最新-湖北省黄冈中学高考数学 典型例题31 数学归纳法解题 精品

合集下载

黄冈中学精炼100道

黄冈中学精炼100道

黄冈中学高考数学压轴题精编精解 精选100题,精心解答{完整版}1.设函数()1,121,23x f x x x ≤≤⎧=⎨-<≤⎩,()()[],1,3g x f x ax x =-∈,其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。

(I )求函数()h a 的解析式;(II )画出函数()y h x =的图象并指出()h x 的最小值。

2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若12,2a =则当n ≥2时,!n n b a n >⋅.3.已知定义在R 上的函数f (x ) 同时满足:(1)21212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数);个 个(2)(0)()14f f π==;(3)当0,4x π∈[]时,()f x ≤2求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围.4.设)0(1),(),,(22222211>>=+b a bx xy y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅ay bx ay bx ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5.已知数列{}n a 中各项为:12、1122、111222、 (111)⋅⋅⋅⋅⋅⋅ 222n ⋅⋅⋅⋅⋅⋅…… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .6、设1F 、2F 分别是椭圆22154xy+=的左、右焦点.(Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.7、已知动圆过定点P (1,0),且与定直线L:x=-1相切,点C 在l 上. (1)求动圆圆心的轨迹M 的方程;.B ,A M 3,P )2(两点相交于的直线与曲线且斜率为设过点-(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由 (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.8、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0;(3)证明:f(x)是R 上的增函数;(4)若f(x)²f(2x-x 2)>1,求x 的取值范围。

湖北省黄冈中学高考数学 典型例题3 运用向量法解题

湖北省黄冈中学高考数学 典型例题3 运用向量法解题

高考数学典型例题详解运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2), 求:(1)BC 边上的中线AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值.●案例探究[例1]如图,已知平行六面体ABCD —A 1B 1C 1D 1ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD . (1)求证:C 1C ⊥BD .(2)当1CC CD 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a ⊥b ⇔a ·b =0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设=a , =b ,1CC =c ,依题意,|a |=|b |,、、1CC 中两两所成夹角为θ,于是-==a -b ,CC ⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD .(2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由)()(1111CC AA C -⋅+=⋅=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cos θ=0,得当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD , ∴1CC CD =1时,A 1C ⊥平面C 1BD .[例2]如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值;(3)求证:A 1B ⊥C 1M .命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1) 解:如图,以C 为原点建立空间直角坐标系O -xyz .依题意得:B (0,1,0),N (1,0,1)∴||=3)01()10()01(222=-+-+-.(2) 解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2)11CB BA ⋅=1×0+(-1)×1+2×2=3 |1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB.1030563||||,cos 111111=⋅=⋅>=<∴CB BC CB BA (3) 证明:依题意得:C 1(0,0,2),M (2,21,21) )2,1,1(),0,21,21(11--==A C ∴,,00)2(21121)1(1111C A C A ⊥∴=⨯-+⨯+⨯-=⋅ ∴A 1B ⊥C 1M .●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?●歼灭难点训练一、选择题1. (★★★★) 设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD 为( )A.正方形B.矩形C.菱形D.平行四边形2. (★★★★) 已知△ABC=a ,=b ,a ·b <0,S△ABC =415,|a |=3,|b |=5,则a 与b 的夹角是( ) A.30° B.-150° C.150° D.30°或150°二、填空题3. (★★★★★) 将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),则向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,若AB=16 cm,AC=17 cm,则CD=_________.三、解答题5.(★★★★★)如图,在△ABC中,设=a,=b, =c, =λa,(0<λ<1), =μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为2a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M(-1,0),N(1,0),且点P使⋅,,成公差小于零的等差数列.⋅⋅(1)点P的轨迹是什么曲线?(2)若点P坐标为(x0,y0),Q为与的夹角,求tanθ.8.(★★★★★)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA .(1)用向量法证明E 、F 、G 、H 四点共面;(2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有)(41+++=.参考答案难点磁场解:(1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+- .2221)291()05(||22=--+-=∴ 5)21()15(||,10)71()15(||)2(2222=--+-==--++= D 点分的比为2.∴x D =31121227,3121121=+⨯+==+⨯+-D y .2314)3111()315(||22=--+-= (3)∠ABC 是与的夹角,而=(6,8),=(2,-5). 1452629291052)5(2)8(6)5()8(26||||cos 2222==-+⋅-+-⨯-+⨯=⋅=∴BC BA ABC 歼灭难点训练一、1.解析: =(1,2), =(1,2),∴=,∴∥,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又||=5, =(5,3),||=34,∴||≠|},ABCD 不是菱形,更不是正方形;又=(4,1),∴1·4+2·1=6≠0,∴不垂直于,∴ABCD 也不是矩形,故选D. 答案:D2.解析:∵21415=·3·5sin α得sin α=21,则α=30°或α=150°. 又∵a ·b <0,∴α=150°.答案:C二、3.(2,0) 4.13 cm三、5.解:∵与共线,∴=m =m (-)=m (μb -a ), ∴=+=a +m (μb -a )=(1-m )a +m μb ① 又与共线,∴=n =n (-)=n (λa -b ), ∴=+=b +n (λa -b )=n λa +(1-n )b②由①②,得(1-m )a +μm b =λn a +(1-n )b . ∵a 与b 不共线,∴⎩⎨⎧=-+=-+⎩⎨⎧-==-010111m n m n n m a m μλμλ即 ③ 解方程组③得:m =λμμλμλ--=--11,11n 代入①式得c =(1-m )a +m μb =πμ-11[λ(1-μ)a +μ(1-λ)b ]. 6.解:(1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23a a 2a ).(2)取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1,有1MC =(-23a ,0,0), 且=( 所以AC 与1所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.7.解:(1)设P (x ,y ),由M (-1,0),N (1,0)得, =-=(-1-x ,-y ),-= =(1-x ,-y ), =-=(2,0),∴·=2(1+x ), ·=x 2+y 2-1,⋅ =2(1-x ).于是,⋅⋅⋅,,是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆.(2)点P 的坐标为(x 0,y 0),30,1cos 21,3041||cos 42)24)(24()1()1(||||,2102020002020*******πθθθ<≤≤<∴≤<-=⋅=∴-=-+=+-⋅++=⋅=-+=⋅x x PN PM x x x y x y x y x ||3cos sin tan ,411cos 1sin 020202y x x =-==∴--=-=∴θθθθθ 8.证明:(1)连结BG ,则 +=++=++=+=)(21由共面向量定理的推论知:E 、F 、G 、H 四点共面,(其中21=) (2)因为21)(212121=-=-=-=. 所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH所以BD ∥平面EFGH .(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG由(2)知21=,同理21=,所以=,EH FG ,所以EG 、FH 交于一点M 且被M 平分,所以).(41)](21[21)](21[212121)(21+++=+++=+=+=.。

黄冈中学高考数学知识点与典型例题

黄冈中学高考数学知识点与典型例题

黄冈中学高考知识点与典型例题集合敬请搜索“黄冈中学高考数学知识点”结合起来看效果更好第一部分高考数学知识点重点难点解集合题首先想到Φ=方程无解一,数学思想应用1、数形结合思想在解集合题中的具体应用:数轴法, 文氏图法, 几何图形法数几文2、函数与方程思想在解集合题中具体应用:函数法方程法判别式法构造法3、分类讨论思想 在解集合题中具体应用:列举法 补集法 空集的运用 数学结合4、化归与转化思想 在解集合题中具体应用:列方程 补集法 文氏图法二,集合的含义与表示方法1、一般地,我们把研究对象统称为元素把一些元素组成的总体叫做集合2、集合元素三特性1.确定性;2.互异性;3.无序性3、 a 是集合A 的元素,a ∈A a 不属于集合A 记作 a ∉A 立体几何中体现为 点与直线/ 点与面 的关系元素与集合之间的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.4、非负整数集(自然数集)记作:N 含0正整数集N*或 N+ 不含0整数集Z 有理数集Q 实数集R3、集合表示方法: 列举法 描述法 韦恩图4、列举法:把集合中的元素一一列举出来,用大括号括上。

