奥数周期问题
小学奥数周期问题
周期问题典型例解[例1]把围棋里的黑白棋子按一定的规律排列着,其中第90颗是什么棋?第101颗是什么棋?●●○●●○●●○…【分析】仔细观察图中棋的排列,不难发现棋的排列规律是:2颗黑棋,1颗白棋,2颗黑棋,1颗白棋,也就是按“两颗黑棋,一颗白棋”的次序循环出现,因此,这道题的周期为3。
再看看90,101里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个。
解答 90÷3=30,正好有30个周期。
101÷3=33……2,有33个周期还多2个。
所以,第90颗棋是白棋,第101颗棋是黑棋。
答:第90颗是白棋,第101颗是黑棋[举一反三1]①有一列数:5、6、2、4、5、6、2、4…第129个数是多少?②有同样大小的黑、白、红珠子共180个,按5个红珠,4个白珠,3个黑珠排列,第158个珠子是什么颜色?这158个珠子中有多少个黑珠?③△△○△△○△△○…其中第99个是什么图形?[例2]720277777⨯⨯⨯⨯⨯⨯积的个位数字是几?相乘为1个周期。
202个7相乘中含有多少个这样的周期?余数是几?如果余数是1,那么积的个位数字是7;如果余数是2,那么积的个位数字是9;如果余数是3,那么积的个位数字是3;如果没有余数,那么积的个位数字是1。
[解答]202÷4=50(周)……2(个)答:202个7连乘,积的个位数字是9。
[举一反三2]①2100122222个⨯⨯⨯⨯的积的个位数字是几?②42003444个⨯⨯⨯积的个位数字是几?③9201199999个⨯⨯⨯⨯⨯的积的个位数字是几?[例3]25÷74的商的小数点后面第80位是几?小数点后面前80个数字之和是多少?[分析]先找出25÷74的商,25÷74=0.3378378378…,从小数点后第二个数字开始,3,7,8这三个数字依次重复不断地出现,即循环节有三个数字组成:3,7,8,即25÷74=0.3378,显然这道题的周期是3(3,7,8)。
五年级奥数周期问题练习题
五年级奥数周期问题练习题问题1:某个班级有30个学生,其中15个是男生,剩下的是女生。
男生和女生一起组成了几对?请在下面作答:解答1:班级有30个学生,其中15个是男生,剩下的是15个女生。
男生和女生是一对一配对的,所以有15对。
问题2:在一个奥数比赛中,一支队伍需要有4个人。
有9个学生报名参赛。
请问一共有多少种不同的组队方式?请在下面作答:解答2:从9个学生中选出4个来组成一支队伍,可以使用组合的方法来计算。
C(9, 4) = 9! / (4! * (9-4)!) = 126所以一共有126种不同的组队方式。
问题3:一个街区有10幢房子,每幢房子都有不同的颜色。
现在有4个人,每个人都要住在不同颜色的房子里。
请问一共有多少种不同的安排方式?请在下面作答:解答3:第一个人有10种选择,第二个人有9种选择,第三个人有8种选择,第四个人有7种选择。
所以一共有10 * 9 * 8 * 7 = 5040种不同的安排方式。
问题4:某个月有31天,现在要将这31天分成3个连续的周期(每个周期可以不完整)。
请问一共有多少种不同的分法?请在下面作答:解答4:将31天分成3个周期,可以使用组合的方法来计算。
C(31+3-1, 3-1) = C(33, 2) = 33! / (2! * (33-2)!) = 528所以一共有528种不同的分法。
问题5:一个四位数的各位数字互不相同,且是4个奇数。
请问一共有多少个满足条件的四位数?请在下面作答:解答5:个位数字只能是1、3、5、7、9中的一个。
百位数字只能是1、3、5、7、9中的一个,并且不能和个位数字相同,所以有4种选择。
千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字相同,所以有3种选择。
千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字、千位数字相同,所以有2种选择。
所以一共有5 * 4 * 3 * 2 = 120个满足条件的四位数。
小学四年级奥数-周期问题
周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。
在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。
解答这类题目只有找到规律,才能获得正确的方法。
例1.●●○●●○●●○……上面黑、白两色小球按照一定的规律排列着,其中第90个是( )例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。
第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。
三种颜色的弹子各有多少个? 例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是( )练习与思考1.根据图中物体的排列规律,填空。
(2)□○△□○△…… 第55个是( )2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢? 3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。
“72”是谁报的?“190”呢? 4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。
黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?B ), 第26组是什么?周期问题(二)例1.10个2连乘的积的个位数是几?例2.1998年元旦是星期四,1999年元旦是星期几? 例3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……例4.把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。
