤x≤a+1时,函数y=x2−2x+1的最小值为1,则a的值为________.三、解答题21.由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=−2x+1000.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?22.在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(−1,0),(2,0).(1)求这个二次函数的表达式;(2)求当−2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2−m)x+2−m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.23.如图,在平面直角坐标系中,二次函数y=ax2+4x−3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.24.已知抛物线y=ax2+bx+1经过点(1,−2),(−2,13).(1)求a,b的值;(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12−y1,求m的值.25.如图,二次函数y=ax2+bx+2的图像与x轴相交于点A(−1,0),B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图像上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.①求线段PQ的最大值;②若以点P、C、Q顶点的三角形与▵ABC相似,求点P的坐标.答案和解析1.【答案】B【解析】【分析】此题主要考查了一次函数以及二次函数的定义,正确把握相关定义是解题关键.直接利用一次函数以及二次函数的定义分别分析得出答案.【解答】解:A.y=3x−1是一次函数,故此选项错误;B.y=3x2−1是二次函数,故此选项正确;C.y=(x+1)2−x2化简为y=2x+1,故此选项错误; D.y=x3+2x−3不是二次函数,故此选项错误;故选B.2.【答案】B【解析】【分析】本题考查二次函数的性质,根据二次函数的增减性即可解答.关键是确定抛物线的对称轴为直线x=1,根据点到对称轴的距离的大小即可解答.【解答】解:y=2x2−4x+c=2(x−1)2+c−2,则抛物线的对称轴为直线x=1∵抛物线开口向上,−3<1<2<3且点A(−3,y1)到对称轴的距离比C(3,y3)远∴y1>y3>y2.故选B.3.【答案】A【解析】解:由y=x2+k可知抛物线的开口向上,故B不合题意;若二次函数y=x2+k与y轴交于负半轴,则k<0∴−k>0∴一次函数y=−kx+1的图象经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A.根据二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=−kx+1经过的象限,对比后即可得出结论.本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键.4.【答案】A【解析】【分析】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.先确定抛物线y=3x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(1,−2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2的顶点坐标为(0,0)把点(0,0)先向右平移1个单位,再向下平移2个单位后所得对应点的坐标为(1,−2)所以新抛物线的表达式为y=3(x−1)2−2.故选A.5.【答案】B【解析】【分析】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.根据抛物线的对称性和(−1,0)为x轴上的点,即可求出另一个点的交点坐标.【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2根据两个交点关于对称轴直线x=1对称可知:x1+x2=2即x2−1=2,得x2=3∴抛物线与x轴的另一个交点为(3,0)故选:B.6.【答案】C【解析】解:在Rt△ABC中∠C=90°,AB=10cm,BC=8cm∴AC=√ AB2−BC2=6cm.设运动时间为t(0≤t≤4),则PC=(6−t)cm,CQ=2tcm∴S四边形PABQ =S△ABC−S△CPQ=12AC⋅BC−12PC⋅CQ=12×6×8−12(6−t)×2t=t2−6t+24=(t−3)2+15.∵1>0∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故选:C.在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6−t)cm,CQ=2tcm 利用分割图形求面积法可得出S四边形PABQ=t2−6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解;本题考查了二次函数的最值以及勾股定理,解题的关键是:利用分割图形求面积法找出S四边形PABQ=t2−6t+24.7.【答案】B【解析】【分析】本题考查二次函数的应用.由题意,抛物线经过(0,0),(9,0)所以可以假设抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1,可得ℎ=−t2+9t=−(t−4.5)2+20.25,由此即可一一判断.