1998年全国初中数学联合竞赛试题
详解——1998年全国初中数学竞赛试题
1998年全国初中数学联合竞赛试题答案及详解第 一 试1.3 15+=m ,4151511-=+=m , ∴ 435451+=+m m ,31=⎥⎦⎤⎢⎣⎡+m m . 2.322 如图,AD 为直角A 的平分线,过B 作DA BE //交CA 的延长线于点E .=∠EBA ︒=∠45BAD ,1==AB AE ,2=EB ,又CDA ∆∽CBE ∆,32==CE AC EB AD ,∴32232==EB AD . 3.22)1()(122233+--+--=+-x x x x x x x22)1()1(22=+--+--=x x x x x .4.3因为m 、n 为有理数,方程一根为25-,那么另一个根为25--,由韦达定理.得 4=m ,1-=n ,∴3=+n m .5.316 由原图 AEFG EF AE EG ED BE EF AE +===, ∴ EF EFAE FG -=23163352=-=(厘米). 6.1647175399522⨯⨯==-m n ,47175))((⨯⨯=+-m n m n .显然,对3995的任意整数分拆均可得到(m ,n ),故满足条件的整数对(m ,n )共162222=⨯⨯⨯(个).7.1111个相继整数的平方和为22222)5()4()4()5(+++++++-+-x x x x x ΛΛ22)10(11y x =+=,则y 最小时,从而12=x ,∴11=y .8.39∵ MBP ∆∽CBA ∆,3:1:=∆∆CBA MBP S S , 3:1:=BA BP ,∴ 32=BA ,13=AC . 39133221=⋅⋅=∆ABC S . 9.27204 ∵72==∆∆ABC ABF S S BC BF ,同理54=BA BE , 由原图,连BG .记a S AGE =∆,b S EGB =∆,c S BGF =∆,d S EGc =∆.又由已知 5=++c b a ,14=++d c b ,解之得 2728=b , 27100=c .∴ )(2720427128平方厘米==+=c b S BEGF . 10.13由题意,设有n 人,分苹果数分别为1,2,…,n 2)1(321+=++++n n n Λ≤100, ∴ n ≤13,所以至多有13人.11.-1b a b ab a 222--++b b a b a 2)1(22-+-+= 412343)21(22--+-+=b b b a 1)1(43)21(22--+-+=b b a ≥-1. 当 021=-+b a ,01=-b , 即 0=a ,1=b 时,上式不等式中等号成立,故所求最小值为-1. 12.73 对 ))((22m n m n m n x -+=-=(1≤m <n ≤98 m ,n 为整数)因为n +m 与n -m 同奇同偶,所以x 是奇数或是4的倍数,所以1至98共98个自然数中,满足条件的数有49+24=73个.13.15设算式∴ A ≤6.35876543219)(2=++++++=++B A .∴ 8=+B A .欲令A ·B 最大,取A =5,B =3,此时b ,e 为6,8;a ,c ,f 为2,4,7,故A ·B 最大值为15.14.62a c fB b e A d h + g 显然:g =1,d =9,h =0. a +c +f =10+Bb +e =9+A如图,AB PM ⊥,AC PN ⊥,BC PQ ⊥.P ,Q ,C ,N 四点共圆,P ,Q ,B ,N 四点共圆,NPQ NCQ MBQ MPQ ∠=∠-︒∠=∠-︒=∠180180,QNP BCP MBP MQP ∠=∠=∠=∠,∴ MPQ ∆∽QPN ∆, NP PQ PQ MP =, 62=⋅=NP MP PQ (厘米).15.7213047506778296109⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=y S∴ S 被11除所得的余数等于17+y 被11除所得的余数.由检查号码可知,S 被11除所得的余数是11-5=6,因此7y 被11除所得余数为6-1=5, ∴y =7第 二 试一、设两整数根为x ,y (x ≤y ),则⎩⎨⎧>=>=+04,0a xy a y x 2a ≤y ≤a ,4≤x ≤8.可推出4≠x , ∴ 42-=x x a ,由于x 为整数, ∴ 5=x 时,25=a ,20=y ; 6=x 时,18=a ,12=y ;7=x 时,a 不是整数;8=x 时,16=a ,8=y .于是25=a 或18或16均为所求.说明 没有说明理由,仅指出a 的每一个正确值给4分.二、证明 如原图,连PO ,设PO 与AN ,DM 分别交于点'Q ,''Q . 在PAC ∆中,∵OC AO =,NC PN =,∴'Q 为重心,'2'OQ PQ =在PDB ∆中,∵BO DO =,MP BM =,∴''Q 为重心,''2''OQ PQ =这样'''Q Q =,并且'Q ,''Q 就是AN ,DM 的交点Q .故P ,Q ,O 在一条直线上,且OQ PQ 2=.三、1680,1692,1694,1695,1696为满足条件的5个数(注:答案不唯一) 以上5个数可用以下步骤找出:第一步:2,3,4为满足要求的三个数.第二步:设a ,a +2,a +3,a +4为满足条件的四个数,则a 可被2,3,4整除.取a =12,得满足条件的四个数12,14,15,16.第三步:设b ,b +12,b +14,b +15,b +16.取12,14,15,16的最小公倍数为b .即b =1680,得满足条件的五个数1680,1692,1694,1695,1696.。
1998年全国初中数学联赛试题(含答案)
1998年全国初中数学联赛试题(含答案)1998年全国数学联赛试卷一、选择题:(每小题6分,共30分) 1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x的两根之差是1,那么p的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线ppx y +=一定通过第( )象限(A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。
8、已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程()015132832222=+-+--a a x a ax a (其中a 是非负整数),至少有一个整数根,那么a =___________。
1998年全国初中数学试题
1998年全国初中数学试题一、选择题(每小题6分,满分30分)1.已知a,b,c都是实数,并且a>b>c,那么下列式子中正确的是 [ ]A.ab>bc B.a+b>b+c. C.a-b>b-c; D. a bc c >.2.如果方程x2+px+1=0(p>0)的两根之差为l,那么p等于[ ]3.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC 的面积等于[ ] A. 12 B.14 C.16 D.184.已知abc≠0,,并且a b b c c apc a b+++===,那么直线y=px+p一定通过[ ]A.第一、二象限B.第二、三象限. C.第三、四象限D.第一、四象限5.如果不等式组9080x ax b-≥⎧⎨-<⎩的整数解仅为1,2,3,那么整数a,b的有序数对(a,b)共有[ ]A.17个B.64个. C.72个D.81个二、填空题(每小题6分,满分30分)6.在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=______.7.已知直线y=-2x+3与抛物线y=x2相交于A、B两点,O为坐标原点,那么△OAB的面积等于______.8.已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度为______cm.9.已知方程a2x2-(3a2-8a)x+2a2-13a+15=0(其中a是非负整数)至少有一个整数根,那么a=__.10.B船在A船的西偏北450,两船相距若A船向西航行,B船同时向南航行,且B船速度为A船速速度的2倍,那么A,B两船的最近距离是___________km.三、解答题(每小题20分,满分60分)11.如图,在等腰直角三角形ABC中,AB=1,∠A=90°,点E为腰AC的中点,点F在底边BC上,且FE⊥BE,求△CEF的面积.12.设抛物线y=x2+(2a+1)x+2a+54的图象与x轴只有一个交点.(1)求a的值;(2)求a18+323a-6的值.13.A市、B市和C市分别有某种机器10台、10台和8台,现在决定把这些机器支援给D市18台、E市10台,已知:从A市调运一台机器到D市、E市的运费分别为200元和800元;从B市调运一台机器到D市、E市的运费分别为300元和700元;从C市调运一台机器到D市、E市运费分别为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器全部调运完毕后,求总运费W(元)关于x(台)的函数式,并求W的最小值和最大值.(2)设从A市x台到D市,B市调y台到D市,当28台机器全部调运完毕后,用x,y表示总运费W(元),并求W的最小值和最大值.1998年全国初中数学联赛参考答案一、选择题1.B根据不等式性质.2.D由△=p2-4>0及p>2,设x1,x2为方程的两根,那么有x1+x2=-p,x1x2=l.又由(x1-x2)2=(x1+x2)2-4x1x2,得l2=(-p)2-4.∴p2=5,3.C如图连ED,又∵DE是△ABC两边中点连线.故选C.4.B得2(a+b+c)=p(a+b+c).∴有p=2或a+b+c=0.当p=2时,y=2x+2.则直线通过第一、二、三象限.当a+b+c=0时,不妨取a+b=-c,于是∴y=-x-1,则直线通过第二、三、四象限.综合上述两种情况,直线一定通过第二、三象限,故选B.5.C在数轴上画出这个不等式组解集的可能区间,如下图∴a=1,2,3…9,共9个.∴b=3×8+1,3×8+2,3×8+3,…,3×8+8.共8个.∵9×8=72(个),故选C.二、填空题6.解如图,过A作AG⊥BD于G,∵“等腰三角底边上的任意一点到两腰距离的和等于腰上的高”.∴PE+PF=AG.∵AD=12,AB=5,∴BD=13.7.解如图,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,9),作AA1,BB1分别垂直于x轴,垂足为A1,B1,∴S△OAB=S梯形AA1B1B-S△AA1O-S△BB1O8.解如图,当圆环为3个时,链长为3a+故a可取1,3或5.10.解如图,设经过t小时后,A船、B船分别航行到A1,B1,设AA1=x,于是BB1=2x.∴A1C=|10-x|,B1C=|10-2x|.三、解答题11.解法1 过C作CD⊥CE与EF的延长线交于D,∵∠ABE+∠AEB=90°,∠CED+∠AEB=90°,∴∠ABE=∠CED.于是Rt△ABE∽△CED,又∠ECF=∠DCF=45°,所以,CF是∠DCE的平分线,点F到CE和CD的距离相等.解法2 作FH⊥CE于H,设FH=h.∵∠ABE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠ABE=∠FEH.∴Rt△EHF∽Rt△BAE.即EH=2h,又∵HC=FH,12.解(1)因为抛物线与x轴只有一个交点,所以一元二次方程(2)由(1)知,a2=a+1,反复利用此式可得a4=(a+1)2=a2+2a+1=3a+2,a8=(3a+2)2=9a2+12a+4=21a+13,a16=(21a+13)2=441a2+546a+169=987a+610.a18=(987a+610)(a+1)=987a2+1597a+610=2584a+1597.∵a2-a-1=0,∴64a2-64a-65=-1,即(8a+5)(8a-13)=-1.∴a18+323a-6=2584a+1597+323(-8a+13)=5796.13.解(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.∴5≤x≤9.∴W=-800x+17200(5≤x≤9,x是整数)由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+400(19-x-y)+500(x+y-10)=-500x-300y-17200∴W=-500x-300y+17200,W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。