奥数四年级—周期问题(课堂PPT)
在日常生活中,有一些现象会按照一定的规 律不断重复出现。例如人的生肖:鼠、牛、虎、 兔、龙、蛇、马、羊、猴、鸡、狗、猪就是按一 定的顺序不断重复出现的;每周有七天,从星期 一开始到星期日结束,总是以七天为一个循环, 不断重复出现。
在数学中,一些数和图形的变化也是周而复 始地循环出现的。我们把这种特殊的规律性问题 称为周期问题。解答这类题目必须找到规律。
解:136÷5=27...1 (我)
136÷4=34
(D)
答:第136组是(我,D)。
6
小结
解周期问题的关键是发现规律,找出周期。找规律时 一定要仔细观察,认真比较,也可以用列表的方法帮 助发现规律。确定周期后,再用总量除以周期, 如果正好有整数个周期,结果为周期里的最后一个; 如果有余数,那就是下个周期里的第几个。
解 +12-9+6-4=5 一个循环增加了5 1984-1949=35 刚好是7个循环 7×4=28步 2014-1949=65 刚好是13个循环13×4=52步
12
答:
10
练 7、有100朵花,按红花4朵、绿花3朵、黄花5朵、紫花2 习 朵的顺序排列,最后一朵是什么颜色?四种花各有几朵?
解:4+3+5+2=14 100÷14=7...2 红
红 4×7+2=30
绿 3×7=21
黄 5×7=35
紫 2×7=14
8、如下表,每列上下为一组,第1组是(小,A),第二 组是(学,B),问:第70组是什么?
小 学 生 爱 数 学 小 学 生 爱 数 学 ...
AB
C
D
E
A
B
C
D
E
A
小学奥数 周期问题 精选练习例题 含答案解析(附知识点拨及考点)
1. 掌握各种周期问题的求解方法.2. 培养学生观察、分析和逻辑推理能力。
知识点说明:周期问题: 周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n 个,那么为下个周期里的第n 个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【考点】周期问题 【难度】2星 【题型】解答【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再例题精讲知识精讲教学目标周期问题看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【答案】第90个是白球,第100个是黑球【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【考点】周期问题【难度】2星【题型】解答【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有26个【巩固】黑珠、白珠共101颗,穿成一串,排列如下图。
小学三年级奥数-周期问题
2
……
练习1:
01
如图,算出第20个图形是什么?
02
△△□□□○△△□□□○△△……
03
“数学趣味题数学趣味题……”依次重复排列,第2001个字是什么?
04
把38面小三角旗按下图排列,其中有多少面白旗?
【例题2】2001年10月1日是星期一,问:10月25日是星期几?
01
【思路导航】我们知道,每星期有7天,也就是说以7天为一个周期不断地重复。从10月1日到10月25日经过25-1=24天,24÷7=3(星期)……3(天),说明24天中包括3个星期还多3天。所以从10月1日开始过3个星期,最后一天还是星期一,从这最后一天起再过3天就应是星期四。
02
有一列数“……”,请问从左起第2个数字到第25个数字之间(含第2个与第25个数字)所有数字的和是多少?
【例题5】小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字。如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?
【思路导航】已知这本童话书3页插图前后各有1页文字,也就是说这本书是按“1页文字3页插图“的规律重复排列的,把“1页文字3页插图”看作一周期,128页中含有128÷(1+3)=32个周期,所以这本童话书共有插图3×32=96页。
周期问题
单击此处添加副标题
一、知识要点
在日常生活中,有一些按照一定的规律不断重复的现象,如:人的十二生肖,一年有春夏秋冬四个季节,一个星期七天等等。像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。这类问题一般要利用余数的知识来解答。
在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。
小学奥数之周期问题(一)
环形周期问题
【例4】如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈。现在, 一只红跳蚤从标有数字“0”的圆圈按顺时针方向跳了1991步,落在一个 圆圈里。一只黑跳蚤也从标有数字“0”的圆圈起跳,但它是沿着逆时针 方向跳了1949步,落在另一个圆圈里。问:这两个圆圈里数字的乘积是多 少? 解析:电子跳蚤每跳12步就回到了原来的位置,如此循环,周期为12。 1991÷12=165(组)······11(步) 0 11 红跳蚤跳了1991步后落到了标有数字11的圆圈 1 10 2 1949÷12=162(组)······5(步) 黑跳蚤跳了1949步后落到了标有数字7的圆圈 3 9 11×5=55 8 4 答:这两个圆圈里数字的乘积是55。 7 5
周期=3 95 ÷3=31(组) ······2(个) 31 ×1=31(个)
答:第95个是黑球,前95个球中有31个白球。 问第99个球是什么球呢? 99 ÷3=33(组)
Tips
1. 找规律:确定周期 2. 除周期:总数除以周期 3. 对余数:余数是几对应周期中的第几个 没有余数,对应周期最后一个
6
Thank you!