描述法:将集合中元素的共同特征描述出来,写在大括号内表用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:{不是直角三角形的三角形}②数学式子描述法:不等式x-3>2的解集是{x ∈R| x-3>2} {x| x-3>2}集合的分类: 有限集 无限集 空集三、集合间的基本关系“包含”关系—子集B A ⊆有两种可能立体几何中体现为 直线与面关系(a )A 是B 的一部分(b )A 与B 是同一集合。

反之: A ⊆/B B ⊇/A (c )A ∩B=A ⇔B A ⊆⇔C U B ⊆C U A(d )A ∪B=B ⇔B A ⊆⇔ C U B ⊆C U A(e )A B ⊆⇔C U A ⊆C U B2.“相等”关系(5≥5,且5≤5⇒5=5)① 任何一个集合是它本身的子集。

黄冈中学高考数学典型例题9:指数、对数函数

黄冈中学高考数学典型例题9:指数、对数函数

黄冈中学高考数学典型例题详解指数、对数函数指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点磁场(★★★★★)设f (x )=log 2xx -+11,F (x )=x-21+f (x ). (1)试判断函数f (x )的单调性,并用函数单调性定义,给出证明; (2)若f (x )的反函数为f -1(x ),证明:对任意的自然数n (n ≥3),都有f -1(n )>1+n n ; (3)若F (x )的反函数F -1(x ),证明:方程F -1(x )=0有惟一解.●案例探究[例1]已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一条直线上; (2)当BC 平行于x 轴时,求点A 的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:k OC =k OD .(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A 点坐标. 错解分析:不易考虑运用方程思想去解决实际问题.技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A 的坐标.(1)证明:设点A 、B 的横坐标分别为x 1、x 2,由题意知:x 1>1,x 2>1,则A 、B 纵坐标分别为log 8x 1,log 8x 2.因为A 、B 在过点O 的直线上,所以228118log log x x x x =,点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2),由于log 2x 1=2log log 818x ===2log log log ,log 38282218xx x 3log 8x 2,所以OC 的斜率:k 1=118212log 3log x x x x =, OD 的斜率:k 2=228222log 3log x x x x =,由此可知:k 1=k 2,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴知:log 2x 1=log 8x 2 即:log 2x 1=31log 2x 2,代入x 2log 8x 1=x 1log 8x 2得:x 13log 8x 1=3x 1log 8x 1,由于x 1>1知log 8x 1≠0,∴x 13=3x 1.又x 1>1,∴x 1=3,则点A 的坐标为(3,log 83).[例2]在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n 位于函数y =2000(10a )x(0<a <1)的图象上,且点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(1)求点P n 的纵坐标b n 的表达式;(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;(3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和最大?试说明理由.命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级题目.知识依托:指数函数、对数函数及数列、最值等知识.错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口. 技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.解:(1)由题意知:a n =n +21,∴b n =2000(10a )21+n .(2)∵函数y =2000(10a )x(0<a <10)递减,∴对每个自然数n ,有b n >b n +1>b n +2.则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n ,即(10a )2+(10a)-1>0,解得a <-5(1+2)或a >5(5-1).∴5(5-1)<a <10.(3)∵5(5-1)<a <10,∴a =7∴b n =2000(107)21+n .数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1.于是当b n ≥1时,B n <B n -1,当b n <1时,B n ≤B n -1,因此数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1,由b n =2000(107)21+n ≥1得:n ≤20.8.∴n =20.●锦囊妙计本难点所涉及的问题以及解决的方法有:(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力. (3)应用题目.此类题目要求考生具有较强的建模能力.●歼灭难点训练 一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),其中x ∈(-∞,+∞),那么( )A.g (x )=x ,h (x )=lg(10x +10-x +2)B.3.(★★★★★)已知函数f (x )=⎩⎨⎧<<--≥)02()(log )0( 22x x x x .则f --1(x -1)=_________.4.(★★★★★)如图,开始时,桶1中有a L 水,t 分钟后剩余的水符合指数衰减曲线y = ae -nt ,那么桶2中水就是y 2=a -ae -nt ,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有8a .三、解答题5.(★★★★)设函数f (x )=log a (x -3a )(a >0且a ≠1),当点P (x ,y )是函数y =f (x )图象上的点时,点Q (x -2a ,-y )是函数y =g (x )图象上的点.(1)写出函数y =g (x )的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值范围.6.(★★★★)已知函数f (x )=log a x (a >0且a ≠1),(x ∈(0,+∞)),若x 1,x 2∈(0,+∞),判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.7.(★★★★★)已知函数x ,y满足x ≥1,y ≥1.log a 2x +log a 2y =log a (ax 2)+log a (ay 2)(a >0且a ≠1),求log a (xy )的取值范围.8.(★★★★)设不等式2(log 21x )2+9(log 21x )+9≤0的解集为M ,求当x ∈M 时函数f (x )=(log 22x )(log 28x )的最大、最小值.参考答案 难点磁场解:(1)由xx-+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则F (x 2)-F (x 1)=(122121x x ---)+(11222211log 11log x x x x -+--+) )1)(1()1)(1(log )2)(2(212122112x x x x x x x x -++-+---=,∵x 2-x 1>0,2-x 1>0,2-x 2>0,∴上式第2项中对数的真数大于1. 因此F (x 2)-F (x 1)>0,F (x 2)>F (x 1),∴F (x )在(-1,1)上是增函数.(2)证明:由y =f (x )=x x -+11log 2得:2y =1212,11+-=-+y y x x x ,∴f -1(x )=1212+-x x ,∵f (x )的值域为R ,∴f --1(x )的定义域为R .当n ≥3时,f -1(n )>1221111221112121+>⇔+->+-⇔+>+-⇔+n n n n n n n n n n . 用数学归纳法易证2n >2n +1(n ≥3),证略.(3)证明:∵F (0)=21,∴F -1(21)=0,∴x =21是F -1(x )=0的一个根.假设F -1(x )=0还有一个解x 0(x 0≠21),则F -1(x 0)=0,于是F (0)=x 0(x 0≠21).这是不可能的,故F -1(x )=0有惟一解.歼灭难点训练一、1.解析:由题意:g (x )+h (x )=lg(10x +1)①又g (-x )+h (-x )=lg(10-x +1).即-g (x )+h (x )=lg(10-x +1)②由①②得:g (x )=2x,h (x )=lg(10x +1)-2x . 答案:C2.解析:当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数.答案:B二、3.解析:容易求得f- -1(x )=⎩⎨⎧<-≥)1( 2)1(log 2x x x x ,从而:f -1(x -1)=⎩⎨⎧<-≥--).2( ,2)2(),1(log 12x x x x答案:⎩⎨⎧<-≥--)2( ,2)2(),1(log 12x x x x4.解析:由题意,5分钟后,y 1=ae -nt ,y 2=a -ae -nt ,y 1=y 2.∴n =51l n 2.设再过t 分钟桶1中的水只有8a ,则y 1=ae -n (5+t )=8a,解得t =10. 答案:10三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′.∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log aax -21,∴g (x )=log a a x -1. (2)由题意得x -3a =(a +2)-3a =-2a +2>0;a x -1=aa -+)3(1>0,又a >0且a ≠1,∴0<a <1,∵|f (x )-g (x )|=|log a (x -3a )-log aax -1|=|log a (x 2-4ax +3a 2)|·|f (x )-g (x )|≤1,∴-1≤log a (x 2-4ax +3a 2)≤1,∵0<a <1,∴a +2>2a .f (x )=x 2-4ax +3a 2在[a +2,a +3]上为减函数,∴μ(x )=log a (x 2-4ax +3a 2)在[a +2,a +3]上为减函数,从而[μ(x )]max =μ(a +2)=log a (4-4a ),[μ(x )]mi n =μ(a +3)=log a (9-6a ),于是所求问题转化为求不等式组⎪⎩⎪⎨⎧≤--≥-<<1)44(log 1)69(log 10a a a aa 的解.由log a (9-6a )≥-1解得0<a ≤12579-,由log a (4-4a )≤1解得0<a ≤54, ∴所求a 的取值范围是0<a ≤12579-.6.解:f (x 1)+f (x 2)=log a x 1+log a x 2=log a x 1x 2,∵x 1,x 2∈(0,+∞),x 1x 2≤(221x x +)2(当且仅当x 1=x 2时取“=”号), 当a >1时,有log a x 1x 2≤log a (221xx +)2,∴21log a x 1x 2≤log a (221x x +),21(log a x 1+log a x 2)≤log a 221x x +, 即21[f (x 1)+f (x 2)]≤f (221x x +)(当且仅当x 1=x 2时取“=”号) 当0<a <1时,有log a x 1x 2≥log a (221xx +)2,∴21(log a x 1+log a x 2)≥log a 221x x +,即21[f (x 1)+f (x 2)]≥f (221x x +)(当且仅当x 1=x 2时取“=”号).7.解:由已知等式得:log a 2x +log a 2y =(1+2log a x )+(1+2log a y ),即(log a x -1)2+(log a y -1)2=4,令u =log a x ,v =log a y ,k =log a xy ,则(u -1)2+(v -1)2=4(uv ≥0),k =u +v .在直角坐标系uOv 内,圆弧(u -1)2+(v -1)2=4(uv ≥0)与平行直线系v =-u +k 有公共点,分两类讨论.(1)当u ≥0,v ≥0时,即a >1时,结合判别式法与代点法得1+3≤k ≤2(1+2); (2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.8.解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)( 21log x +3)≤0.∴-3≤21log x ≤-23.即21log (21)-3≤21log x ≤21log (21)23-∴(21)23-≤x ≤(21)-3,∴22≤x ≤8即M ={x |x ∈[22,8]}又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴23≤log 2x ≤3∴当log 2x =2,即x =4时y mi n =-1;当log 2x =3,即x =8时,y max =0.。