初中数学竞赛试题及答案汇编
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY?信利杯”全国初中数学竞赛试题 (17)2004年“TRULY?信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)c b c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( ) (A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
历年全国初中数学竞赛试卷及答案解析
历年全国初中数学竞赛试卷及答案解析历年全国初中数学竞赛试卷及答案解析目录1998年全国初中数学竞赛试卷及答案解析 (3)1999年全国初中数学竞赛试卷及答案解析 (10)2000年全国初中数学竞赛试卷及答案解析 (19)2001年全国初中数学竞赛试卷及答案解析 (26)2002年全国初中数学竞赛试卷及答案解析 (34)2003年全国初中数学竞赛试卷及答案解析 (42)2004年全国初中数学竞赛试卷及答案解析 (53)2005年全国初中数学竞赛试卷及答案解析 (61)2006年全国初中数学竞赛试卷及答案解析 (69)2007年全国初中数学竞赛试卷及答案解析 (78)2008年全国初中数学竞赛试卷及答案解析 (91)2009年全国初中数学竞赛试卷及答案解析 (100)2010年全国初中数学竞赛试卷及答案解析 (110)2011年全国初中数学竞赛试卷及答案解析 (119)2012年全国初中数学竞赛试卷及答案解析 (128)2013年全国初中数学竞赛试卷及答案解析 (144)2014年全国初中数学竞赛预赛试题及参考答案 (153)1998年全国初中数学竞赛试卷及答案解析一、选择题(本大题共5小题,每小题6分,共30分).1、已知c b a ,,都是实数,并且c b a >>,那么下列式子中正确的是(B ).A. ;bc ab >B. ;c b b a +>+C. ;c b b a ->-D..cbc a > 【解析】B.根据不等式的基本性质.2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为(D ).A. 2;B. 4;C. ;3D. .5【解析】D..514)(14)()(.1.200422212212212121212=⇒⨯--=⇒-+=-∴⎩⎨⎧=-=+>⇒⎭⎬⎫>>-=∆p p x x x x x x x x px x x x p p p 为方程的两根,那么有、设由3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且64==⊥CE BD CE BD ,,,那么△ABC的面积等于(C ). A. 12; B. 14;C. 16;D. 18.【解析】C..16123434.4141.12642121=⨯==∴=-⇒=⇒∆=⨯⨯=⋅⋅=⇒⊥∆∆∆∆∆BCDE ABC ABC BCDE ABC ABC AED BCDE S S S S S S S ABC DE CE BD S CE BD DE 四边形四边形四边形的中位线是,则如图所示,连接Θ4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第()象限.(B ) A. 一、二; B. 二、三; C. 三、四; D. 一、四.【解析】B...11222.12.10.02)()(2一定通过第二、三象限直线过第二、三、四象限时,直线当过第一、二、三象限;时,直线当或或p px y x y p x y p p p cc c b a p c b a c b a p c b a p c b a pba c pa cb pcb a p b ac a c b c b a +=∴--=-=+==-==∴-=-=+=⇒=++=++=⇒++=++⇒⎪⎩⎪⎨⎧=+=+=+⇒=+=+=+ΘΘ5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有(C ). A. 17个; B. 64个; C. 72个; D. 81个.【解析】C..7298)(.832313029282726259987654321.322490483190.89个有,满足条件的整数有序对个,共,,,,,,,个;,共,,,,,,,,则依题意,知由原不等式组可得=⨯∴==∴⎩⎨⎧≤<≤<⇒⎪⎩⎪⎨⎧≤<≤<<≤b a b a b a b a b x a二、填空题(本大题共5小题,每小题6分,共30分).6、在矩形ABCD 中,已知两邻边AD =12,AB =5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE +PF =_____.【解析】.1360 .136013560135.1355125sin 135605125)12(sin .12)120(2222=-+=+∴=+⋅=∠⋅=-=+⨯-=∠⋅=∴-=<<=x x PF PE xx PAF AP PF xx PDE DP PE x DP x x AP ;,则如图所示,设FEADCBP7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于_____.【解析】6..639211121)31()91(21'.''').93()11(32''''2=⨯⨯-⨯⨯-+⨯+⨯=--=-=+-=∆∆∆O BB O AA B B AA OAB S S S S B A x BB AA B A x y x y 梯形则,轴,垂足分别为分别垂直于,作,,,的交点为与抛物线如图所示,直线8、已知圆环内直径为cm a ,外直径为cm b ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为_____cm .【解析】49a+b..49)150(225050242332222b a ab b b a ab b b a ab b +=-⨯--⋯⋯+=⨯--+=⨯--个时,链长为当圆环为;个时,链长为当圆环为;个时,链长为如图所示,当圆环为9、已知方程())(015132832222是非负整数其中a a a x a a x a =+-+--,至少有一个整数根,那么a =_____.【解析】1,3或5..53151322)2()83(2)15132(4)83()83(21222222222,或,可取故,a ax a x a a a a a a a a a a a a a x -=-=∴+±-=+---±-=Θ10、B 船在A 船的西偏北o 45处,两船相距km 210,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是_____km .【解析】52..52''620)6-(5)210()10(''''./.''.102221045sin 102221045cos 22222o o 取得最小值时,当则船的速度为并设处,船分别航行到船、小时后,设经过,如图所示,B A xt xt xt xt C B C A B A h km x A B A B A t AB BC AB AC =+=-+-=+==⨯=⋅==⨯=⋅=三、解答题(本大题共3小题,每小题20分,共60分).11、如图,在等腰ABC ∆中,o 901=∠=A AB ,,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积.AB CEF【解】解法一:.24161212121612214522122∽9090.o o o =⨯⨯=⋅⋅=∴=⇒=-∴=⇒=∠-=-=∴=⇒==∴=⇒∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆GF CE S GF GF GF GF CG C GFGE CE CG GF GE AEABGF GE GEABGF AE GEF Rt ABE Rt GEF ABE AEB GEF AEB ABE G CE FG CEF ΘΘ于如图所示,作解法二:241)21()(∽9090.22o o ==∴====∴∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆∆AEABCH CE CE AB CH AE AB CE S S CEH Rt ABE Rt CEH ABE AEB CEH AEB ABE H EF CE CH C ABE CEH ,的延长线交于,与作如图所示,过Θ.2412112141324132322.45o =⨯⨯⨯⨯=⨯==∴==∴⇒∠⇒=∠=∠∆∆∆∆∆ABE CHE CEF CHF CEF S S S CH CE S S CE CH F HCE CF HCF ECF 的距离相等、到的角平分线是Θ12、设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点.(1)求a 的值; (2)求618323-+a a 的值. 【解】.5796)138(323)15972584(3231381011)1(310113)2)(53(1115344)1(44)2()1(1212)1(12)1()1(11101159725846101597)1(9876101597987)1)(610987(610987169546)1(441169546441)1321()(1321412)1(94129)23()(2312)1(12)1()(101)1()2(.251010)452(4)12(.0452)12(.452)12()1(618224622224222222216182228162224822224222222=+-++=+∴+-=+-+=+-=+-+-=⋅=+-=+-+=+-=+-==+-=+-+=+-=-==-=∴=--+=+++=++=++=⋅=+=+++=++=+==+=+++=++=+==+=+++=++=+==+=∴=--±=∴=+-=+-+=∆∴=++++∴++++=-a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a x a x x a x a x y 又知,由,即有两个相等的实根一元二次方程轴只有一个交点的图像与抛物线ΘΘ13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值. 