ห้องสมุดไป่ตู้
环形周期问题
【例3】冬冬和其他五个小朋友围城一圈,圆圈中央摆放着55个乒乓球, 从小明开始,小朋友沿逆时针方向开始拿球,每人每次拿3个,直到把乒 乓球全部拿完为止(最后剩下的球不足3个就全拿走)。那么,小明总共 拿到了几个球? 解析: 6×3=18(个)··········周期 55÷18=3(组)······1(个) 3×3+1=10(个) 答:小明总共拿到了10个球。
基本周期问题
【例2】下表的第一行的文字和第二行的字母都有各自的周期,那么第 2011列的文字和字母分别是什么?
小学奥数教程:周期问题_全国通用(含答案)
1. 掌握各种周期问题的求解方法.2. 培养学生观察、分析和逻辑推理能力。
知识点说明: 周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类:1.图形中的周期问题; 2.数列中的周期问题;3.年月日中的周期问题. 周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个; 例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829¸=,所以第18个数是2.⑵如果比整数个周期多n 个,那么为下个周期里的第n 个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351¸=×××,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-¸=×××,所以第16个数是2.板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列: ●●○●●○●●○… 你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【考点】周期问题 【难度】2星 【题型】解答【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330¸=,正好有30个周期,第90个是白球.100333¸=…1,有33个周期还多1个,所以,第100个是黑球.【答案】第90个是白球,第100个是黑球【巩固】 美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的: 例题精讲知识精讲教学目标 周期问题○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【考点】周期问题 【难度】2星 【题型】解答【解析】 观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425¸=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有26个【巩固】 黑珠、白珠共101颗,穿成一串,排列如下图。
奥数讲座2--周期问题
二、混循环周期问题 开始不循环,后面循环的周期问题叫纯循环周期问题。 例5在1989后面写一串数字。从第5个数字开始,每个数字都是它前
面两个数字乘积的个位数字。这样得到19892868842…….那么,这串数 字中前2016个数字的和是多少?
例6 2001个学生按下列方法编号排成五列: 一二三 四 五
123 4 5
987 6
10 11 12 13
17 16 15 14
18 19 20 21 22 … 问最后一个学生应该在第几列? 三、隐循环周期问题 循环信息隐藏较深,需要一定的逻辑推理才能看出循环的周期问题 称为隐循环周期问题。 例7下面是一个11位数,每3个相邻数字之和都是17,你知 道“?”表示的数字是几吗?
例10有11个小朋友分别标号为1到11,按标号顺时针围成一圈,从1 号开始发书,每次发一本,按顺时针方向,依次隔2人、再隔3人;再隔 2人、再隔3人……这样的顺序发下去,共有2004本书,问最后一本书发 给几号小朋友?
例11 2006盏亮着的电灯,各有一个拉线开关控制,按顺序编号为 1,2,……,2006.将编号为2的倍数的灯的拉线各拉一下;再将编号为 3的倍数的灯的拉线各拉一下,最后将编号为5的倍数的灯的拉线各拉一 下。拉完后亮着的灯有多少盏?
周期问题
一、纯循环周期问题 从一开始就循环的周期问题叫纯循环周期问题。 例1 2011年2月4日是星期五,那么再过10年的2月4日是星期几?
例2一列数1、2、4、7、11、16、22、29、37、46、……,这列数左 起第2016个数除以5的余数是几?