【解答】解:根据抛物线的对称性可得抛物线经过(9,0),设抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1∴ℎ=−t2+9t=−(t−4.5)2+20.25∴足球距离地面的最大高度为20.25m,故①错误∴抛物线的对称轴t=4.5,故②正确∵t=9时ℎ=0∴足球被踢出9s时落地,故③正确∵t=1.5时ℎ=11.25,故④错误.∴正确的有②③.8.【答案】C【解析】解:二次函数y=−(x−m)2−m+1(m为常数)①∵顶点坐标为(m,−m+1)且当x=m时∴这个函数图象的顶点始终在直线y=−x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得−(x−m)2−m+1=0其中m≤1解得:x1=m−√ −m+1∵顶点坐标为(m,−m+1)且顶点与x轴的两个交点构成等腰直角三角形∴|−m+1|=|m−(m−√ −m+1)|解得:m=0或1当m=1时,二次函数y=−(x−1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴x1+x22>m∵二次函数y=−(x−m)2−m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=−1<0∴y1>y2故结论③错误;④当−1<x<2时,y随x的增大而增大,且a=−1<0∴m的取值范围为m≥2.故结论④正确.故选:C.根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.9.【答案】C【解析】解:根据题意知点N的横坐标的最大值为4,此时对称轴过B点,点N的横坐标最大,此时的M点坐标为(−2,0)当对称轴过A点时,点M的横坐标最小,此时的N点坐标为(1,0),M点的坐标为(−5,0)故点M的横坐标的最小值为−5故选:C.根据顶点P在线段AB上移动,又知点A、B的坐标分别为(−2,3)、(1,3),分别求出对称轴过点A和B时的情况,即可判断出M 点横坐标的最小值.本题考查了抛物线与x 轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x 轴的直线上移动时,两交点之间的距离不变.10.【答案】D【解析】【分析】此题考查二次函数的性质,二次函数与一元二次方程以及二次函数图象上点的坐标特征,熟悉相关知识点是解题的关键.A 、把m =−3代入[2m,1−m,−1−m]求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、通过找到定点,即可解决问题;D 、首先求得对称轴,利用二次函数的性质解答即可. 【解答】解:因为函数y =ax 2+bx +c 的特征数为[2m,1−m,−1−m];A 、当m =−3时y =−6x 2+4x +2=−6(x −13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时令y =0,有2mx 2+(1−m)x +(−1−m)=0,解得:x 1=1,x 2=−12−12m|x 2−x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确;C 、当x =1时y =2mx 2+(1−m)x +(−1−m)=2m +(1−m)+(−1−m)=0函数图象都经过同一个点(1,0),故当m ≠0时,函数图象经过同一个定点此结论正确.D 、当m <0时,y =2mx 2+(1−m)x +(−1−m)是一个开口向下的抛物线,其对称轴是:直线x =m−14m 在对称轴的右边y 随x 的增大而减小.因为当m <0时,m−14m=14−14m >14即对称轴在x =14右边,因此函数在x =14右边先增大到对称轴位置,再减小,此结论错误; 故选:D .11.【答案】y =x 2(答案不唯一)【解析】解:∵图象的对称轴是y 轴 ∴函数表达式为y =x 2(答案不唯一) 故答案为y =x 2(答案不唯一).根据形如y =ax 2+c 的二次函数的性质直接写出即可. 本题考查了二次函数的性质.12.【答案】y =−x 2(答案不唯一)【解析】【分析】本题主要考查的是一次函数的性质,正比例函数的性质,反比例函数的性质,二次函数的性质的有关知识,直接根据函数的性质写出一个符合题意的解析式即可. 【解答】解:∵当x <0时,y 随x 的增大而增大 ∴这个函数的表达式可以为y =−x 2 故答案为y =−x 2(答案不唯一).13.【答案】169【解析】解:∵关于x 的方程x 2−2ax +a −2=0的一个实数根为x 1≥1,另一个实数根x 2≤−1∴{1+2a +a −2≤01−2a +a −2≤0解得:−1≤a ≤13.抛物线y =−x 2+2ax +2−a 的顶点坐标为(a,a 2−a +2)∵a 2−a +2=(a −12)2+74∴当a =13时a 2−a +2取最小值169. 故答案为:169.由一元二次方程根的范围结合图形,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由二次函数的性质可得出抛物线的顶点坐标,利用配方法即可求出抛物线y =−x 2+2ax +2−a 的顶点到x 轴距离的最小值.本题考查了抛物线与x 轴的交点、二次函数的性质以及二次函数的最值,通过解一元一次不等式组求出a 的取值范围是解题的关键.14.【答案】−3【解析】【分析】本题主要考查了二次函数的性质,解答本题的关键是根据表格数据得到二次函数图象的对称轴,此题难度不大.根据表格可知,二次函数图象的对称轴为x =−3,进而求出横坐标为−1的点关于x =−3的对称点,进而得到答案. 