【解】.1420014200100142001720010300020017200)(300200.98009800810980017200183001020017200)(300200.1810100100172003005001810100100818010010017200300500)10(500)10(700)10(800)18(400300200.101010182.132005100009958218010017200800)102(500)10(700)10(800)218(400300200.10210102181元的最大值是,故时,,即当;又元的最小值是,故时,,即当是整数,,,且又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(元取到最大值时,元;当取到最小值时,所以,当又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(W W y x y x x W W W y x y x x W y x y x y x y x W y x y x y x y x y x y x y x y x y x W y x y x E y x y x D C B A W x W x x x x x x x x x x x W x x x E x x x D C B A ====+⨯-⨯-≤++--=====+⨯-⨯-≥++--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤+--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤⇒⎪⎩⎪⎨⎧≤--≤≤≤≤≤+--=-++-+-+--++=-+----==≤≤⇒⎩⎨⎧≤-≤≤≤+-=-+-+-+-++=----1999年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).14、一个凸n 边形的内角和小于1999°,那么n 的最大值是(C ).A. 11;B. 12;C. 13;D. 14.【解析】C.18019131999)2(180o o <⇒<-n n .15、某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费(B ). A. 60元; B. 66元; C. 75元; D. 78元.【解析】B.设4月份用户使用煤气x (x >60)立方米.则 60×0.8+1.2×(x -60)=0.88x .解得x =75. 故4月份该用户应交煤气费0.88×75=66元.16、已知11=-a a,那么代数式a a +1的值为(D ).A.;25 B. ;25-C. ;5-D. .5【解析】D..1111110②52321)1(113111110①2222222此时无解时,当;时,当-=+⇒=+⇒=-<=+=++=+=+⇒+∴=+⇒=-⇒=->a aa a a a a a aa a a a a a a aa a a a a17、在ABC ∆中,D 是边BC 上的一点,已知51065====CD BD AD AC ,,,,那么ABC ∆的面积是(B ). A. 30; B. 36; C. 72; D. 125.【解析】B..36524)510(212152454621214353621215.2222=⨯+⨯=⋅⋅=∴=⨯=⋅=⇒⋅⋅=⋅⋅=∴=-=-=∴=⨯==⇒⊥==⊥⊥∆∆AF BC S CD CE AD AF AF CD CE AD S AE AC CE AD AE AD CE CD AC F BC AF E AD CE ABC ADC ,则于,于如图所示,作18、如果抛物线1)1(2----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值是(A ). A. 1; B. 2;C. 3;D. 4.【解析】A.().1184)1(452522145221214524)]1([)1(444212)1(252)1(4)1(4)(11.01)1(32222212222221221212121212取得最小值时,当,,则,的两实根为设一元二次方程ABC C ABC S k k k kk k k k x x y AB S k k k k a b ac k k a b k k k k x x x x x x k x x k x x x x k x k x ∆∆-=++=++⋅++⋅=++⋅-⋅=⋅⋅=∴++-=-----=--=---=-++=----=-+=-∴--=-=+=----19、在正五边形ABCDE 所在的平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形,这样的不同的点P 的个数为(D ). A. 2; B. 3; C. 4; D. 5.【解析】D..③②①.31452P P BA B P BA BP P AB A P AB AP P P AB P BP AP ABP CD CD B P BCD PCD ,为半径的圆上,此时有为圆心,必在以时,点当;为半径的圆上,此时有为圆心,必在以时,点当;,的中垂线上,此时有必在线段时,点当是等腰三角形,则要使的对称直线上的直线或此直线关于且平行于一定在过点的面积相等,则点与如图所示,要使===∆∆∆二、填空题(本大题共6小题,每小题5分,共30分).20、已知231231-=+=y x ,,那么22y x +的值为_____. 【解析】10..10)23)(23(2)]23()23[(2)(23232312312222=+--++-=-+=+∴+=-=⇒-=+=xy y x y x y x y x ,,Θ21、如图,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上,且EB =10cm ,点P 在边DC 上运动,EP 与AB 的交点为F .设DP =xcm ,△EFB 与四边形AFPD的面积和为ycm 2,那么,y 与x 之间的函数关系式是_____(0<x <10).【解析】y=5x+50.50510)]215([2110)215(21)(2121215)215(10215)10(21)(212121101010∽+=⨯++⨯+⨯-⨯=⋅+⋅+⋅⋅=+=∴+=--=-=∴-=-=-==⇒=+==⇒∆∆∆x x x x AD AF DP BE BF S S y xx BF AB AF x x DP DC CP BF EC EB CP BF ECP EBF AFPD EFB 四边形Θ22、已知02022=-+≠b ab a ab ,,那么ba ba +-22的值为_____. 【解析】3135或. 35)2(2)2(22231222220)2)((0222=+-⨯--⨯=+-=+-=+-∴-==⇒=+-⇒=-+b b b b b a b a b b b b b a b a b a b a b a b a b ab a 或或Θ23、如图,已知边长为1的正方形OABC 在直角坐标系中,A 、B 两点在第Ⅰ象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是_____.【解析】)213213(+-,.212321232323130cos 2121130sin 2323130cos 2121130sin .o o o o +=+=+=-=-=-=∴=⨯=⋅==⨯=⋅==⨯=⋅==⨯=⋅=⊥⊥⊥AE BF FD BF BD AF OE DE OE OD AB BF AB AF OA OE OA AE F BD AF D x BD E x AE ,,,则于,轴于,轴于如图所示,作F EDCBOxyA24、设有一个边长为1的正三角形,记作A1(如图3),将A1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图4);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图5);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长_____.【解析】964..964])31(1)[43(316])31(1)[43(4)311()43(313.31433422321=⨯⨯=⨯⨯=⨯⨯⨯=⨯的周长是,的周长是,的周长是,的周长是为原来的条边,每条线段长度变把一条边变成变化规律为:每次变化AAAA25、江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等.如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机_____台.【解析】6..6103210316010103231601641640240台故至少需要抽水机,则水,每台抽水机每分钟抽,每分钟涌出的江水是涌出的江水是设使用抽水机抽水前已=⨯+=+⎪⎩⎪⎨⎧==⇒⎩⎨⎧⨯=+⨯=+ccccbacbcacbacbacba三、解答题(本大题共3小题,每小题20分,共60分).26、设实数ts,分别满足019991991922=++=++ttss,,并且1≠st,求tsst14++的值.【解】.519141991419199191991.199911119199)1(19919222-=++--=++∴⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=⋅-=+∴=++∴≠⇒≠=+⋅+⇒=++∴ssstsststssttstsxxtsststssss的两个不等实根是一元二次方程,Θ27、如图,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点是P,AB=BD,且PC=0.6,求四边形ABCD的周长.【解】如图所示,连接BO并延长交AD于H,连接OD.则HDPOAB.632213)6(36)2123()2221()()21(221316.0236.023∽∥909022222222222222o o +++∴=-=-==++⨯=++=+==-=-==-⨯=⋅=∴=⇒∆∆∴∠=∠⇒∴=∠⇒∠=∠=∠⇒≅∆∴的周长为四边形上的圆周角是直径ABCD AB AC BC OH BO AD BH AH AB CD AC AD OP CP OB CD CPOPCD OB CPD OPB CDP OBP CD BH ADC AC ADC DHB AHB DBH ABH Θ28、有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3.例如,30可以这样得到:30108413223−→−−→−−→−−→−⨯+⨯+.(1)证明:可以得到22; (2)证明:可以得到22297100-+.【解析】(1)倒过来考虑:①22假设是通过乘法得到,则必是×2; A ,11假设是通过+2得到; 9必是×3得到. 3必是+2得到.(*) B ,11假设是通过+3得到. 8必是×2得到. (A)4是+2得到; 2必是×2得到.(*) (B)4是+3得到.(*) ②22假设是通过加法得到.A ,假设是+2得到; 20必是×2得到. (A)10假设是+2得到; 8必是×2得到. a ,4是+2得到; 2必是×2得到.