例3有a,b,c三条射线,从a线开始,从1起依次在三条射线上写数 (如图),22、59、2016各在哪一条线上? 1 b c a 2 3 4 5 6 1 b c a 2 3 4 5 6
小学四年级奥数第28讲 周期问题(含答案分析)
第28讲周期问题一、知识要点:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。
我们把这种特殊的规律性问题称为周期问题。
解答周期问题的关键是找规律,找出周期。
确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。
二、精讲精练例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。
(1)□△□△□△□△……(2)□△△□△△□△△……练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?例2:有一列数,按5、6、2、4、5、6、2、4…排列。
(1)第129个数是多少?(2)这129个数相加的和是多少?练习二1、有一列数:1,4,2,8,5,7,1,4,2,8,5,7…(1)第58个数是多少?(2)这58个数的和是多少?2、小青把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序一直往下排。
(1)他排到第111个是几分硬币?(2)这111个硬币加起来是多少元钱?例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…练习三1、有a、b、c三条直线,从a线开始,从1起依次在三条直线上写数(如下图),22、59、2001各在哪一条线上?c b2、假设所有自然数如下图排列起来,36、43、78、2000应分别排在哪个字母下面?A B C D1 2 3 48 7 6 59 10 11 12…例4:1991年1月1日是星期二。
(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?练习四1、1990年9月22日是星期六,1991年元旦是星期几?2、1989年12月5日是星期二,那么再过10年的12月5日是星期几?例5:我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就是虎年…。
小学五年级奥数周期问题及答案
小学五年级奥数周期问题及答案例1:有249朵花,按5朵红花,9朵黄花,13朵绿花地顺序轮流排列,最后一朵是什么颜色地花?这249朵花中,红花、黄花、绿花各有多少朵?249÷(5+9+13)=9(组)……6(朵)这六朵花,前5朵是红花,最后1朵应是黄花。
红花:5×9+5=50(朵)黄花:9×9+1=82(朵)绿花:13×9=117(朵)答:最后一朵是黄花。
这249朵花中,红花有50朵,黄花有82朵,绿花有117朵。
模拟练习:1、有红、白、黑三种纸牌共158张,按5张红色,3张白色,4张黑色的顺序排列下去,最后一张是什么颜色?第140张是什么颜色?158÷(5+3+4)=13(组)......2(张)140÷(5+3+4)=11(组)......8(张)答:最后一张是红色。
第140张是白色。
2、有47盏彩灯,按二盏红灯、四盏蓝灯、三盏黄灯地顺序排列着。
最后一盏灯是什么颜色?三种颜色地灯各占总数地几分之几?47÷(2+4+3)=5(组)......2(盏)红灯有2×5+2=12(盏)蓝灯有4×5=20(盏)黄灯有3×5=15(盏)答:最后一盏是红灯。
红灯占总数的12/47,蓝灯占总数的20/47;黄灯占总数的15/47。
例2:2002年元旦是星期二,那么,2003年1月1日是星期几?2002年是平年,365+1=366(天)366÷7=52(周)......2(天)答:每个周期的第一天是星期二,所以,2003年1月1日就是星期三。
模拟练习:1、2008年8月8日是星期五,那么,2008年10月8日星期几?24+30+8=62(天)62÷7=8(周)......6(天)答:2008年10月8日星期三。
2、2001年10月1日是星期一,那么,2002年1月1日是星期几?31+30+31+1=93(天)93÷7=13(周)……2(天)答:2002年1月1日是星期二。
小学奥数专题周期问题
日一二三四五六日一二三四五六 日一二三四五六
7×7×…... ×7,50个7 相乘,积的末位数字是几?
100个2相乘,积的末位数 字是几?
求 3×3×……×3(89个3相乘) 的个位数字?
3 3× 3 3× 3 × 3 3× 3 × 3 × 3
积个位上的数字
假设所有的自然数排列起来,如图 所示,1998应该在哪一个字母的下 面? A B C D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 ``` ``` ``` ```
将偶数2、4、6、8……按下图依次排列, 2014出现在 哪一列? A B C D E 8 6 4 2 10 12 14 16 24 22 20 18 26 28 30 32
其实泰勒斯就是从之前的日食记录中找到了 日食发生的周期,根据周期做出的预言
在日常生活中,有一些现象 是按照一定的规律周而复始,不断 重复出现。比如:一年有12个月, 从一月开始到十二月;一星期 有7天,从星期日开始到星期 六结束等等。我们把这种特殊的 规律问题称为周期问题。
那么,亲爱的同学 们,你们还能找到生 活中其它的周期问题 吗?