高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案数学归纳法是高中数学中非常重要的一种证明方法,它在数学推理和证明中具有广泛的应用。

通过运用归纳法,我们可以推出一般性的结论,从而能够解决更加复杂的数学问题。

在高三数学的学习中,熟练掌握数学归纳法的使用对于解题至关重要。

下面将为大家提供一些高三数学数学归纳法练习题及答案,希望能帮助大家更好地掌握该方法。

练习题一:证明:对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2答案一:首先,我们需要明确归纳假设的内容。

假设当n=k时,等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。

然后,我们需要证明当n=k+1时,等式也成立。

即1 + 2 + 3 + ... + (k+1) = (k+1)(k + 2)/2。

根据归纳假设,1 + 2 + 3 + ... + k = k(k + 1)/2。

我们需要证明:1 + 2 + 3 + ... + k + (k+1) = (k+1)(k + 2)/2。

将左边的式子进行展开得到: [1 + 2 + 3 + ... + k] + (k+1)。

由归纳假设,我们可以将其中的[1 + 2 + 3 + ... + k]替换成k(k + 1)/2,得到: k(k + 1)/2 + (k+1)。

化简该式子: k(k + 1) + 2(k+1)。

再进一步化简: (k+1)(k + 2) / 2。

可以看出,我们得到了(k+1)(k + 2)/2这个形式,就证明了当n=k+1时,等式也成立。

因此,根据数学归纳法原理,对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2。

练习题二:证明:对于任意正整数n,2^n > n^2。

答案二:同样使用数学归纳法进行证明。

首先,当n=1时,2^1 = 2,1^2 = 1,2 > 1,等式成立。

假设当n=k时,2^k > k^2 成立。

黄冈中学高考数学典型例题9:指数、对数函数

黄冈中学高考数学典型例题9:指数、对数函数

黄冈中学高考数学典型例题详解指数、对数函数指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点磁场(★★★★★)设f (x )=log 2xx -+11,F (x )=x-21+f (x ). (1)试判断函数f (x )的单调性,并用函数单调性定义,给出证明; (2)若f (x )的反函数为f -1(x ),证明:对任意的自然数n (n ≥3),都有f -1(n )>1+n n ; (3)若F (x )的反函数F -1(x ),证明:方程F -1(x )=0有惟一解.●案例探究[例1]已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一条直线上; (2)当BC 平行于x 轴时,求点A 的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:k OC =k OD .(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A 点坐标. 错解分析:不易考虑运用方程思想去解决实际问题.技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A 的坐标.(1)证明:设点A 、B 的横坐标分别为x 1、x 2,由题意知:x 1>1,x 2>1,则A 、B 纵坐标分别为log 8x 1,log 8x 2.因为A 、B 在过点O 的直线上,所以228118log log x x x x =,点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2),由于log 2x 1=2log log 818x ===2log log log ,log 38282218xx x 3log 8x 2,所以OC 的斜率:k 1=118212log 3log x x x x =, OD 的斜率:k 2=228222log 3log x x x x =,由此可知:k 1=k 2,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴知:log 2x 1=log 8x 2 即:log 2x 1=31log 2x 2,代入x 2log 8x 1=x 1log 8x 2得:x 13log 8x 1=3x 1log 8x 1,由于x 1>1知log 8x 1≠0,∴x 13=3x 1.又x 1>1,∴x 1=3,则点A 的坐标为(3,log 83).[例2]在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n 位于函数y =2000(10a )x(0<a <1)的图象上,且点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(1)求点P n 的纵坐标b n 的表达式;(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;(3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和最大?试说明理由.命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级题目.知识依托:指数函数、对数函数及数列、最值等知识.错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口. 技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.解:(1)由题意知:a n =n +21,∴b n =2000(10a )21+n .(2)∵函数y =2000(10a )x(0<a <10)递减,∴对每个自然数n ,有b n >b n +1>b n +2.则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n ,即(10a )2+(10a)-1>0,解得a <-5(1+2)或a >5(5-1).∴5(5-1)<a <10.(3)∵5(5-1)<a <10,∴a =7∴b n =2000(107)21+n .数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1.于是当b n ≥1时,B n <B n -1,当b n <1时,B n ≤B n -1,因此数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1,由b n =2000(107)21+n ≥1得:n ≤20.8.∴n =20.●锦囊妙计本难点所涉及的问题以及解决的方法有:(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力. (3)应用题目.此类题目要求考生具有较强的建模能力.●歼灭难点训练 一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),其中x ∈(-∞,+∞),那么( )A.g (x )=x ,h (x )=lg(10x +10-x +2)B.3.(★★★★★)已知函数f (x )=⎩⎨⎧<<--≥)02( )(log )0( 22x x x x .则f --1(x -1)=_________.4.