(*) b ,4是+3得到.(*) (B)10假设是+3得到. 7不能通过乘法得到,不满足.B ,假设是+3得到.19不能通过乘法得到,不满足. 故所有方法有148102022124810202214811221248112213911223-22-22-22-22-22-3-23-222-23-22-32-2−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−÷÷÷÷÷÷÷÷÷÷÷÷(2)倒过来考虑:148423)2293(423223423123322122222③)(2471416222)23247(222422122222②)(247222)2296(222422222①3-222-2952-952963-96396992-969929710023-22-1423-29598296993-969929710023-0322-96992971002-97100−→−−→−=-⨯→-÷−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-+−→−-+−→−-+−→−−→−−→−−→−=-+→÷-÷−→−−→−−→−⋯-+−→−-+−→−-+−→−-+−→−−→−=-+→÷-−→−−→−⋯-+−→−-+−→−-+÷÷÷÷÷÷÷÷÷÷÷÷÷÷,次不满足,,次不满足,次【解】证明:(1)22119312232−→−−→−−→−−→−⨯+⨯+. 或222010841222010842122118412211842122223222222232323222−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−+⨯+⨯++⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯证明:(2)222229129329123423)2292(423223423223423223197100972962963963962242323222223-+=-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯→⨯+−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−⨯+⨯+⨯+⨯+⨯+⨯+,次2000年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).29、设a,b,c的平均数为M,a,b的平均数为N,N,c的平均数为P,若cba>>,则M与P的大小关系是(B).A.;PM=B.;PM>C.;PM<D.不确定.【解析】B..1221221224234222223PMccccbaPMcbacbacbacbaPMcbacbacNPbaNcbaM>⇒=-+>-+=-∴>>-+=++-++=-∴++=++=+=+=++=ΘΘ,,30、某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是(C).【解析】C.图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S 的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意.31、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么(A).A. 甲比乙大5岁;B. 甲比乙大10岁;C. 乙比甲大10岁;D. 乙比甲大5岁.【解析】A.设甲、乙的年龄差是x 岁.则乙现在(10+x )岁,甲现在(25-x )岁,年龄差为[(25-x )-(10+x )]=15-2x 岁. 故15-2x =x ,即x =5.32、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有(B ). A. 4个; B. 5个; C. 6个; D. 7个.【解析】B..5012340419419)(419190)()4950()019().19(4549545)251(4954500000个点故共有,,,,是整数点,则上横纵坐标都是整数的是线段,设,,,则的一次函数的解析式是,平行,且过与直线----=⇒≤-=≤-⇒⎩⎨⎧=-≤≤∴--=-=--+=t x t t tx x AB y x B A x x y x y33、设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是(B ). A. ∠B >2∠A ; B. ∠B =2∠A ; C. ∠B <2∠A ;D. 不确定.【解析】B.BACD BAD D ABC DBAD D BAC DAC ABC DCACAC BC C C DAC ABC c a CD AB BD D CB c a b b a c b a b b a a b a c b a b a b a c b a b a b a ∠=∠=∠+∠=∠∴∠=∠∠=∠⇒∆∆∴=∠=∠∆∆+==+=⇒+++-++-=--⇒+++=--⇒+++=22∽.)()(Θ,中,和在,于是,使到如图所示,延长ca bcDC B A34、已知ABC ∆的三边长分别为c b a ,,,面积为S ,111C B A ∆的三边长分别为111c b a ,,,面积为S 1,且111c c b b a a >>>,,,则S 与S 1的大小关系一定是(D ). A. ;1S S > B. ;1S S < C. ;1S S = D. 不确定.【解析】D..2121214121..2.2.11111111111111111`111S S h CB S S h CB S S h CB h AB S CB AB S c c b b a a ABc b a h AB C B A AB c ABAB b a l C AB l AB B >>==<<⋅=⋅⋅=>>>===∆==>=时,;当时,;当时,当,而,,显然满足,则为为边的等边三角形,高是以,则上任一点为的中垂线,是的中点,是如图所示,二、填空题(本大题共6小题,每小题5分,共30分).35、已知:333124++=a ,那么=++32133aa a _____. 【解析】1..11)]12(1[1)11(1)1(113313313312111)2()124)(12()12(12433333323323233333333333=--+=-+=-+=-+++=++=++∴-=⇒=-=++-=-⇒++=aa a a a a a a a a a a a aa a Θ36、在梯形ABCD 中,o o 12045268∥=∠=∠==BAD BCD BC AB DC AB ,,,,,则梯形ABCD 的面积等于_____.【解析】3666+..36666)]3214(8[21)(21321468323223630tan30120.62264526.oooo+=⨯++=⋅+=∴+=++=++=∴=⨯=⋅=⇒=∠⇒=∠====⇒=∠=AECDABSFCEFDEDCAEDEDAEBADCFBFAEBCDBCFEDCBFAEABCD梯形,、于垂直、如图所示,作37、已知关于x的方程012)1(2=--+-axxa的根都是整数,那么符合条件的整数有_____个.【解析】5..5①②.32121112111②11①.0)]1()1)[(1(12)1(212个有知,符合条件的整数结合,,,,即,是整数知,,由,时,当;时,当aaaxaxxaxaaxaxaxxa-=±±=----==≠===++--⇒=--+-38、如图,工地上竖立着两根电线杆AB、CD,它们相距15米,分别自两杆上高出地面4米、6米的A、C处,向两侧地面上的E、D;B、F点处,用钢丝绳拉紧,以固定电线杆.那么钢丝绳AD与BC的交点P离地面的高度为_____米.【解析】2.4..4.24.21561541515615∽415∽.米离地面的高度是即点则于如图所示,作PPQPQPQBQQDPQCDBDPQBQBDBQCDPQBCDBPQPQABBDPQQDBDQDABPQDABDPQQBDPQ=⇒=+∴=+=⋅=⇒=⇒∆∆=⋅=⇒=⇒∆∆⊥Θ39、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线bxy+=31恰好将矩形OABC 分成面积相等的两部分,那么b=_____.【解析】0.5..211)515()0(===-==+b BQ OP S S b BQ b OP b Q b P OPQA BQPC,即,则要使,,知,,,由梯形梯形40、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是_____.)进价进价销售价(注:利润率%100⨯-=【解析】17%.%17%10017.117.1%8%100%100%)4.61(%)4.61(%.100%)4.61(%)4.61(%4.6%.100=⨯-==⨯--⨯---⨯---⨯-xxx xy x x y x x y xxy xxy y x 率为故这种商品原来的利润解得,依题意得,为后,在销售时的利润率原进价降低的利润率为元,那么按原进价销售元,销售价为设原进价为三、解答题(本大题共3小题,每小题20分,共60分).41、设m 是不小于-1的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根21x x ,.(1)若62221=+x x ,求m 的值; (2)求22212111x mx x mx -+-的最大值. 【解】.1011.101.11)11(25)23(2)13(2)13(2)1()13)(1(2)2882(1)42()33()]42)(33()10102[(1)()]([)1)(1()]1()1([11)2(.217511217561010210102)33(2)]2(2[2)()1(.1110)33(4)]2(2[.033)2(222212122222232222121212122212112222122212122222122122212222的最大值是故取得最大值时,当上是单调递减的在设根据题设,有有两个不相等的实数根方程x mx x mx y m m y m m m m y m m m m m m m m mm m m m m m m m m m m m m m x x x x x x x x x x m x x x x x x m x mx x mx m m m m m m m m m m x x x x x x m m m m m m m x m x -+--=∴<≤-<≤---=+-=+-=-+--=--+-=+-++--+-++-=++-+-+=---+-=-+--=∴<≤-±=⇒=+-∴+-=+----=-+=+<≤-<⇒>+---=∆∴=+-+-+ΘΘΘΘ42、如图,已知四边形ABCD 外接圆O 的半径为2,对角线AC 与BD 的交点为E ,322===BD AE AB EC AE ,且,,求四边形ABCD 的面积.