【解答】解:∵x=−4,y=3;x=−2,y=3;∴二次函数图象的对称轴为直线x=−2−42=−3∵−1−52=−3∴横坐标为−1的点与横坐标为−5的点关于x=−3对称∴当x=−1时y=−3故答案为−3.15.【答案】x1=1,x2=−3【解析】解:观察图象可知,抛物线y=−x2+bx+c与x轴的一个交点为(1,0),对称轴为直线x=−1∴抛物线与x轴的另一交点坐标为(−3,0)∴一元二次方程−x2+bx+c=0的解为x1=1,x2=−3.故答案为x1=1,x2=−3.本题考查二次函数的性质,以及二次函数与一元二次方程.直接观察图象,抛物线与x轴的一个交点为(1,0),对称轴是直线x=−1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程−x2+bx+c=0的解.16.【答案】x<−1或x>4【解析】【分析】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<−1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方∴不等式mx+n>ax2+bx+c的解集为x<−1或x>4.故答案为x<−1或x>4.17.【答案】2√ 10【解析】【分析】本题考查了二次函数的性质、轴对称−最短路线问题以及勾股定理的应用,熟练掌握二次函数的性质、轴对称的性质是解题关键.作DE⊥y轴于点E,取点C关于x轴的对称点C′,连接C′D与x轴交于P点.分别求出C,C′,D,E坐标,可得DE 与C′E的长度,进而可求C′D,即可解答.【解答】解:如图,作DE⊥y轴于点E,取点C关于x轴的对称点C′,连接C′D交x轴于点P则C′D的长就是CP+DP的最小值.把x=0代入y=−12x2+2x+2,得y=2∴C(0,2)∴C′(0,−2).∵y=−12x2+2x+2=−12(x−2)2+4∴点D(2,4),E(0,4)∴DE=2,C′E=6.在Rt△C′DE中C′D=√ 22+62=2√ 10即CP+DP的最小值为2√ 10.18.【答案】2π【解析】解:∵12与−12互为相反数∴C1与C2的图象关于x轴对称∴x轴下方阴影部分的面积正好等于x轴上方空白部分的面积则阴影部分的面积S=12×π×22=2π.故答案为2π.根据二次函数的性质可知C1与C2的图象关于x轴对称,从而得到x轴下方阴影部分的面积正好等于x轴上方空白部分的面积,所以,阴影部分的面积等于⊙O的面积的一半,然后列式计算即可得解.本题考查了二次函数的性质,根据函数的对称性判断出阴影部分的面积等于⊙O的面积的一半是解题的关键,也是本题的难点.19.【答案】0【解析】【分析】本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0)∴与x轴的另一个交点Q(−2,0)把(−2,0)代入解析式得:0=4a−2b+c∴4a−2b+c=0故答案为0.20.【答案】2或−1【解析】【分析】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2−2x+1=1解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1∴a=2或a+1=0∴a=2或a=−1故答案是2或−1.21.【答案】解:(1)由题意得:w=(x−200)y=(x−200)(−2x+1000)=−2x2+1400x−200000;(2)令w=−2x2+1400x−200000=40000解得:x=300或x=400故要使每月的利润为40000元,销售单价应定为300或400元;(3)y =−2x 2+1400x −200000=−2(x −350)2+45000当x =250时y =−2×2502+1400×250−200000=25000; 故最高利润为45000元,最低利润为25000元.【解析】(1)根据销售利润=每天的销售量×(销售单价−成本价),即可列出函数关系式; (2)令y =40000代入解析式,求出满足条件的x 的值即可; (3)根据(1)得到销售利润的关系式,利用配方法可求最大值.本题考查了二次函数的实际应用,难度适中,解答本题的关键是熟练掌握利用配方法求二次函数的最大值.22.【答案】解:(1)由二次函数y =x 2+px +q 的图象经过(−1,0)和(2,0)两点∴{1−p +q =04+2p +q =0,解得{p =−1q =−2 ∴此二次函数的表达式y =x 2−x −2; (2)∵抛物线开口向上 对称轴为直线x =−1+22=12∴在−2≤x ≤1范围内当x =−2时,函数有最大值为:y =4+2−2=4; 当x =12时函数有最小值:y =1412−2=−94∴最大值与最小值的差为:4−(−94)=254;(3)∵y =(2−m)x +2−m 与二次函数y =x 2−x −2图象交点的横坐标为a 和b ∴x 2−x −2=(2−m)x +2−m ,整理得x 2+(m −3)x +m −4=0 ∵a <3<b ∴a ≠b∴Δ=(m −3)2−4×(m −4)=(m −5)2>0 ∴m ≠5∵a <3<b当x =3时(2−m)x +2−m >x 2−x −2把x =3代入(2−m)x +2−m >x 2−x −2,解得m <1∴m 的取值范围为m <1.【解析】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质,数形结合是解题的关键.(1)由二次函数的图象经过(−1,0)和(2,0)两点,组成方程组再解即可求得二次函数的表达式;(2)求得抛物线的对称轴,根据图象即可得出当x =−2时,函数有最大值4;当x =12时函数有最小值−94,进而求得它们的差;(3)由题意得x 2−x −2=(2−m)x +2−m ,整理得x 2+(m −3)x +m −4=0,因为a <3<b ,a ≠b ,Δ=(m −3)2−4×(m −4)=(m −5)2>0,把x =3代入(2−m)x +2−m >x 2−x −2,解得m <1. 