(★★★★★)如图,开始时,桶1中有a L 水,t 分钟后剩余的水符合指数衰减曲线y = ae -nt ,那么桶2中水就是y 2=a -ae -nt ,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有8a .三、解答题5.(★★★★)设函数f (x )=log a (x -3a )(a >0且a ≠1),当点P (x ,y )是函数y =f (x )图象上的点时,点Q (x -2a ,-y )是函数y =g (x )图象上的点.(1)写出函数y =g (x )的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值范围.6.(★★★★)已知函数f (x )=log a x (a >0且a ≠1),(x ∈(0,+∞)),若x 1,x 2∈(0,+∞),判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.7.(★★★★★)已知函数x ,y满足x ≥1,y ≥1.log a 2x +log a 2y =log a (ax 2)+log a (ay 2)(a >0且a ≠1),求log a (xy )的取值范围.8.(★★★★)设不等式2(log 21x )2+9(log 21x )+9≤0的解集为M ,求当x ∈M 时函数f (x )=(log 22x )(log 28x )的最大、最小值.参考答案 难点磁场解:(1)由xx-+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则F (x 2)-F (x 1)=(122121x x ---)+(11222211log 11log x x x x -+--+) )1)(1()1)(1(log )2)(2(212122112x x x x x x x x -++-+---=, ∵x 2-x 1>0,2-x 1>0,2-x 2>0,∴上式第2项中对数的真数大于1. 因此F (x 2)-F (x 1)>0,F (x 2)>F (x 1),∴F (x )在(-1,1)上是增函数.(2)证明:由y =f (x )=x x -+11log 2得:2y =1212,11+-=-+y y x x x, ∴f -1(x )=1212+-x x ,∵f (x )的值域为R ,∴f --1(x )的定义域为R .当n ≥3时,f -1(n )>1221111221112121+>⇔+->+-⇔+>+-⇔+n n n n n n n n n n . 用数学归纳法易证2n >2n +1(n ≥3),证略.(3)证明:∵F (0)=21,∴F -1(21)=0,∴x =21是F -1(x )=0的一个根.假设F -1(x )=0还有一个解x 0(x 0≠21),则F -1(x 0)=0,于是F (0)=x 0(x 0≠21).这是不可能的,故F -1(x )=0有惟一解.歼灭难点训练一、1.解析:由题意:g (x )+h (x )=lg(10x +1)①又g (-x )+h (-x )=lg(10-x +1).即-g (x )+h (x )=lg(10-x +1)②由①②得:g (x )=2x,h (x )=lg(10x +1)-2x . 答案:C2.解析:当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数.答案:B二、3.解析:容易求得f- -1(x )=⎩⎨⎧<-≥)1( 2)1( log 2x x x x ,从而:f -1(x -1)=⎩⎨⎧<-≥--).2( ,2)2(),1(log 12x x x x答案:⎩⎨⎧<-≥--)2( ,2)2(),1(log 12x x x x4.解析:由题意,5分钟后,y 1=ae -nt ,y 2=a -ae -nt ,y 1=y 2.∴n =51l n 2.设再过t 分钟桶1中的水只有8a ,则y 1=ae -n (5+t )=8a,解得t =10. 答案:10三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′.∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log aax -21,∴g (x )=log aa x -1.(2)由题意得x -3a =(a +2)-3a =-2a +2>0;a x -1=aa -+)3(1>0,又a >0且a ≠1,∴0<a <1,∵|f (x )-g (x )|=|log a (x -3a )-log aax -1|=|log a (x 2-4ax +3a 2)|·|f (x )-g (x )|≤1,∴-1≤log a (x 2-4ax +3a 2)≤1,∵0<a <1,∴a +2>2a .f (x )=x 2-4ax +3a 2在[a +2,a +3]上为减函数,∴μ(x )=log a (x 2-4ax +3a 2)在[a +2,a +3]上为减函数,从而[μ(x )]max =μ(a +2)=log a (4-4a ),[μ(x )]mi n =μ(a +3)=log a (9-6a ),于是所求问题转化为求不等式组⎪⎩⎪⎨⎧≤--≥-<<1)44(log 1)69(log 10a a a aa 的解.由log a (9-6a )≥-1解得0<a ≤12579-,由log a (4-4a )≤1解得0<a ≤54, ∴所求a 的取值范围是0<a ≤12579-.6.解:f (x 1)+f (x 2)=log a x 1+log a x 2=log a x 1x 2,∵x 1,x 2∈(0,+∞),x 1x 2≤(221x x +)2(当且仅当x 1=x 2时取“=”号), 当a >1时,有log a x 1x 2≤log a (221xx +)2,∴21log a x 1x 2≤log a (221x x +),21(log a x 1+log a x 2)≤log a 221x x +, 即21[f (x 1)+f (x 2)]≤f (221x x +)(当且仅当x 1=x 2时取“=”号) 当0<a <1时,有log a x 1x 2≥log a (221xx +)2,∴21(log a x 1+log a x 2)≥log a 221x x +,即21[f (x 1)+f (x 2)]≥f (221x x +)(当且仅当x 1=x 2时取“=”号).7.解:由已知等式得:log a 2x +log a 2y =(1+2log a x )+(1+2log a y ),即(log a x -1)2+(log a y -1)2=4,令u =log a x ,v =log a y ,k =log a xy ,则(u -1)2+(v -1)2=4(uv ≥0),k =u +v .在直角坐标系uOv 内,圆弧(u -1)2+(v -1)2=4(uv ≥0)与平行直线系v =-u +k 有公共点,分两类讨论.(1)当u ≥0,v ≥0时,即a >1时,结合判别式法与代点法得1+3≤k ≤2(1+2); (2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.8.解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)( 21log x +3)≤0.∴-3≤21log x ≤-23.即21log (21)-3≤21log x ≤21log (21)23-∴(21)23-≤x ≤(21)-3,∴22≤x ≤8即M ={x |x ∈[22,8]}又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴23≤log 2x ≤3∴当log 2x =2,即x =4时y mi n =-1;当log 2x =3,即x =8时,y max =0.。