【解】由题设,得ADAB ADB ABE ACBADB ACB ABE ACB ABE BACEAB AB AE AC AB AC AE AB EC AE AE AB AE AB =⇒∠=∠∴∠=∠∠=∠⇒∆∆∴∠=∠=⇒⋅=⇒⎭⎬⎫==⇒=ΘΘ∽2222232333.313221211121)3(233221212222=+=+=∴==∴=⨯⨯=⋅⋅=∴=-=-==-=-=∴=⨯===⇒∆≅∆∴∠=∠⇒∆≅∆∆∆∆∆∆ABD CBD ABCD ABD CBD ABD S S S S S AC E AH BD S OH OA AH BH OB OH BD DH BH ADH ABH DAO BAO ADO ABO H BD AO DO BO AO 四边形的中点是,,则于交,、、如图所示,连接Θ43、一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次.对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)【解】易知,这32个人恰好是第2至第33层各住1人.先证明:要使不满意的总分达到最小,则对于每个乘电梯上、下楼的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数.证明:设乘电梯上、下楼和直接走楼梯上楼的2个人分别住第s 和第t 层. 并设电梯停在第x 层.①当x ≤s 时,这两者不满意总分为3(s -x )+3(t -1)=3s +3t -3x -3.与t ,s 的大小关系无关; ②当x >s 时,这两者不满意总分为(x -s )+3(t -1)=3t +x -s -3,要使总分最小,则t <s . 故s <t ,即乘电梯上、下楼的人,他所住的层数大于直接走楼梯上楼的人所住的层数. 今设电梯停在第x 层,并设住在第2层到第a (a <x )层的人直接走楼梯上楼. 那么不满意总分为:.31672774101316)7(815)4101(216832)101(22)33)(34(32)1)((2)1(32)33)](33(1[32)1)](1(1[2)1)](1(1[3)]33(21[3)]1(21[)]1(21[32222取得最小值时,当S a x a a x a a x a a x a x x x a x a x a a x x a x a x a a x a x a S ⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=+-++-=+-++-=--+---+-=--+⨯+----++--+⨯=-+⋯+++--+⋯+++-+⋯++= 所以,当电梯停在第27层时,这32个人不满意的总分达到最小,最小值为316分.2001年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).44、化简)2(2)2(2234++-n n n ,得(C ). A. ;8121-+nB. ;12+-nC. ;87 D. .47【解析】C.872122)12(2222)2(2)2(223343141434=-=-=-=-+++++++n n n n n n n n .45、如果c b a ,,是三个任意整数,那么222ac c b b a +++,,(C ). A. 都不是整数; B. 至少有两个整数; C. 至少有一个整数; D. 都是整数.【解析】C.①若a ,b ,c 中有0个奇数,则3个数都是整数; ②若a ,b ,c 中有1个奇数,则只有1个数是整数; ③若a ,b ,c 中有2个奇数,则只有1个数是整数; ④若a ,b ,c 中有3个奇数,则3个数都是整数.46、如果b a ,是质数,且01301322=+-=+-m b b m a a ,,那么baa b +的值为(B ). A.;22123B.;或222125C.;22125D..222123或 【解析】B.①当a =b 时,2=+=+aa a ab a a b ; ②当a ≠b 时,a ,b 是一元二次方程x 2-13x +m =0的两实根.故a +b =13. 又a ,b 是质数,故a =2,b =11或a =11,b =2.故22125112211=+=+b a a b . 47、如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B ).A. 6;B. 8;C. 10;D. 12.【解析】B.设正方形的边长为a ,则分成的矩形的长为a /2.宽为(a -a /2)/2=a /4,故中间竖排有4个.所以,正方形分成8个全等的矩形.48、如图,若PA =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC 等于(B ).A. 6;B. 7;C. 12;D. 16.【解析】B.如图所示,以P 为圆心,以PA =PB 为半径作圆,延长BD 交圆于M .则由∠APB =2∠ACB ,知点C 必在⊙P 上.故根据相交弦定理,有AD •DC =BD •DM =(PB -PD )(PM +PD )=(4-3)×(4+3)=7.49、若b a ,是正数,且满足)111)(111(12345b a -+=,则b a 和之间的大小关系是(A ).A. ;b a >C. ;b a <D. 不能确定.【解析】A.由12345=(111+a )(111-b ),得111(a -b )-ab =24>0,故a >b .二、填空题(本大题共6小题,每小题5分,共30分).50、已知:23232323-+=+-=y x ,.那么=+22y x x y _____. 【解析】970.9701101310)()(3)(110625625232323232323223322=⨯⨯-=+-+=+=+∴⎩⎨⎧==+⇒⎩⎨⎧+=-=⇒⎪⎪⎩⎪⎪⎨⎧-+=+-=xy y x xy y x y x y x y x xy xy y x y x y x Θ.51、若281422=++=++x xy y y xy x ,,则y x +的值为_____.【解析】6或-7.两式相加,得(x +y )2+(x +y )-42=0,即[(x +y )-6][(x +y )+7]=0,故x +y =6或-7.52、用长为1,4,4,5的线段为边作梯形,那么这个梯形的面积等于_____.【解析】1036或.①若1,4为底.如图所示,延长DA ,CB 相交于G ,并设AG =x ,BG =y ,则35345414==⇒+==+⇒==y x y y x x GC GB DC AB GD GA ,.在△GAB 中,GA 2+AB 2=GB 2,故△GAB 是直角三角形,即∠D =∠GAB =90o .于是,S =(AB +DC )·AD /2=(1+4)·4/2=10. ②若1,5为底.如图所示,作AE 、BF 垂直DC 于E 、F .则DE =CF =(5-1)/2=2,32242222=-=-=DE AD AE .于是,3632)51(21)(21=⨯+=⋅+=AE DC AB S .③若4,4为底.应为平行四边形,但不满足.④若4,5为底.则1,4为腰,由于1+4=5,故不满足.53、销售某种商品,如果单价上涨%m ,则售出的数量就将减少150m.为了使该商品的销售总金额最大,那么m 的值应该确定为_____.【解析】25.设这种商品的原单价为A ,原销售量为B ,销售总额为W ,则)1500050(15000150150100100)1501(%)1(2---=-⋅+⋅=-⋅+=m m AB m m AB m B m A W当25250=--=m 时,W 取得最大值.54、在直角坐标系xOy 中,x 轴上的动点)0(,x M 到定点)12()55(,、,Q P 的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,点M 的横坐标=x _____.【解析】25.如图所示,作P 关于x 轴的对称点P’.则MP +MQ =MP’+MQ ,故当Q 、M 、P’三点共线时,MP +MQ最小.过P’,Q 分别作x 轴的垂线,垂足分别为I ,H .于是255251'=⇒--=⇒=x x x IM HM I P QH . 55、已知实数b a ,满足22221b a ab t b ab a --==++,且,那么t 的取值范围是_____.【解析】313-≤≤-t . 31)1(2123113121210)(211310)(231122222222222222-=--⨯≥-=--=-=-⨯≤-=--=∴-≥⇒≥+=++=+⇒++=≤⇒≥-=+-=-⇒++=ab b a ab t ab b a ab t ab b a b ab a ab b ab a ab b a b ab a ab b ab a Θ.三、解答题(本大题共3小题,每小题20分,共60分).56、某个学生参加军训,进行打靶训练,必须射击10次.在第6、第7、第8、第9次射击中,分别得了9.0环、8.4环、8.1环、9.3环.他的前9次射击所得的平均环数高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环.那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)【解】设前5次射击的平均环数为x ,则前9次射击的平均环数为98.34593.91.84.80.95+=++++x x . 由题设知,x x >+98.345,即7.8<x . 故前9次的总环数至多为8.7×9-0.1=78.2.所以,第10次射击至少得8.8×10+0.1-78.2=9.9(环).57、如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线,过点P 作⊙O 的割线PAB ,交⊙O 于A ,B 两点,并交ST 于点C .求证:)11(211PBPA PC +=.【解】如图所示,作OE ⊥AB 于E ,连接OP 交ST 于F ,连接OT .PBPA PB PA PB PA PC PB PA PC PB PA PE PC PB PA PE PC PB PA PBPA PT PAB PT POPF PT POPTPT PF PTO PFT PEPC PO PF PE PFPO PC POE PCF BEAE ST OP 112)(222.∽∽22+=⋅+=∴+⋅=⋅⇒⋅=⋅⇒⋅=⋅∴⋅=⇒⋅=⇒=⇒∆∆⋅=⋅⇒=⇒∆∆∴=⊥∴是割线是切线,,ΘΘ58、已知:关于x 的方程01)1)(72()1)(1(22=+-+---x x a x x a 有实根. (1)求a 取值范围;(2)若原方程的两个实数根为21x x ,,且113112211=-+-x x x x ,求a 的值.【解】(1)令1-=x xt ,得)1(1≠-=t t t x . 原方程转化为关于t 的方程01)72()1(22=++--t a t a 有不为1的实数根. ①当a 2-1=0时,符合题意; ②当a 2-1≠0时,28530)1(4)]72([22-≥⇒≥--+-=∆a a a . 若t =1,则22101)72()1(2±=⇒=++--a a a . 故a 的取值范围是2212853±≠-≥a a 且. (2))(3810113172113111721)72(112122211222211舍去,-==⇒=-+∴=-+--+=-+--=-+-a a a a x x x x a a a a x x x x Θ.所以,a 的值为10.2002年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).59、设ab b a b a 4022=+<<,,则ba ba -+的值为(A ). A. ;3 B. ;6 C. 2; D. 3.