23.【答案】解:(1)把B(1,0)代入y =ax 2+4x −3,得0=a +4−3,解得a =−1∴y =−x 2+4x −3=−(x −2)2+1∴A(2,1)∵对称轴直线x =2,B ,C 两点关于x =2对称∴C(3,0)∴当y >0时1<x <3.(2)∵D(0,−3)∴点D 平移到A ,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y =−(x −4)2+5. 【解析】本题考查抛物线与x 轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)利用待定系数法求出a ,再求出点C 的坐标即可解决问题.(2)由题意点D 平移的A ,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.24.【答案】解:(1)把点(1,−2),(−2,13)代入y =ax 2+bx +1得,{−2=a +b +113=4a −2b +1解得:{a =1b =−4;(2)由(1)得函数解析式为y =x 2−4x +1 把x =5代入y =x 2−4x +1得y 1=6∴y 2=12−y 1=6∵y 1=y 2,对称轴为x =2∴m +52=2∴m =−1.【解析】本题考查了二次函数图象上点的坐标特征和待定系数法求解析式,解方程组,正确理解题意是解题的关键.(1)把点(1,−2),(−2,13)代入y =ax 2+bx +1解方程组即可得到结论;(2)把x =5代入y =x 2−4x +1得到y 1=6,于是得到y 1=y 2,再根据对称轴x =2,即可得到结论.25.【答案】解:(1)抛物线解析式为y =a(x +1)(x −4)即y =ax 2−3ax −4a ,则−4a =2 解得a =−12所以抛物线解析式为y =−12x 2+32x +2;(2)①作PN ⊥x 轴于N ,交BC 于M ,如图BC =√ 22+42=2√ 5当x =0时y =−12x 2+32x +2=2,则C(0,2)设直线BC 的解析式为y =mx +n ,把C(0,2),B(4,0)得 {n =24m +n −0,解得{m =−12n =2∴直线BC 的解析式为y =−12x +2,设P(t,−12t 2+32t +2)则M(t,−12t +2)∴PM =−12t 2+32t +2−(−12t +2)=−12t 2+2t ∵∠NBM =∠NPQ∴△PQM∽△BOC∴PQ :OB =PM :BC 即PQ =2√ 5∴PQ =−√ 55t 2+√ 54t =−√ 55(t −2)2+4√ 55∴当t =2时,线段PQ 的最大值为4√ 55;②当∠PCQ =∠OBC 时△PCQ∽△CBO 此时PC//OB ,点P 和点C 关于直线x =32对称 ∴此时P 点坐标为(3,2);当∠CPQ =∠OBC 时△CPQ∽△CBO∵∠OBC =∠NPQ∴∠CPQ =∠MPQ ,而PQ ⊥CM ∴△PCM 为等腰三角形∴PC =PM∴t 2+(−12t 2+32t +2−2)2=(−12t 2+2t)2解得t =32,此时P 点坐标为(32,258)综上所述,满足条件的P 点坐标为(3,2)或(32,258). 【解析】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质和等腰三角形的性质;会利用待定系数法求一次函数和二次函数的解析式.能运用相似比计算线段的长或表示线段之间的关系;能利用分类讨论的思想解决数学问题.(1)设交点式y =a(x +1)(x −4),再展开可得到−4a =2,解得a =−12,然后写出抛物线解析式; (2)①作PN ⊥x 轴于N ,交BC 于M ,如图,先利用待定系数法求出直线BC 的解析式为y =−12x +2,设P(t,−12t 2+32t +2),则M(t,−12t +2),用t 表示出PM =−12t 2+2t ,再证明△PQM∽△BOC ,利用相似比得到PQ =−√ 55t 2+√ 54t ,然后利用二次函数的性质解决问题;②讨论:当∠PCQ =∠OBC 时△PCQ∽△CBO ,PC//x 轴,利用对称性可确定此时P 点坐标;当∠CPQ =∠OBC 时△CPQ∽△CBO ,则∠CPQ =∠MPQ ,所以△PCM 为等腰三角形,则PC =PM ,利用两点间的距离公式得到t 2+(−12t 2+32t +2−2)2=(−12t 2+2t)2,然后解方程求出t 得到此时P 点坐标.。
人教版九年级数学上册第22章 二次函数单元测试及答案解析【最新版】
第二十二章二次函数单元测试一、单选题(共10题;共30分)1、西宁中心广场有各种音乐喷泉,其中一个喷水管的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是()A、y=-(x-)2+3B、y=-3(x+)2+3C、y=-12(x-)2+3D、y=-12(x+)2+32、抛物线y=x2向左平移1个单位,再向下平移2个单位,得到新的图象的二次函数表达式是()A、B、C、D、3、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为()A、2B、4C、8D、164、抛物线向右平移3个单位长度得到的抛物线对应的函数关系式为()A、 