黄冈中学最新高考数学题型分析{含黄冈密卷}

黄冈中学最新高考数学题型分析{含黄冈密卷}

黄冈中学内部资料复习目标:1.掌握分类讨论必须遵循的原则 2.能够合理,正确地求解有关问题 命题分析:分类讨论是一种重要的逻辑方法,也是一种常用的数学方法,这可以培养学生思维的条理性和概括性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.重点题型分析: 例1.解关于x 的不等式:)()(232R a x a a a x ∈+<+(黄冈,二模 理科)解:原不等式可分解因式为:(x-a)(x-a 2)<0 (下面按两个根的大小关系分类)(1)当a>a 2⇒a 2-a<0即 0<a<1时,不等式的解为 x ∈(a 2, a).(2)当a<a 2⇒a 2-a>0即a<0或a>1时,不等式的解为:x ∈(a, a 2)(3)当a=a 2⇒a 2-a=0 即 a=0或 a=1时,不等式为x 2<0或(x-1)2<0 不等式的解为 x ∈∅.综上,当 0<a<1时,x ∈(a 2, a)当a<0或a>1时,x ∈(a,a 2) 当a=0或a=1时,x ∈∅.评述:抓住分类的转折点,此题分解因式后,之所以不能马上写出解集,主要是不知两根谁大谁小,那么就按两个根之间的大小关系来分类.例2.解关于x 的不等式 ax 2+2ax+1>0(a ∈R) 解:此题应按a 是否为0来分类.(1)当a=0时,不等式为1>0, 解集为R. (2)a ≠0时分为a>0 与a<0两类①10)1(00440002>⇒⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->⇒⎩⎨⎧>>a a a a a a a a ∆时,方程ax 2+2ax+1=0有两根aa a a aa a a a a a x )1(12442222,1-±-=-±-=-±-=.则原不等式的解为),)1(1())1(1,(+∞-+-----∞aa a a a a . ②101000440002<<⇒⎩⎨⎧<<>⇒⎪⎩⎪⎨⎧<->⇒⎩⎨⎧<>a a a a a a a ∆时, 方程ax 2+2ax+1=0没有实根,此时为开口向上的抛物线,则不等式的解为(-∞,+∞).③ 11000440002=⇒⎩⎨⎧==>⇒⎪⎩⎪⎨⎧=->⇒⎩⎨⎧=>a a a a a a a a 或∆时, 方程ax 2+2ax+1=0只有一根为x=-1,则原不等式的解为(-∞,-1)∪(-1,+∞).④01000440002<⇒⎩⎨⎧><<⇒⎪⎩⎪⎨⎧>-<⇒⎩⎨⎧><a a a a a a a a 或∆时,方程ax 2+2ax+1=0有两根,aa a a a a a x )1(12)1(22,1-±-=-±-=此时,抛物线的开口向下的抛物线,故原不等式的解为:))1(1,)1(1(aa a a a a ----+-. ⑤φ∈⇒⎩⎨⎧≤≤<⇒⎪⎩⎪⎨⎧≤-<⇒⎩⎨⎧≤<a a a a a a a 1000440002∆综上:当0≤a<1时,解集为(-∞,+∞).当a>1时,解集为),)1(1())1(1,(+∞-+-----∞aa a a a a . 当a=1时,解集为(-∞,-1)∪(-1,+∞). 当a<0时,解集为))1(1,)1(1(aa a a a a ----+-.例3.解关于x 的不等式ax 2-2≥2x-ax(a ∈R)(黄冈,二模 理科)解:原不等式可化为⇔ ax 2+(a-2)x-2≥0, (1)a=0时,x ≤-1,即x ∈(-∞,-1]. (2)a ≠0时,不等式即为(ax-2)(x+1)≥0. ① a>0时, 不等式化为0)1)(2(≥+-x ax , 当⎪⎩⎪⎨⎧->>120a a ,即a>0时,不等式解为),2[]1,(+∞--∞a .当⎪⎩⎪⎨⎧-≤>120aa ,此时a 不存在.② a<0时,不等式化为0)1)(2(≤+-x ax ,当⎪⎩⎪⎨⎧-<<120a a ,即-2<a<0时,不等式解为]1,2[-a当⎪⎩⎪⎨⎧-><120a a ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞a.-2<a<0时,x ∈]1,2[-a .a<-2时,x ∈]2,1[a-.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为: 10:能不分则不分; 20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值. 解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x 令sinx=t, t ∈[-1,1]. 则6243)2()(22++---=a a a t t f (t ∈[-1,1]). (1)当12>a即a>2时,t=1,2533max =++-=a a y 解方程得:22132213-=+=a a 或(舍). (2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432max =++-=a a y ,解方程为:34-=a 或a=4(舍).(3)当12-<a 即a<-2时, t=-1时,y max =-a 2+a+5=2即 a 2-a-3=0 ∴ 2131±=a , ∵ a<-2, ∴ 2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2.例5.设{a n }是由正数组成的等比数列,S n 是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S .证明:(1)当q=1时,S n =na 1从而0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n(2)当q ≠1时,qq a S n n --=1)1(1, 从而.0)1()1()1)(1(2122121221212<-=-----=-⋅++++nn n n n n n q a q q a q q a S S S由(1)(2)得:212++<⋅n n n S S S .∵ 函数xy 5.0log =为单调递减函数.∴15.025.05.0log 2log log ++>+n n n S S S .例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率. 分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---b y a x ,一条渐近线的斜率为2=ab, ∴ b=2.∴ 555222==+==a a a b a c e . (2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=ba,此时25=e . 综上(1)(2)可知,双曲线的离心率等于255或. 评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a .(黄冈2010,二模 理科)解:原不等式 012)1(55<⇔+--x x a0)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或 由(1) a=1时,x-2>0, 即 x ∈(2,+∞). 由(2)a<1时,012>--aa,下面分为三种情况. ①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a aa a 即a<1时,解为)12,2(a a --. ②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a a a a 时,解为∅. ③ ⎪⎩⎪⎨⎧<--<2121aa a ⇒ ⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(a a --. 由(3)a>1时,aa--12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a a a a ⇒ a 不存在. ② ⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a aa a 当a>1时,原不等式的解为:),2()12,(+∞---∞ a a . 综上:a=1时,x ∈(2,+∞). a<1时,x ∈)12,2(aa-- a=0时,x ∈∅.0<a<1时,x ∈)2,12(a a-- a>1时,x ∈),2()12,(+∞---∞ aa.评述:对于分类讨论的解题程序可大致分为以下几个步骤: 10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记.课后练习:1.解不等式2)385(log 2>+-x x x2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M.(1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+2353212.]4943[,3. (1) M 为),(),(2452 ∞- (2)),9()35,(+∞-∞∈ a4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2高三数学函数重点题型分析复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。

湖北省黄冈中学高考数学 典型例题29 排列、组合的应用问题

湖北省黄冈中学高考数学 典型例题29 排列、组合的应用问题