【解析】A ..3242422)()()(0002222222=-+=-+++=-+=-+=-+∴>-+⇒⎩⎨⎧<+<-⇒<<abab abab ab b a ab b a b a b a b a b a b a b a b a b a b a b a b a Θ60、已知200219992001199920001999+=+=+=x c x b x a ,,,则多项式ca bc ab c b a ---++222的值为(D ). A. 0; B. 1; C. 2; D. 3.【解析】D..3]2)1()1[(21])()()[(21222222222=+-+-=-+-+-=---++a c c b b a ca bc ab c b a61、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于(D ).A. ;65B. ;54 C. ;43 D. .32【解析】D..32612)(261412412....=⨯-=+-=∴=+⇒⎪⎩⎪⎨⎧=+==+=∴====∴=∆∆∆∆∆∆a a a S y x S S S ay x a y x S a y x S y S S x S S BC AB ABCD F E BG a S ABCD ABCD ABCDAGCD ABF CBE AGE BGE BGF CGF ABCD 矩形矩形矩形四边形矩形,的中点、的边是矩形、如图所示,连接设Θ62、设c b a 、、为实数,323232222πππ+-=+-=+-=a c z c b y b a x ,,,则z y x 、、中至少有一个值(A ). A. 大于0; B. 等于0; C. 不大于0; D. 小于0.【解析】A..00)3()1()1()1(222323232222222222中至少有一个大于、、,,z y x c b a c b a c b a z y x a c z c b y b a x ∴>-+-+-+-=+---++=++∴+-=+-=+-=ππΘ63、设关于x 的方程09)2(2=+++a x a ax 有两个不等的实数根21211x x x x <<,且,,那么a 的取值范围是(D ). A. ;5272<<-a B. ;52>aC. ;72-<aD. .0112<<-a 【解析】D..0112102012901)(0)1)(1(121212121<<-⇒-<+⇒<+++∴<++-⇒<--⇒<<a a a a a x x x x x x x x Θ64、9321A A A A ⋯是一个正九边形,b A A a A A ==3121,,则51A A 等于(D ).A. ;22b a +B. ;22b ab a ++C. ;)(21b a + D. .b a +【解析】D.ba A A A A P A A A P A A A A PA A PA A PA A PA A A A A A A A A A A PA A PA A A A Ab A A A A A A P A A A A +=+=+==∴∆∆∴=+=∠=∠∴=-=∠=∠∆=-=∠=∠∴=-⨯⋯==42212211515142oo o 2442ooo243423432oo o 3432o o 93213142424521.602040202140180.40140180.1409)29(180..是等边三角形是等边三角形,中,在的每个内角都为正九边形则,连接相交于点,如图所示,延长Θ6A二、填空题(本大题共6小题,每小题5分,共30分).65、设21x x 、是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为_____.【解析】863-. .863863)49(21892)2(9)(29)(25]2)[(25)(2)2)(2(.04)2()2(4222212212121221212221122122-≤---=-+-=-+-⨯-=++-=+-+-=++-=-->+-=--=∆a a a a a x x x x x x x x x x x x x x x x x x a a a a 为一切实数知,由66、已知b a 、为抛物线2))((----=d c x c x y 与x 轴交点的横坐标,b a <,则b c c a -+-的值为_____.【解析】b-a...))((a b c b a c b c c a b c a x d c x c x y d c c -=-+-=-+-∴<<---=+则轴的交点与是抛物线,如图所示,67、如图,在△ABC 中,∠ABC =60o ,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB=_____.【解析】34..3468∽6060120o o o =⨯=⋅=∴=∴∆∆∴∠=∠∴=∠+∠=∠+∠∴=∠=∠⇒∠=∠=∠PC PA PB PBPAPC PB PBCPAB PBC PAB PBC PBA PBA PAB BPC APB CPA BPC APB ΘΘ68、如图,大圆O 的直径cm a AB =,分别以OA 、OB 为直径作⊙O 1、⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形O 1O 2O 3O 4的面积为_____cm 2.【解析】261a ..61322212132)62(22.6)4()4()2(244⊙24321343222331134321a a a O O O O S aa a OO O O a x x a a x a xa OO x a O O a OO x O O O O O =⨯⨯=⋅⋅=∴=-⨯==∴=⇒+=+-∴-=+==菱形,,,则的半径为设69、满足1)1(22=--+n n n 的整数n 有_____个.【解析】4.201211211021)1(2222,,,是偶数或或--=⇒⎩⎨⎧-=--+=--=+⇒=--+n n n n n n n n n n70、某商品的标价比成本高%p ,当该商品降价出售时,为了不亏本,售价的折扣(即降价的百分数)不得超过%d ,则d 可以用p 表示为_____.【解析】ppd +=100100. .100100%)1%)(1(ppd a d p a a +=⇒=-+,则设成本为三、解答题(本大题共3小题,每小题20分,共60分).。
初中数学竞赛试题及答案大全
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY?信利杯”全国初中数学竞赛试题 (17)2004年“TRULY?信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
初中数学竞赛试题及答案汇编
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY?信利杯”全国初中数学竞赛试题 (17)2004年“TRULY?信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cbc a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( ) (A)12(B)14(C)16(D)184、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
1998年全国初中数学联赛试题(含标准答案)
1998年全国数学联赛试卷一、选择题:(每小题6分,共30分)1、已知a、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)c b c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C )3(D)53、在△ABC 中,已知B D和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C )16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C )72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边A D=12,A B=5,P 是AD 边上任意一点,PE ⊥BD,PF ⊥AC,E、F分别是垂足,那么PE+PF=___________。
7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OA B的面积等于___________。
8、已知圆环内直径为a c m,外直径为bcm,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程()015132832222=+-+--a a x a a x a (其中a是非负整数),至少有一个整数根,那么a =___________。
10、B 船在A 船的西偏北450处,两船相距210km,若A船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A、B两船的最近距离是___________km 。
1998年全国初中数学联合竞赛试题答案
1998年全国初中数学联赛参考答案一、选择题1.B根据不等式性质.2.D由△=p2-4>0及p>2,设x1,x2为方程的两根,那么有x+x2=-p,x1x2=l.又由1(x1-x2)2=(x1+x2)2-4x1x2,得l2=(-p)2-4.∴p2=5,3.C如图连ED,又∵DE是△ABC两边中点连线.故选C.4.B得2(a+b+c)=p(a+b+c).∴有p=2或a+b+c=0.当p=2时,y=2x+2.则直线通过第一、二、三象限.当a+b+c=0时,不妨取a+b=-c,于是∴y=-x-1,则直线通过第二、三、四象限.综合上述两种情况,直线一定通过第二、三象限,故选B.5.C在数轴上画出这个不等式组解集的可能区间,如下图∴a=1,2,3…9,共9个.∴b=3×8+1,3×8+2,3×8+3,…,3×8+8.共8个.∵9×8=72(个),故选C.二、填空题6.解如图,过A作AG⊥BD于G,∵“等腰三角底边上的任意一点到两腰距离的和等于腰上的高”.∴PE+PF=AG.∵AD=12,AB=5,∴BD=13.7.解如图,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,9),作AA1,BB1分别垂直于x轴,垂足为A1,B1,∴S△OAB =S梯形AA1B1B-S△AA1O-S△BB1O8.解如图,当圆环为3个时,链长为3a+故a可取1,3或5.10.解如图,设经过t小时后,A船、B船分别航行到A1,B1,设AA1=x,于是BB1=2x.C=|10-x|,B1C=|10-2x|.∴A1三、解答题11.解法1 过C作CD⊥CE与EF的延长线交于D,∵∠ABE+∠AEB=90°,∠CED+∠AEB=90°,∴∠ABE=∠CED.于是Rt△ABE∽△CED,又∠ECF=∠DCF=45°,所以,CF是∠DCE的平分线,点F到CE和CD 的距离相等.解法2 作FH⊥CE于H,设FH=h.∵∠ABE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠ABE=∠FEH.∴Rt△EHF∽Rt△BAE.即EH=2h,又∵HC=FH,12.解(1)因为抛物线与x轴只有一个交点,所以一元二次方程(2)由(1)知,a2=a+1,反复利用此式可得a4=(a+1)2=a2+2a+1=3a+2,a8=(3a+2)2=9a2+12a+4=21a+13,a16=(21a+13)2=441a2+546a+169=987a+610.a18=(987a+610)(a+1)=987a2+1597a+610=2584a+1597.∵a2-a-1=0,∴64a2-64a-65=-1,即(8a+5)(8a-13)=-1.∴a18+323a-6=2584a+1597+323(-8a+13)=5796.13.解(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.∴5≤x≤9.∴W=-800x+17200(5≤x≤9,x是整数)由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+400(19-x-y)+500(x+y-10)=-500x-300y-17200∴W=-500x-300y+17200,W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。