B、C、D、5、下列关系式中,属于二次函数的是(x是自变量)()A、y=B、y=C、y=D、y=ax2+bx+c6、下列函数解析式中,一定为二次函数的是()A、y=3x﹣1B、y=ax2+bx+cC、s=2t2﹣2t+1D、y=x2+7、抛物线y=﹣2x2+4的顶点坐标为()A、(4,0)B、(0,4)C、(4,2)D、(4,﹣2)8、已知矩形的周长为36m,矩形绕着它的一条边旋转形成一个圆柱,设矩形的一条边长为xm,圆柱的侧面积为ym2,则y与x的函数关系式为()A、y=﹣2πx2+18πxB、y=2πx2﹣18πxC、y=﹣2πx2+36πxD、y=2πx2﹣36πx9、已知将二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣4x﹣5,则b,c的值为()A、b=0,c=6B、b=0,c=﹣5C、b=0,c=﹣6D、b=0.c=510、(2011•梧州)2011年5月22日﹣29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣ x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A、y=﹣ x2+ x+1B、y=﹣ x2+ x﹣1C、y=﹣ x2﹣ x+1D、y=﹣ x2﹣ x﹣1二、填空题(共8题;共30分)11、在实验中我们常常采用利用计算机在平面直角坐标系中画出抛物线y=x2和直线y=﹣x+3,利用两图象交点的横坐标来求一元二次方程x2+x﹣3=0的解,也可以在平面直角坐标系中画出抛物线y=x2﹣3和直线y=﹣x,用它们交点的横坐标来求该方程的解.所以求方程的近似解也可以利用熟悉的函数________和________的图象交点的横坐标来求得.12、如图,某涵洞的截面是抛物线形,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离CO为2.4m,在图中直角坐标系内,涵洞截面所在抛物线的解析式是________13、如图,在一幅长50cm,宽30cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm2,金色纸边的宽为xcm,则y与x的关系式是________ .14、函数y=2(x﹣1)2图象的顶点坐标为________.15、二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是________,对称轴为________.16、如图所示,在同一坐标系中,作出①y=3x2②y= x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)________17、一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面的函数关系式;h=﹣5t2+10t+1,则小球距离地面的最大高度是________.18、二次函数y=x2+6x+5图像的顶点坐标为________三、解答题(共5题;共30分)19、在同一坐标系内,画出函数y=2x2和y=2(x-1)2+1的图象,并说出它们的相同点和不同点.20、已知抛物线y=x²-4x+3.(1)该抛物线的对称轴是,顶点坐标;(2)将该抛物线向上平移2个单位长度,再向左平移3个单位长度得到新的二次函数图像,请写出相应的解析式,并用列表,描点,连线的方法画出新二次函数的图像;(3)新图像上两点A(x1, y1),B(x2, y2),它们的横坐标满足x1<-2,且-1<x2<0,试比较y1, y2, 0三者的大小关系.21、已知抛物线l1的最高点为P(3,4),且经过点A(0,1),求l1的解析式.22、甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币). 设甲库运往A地水泥x吨,总运费W元.(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?23、已知二次函数y=﹣(x+1)2+4的图象如图所示,请在同一坐标系中画出二次函数y=﹣(x﹣2)2+7的图象.四、综合题(共1题;共10分)24、成都地铁规划到2020年将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:投资水泥生产销售后所获得的利润y1(万元)与投资资金量x(万元)满足正比例关系y1=20x;投资钢材生产销售的后所获得的利润y2(万元)与投资资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).(1)直接写出当0<x<30及x>30时,y2与x之间的函数关系式;(2)某建材经销公司计划投资100万元用于生产销售水泥和钢材两种材料,若设投资钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).①求W与t之间的函数关系式;②若要求投资钢材部分的资金量不得少于45万元,那么当投资钢材部分的资金量为多少万元时,获得的总利润最大?最大总利润是多少?答案解析一、单选题1、【答案】 C【考点】二次函数的应用【解析】【分析】根据二次函数的图象,喷水管喷水的最大高度为3米,此时喷水水平距离为米,由此得到顶点坐标为(,3),所以设抛物线的解析式为y=a(x-)2+3,而抛物线还经过(0,0),由此即可确定抛物线的解析式.【解答】∵一支高度为1米的喷水管喷水的最大高度为3米,此时喷水水平距离为米,∴顶点坐标为(,3),设抛物线的解析式为y=a(x-)2+3,而抛物线还经过(0,0),∴0=a()2+3,∴a=-12,∴抛物线的解析式为y=-12(x-)2+3.故选:C.【点评】此题主要考查了二次函数在实际问题中的应用,解题的关键是正确理解题意,然后根据题目隐含的条件得到待定系数所需要的点的坐标解决问题2、【答案】C【考点】二次函数图象与几何变换【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,-2),根据顶点式可确定抛物线解析式.