高考数学典型例题详解 排列与组合 应用问题排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有1~2道排列组合题,考查排列组合的基础知识、思维能力.●难点磁场(★★★★★)有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?●案例探究[例1]在∠AOB 的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共m +n +1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )1212111121212121211211C C C D.C C C C C C C.C C C C .C B C C C A.C nm n m n m mn nm m n n m m n n m +++++++++命题意图:考查组合的概念及加法原理,属★★★★★级题目. 知识依托:法一分成三类方法;法二,间接法,去掉三点共线的组合.错解分析:A 中含有构不成三角形的组合,如:C 11+m C 2n 中,包括O 、B i 、B j ;C 11+n C 2m 中,包含O 、A p 、A q ,其中A p 、A q ,B i 、B j 分别表示OA 、OB 边上不同于O 的点;B 漏掉△A i OB j ;D有重复的三角形.如C 1m C 21+n 中有△A i OB j ,C 21+m C 1n 中也有△A i OB j .技巧与方法:分类讨论思想及间接法.解法一:第一类办法:从OA 边上(不包括O )中任取一点与从OB 边上(不包括O )中任取两点,可构造一个三角形,有C 1m C 2n 个;第二类办法:从OA 边上(不包括O )中任取两点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 2m C 1n 个;第三类办法:从OA 边上(不包括O )任取一点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 1m C 1n 个.由加法原理共有N =C 1m C 2n +C 2m C 1n +C 1m C 1n 个三角形.解法二:从m +n +1中任取三点共有C 31++n m 个,其中三点均在射线OA (包括O 点),有C 31+m 个,三点均在射线OB (包括O 点),有C 31+n 个.所以,个数为N =C 31++n m -C 31+m -C 31+n 个.答案:C[例2]四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________.命题意图:本题主要考查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学问题的能力,属★★★★级题目.知识依托:排列、组合、乘法原理的概念.错解分析:根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而后将剩的一人送到一所学校,故有3A 34种.忽略此种办法是:将同在一所学校的两名学生按进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序要求的.技巧与方法:解法一,采用处理分堆问题的方法.解法二,分两次安排优等生,但是进入同一所学校的两名优等生是不考虑顺序的.解法一:分两步:先将四名优等生分成2,1,1三组,共有C 24种;而后,对三组学生安排三所学校,即进行全排列,有A 33种.依乘法原理,共有N =C 2433A =36(种).解法二:分两步:从每个学校至少有一名学生,每人进一所学校,共有A 34种;而后,再将剩余的一名学生送到三所学校中的一所学校,有3种.值得注意的是:同在一所学校的两名学生是不考虑进入的前后顺序的.因此,共有N =21A 34·3=36(种). 答案:36●锦囊妙计排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.前两种方式叫直接解法,后一种方式叫间接解法.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.解排列与组合应用题常用的方法有:直接计算法与间接计算法;分类法与分步法;元素分析法和位置分析法;插空法和捆绑法等八种.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.●歼灭难点训练一、填空题1.(★★★★)从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条(用数值表示).2.(★★★★★)圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为_________.二、解答题3.(★★★★★)某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?4.(★★★★)二次函数y=ax2+bx+c的系数a、b、c,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?5.(★★★★★)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置.(2)全体排成一行,其中甲不在最左边,乙不在最右边.(3)全体排成一行,其中男生必须排在一起.(4)全体排成一行,男、女各不相邻.(5)全体排成一行,男生不能排在一起.(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.(7)排成前后二排,前排3人,后排4人.(8)全体排成一行,甲、乙两人中间必须有3人.6.(★★★★★)20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.7.(★★★★)用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的方法共有几种?8.(★★★★)甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?参考答案难点磁场解:(间接法):任取三张卡片可以组成不同三位数C35·23·A33(个),其中0在百位的有C24·22·A22(个),这是不合题意的,故共有不同三位数:C35·23·A33-C24·22·A22=432(个).歼灭难点训练一、1.解析:因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B两数的顺序不同,表示的直线不同,所以直线的条数为A26=30.答案:302.解析:2n个等分点可作出n条直径,从中任选一条直径共有C1n种方法;再从以下的(2n-2)个等分点中任选一个点,共有C122-n种方法,根据乘法原理:直角三角形的个数为:C1 n ·C122-n=2n(n-1)个.答案:2n(n-1)二、3.解:出牌的方法可分为以下几类:(1)5张牌全部分开出,有A55种方法;(2)2张2一起出,3张A一起出,有A25种方法;(3)2张2一起出,3张A一起出,有A45种方法;(4)2张2一起出,3张A分两次出,有C23A35种方法;(5)2张2分开出,3张A一起出,有A35种方法;(6)2张2分开出,3张A分两次出,有C23A45种方法.因此,共有不同的出牌方法A55+A25+A45+A23A35+A35+C23A45=860种.4.解:由图形特征分析,a>0,开口向上,坐标原点在内部⇔f(0)=c<0;a<0,开口向下,原点在内部⇔f(0)=c>0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部⇔af(0)=ac <0,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有C1 3C14A22A16=144条.5.解:(1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选择.有A13种,其余6人全排列,有A66种.由乘法原理得A13A66=2160种.(2)位置分析法.先排最右边,除去甲外,有A16种,余下的6个位置全排有A66种,但应剔除乙在最右边的排法数A15A55种.则符合条件的排法共有A16A66-A15A55=3720种.(3)捆绑法.将男生看成一个整体,进行全排列.再与其他元素进行全排列.共有A3 3A55=720种.(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有A33A44=144种.(5)插空法.先排女生,然后在空位中插入男生,共有A44A35=1440种.(6)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此A77=N×A33,∴N =3377AA= 840种.(7)与无任何限制的排列相同,有A77=5040种.(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A35种,甲、乙和其余2人排成一排且甲、乙相邻的排法有A23A33.最后再把选出的3人的排列插入到甲、乙之间即可.共有A35×A22×A33=720种.6.解:首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O”表示小球,“|”表示空档.将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数.对应关系是:以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数.最左侧的空档可以同时插入两个小盒.而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C23种;若恰有一个小盒插入最左侧空档,有1313CC种;若没有小盒插入最左侧空档,有C213种.由加法原理,有N=2131131323CCCC++=120种排列方案,即有120种放法.7.解:按排列中相邻问题处理.(1)(4)或(2)(4).可以涂相同的颜色.分类:若(1)(4)同色,有A35种,若(2)(4)同色,有A35种,若(1)(2)(3)(4)均不同色,有A45种.由加法原理,共有N=2A35+A45=240种.8.解:每人随意值两天,共有C26C24C22个;甲必值周一,有C15C24C22个;乙必值周六,有C15C24C22个;甲必值周一且乙必值周六,有C14C13C22个.所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N=C26C24C22-2C15C24C22+ C14C13C22=90-2×5×6+12=42个.。