重点初中数学竞赛试题及参考答案汇编
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)20002001年20022003年“2004年“2005200620072008200920102011201220132014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a >2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )3,那么4)象限 5a 、b 6、PF ⊥AC ,7OAB 的面8、已知圆环内直径为acm ,外直径为bcm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a=___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
三、解答题:(每小题20分,共60分)11、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。
12、设抛物线()452122++++=a x a x y 的图象与x 轴只有一个交点,(1)求a 的值;(2)求618323-+a a 的值。
1998年全国初中数学联赛试题及答案(修正版)
P M A B C1998年全国初中数学联合竞赛试题 第一试1. 设m =5+1,那么m +1m的整数部分是 .2. 在直角三角形ABC 中,两条直角边AB ,AC 的长分别为1厘米,2厘米,那么直角的角平分线的长度等于 厘米.3. 已知x 2-x -1=0,那么代数式x 3-2x +1的值是 .4. 已知m ,n 是有理数,并且方程x 2+mx +n =0一个根是25-,那么m +n 的值是 .5. 如图,ABCD 为正方形,A ,E ,F ,G 在同一条直线上,并且AE =5厘米,EF =3厘米,那么FG = _____厘米.6. 满足19982+2m =19972+2n )19980(<<<n m 的整数对),(n m ,共有 _______个.7. 设平方数y 2是11 个连续整数的平方和,则y 的最小值是 .8. 直角三角形ABC 中,直角边AB 上有一点M ,斜边BC 上有一点P , 已知MP ⊥BC ,△BMP 的面积等于四边形MPCA 的面积的一半, BP =2厘米, PC =3厘米,那么直角三角形ABC 的面积是 _________平方厘米.BA G A BC DE F 9. 已知正方形ABCD 的面积35平方厘米, E , F 分别为边AB , BC 上的点, AF , CE 相交于点G ,并且△ABF 的面积为5平方厘米, △BCE 的面积为14平方厘米,那么四边形BEGF 的面积是____________平方厘米.10. 把100个苹果分给若干个人,每人至少分一个,且每人分的数目各不相同,那么至多有_________ 人.11. 设a ,b 为实数,那么a 2+ab +b 2-a -2b 的最小值是 __________.12. 在1, 2, 3,……,98共98个自然数中,能够表示成两整数的平方差的个数是 _______.13. 在右边的加法算式中,每一个□表示一个数字,任意两个数字都不相同,那么A 与B 乘积的最大值是 ____________.14. 直线AB 和AC 与圆O 分别为相切于B ,C 两点,P 为圆上一点,P 到AB ,AC 的距离分别为4厘米,6厘米,那么P 到BC 的距离为 厘米.15. 每一本书都有一个国际书号: A B C D E F G H I J ,其中A B C D E F G H I 由九个数字排列而成,J 是检查号码.令S =10A +9B +8C +7D +6E +5F +4G +3H +2I , x 是S 除以11所得的余数,若x 不等于0或1,则规定J =11-x .(若x =0,则规定J =0;若x =1,规定J 用x 表示)现有一本书的书号是962y 707015,那么y = .第二试1.求所有正实数a,使得方程x2-ax+4a=0仅有整数根.2.已知P为□ABCD内一点,O为AC与BD的交点,M、N分别为PB,PC的中点,Q为AN 与DM的交点,求证:(1)P,Q,O三点在一条直线上;(2)PQ=2OQ.3. 试写出5个自然数,使得其中任意两个数中的较大的一个数可以被这两个数的差整除.1998年答案第 一 试1. 3 15+=m ,4151511-=+=m , ∴ 435451+=+m m ,31=⎥⎦⎤⎢⎣⎡+m m . 2. 322 如图,AD 为直角A 的平分线,过B 作DA BE //交CA 的延长线于点E .=∠EBA ︒=∠45BAD ,1==AB AE ,2=EB ,又C D A ∆∽CBE ∆,32==CE AC EB AD ,∴32232==EB AD .3.22)1()(122233+--+--=+-x x x x x x x22)1()1(22=+--+--=x x x x x .4.3因为m 、n 为有理数,方程一根为25-,那么另一个根为25--,由韦达定理. 得 4=m ,1-=n ,∴3=+n m .5.316 由原图AE FG EF AE EG ED BE EF AE +===, ∴ EF EF AE FG -=23163352=-=(厘米).6.1647175399522⨯⨯==-m n ,47175))((⨯⨯=+-m n m n .显然,对3995的任意整数分拆均可得到(m ,n ),故满足条件的整数对(m ,n )共162222=⨯⨯⨯(个).7.1111个相继整数的平方和为22222)5()4()4()5(+++++++-+-x x x x x 22)10(11y x =+=,则y 最小时,从而12=x ,∴11=y .8.39∵ MBP ∆∽CBA ∆,3:1:=∆∆CBA MBP S S , 3:1:=BA BP ,∴ 32=BA ,13=AC . 39133221=⋅⋅=∆ABC S .9.27204 ∵ 72==∆∆ABC ABF S S BC BF ,同理54=BA BE , 由原图,连BG . 记a S AGE =∆,b S EGB =∆,c S BGF =∆,d S EGc =∆.又由已知 5=++c b a ,14=++d c b ,解之得 2728=b , 27100=c .∴ )(2720427128平方厘米==+=c b S BEGF .10.13 由题意,设有n 人,分苹果数分别为1,2,…,n2)1(321+=++++n n n ≤100, ∴ n ≤13,所以至多有13人.11.-1 b a b ab a 222--++b b a b a 2)1(22-+-+= 412343)21(22--+-+=b b b a 1)1(43)21(22--+-+=b b a ≥-1. 当 021=-+b a ,01=-b , 即 0=a ,1=b 时,上式不等式中等号成立,故所求最小值为 -1.12.73对 ))((22m n m n m n x -+=-= (1≤m <n ≤98 m ,n 为整数)因为n +m 与n -m 同奇同偶,所以x 是奇数或是4的倍数,所以1至98共98个自然数中,满足条件的数有49+24=73个.13.15设算式a c f Bb e A d h + g 显然:g =1,d =9,h =0. a +c +f =10+B b +e =9+A∴ A ≤6.35876543219)(2=++++++=++B A .∴ 8=+B A .欲令A ·B 最大,取A =5,B =3,此时b ,e 为6,8;a ,c ,f 为2,4,7,故A ·B 最大值为15.14.62如图,AB PM ⊥,AC PN ⊥,BC PQ ⊥.P,Q,C,N 四点共圆,P,Q,B,N 四点共圆, NPQ NCQ MBQ MPQ ∠=∠-︒∠=∠-︒=∠180180,QNP BCP MBP MQP ∠=∠=∠=∠,∴ MPQ ∆∽QPN ∆, NPPQ PQ MP =, 62=⋅=NP MP PQ (厘米).15.7 213047506778296109⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=y S∴ S 被11除所得的余数等于17+y 被11除所得的余数.由检查号码可知,S 被11除所得的余数是11-5=6,因此7y 被11除所得余数为6-1=5, ∴y =7第 二 试一、设两整数根为x ,y (x ≤y ),则⎩⎨⎧>=>=+04,0a xy a y x2a ≤y ≤a ,4≤x ≤8.可推出4≠x , ∴ 42-=x x a ,由于x 为整数, ∴ 5=x 时,25=a ,20=y ; 6=x 时,18=a ,12=y ;7=x 时,a 不是整数;8=x 时,16=a ,8=y .于是25=a 或18或16均为所求.二、证明 如原图,连PO ,设PO 与AN ,DM 分别交于点'Q ,''Q .在PAC ∆中,∵OC AO =,NC PN =,∴'Q 为重心,'2'OQ PQ =在PDB ∆中,∵BO DO =,MP BM =,∴''Q 为重心,''2''OQ PQ =这样'''Q Q =,并且'Q ,''Q 就是AN ,DM 的交点Q .故P ,Q ,O 在一条直线上,且OQ PQ 2=.三、1680,1692,1694,1695,1696为满足条件的5个数(注:答案不唯一)以上5个数可用以下步骤找出:第一步:2,3,4为满足要求的三个数.第二步:设a ,a +2,a +3,a +4为满足条件的四个数,则a 可被2,3,4整除.取a =12,得满足条件的四个数12,14,15,16.第三步:设b ,b +12,b +14,b +15,b +16.取12,14,15,16的最小公倍数为b .即b =1680,得满足条件的五个数1680,1692,1694,1695,1696.。
初中数学竞赛试题及答案汇编