【解答】由题意,得平移后抛物线顶点坐标为(-1,-2),又平移不改变二次项系数,∴得到的二次函数解析式为y=(x+1)2-2.故选C.【点评】此类试题属于按难度一般的试题,只需考生掌握好评议的基本规律即可:左加右减等基本性质3、【答案】 B【考点】二次函数图象与几何变换【解析】【分析】过点C作CA⊥y轴于点A,根据抛物线的对称性可知:OBD的面积等于CAO的面积,从而阴影部分的面积等于矩形ACBO的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章二次函数单元测试一、单选题(共10题;共30分)1、西宁中心广场有各种音乐喷泉,其中一个喷水管的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是()A、y=-(x-)2+3B、y=-3(x+)2+3C、y=-12(x-)2+3D、y=-12(x+)2+32、抛物线y=x2向左平移1个单位,再向下平移2个单位,得到新的图象的二次函数表达式是()A、B、C、D、3、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为()A、2B、4C、8D、164、抛物线向右平移3个单位长度得到的抛物线对应的函数关系式为()A、 B、C、D、5、下列关系式中,属于二次函数的是(x是自变量)()A、y=B、y=C、y=D、y=ax2+bx+c6、下列函数解析式中,一定为二次函数的是()A、y=3x﹣1B、y=ax2+bx+cC、s=2t2﹣2t+1D、y=x2+7、抛物线y=﹣2x2+4的顶点坐标为()A、(4,0)B、(0,4)C、(4,2)D、(4,﹣2)8、已知矩形的周长为36m,矩形绕着它的一条边旋转形成一个圆柱,设矩形的一条边长为xm,圆柱的侧面积为ym2,则y与x的函数关系式为()A、y=﹣2πx2+18πxB、y=2πx2﹣18πxC、y=﹣2πx2+36πxD、y=2πx2﹣36πx9、已知将二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣4x﹣5,则b,c的值为()A、b=0,c=6B、b=0,c=﹣5C、b=0,c=﹣6D、b=0.c=510、(2011•梧州)2011年5月22日﹣29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣ x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A、y=﹣ x2+ x+1B、y=﹣ x2+ x﹣1C、y=﹣ x2﹣ x+1D、y=﹣ x2﹣ x﹣1二、填空题(共8题;共30分)11、在实验中我们常常采用利用计算机在平面直角坐标系中画出抛物线y=x2和直线y=﹣x+3,利用两图象交点的横坐标来求一元二次方程x2+x﹣3=0的解,也可以在平面直角坐标系中画出抛物线y=x2﹣3和直线y=﹣x,用它们交点的横坐标来求该方程的解.所以求方程的近似解也可以利用熟悉的函数________和________的图象交点的横坐标来求得.12、如图,某涵洞的截面是抛物线形,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离CO为2.4m,在图中直角坐标系内,涵洞截面所在抛物线的解析式是________13、如图,在一幅长50cm,宽30cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm2,金色纸边的宽为xcm,则y与x的关系式是________ .14、函数y=2(x﹣1)2图象的顶点坐标为________.15、二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是________,对称轴为________.16、如图所示,在同一坐标系中,作出①y=3x2②y= x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)________17、一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面的函数关系式;h=﹣5t2+10t+1,则小球距离地面的最大高度是________.18、二次函数y=x2+6x+5图像的顶点坐标为________三、解答题(共5题;共30分)19、在同一坐标系内,画出函数y=2x2和y=2(x-1)2+1的图象,并说出它们的相同点和不同点.20、已知抛物线y=x²-4x+3.(1)该抛物线的对称轴是,顶点坐标;(2)将该抛物线向上平移2个单位长度,再向左平移3个单位长度得到新的二次函数图像,请写出相应的解析式,并用列表,描点,连线的方法画出新二次函数的图像;(3)新图像上两点A(x1, y1),B(x2, y2),它们的横坐标满足x1<-2,且-1<x2<0,试比较y1, y2, 0三者的大小关系.21、已知抛物线l1的最高点为P(3,4),且经过点A(0,1),求l1的解析式.22、甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币). 设甲库运往A地水泥x吨,总运费W元.(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?23、已知二次函数y=﹣(x+1)2+4的图象如图所示,请在同一坐标系中画出二次函数y=﹣(x﹣2)2+7的图象.四、综合题(共1题;共10分)24、成都地铁规划到2020年将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:投资水泥生产销售后所获得的利润y1(万元)与投资资金量x(万元)满足正比例关系y1=20x;投资钢材生产销售的后所获得的利润y2(万元)与投资资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).