黄冈中学高考数学典型例题1:集合

黄冈中学高考数学典型例题1:集合

黄冈中学⾼考数学典型例题1:集合黄冈中学⾼考数学典型例题详解集合⽤典型例题来拓展我们的解题思路集合是⾼中数学的基本知识,为历年必考内容之⼀,主要考查对集合基本概念的认识和理解,以及作为⼯具,考查集合语⾔和集合思想的运⽤.本节主要是帮助考⽣运⽤集合的观点,不断加深对集合概念、集合语⾔、集合思想的理解与应⽤.●难点磁场(★★★★★)已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠?,求实数m的取值范围.●案例探究[例1]设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=?,证明此结论.命题意图:本题主要考查考⽣对集合及其符号的分析转化能⼒,即能从集合符号上分辨出所考查的知识点,进⽽解决问题.属★★★★★级题⽬.知识依托:解决此题的闪光点是将条件(A∪B)∩C=?转化为A∩C=?且B∩C=?,这样难度就降低了.错解分析:此题难点在于考⽣对符号的不理解,对题⽬所给出的条件不能认清其实质内涵,因⽽可能感觉⽆从下⼿.技巧与⽅法:由集合A与集合B中的⽅程联⽴构成⽅程组,⽤判别式对根的情况进⾏限制,可得到b 、k 的范围,⼜因b 、k ∈N ,进⽽可得值.解:∵(A ∪B )∩C =?,∴A ∩C =?且B ∩C =?∵+=+=bkx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =?∴Δ1=(2bk -1)2-4k 2(b 2-1)<0∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1 ①∵?+==+-+b kx y y x x 052242∴4x 2+(2-2k )x +(5+2b )=0∵B ∩C =?,∴Δ2=(1-k )2-4(5-2b )<0 ∴k 2-2k +8b -19<0,从⽽8b <20,即b <2.5②由①②及b ∈N ,得b =2代⼊由Δ1<0和Δ2<0组成的不等式组,得<--<+-032,018422k k k k ∴k =1,故存在⾃然数k =1,b =2,使得(A ∪B )∩C =?.[例2]向50名学⽣调查对A 、B 两事件的态度,有如下结果:赞成A 的⼈数是全体的五分之三,其余的不赞成,赞成B 的⽐赞成A 的多3⼈,其余的不赞成;另外,对A 、B 都不赞成的学⽣数⽐对A 、B 都赞成的学⽣数的三分之⼀多1⼈.问对A 、B 都赞成的学⽣和都不赞成的学⽣各有多少⼈?命题意图:在集合问题中,有⼀些常⽤的⽅法如数轴法取交并集,韦恩图法等,需要考⽣切实掌握.本题主要强化学⽣的这种能⼒.属★★★★级题⽬.知识依托:解答本题的闪光点是考⽣能由题⽬中的条件,想到⽤韦恩图直观地表⽰出来.错解分析:本题难点在于所给的数量关系⽐较错综复杂,⼀时理不清头绪,不好找线索.技巧与⽅法:画出韦恩图,形象地表⽰出各数量关系间的联系.3=30,赞成B的⼈数为30+3=33,如解:赞成A的⼈数为50×5上图,记50名学⽣组成的集合为U,赞成事件A的学⽣全体为集合A;赞成事件B的学⽣全体为集合B.设对事件A、B都赞成的学⽣⼈数为x,则对A、B都不赞成的学x+1,赞成A⽽不赞成B的⼈数为30-x,赞成B⽽不赞成A ⽣⼈数为3的⼈数为33-x.x+1)=50,解得x=21.依题意(30-x)+(33-x)+x+(3所以对A、B都赞成的同学有21⼈,都不赞成的有8⼈.●锦囊妙计1.解答集合问题,⾸先要正确理解集合有关概念,特别是集合中元素的三要素;对于⽤描述法给出的集合{x |x ∈P },要紧紧抓住竖线前⾯的代表元素x 以及它所具有的性质P ;要重视发挥图⽰法的作⽤,通过数形结合直观地解决问题.2.注意空集?的特殊性,在解题中,若未能指明集合⾮空时,要考虑到空集的可能性,如A ?B ,则有A =?或A ≠?两种可能,此时应分类讨论.●歼灭难点训练⼀、选择题1.(★★★★)集合M ={x |x =42π+kx ,k ∈Z },N ={x |x =22ππ+k ,k ∈Z },则( )A.M =NB.M NC.M ND.M∩N =?2.(★★★★)已知集合A ={x |-2≤x ≤7},B ={x |m +1B ≠?,若A ∪B =A ,则( )A.-3≤m ≤4B.-3C.2D.2⼆、填空题3.(★★★★)已知集合A ={x ∈R |a x 2-3x +2=0,a ∈R },若A 中元素⾄多有1个,则a 的取值范围是_________.4.(★★★★)x 、y ∈R ,A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|by a x -=1,a >0,b >0},当A ∩B 只有⼀个元素时,a ,b 的关系式是_________.三、解答题5.(★★★★★)集合A ={x |x 2-ax +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2+2x -8=0},求当a 取什么实数时,A ∩B 和A∩C =?同时成⽴.6.(★★★★★)已知{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A ={(a n ,nS n )|n ∈N *},B ={(x ,y )|41 x 2-y 2=1,x ,y ∈R }.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明.(1)若以集合A 中的元素作为点的坐标,则这些点都在同⼀条直线上;(2)A ∩B ⾄多有⼀个元素; (3)当a 1≠0时,⼀定有A ∩B ≠?.7.(★★★★)已知集合A ={z ||z -2|≤2,z ∈C },集合B ={w |w =21zi +b ,b ∈R },当A ∩B =B 时,求b 的值.8.(★★★★)设f (x )=x 2+px +q ,A ={x |x =f (x )},B ={x |f [f (x )]=x }.(1)求证:A ?B ;(2)如果A ={-1,3},求B .参考答案难点磁场解:由≤≤=+-=+-+)20(01022x y x y mx x 得x 2+(m -1)x +1=0①∵A ∩B ≠?∴⽅程①在区间[0,2]上⾄少有⼀个实数解.⾸先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1,当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1>0知,⽅程①只有负根,不符合要求.当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,⽅程①只有正根,且必有⼀根在区间(0,1]内,从⽽⽅程①⾄少有⼀个根在区间[0,2]内.故所求m 的取值范围是m ≤-1.歼灭难点训练⼀、1.解析:对M 将k 分成两类:k =2n 或k =2n +1(n ∈Z ),M ={x |x =nπ+4π,n ∈Z }∪{x |x =n π+43π,n ∈Z },对N 将k 分成四类,k =4n 或k =4n +1,k =4n +2,k =4n +3(n ∈Z ),N ={x |x =n π+2π,n ∈Z }∪{x |x =n π+43π,n ∈Z }∪{x |x =n π+π,n ∈Z }∪{x |x =n π+45π,n ∈Z }.答案:C2.解析:∵A ∪B =A ,∴B ?A,⼜B ≠?,∴??-<+≤--≥+12171221m m m m 即2<m ≤4.答案:D⼆、3.a =0或a ≥894.解析:由A ∩B 只有1个交点知,圆x 2+y 2=1与直线by ax -=1相切,则1=22ba ab +,即ab =22b a +.答案:ab =22b a +三、5.解:log 2(x 2-5x +8)=1,由此得x 2-5x +8=2,∴B ={2,3}.由x 2+2x -8=0,∴C ={2,-4},⼜A ∩C =?,∴2和-4都不是关于x 的⽅程x 2-ax +a 2-19=0的解,⽽A ∩ B,即A ∩B ≠?,∴3是关于x 的⽅程x 2-ax +a 2-19=0的解,∴可得a =5或a =-2.当a =5时,得A ={2,3},∴A ∩C ={2},这与A ∩C =?不符合,所以a =5(舍去);当a =-2时,可以求得A ={3,-5},符合A∩C =?,A ∩ B,∴a =-2.6.解:(1)正确.在等差数列{a n }中,S n =2)(1n a a n +,则21=n S n(a 1+a n ),这表明点(a n ,n S n )的坐标适合⽅程y 21=(x +a 1),于是点(a n , nS n )均在直线y =21x +21a 1上.(2)正确.设(x ,y )∈A ∩B ,则(x ,y )中的坐标x ,y 应是⽅程组=-+=1412121221y x a x y 的解,由⽅程组消去y 得:2a 1x +a 12=-4(*),当a 1=0时,⽅程(*)⽆解,此时A ∩B =?;当a 1≠0时,⽅程(*)只有⼀个解x =12124a a --,此时,⽅程组也只有⼀解-=--=1211214424a a y a a y ,故上述⽅程组⾄多有⼀解.∴A ∩B ⾄多有⼀个元素.(3)不正确.取a 1=1,d =1,对⼀切的x ∈N *,有a n =a 1+(n -1)d =n >0,nS n >0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a 1=1≠0.如果A ∩B ≠?,那么据(2)的结论,A ∩B 中⾄多有⼀个元素(x 0,y 0),⽽x 0=5224121-=--a a <0,y 0=43201=+x a <0,这样的(x 0,y 0)?A ,产⽣⽭盾,故a 1=1,d =1时A ∩B =?,所以a 1≠0时,⼀定有A ∩B ≠?是不正确的.7.解:由w =21zi +b 得z =ib w 22-,∵z ∈A ,∴|z -2|≤2,代⼊得|ib w 22--2|≤2,化简得|w -(b +i )|≤1.∴集合A 、B 在复平⾯内对应的点的集合是两个圆⾯,集合A 表⽰以点(2,0)为圆⼼,半径为2的圆⾯,集合B 表⽰以点(b ,1)为圆⼼,半径为1的圆⾯.⼜A ∩B =B ,即B ?A ,∴两圆内含.因此22)01()2(-+-b ≤2-1,即(b -2)2≤0,∴b =2. 8.(1)证明:设x 0是集合A 中的任⼀元素,即有x 0∈A . ∵A ={x |x =f (x )},∴x 0=f (x 0).即有f [f (x 0)]=f (x 0)=x 0,∴x 0∈B ,故A ?B . (2)证明:∵A ={-1,3}={x |x 2+px +q =x },∴⽅程x 2+(p -1)x +q =0有两根-1和3,应⽤韦达定理,得-=-=?=---=+-313)1(),1(31q p q p ∴f (x )=x 2-x -3.于是集合B 的元素是⽅程f [f (x )]=x ,也即(x 2-x -3)2-(x 2-x -3)-3=x (*)的根.将⽅程(*)变形,得(x 2-x -3)2-x 2=0 解得x =1,3,3,-3.故B ={-3,-1,3,3}.仔细再三体会下。