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI 杯全国初中数学竞赛试题B 卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY®信利杯”全国初中数学竞赛试题 (17)2004年“TRULY®信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018年初中数学联赛试题 (105)才哥数学 4816598821998 年全国初中数学竞赛试卷一、选择题:(每小题 6 分,共 30 分)1、已知 a 、b 、c 都是实数,并且 a b c ,那么下列式子中正确的是( )(A) abbc (B) a b b c (C) a b b c (D)a bc c2、如果方程 x px 10p 0的两根之差是 1,那么 p 的值为( )(A)2(B)4(C) 3 (D) 53、在△ABC 中,已知 BD 和 CE 分别是两边上的中线,并且 BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知 abc0 ,并且p ,那么直线 y p x p 一定通过第( c a b)象限(A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组 9x a 0 8x b 0的整数解仅为 1,2,3,那么适合这个不等式组的整数 a 、b 的有序数对(a 、b )共有( )(A)17 个(B)64 个(C)72 个(D)81 个二、填空题:(每小题 6 分,共 30 分)6、在矩形 ABCD 中,已知两邻边 AD=12,AB=5,P 是 AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足, 那么 PE+PF=___________。
初中数学竞赛试题及答案汇编
全国初中数学竞赛初赛试题汇编〔1998-2021〕目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY®信利杯〞全国初中数学竞赛试题 (17)2004年“TRULY®信利杯〞全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2021年全国初中数学竞赛试题 (46)2021年全国初中数学竞赛试题 (47)2021年全国初中数学竞赛试题 (52)2021年全国初中数学竞赛试题 (57)2021年全国初中数学竞赛试题 (60)2021年全国初中数学竞赛试题 (73)2021年全国初中数学竞赛预赛 (77)2021年全国初中数学竞赛预赛 (85)2021年全国初中数学联合竞赛试题 (94)2021年全国初中数学联赛初赛试卷 (103)2021 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:〔每题6分,共30分〕1、a 、b 、c 都是实数,并且c b a >>,那么以下式子中正确的选项是〔 〕 〔A〕bc ab >〔B〕c b b a +>+〔C〕c b b a ->-〔D〕cbc a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为〔 〕 〔A〕2〔B〕4〔C〕3〔D〕53、在△ABC 中,BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于〔 〕 〔A〕12〔B〕14〔C〕16〔D〕184、0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第〔 〕象限 〔A〕一、二〔B〕二、三〔C〕三、四〔D〕一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对〔a 、b 〕共有〔 〕〔A〕17个〔B〕64个〔C〕72个〔D〕81个二、填空题:〔每题6分,共30分〕6、在矩形ABCD 中,两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
1998年全国初中数学竞赛试题
1998年全国初中数学竞赛试题
佚名
【期刊名称】《天府数学》
【年(卷),期】1998(000)006
【摘要】1998年全国初中数学竞赛试题一、选择题1、已知a,b,c都是实数,并且a>b>c,那么下列式子中正确的是()(A)ab>bc(B)a+b>b+c(C)a-b>b-c(D)ac>bc2、如果方程x2+px+1=0(p>0)的两根之差为1,那么p等于(...
【总页数】3页(P48-50)
【正文语种】中文
【中图分类】O1
【相关文献】
1.全国初中数学竞赛试题特点浅析
2.2012年全国初中数学竞赛试题(副题)及参考答案
3.2012年全国初中数学竞赛试题及参考答案
4.1998年全国初中数学竞赛试题及解答
5.旋转法巧解一道全国初中数学竞赛试题
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1998年全国数学联赛试卷
一、选择题:(每小题6分,共30分)
1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)
c
b c a > 2、如果方程()0012
>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)5
3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )
(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且
p b
a
c a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限
(A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨
⎧<-≥-0
80
9b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的
有序数对(a 、b )共有( )
(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)
6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
7、已知直线32+-=x y 与抛物线2
x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。
8、已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程(
)
015132832
2
2
2
=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
三、解答题:(每小题20分,共60分)
11、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。
12、设抛物线()4
5
2122+
+++=a x a x y 的图象与x 轴只有一个交点,(1)求a 的值;(2)求6
18
323-+a a 的值。
13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台。
已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元。
(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值。
(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值。
1998年全国初中数学联赛参考答案
一、选择题 1.B
根据不等式性质. 2.D
由△=p 2-4>0及p >2,设x 1,x 2为方程 的两根,那么有x 1+x 2=-p ,x 1x 2=l .又由
(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,
得l 2=(-p)2-4.∴p 2=5,
3.C
如图连ED ,
A
B C
E
F
又∵DE是△ABC两边中点连线.
故选C.
4.B
得2(a+b+c)=p(a+b+c).
∴有p=2或a+b+c=0.
当p=2时,y=2x+2.则直线通过第一、二、三象限.
当a+b+c=0时,不妨取a+b=-c,于是
∴y=-x-1,则直线通过第二、三、四象限.
综合上述两种情况,直线一定通过第二、三象限,故选B.5.C
在数轴上画出这个不等式组解集的可能区间,如下图
∴a=1,2,3…9,共9个.
∴b=3×8+1,3×8+2,3×8+3,…,
3×8+8.共8个.
∵9×8=72(个),故选C.
二、填空题
6.解如图,过A作AG⊥BD于G,
∵“等腰三角底边上的任意一点到两腰距离的和等于腰上的高”.
∴PE+PF=AG.
∵AD=12,AB=5,
∴BD=13.
7.解如图,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,9),作AA1,BB1分别垂直于x轴,垂足为A1,B1,
∴S
△OAB =S梯形AA
1B1B
-S△AA
1O
-S△BB
1O
8.解如图,当圆环为3个时,链长为3a+
故a可取1,3或5.
10.解如图,设经过t小时后,A船、B船分别航行到A1,B1,设AA1=x,=2x.
于是BB
1
C=|10-x|,B1C=|10-2x|.
∴A
1
三、解答题
11.解法1 过C作CD⊥CE与EF的延长线交于D,
∵∠ABE+∠AEB=90°,
∠CED+∠AEB=90°,
∴∠ABE=∠CED.
于是Rt△ABE∽△CED,
又∠ECF=∠DCF=45°,所以,CF是∠DCE的平分线,点F到CE和CD 的距离相等.
解法2 作FH⊥CE于H,设FH=h.
∵∠ABE+∠AEB=90°,
∠FEH+∠AEB=90°,
∴∠ABE=∠FEH.
∴Rt△EHF∽Rt△BAE.
即EH=2h,
又∵HC=FH,
12.解(1)因为抛物线与x轴只有一个交点,所以一元二次方程
(2)由(1)知,a2=a+1,反复利用此式可得
a4=(a+1)2=a2+2a+1=3a+2,
a8=(3a+2)2=9a2+12a+4=21a+13,
a16=(21a+13)2=441a2+546a+169
=987a+610.
a18=(987a+610)(a+1)=987a2+1597a+610=2584a+1597.
∵a2-a-1=0,∴64a2-64a-65=-1,
即(8a+5)(8a-13)=-1.
∴a18+323a-6=2584a+1597+323(-8a+13)=5796.
13.解(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是
W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)
=-800x+17200.
∴5≤x≤9.
∴W=-800x+17200(5≤x≤9,x是整数)
由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;当x=5时,W取到最大值13200元.
(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是
W=200x+800(10-x)+300y+700(10-y)+400(19-x-y)+500(x+y-10)
=-500x-300y-17200
∴W=-500x-300y+17200,
W=-200x-300(x+y)+17200
≥-200×10-300×18+17200=9800.
当x=10,y=8时,W=9800.所以,W的最小值为9800.
又W=-200x-300(x+y)+17200
≤-200×0-300×10+17200=14200.
当x=0,y=10时,W=14200,所以,W的最大值为14200.。