(1)直接写出当0<x<30及x>30时,y2与x之间的函数关系式;(2)某建材经销公司计划投资100万元用于生产销售水泥和钢材两种材料,若设投资钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).①求W与t之间的函数关系式;②若要求投资钢材部分的资金量不得少于45万元,那么当投资钢材部分的资金量为多少万元时,获得的总利润最大?最大总利润是多少?答案解析一、单选题1、【答案】 C【考点】二次函数的应用【解析】【分析】根据二次函数的图象,喷水管喷水的最大高度为3米,此时喷水水平距离为米,由此得到顶点坐标为(,3),所以设抛物线的解析式为y=a(x-)2+3,而抛物线还经过(0,0),由此即可确定抛物线的解析式.【解答】∵一支高度为1米的喷水管喷水的最大高度为3米,此时喷水水平距离为米,∴顶点坐标为(,3),设抛物线的解析式为y=a(x-)2+3,而抛物线还经过(0,0),∴0=a()2+3,∴a=-12,∴抛物线的解析式为y=-12(x-)2+3.故选:C.【点评】此题主要考查了二次函数在实际问题中的应用,解题的关键是正确理解题意,然后根据题目隐含的条件得到待定系数所需要的点的坐标解决问题2、【答案】C【考点】二次函数图象与几何变换【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,-2),根据顶点式可确定抛物线解析式.【解答】由题意,得平移后抛物线顶点坐标为(-1,-2),又平移不改变二次项系数,∴得到的二次函数解析式为y=(x+1)2-2.故选C.【点评】此类试题属于按难度一般的试题,只需考生掌握好评议的基本规律即可:左加右减等基本性质3、【答案】 B【考点】二次函数图象与几何变换【解析】【分析】过点C作CA⊥y轴于点A,根据抛物线的对称性可知:OBD的面积等于CAO的面积,从而阴影部分的面积等于矩形ACBO的面积。
【解答】∵,∴顶点坐标为C(2,-2)。
∴对称轴与两段抛物线所围成的阴影部分的面积为:2×2=4。
故选B。
4、【答案】 A【考点】二次函数图象与几何变换【解析】【分析】由二次函数的图象性质可知:的图象向右平移个单位长度将的值加上即可得到新的二次函数解析式,所以平移后的二次函数解析式为:.故选A.5、【答案】A【考点】二次函数的定义【解析】【解答】解:A、是二次函数,故A正确;B、不是二次函数的形式,故B错误;C、是分式,故C错误;D、a=0是一次函数,故D错误;故选:A.【分析】根据函数y=ax2+bx+c (a≠0)是二次函数,可得答案.6、【答案】C【考点】二次函数的定义【解析】【解答】解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.【分析】根据二次函数的定义,可得答案.7、【答案】 B【考点】二次函数的性质【解析】【解答】解:抛物线y=﹣2x2+4的顶点坐标为(0,4).故选B.【分析】形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.8、【答案】 C【考点】根据实际问题列二次函数关系式【解析】【解答】解:根据题意,矩形的一条边长为xcm,则另一边长为:(36﹣2x)÷2=18﹣x (cm),则圆柱体的侧面积y=2πx(18﹣x)=﹣2πx2+36πx,故选:C.【分析】先根据矩形周长求出矩形另一边长,根据圆柱体侧面积=底面周长×高,列出函数关系式即可.9、【答案】 C【考点】二次函数图象与几何变换【解析】【解答】解:∵y=x2﹣4x﹣5=x2﹣4x+4﹣9=(x﹣2)2﹣9,∴顶点坐标为(2,﹣9),∴向左平移2个单位,再向上平移3个单位,得(0,﹣6),则原抛物线y=ax2+bx+c的顶点坐标为(0,﹣6),∵平移不改变a的值,∴a=1,∴原抛物线y=ax2+bx+c=x2﹣6,∴b=0,c=﹣6.故选C.【分析】首先抛物线平移时不改变a的值,其中点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.10、【答案】 A【考点】根据实际问题列二次函数关系式【解析】【解答】解:∵出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,∴B 点的坐标为:(0,1),A点坐标为(4,0),将两点代入解析式得:,解得:,∴这条抛物线的解析式是:y=﹣ x2+ x+1.故选:A.【分析】根据已知得出B点的坐标为:(0,1),A点坐标为(4,0),代入解析式即可求出b,c 的值,即可得出答案.二、填空题11、【答案】 y=;y=x2﹣3【考点】图象法求一元二次方程的近似根【解析】【解答】解:∵利用计算机在平面直角坐标系中画出抛物线y=x2和直线y=﹣x+3,利用两图象交点的横坐标来求一元二次方程x2+x﹣3=0的解,也可在平面直角坐标系中画出抛物线y=x2﹣3和直线y=﹣x,用它们交点的横坐标来求该方程的解.∴求方程的近似解也可以利用熟悉的函数:y=和y=x2﹣3的图象交点的横坐标来求得.故答案为:y=,y=x2﹣3.【分析】根据在平面直角坐标系中画出抛物线y=x2和直线y=﹣x+3,利用两图象交点的横坐标来求一元二次方程x2+x﹣3=0的解,进而得出方程的近似解也可以利用熟悉的函数的交点得出.12、【答案】【考点】二次函数的应用【解析】【解答】解:设为y=kx2,由CO和AB的长,那么A的坐标应该是(﹣0.8,﹣2.4),将其代入函数中得:﹣2.4=0.8×0.8×k,解得k=﹣.那么函数的解析式就是:y=﹣x2.