森林里,有一个小仙 女叫做叮咚,她要准备 一个晚宴。于是在小屋 的周围挂上了彩色的灯 笼。先挂5只红的,再4 只绿的,再3只黄的顺 序排列着。最后数了一 数一共150只。那么, 第125只灯笼是什么颜 色的?
叮咚把梨、苹果、橘子按照 先1个梨,后2个苹果,再4个 橘子的规律排成一排放在盘子 里,请你算一算,叮咚在放 100个水果的时候应该放什么?
第二行周期:4
(1)460÷3=153(组) 小 ……1(个) 460÷4=115(组) 动
三年级奥数简单的周期问题
周期问题练习题
姓名:
1、小明问小刚:“今天是星期五,再过31天是星期几?”
2、一个星期7天,小朋友上学5天,星期六、日都休息。
而每年1月都是31天。
如果这个月的5号是星期天,问1月31号是上学还是在家休息?
3、有一堆棋子按二黑三白的规律往下排,第47个是什么颜色的棋子?
4、按下面的方法摆60个三角形,最后一个三角形是什么颜色?
5、小明放学回家准备开灯做作业,他拉了开关,灯没有亮,连续拉了10次,灯都没有亮。
原来电线被刮断了。
你知道电线修好时,小明家的电灯亮不亮?
6、有同样大小的红白黑珠共96个,按先5个红,再4个白,再3个黑的顺序排列着,问黑珠共有多少个?
7、刘老师把54张牌依次发给甲、乙、丙、丁4个同学,最后一张牌发给了谁?
8、国庆期间,公园挂彩灯按“红、黄、白、绿”的顺序,挂了32盏彩灯,第32盏是什么颜色?有几盏黄色彩灯?。
小学奥数周期性问题
小学奥数——周期性问题例1. 某年的二月份有五个星期日,这年六月一日是星期_____【解析】因为7X4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了 31+30+31+1=93(天).因为93¸7=13…2,所以这年6月1日是星期二.本题是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.例2 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.【解析】分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991 X 24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.小贴士在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.仔细观察题中数表. 1 2 3 4 5 (奇数排)第一组 9 8 7 6 (偶数排)10 11 12 13 14 (奇数排)第二组 18 17 16 15 (偶数排)19 20 21 22 23 (奇数排)第三组 27 26 25 24 (偶数排)可发现规律如下:(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.(3)10÷9=1…1,10在1+1组,第1列19÷9=2…1,19在2+1组,第1列因为1992÷9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上.例4 在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?【解析】因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,5X5-6X4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:2X[(100-10)÷30]+1=2X3+1=7(段)例5 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8X9=72,在9后面写2,9X2=18,在2后面写8,……得到一串数字:1 9 8 9 2 8 6……这串数字从1开始往右数,第1989个数字是什么?【解析】依照题述规则多写几个数字:1989286884286884……可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4)÷6=330…5,所以所求数字是8.。
小学奥数周期问题公式
小学奥数周期问题公式
函数周期性公式及推导:f(x+a)=-f(x)周期为2a。
证明过程:因为f(x+a)=-
f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。
sinx的函数周期公式t=2π,sinx是正弦函数,周期是2π。
cosx的函数周期公式t=2π,cosx就是余弦函数,周期2π。
tanx和cotx的函数周期公式t=π,tanx和cotx分别是正切和余切。
secx和cscx的函数周期公式t=2π,secx和cscx就是余割和正割。
设函数f(x)在区间x上有定义,若存在一一个与x无关的正数t,使对于任一x∈x,恒有f(x+t)=f(x)
则表示f(x)就是以t为周期的周期函数,把满足用户上式的最轻正数t称作函数f(x)的周期。
二、周期函数的运算性质:
1、若t为f(x)的周期,则f(ax+b)的周期为t/al。
2、若f(x),g(x)均就是以t为周期的函数,则f(x)+g(x)也就是以t为周期的函数。
3、若f(x),g(x)分别是以t1,t2,t1≠t2为周期的函数,则f(x)+g(x)是以t1,t2的最小公倍数为周期的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提示:2007个132的积的末位数字与2007个2的积的末位 数字有什么关系呢?
拓展: 2、学校大楼前摆了一排花盆,每两盆 月季花之间摆3盆杜鹃花,一共摆了39 盆。如果第一盆是月季花,那么共摆了 多少盆杜鹃花? 39÷4=9(个)……3(盆) 9×3+1=28(盆) 答:共摆了28盆杜鹃花。
周期问题
仔细观察,看看你能发现什么?