【分析】根据这个函数过原点,那么可设为y=kx2,有CO和AB的长,那么A的坐标应该是(﹣0.8,﹣2.4),利用待定系数法即可解决.13、【答案】y=4x2+160x+1500【考点】二次函数的应用【解析】【解答】解:由题意可得:y=(50+2x)(30+2x)=4x2+160x+1500.故答案为:y=4x2+160x+1500.【分析】由于整个挂画为长方形,用x分别表示新的长方形的长和宽,然后根据长方形的面积公式即可确定函数关系式.14、【答案】(1,0)【考点】二次函数的性质【解析】【解答】解:∵抛物线y=2(x﹣1)2,∴抛物线y=2(x﹣1)2的顶点坐标为:(1,0),故答案为:(1,0).【分析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.15、【答案】(1,3);x=1【考点】二次函数的性质【解析】【解答】解:∵y=﹣2(x﹣1)2+3,∴抛物线顶点坐标为(1,3),对称轴为x=1,故答案为:(1,3);x=1.【分析】由抛物线解析式可求得其顶点坐标及对称轴.16、【答案】①③②【考点】二次函数的图象【解析】【解答】解:①y=3x2,②y= x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y= x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.【分析】抛物线的形状与|a|有关,根据|a|的大小即可确定抛物线的开口的宽窄.17、【答案】 6【考点】二次函数的应用【解析】【解答】解:h=﹣5t2+10t+1 =﹣5(t2﹣2t)+1=﹣5(t2﹣2t+1)+1+5=﹣5(t﹣1)2+6,﹣5<0,则抛物线的开口向下,有最大值,当t=1时,h有最大值是6.故答案为:6.【分析】把二次函数的解析式化成顶点式,即可得出答案.18、【答案】(﹣3,﹣4)【考点】二次函数的性质【解析】【解答】解:∵y=x2+6x+5=(x+3)2﹣4,∴抛物线顶点坐标为(﹣3,﹣4),故答案为:(﹣3,﹣4).【分析】已知二次函数y=x2﹣2x﹣3为一般式,运用配方法转化为顶点式,可求顶点坐标.三、解答题19、【答案】解:如图,相同点:开口方向和开口大小相同;不同点:函数y=2(x-1)2+1的图象是由函数y=2x2的图象向上平移1个单位长度,再向右平移1个单位长度所得到的,位置不同.【考点】二次函数的图象【解析】【分析】先画图象,函数y=2(x-1)2+1的图象是由函数y=2x2的图象向上平移1个单位长度,再向右平移1个单位长度所得到的.开口方向和开口大小相同,位置不同.20、【答案】解:(1)∵y=x2-4x+3=(x-2)2-1,∴该抛物线的对称轴是直线x=2,顶点坐标(2,-1);(2)∵向上平移2个单位长度,再向左平移3个单位长度,∴平移后的抛物线的顶点坐标为(-1,1),∴平移后的抛物线的解析式为y=(x+1)2+1,即y=x2+2x+2,(3)由图可知,x1<-2时,y1>2,-1<x2<0时,1<y2<2,∴y1>y2>0.【考点】二次函数的性质【解析】【分析】(1)把二次函数解析式整理成顶点式形式,然后写出对称轴和顶点坐标即可;(2)根据向左平移横坐标减,向上平移纵坐标加求出平移后的顶点坐标,然后利用顶点式形式写出函数解析式即可,再根据要求作出函数图象;(3)根据函数图象,利用数形结合的思想求解即可.21、【答案】解:∵抛物线l1的最高点为P(3,4),∴设抛物线的解析式为y=a(x﹣3)2+4,把点(0,1)代入得,1=a(0﹣3)2+4,解得,a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+4【考点】二次函数的最值【解析】【分析】物线的顶点式解析式y=a(x﹣h)2+k,代入顶点坐标另一点求出a的值即可.22、【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地 [80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.【考点】二次函数的性质,二次函数的应用【解析】【分析】(1)设甲库运往A地粮食x吨,则甲库剩下(100-x)要送到B地,所以A地还需要(70-x)吨要从乙库运过来,所以从乙库运送[80-(70-x)]=(10+x)吨到B地,根据数量关系:总运费=某库到某地的路程×运的吨数×每吨每千米的运费;(2)由题可得w=-30x+39200≤38000,解出x的取值范围,再取其中x为10的整数倍的数.23、【答案】解:答案如右图【考点】二次函数的图象【解析】【分析】根据图象平移的规律,可得答案.四、综合题24、【答案】(1)解:当0<x≤30时,根据题意设y2=a(x﹣30)2+900,将原点(0,0)代入,得:900a+900=0,解得:a=﹣1,∴y2=﹣(x﹣30)2+900=﹣x2+60x,当x>30时,y2=900(2)解:①设投资钢材部分的资金量为t万元,则投资生产水泥的资金量为(100﹣t)万元,当0<t≤30时,W=y1+y2=20(100﹣t)+(﹣t2+60t)=﹣t2+40t+2000,当t>30时,W=20(100﹣t)+900=﹣20t+2900;②∵t≥45,∴W=﹣20t+2900,W随t的增大而减小,∴当t=45时,W最大值=2000万元答:当投资钢材部分的资金量为45万元时,获得的总利润最大,最大总利润是2000万元.【考点】二次函数的应用【解析】【分析】(1)当0<x≤30时,根据顶点A的坐标设其顶点式,将原点代入可得其解析式,当x>30时,可得y2=900;(2)①设投资钢材部分的资金量为t万元,则投资生产水泥的资金量为(100﹣t)万元,分0<t≤30、t>30两种情况,根据W=y1+y2可得函数关系式;②由t≥45可知W=﹣20t+2900,根据一次函数性质可得最值情况.。