⒈ ⒉ 3.
1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 ……
……
1 , 2 , 3 , 2 , 1 , 1 , 2 , 3 , 2 , 1 , 1 , 2……
周期性是指某些事物的变化,按照一定的规律反复出现的性质。
周 期 问 题
客观世界中,存在着一些数,图形和 事物的变化是周而复始循环出现的, 我们把具有这种规律的问题称为周期 问题,例如:每隔7天是一周,周周 如此;每隔12个月是一年,年年一 样;每隔24小时是一昼,天天相同; ……等等,这些问题都属于周期问题。
练习
1.2008年9月10日是星期三,那么这 个月的最后一天是星期几呢? • 首先要知道9月份有多少天? (30天) • 从9月10日到9月30日一共有多少天? • 30-10+1=21(天) • 21天是几个星期? • 21÷7=3(个)
• 三 四 五 六 日 一 二 三 所以10月1日应该是星期三.
小提示
• 第一步: 算出一共有多少天 • 第二步: 这些天包括几个星期,零 几天 • 第三步: 写出从哪到哪是一周期 • 第四步: 通过余数确定是星期几
例4. 10个2连乘,积个位上的数字是几?
提示:我们可以从较少个2连乘的积入手寻找规律 1个2 2个2 3个2 4个2 5个2 6个2 …… 2 2×2=4 2×2×2=8 2×2×2×2=16 2×2×2×2 ×2=32 2×2×2×2 ×2×2=64 ……
个位上的数字以2、4、8、6四个数作为一个周期,则有: 10÷4=2···2 ··· 答:积的个位上的数字是4。
周期问题解题策略
1、确定周期 2、找到总量
3、总量÷周期=周期的个数……余数
4、关注余数
拓展1
.132 2 2 2的末位数字是几? 132132
提示:多少天作为一个周期,总天数又是多少呢?
日 一 二 三 四 五 六 日 一 二 三 四 五 六 日 一 二 三 四 五 六 ……
解: (1)25÷7=3···4 ·· ·
答:25日是星期三。 (2)1月1日到2月14日共有: 31+14=45(天) 45÷7=6·· · ·· ·3 答:2月14日是星期二。 (3)2006年1月1日到2008年 1月1日共有: 365+365+1=731(天) 731÷7=104·· · ·· ·3 答:2008年1月1日是星期二。
一 二 三 四
1
2
6 10 14 …
3
7 11 15 …
4
8 12 16 …
提示:观察数的排列顺 序,是多少个数作为一 个周期排列的?
5 9 13 …
28÷4=7
答:第28个数字在第7行第4列。
例3. 2006年1月1日是星期日,问:
(1)这个月的25日是星期几? (2)2006年的2月14日是星期几? (3)2008年的1月1日是星期几?
练习:节日里校门口马路边上插着一排彩旗, 彩旗按四面红色、三面黄色、两面绿色的规律 排列(如下图)。问:第33面旗子是什么颜色? 第90面旗子是什么颜色? 红红红红黄黄黄绿绿
33÷9=3(个)……6(面) 90÷9=10(个) 答:第33面旗子是黄色,第90面 旗子是绿色。
例2.按照下表所排列的规律,28排在第几行,第几列?
例1:节日里校门口马路边上插着一排彩旗, 彩旗按四面红色、三面黄色、两面绿色的规 律排列(如下图)。问:第33面旗子是什么 颜色?第90面旗子是什么颜色? 红红红红黄黄黄绿绿
思路:从图上可以看出,彩旗是按四红、三黄、两绿 的规律排列,即一个周期内有4+3+2=9(面)旗子, 从第10面起又是第2个周期。33÷9=3(个)……6 (面),35面旗子中含3个周期多6面,所以第35面旗 子就是重复3个周期后的第6面旗子,是黄色; 90÷9=10(个),90面旗子中含有10个周期,第90 面旗子是第10个周期中最后一面旗子,是绿色的。
• 所以9月最后一天应该是星期二.
练习
2.2008年6月1日是星期日,那么2008 年10月1日是星期几呢?
• • • • • • 6月 7月 8月 9月 10月1日 30天 31天 31天 30天 1天 一共是多少天呢? 30+31+31+30+1=123(天) 123天包括几个星期,零几天呢? 123÷7=17(个)……4(天)