湖北省黄冈中学高考数学 典型例题5 求解函数解析式.doc

湖北省黄冈中学高考数学 典型例题5 求解函数解析式.doc

高考数学典型例题详解求函数解析式求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.●难点磁场(★★★★)已知f (2-cos x )=cos2x +cos x , 求f (x -1).●案例探究[例1](1)已知函数f (x )满足f (log a x )=)1(12x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式.(2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,f (x )式.命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;0<a <1,t <0),则x =a t.因此f (t )=12-a a (a t -a -t) ∴f (x )=12-a a (a x -a -x)(a >1,x >0;0<a <1,x <0)(2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a并且f (1)、f (-1)、f (0)不能同时等于1或-1,所以所求函数为:f (x )=2x 2-1或f (x )=-2x 2+1或f (x )=-x 2-x +1或f (x )=x 2-x -1或f (x )=-x 2+x +1或f (x )=x 2+x -1.[例2]设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象.命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目.知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线. 错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱. 技巧与方法:合理进行分类,并运用待定系数法求函数表达式. 解:(1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0).∴0=-2+b 即b =2,∴f (x )=x +2. (2)当-1<x <1时,设f (x )=ax 2+2.∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1 ∴f (x )=-x 2+2.(3)当x ≥1时,f (x )=-x +2综上可知:f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成.●锦囊妙计本难点所涉及的问题及解决方法主要有:1.待定系数法,如果已知函数解析式的构造时,用待定系数法;2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x );另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.●歼灭难点训练 一、选择题1.(★★★★)若函数f (x )=34 x mx(x ≠43)在定义域内恒有f [f (x )]=x ,则m 等于( )A.3B.23C.-23D.-32.(★★★★★)设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( )A. f (x )=(x +3)2-1 B. f (x )=(x -3)2-1 C. f (x )=(x -3)2+1D. f (x )=(x -1)2-1二、填空题3.(★★★★★)已知f (x )+2f (x1)=3x ,求f (x )的解析式为_________.4.(★★★★★)已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________.三、解答题5.(★★★★)设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式.6.(★★★★)设f(x)是在(-∞,+∞)上以4为周期的函数,且f(x)是偶函数,在区间[2,3]上时,f(x)=-2(x-3)2+4,求当x∈[1,2]时f(x)的解析式.若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图象上,求这个矩形面积的最大值.7.(★★★★★)动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示△ABP的面积,求f(x)和g(x),并作出g(x)的简图.8.(★★★★★)已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时,函数取得最小值,最小值为-5.(1)证明:f(1)+f(4)=0;(2)试求y=f(x),x∈[1,4]的解析式;(3)试求y=f(x)在[4,9]上的解析式.参考答案难点磁场解法一:(换元法)∵f(2-cos x)=cos2x-cos x=2cos2x-cos x-1令u=2-cos x(1≤u≤3),则cos x=2-u∴f(2-cos x)=f(u)=2(2-u)2-(2-u)-1=2u2-7u+5(1≤u≤3)∴f(x-1)=2(x-1)2-7(x-1)+5=2x2-11x+4(2≤x≤4)解法二:(配凑法)f(2-cos x)=2cos2x-cos x-1=2(2-cos x)2-7(2-cos x)+5∴f(x)=2x2-7x-5(1≤x≤3),即f(x-1)=2(x-1)2-7(x-1)+5=2x2-11x+14(2≤x≤4).歼灭难点训练一、1.解析:∵f (x )=34-x mx. ∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3. 答案:A2.解析:利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1.答案:B二、3.解析:由f (x )+2f (x 1)=3x 知f (x 1)+2f (x )=3x 1.由上面两式联立消去f (x1)可得f (x )=x2-x . 答案:f (x )=x2-x 4.解析:∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0.又f (x +1)=f (x )+x +1, ∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1. 故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x . 答案:21x 2+21x三、5.解:利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x .6.解:(1)设x ∈[1,2],则4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4.(2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4,设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1),则|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764,当且仅当2t 2=2-t 2,即t =36时取等号.∴S 2≤27864⨯即S ≤9616,∴S max =9616.7.解:(1)如原题图,当P 在AB 上运动时,PA =x ;当P 点在BC 上运动时,由Rt △ABDPA =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得PA =2)3(1x -+;当P 点在DA 上运动时,PA =4-x ,故f (x )的表达式为:f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43( 4)32( 106)21( 22)10( 22x x x x x x x x x x(2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解.如原题图,当P 在线段AB 上时,△ABP 的面积S =0;当P 在BC 上时,即1<x ≤2时,S△ABP=21AB ·BP =21(x -1);当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时,即3<x ≤4时,S △ABP =21(4-x ).故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32( 21)21( )1(21)10( 0x x x x x x8.(1)证明:∵y =f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)解:当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)解:∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0,又y =f (x ) (0≤x ≤1)是一次函数,∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3,又f (1)=k ·1=k ,∴k =-3.∴当0≤x ≤1时,f (x )=-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x-5≤1,∴f (x )=f (x -5)= -3(x -5)=-3x +15,6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x-7)2-5.∴f (x )=⎩⎨⎧≤<--≤≤+-)96( 5)7(2)64( 1532x x x x .。

湖北黄冈中学高三数学《专题四-等差、等比数列的综合运用》市公开课获奖课件省名师示范课获奖课件

湖北黄冈中学高三数学《专题四-等差、等比数列的综合运用》市公开课获奖课件省名师示范课获奖课件

[例3] 在等差数列{an }中, 公差d 0, a2 是a1与a4的等比中项.已知数列a1 , a3 , ak1 , ak2 ,, akn 成等比数列, 求数列{kn }的 通项kn .
[解析] 依题设得an a1 (n 1)d , a22 a1a4 .(a1 d )2 a1(a1 3d )
1有b1
2, b2
8 3
, b3
4, b4
20 3
.
(2)由bn1
2 bn
4 3
, bn1
4 3
2(bn
4 ), 3
b1
4 3
2 3
0,{bn
4 }是首项为 3
2 3
,
公比q
2的等比数列 , 故bn
4 3
1 3
2n ,
即bn
1 3
2n
4 3
(n
1).
由bn
1 an
1 2
得anbn
1 2
bn
1,故
4) 3
an
2
1 2
8 3
20 16an 6an 3
bn1
4 3
,
b1
4 3
0
故{bn
4 3
}确是公比为
q
2的等比数列.
b1
4 3
2 3
, 故bn
4 3
1 3
2n ,
bn
1 3
2n
4 3
(n
1),
由bn
1 an
1 2

: anbn
1 2
bn
1,
故Sn a1b1 a2b2 anbn .
3
27 9 2 27 2

2025届湖北省黄冈市高三下学期一模考试数学试题含解析

2025届湖北省黄冈市高三下学期一模考试数学试题含解析

2025届湖北省黄冈市高三下学期一模考试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知数列满足,且,则数列的通项公式为( ) A .B .C .D .2.已知函数()2x f x x x ln a ⎛⎫=- ⎪⎝⎭,关于x 的方程f (x )=a 存在四个不同实数根,则实数a 的取值范围是( )A .(0,1)∪(1,e )B .10e ⎛⎫ ⎪⎝⎭,C .11e ⎛⎫ ⎪⎝⎭,D .(0,1)3.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是 A .2()(2)3-∞+∞,,B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 4.复数12z i =+,若复数12,z z 在复平面内对应的点关于虚轴对称,则12z z 等于( )A .345i+-B .345i+ C .34i -+D .345i-+ 5.△ABC 中,AB =3,BC 13=AC =4,则△ABC 的面积是( )A .33B 33C .3D .326.已知函数()cos(2)(0)f x A x ϕϕ=+>的图像向右平移8π个单位长度后,得到的图像关于y 轴对称,(0)1f =,当ϕ取得最小值时,函数()f x 的解析式为( )A .()2)4f x x π=+B .()cos(2)4f x x π=+ C .()2)4f x x π=-D .()cos(2)4f x x π=-7.如图,点E 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF //BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值8.已知函数()sin 2cos 2f x x a x =+的图象的一条对称轴为12x π=,将函数()f x 的图象向右平行移动4π个单位长度后得到函数()g x 图象,则函数()g x 的解析式为( ) A .()2sin(2)12g x x π=- B .()2sin(2)12g x x π=+C .()2sin(2)6g x x π=-D .()2sin(2)6g x x π=+9.定义两种运算“★”与“◆”,对任意N n *∈,满足下列运算性质:①2★2018=1,2018◆11=;②(2n )★2018=[2(22)n +★]2018 ,2018◆(1)2(2018n +=◆)n ,则(2018◆2020)(2020★2018)的值为( ) A .10112 B .10102C .10092D .1008210.已知函数有三个不同的零点(其中),则 的值为( )A .B .C .D .11.已知角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭,则cos2α等于( )A .19B .79-C .23-D .1312.已知函数()cos()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<),将函数()f x 的图象向左平移34π个单位长度,得到函数()g x 的部分图象如图所示,则1()3f x =是32123x g π⎛⎫+= ⎪⎝⎭的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。

黄冈中学高考数学典型例题31---数学归纳法解题

黄冈中学高考数学典型例题31---数学归纳法解题

黄冈中学高考数学典型例题详解数学归纳法解题每临大事,必有静气;静则神明,疑难冰释;积极准备,坦然面对;最佳发挥,舍我其谁?敬请搜索“黄冈中学高考数学知识点”结合起来看效果更好体会绝妙解题思路建立强大数学模型感受数学思想魅力品味学习数学快乐数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=12)1(nn(an2+bn+c).●案例探究[例1]试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:a n+c n>2b n.命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(a k-c k)(a-c)>0恒成立(a、b、c为正数),从而a k+1+c k+1>a k·c+c k·a.证明:(1)设a 、b 、c 为等比数列,a =qb,c =bq (q >0且q ≠1) ∴a n+c n=n n qb +b n q n =b n (n q 1+q n )>2b n(2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2c a +)n(n ≥2且n ∈N *)下面用数学归纳法证明:①当n =2时,由2(a 2+c 2)>(a +c )2,∴222)2(2c a c a +>+ ②设n =k 时成立,即,)2(2kk k c a c a +>+ 则当n =k +1时,41211=+++k k c a (a k +1+c k +1+a k +1+c k +1) >41(a k +1+c k +1+a k ·c +c k ·a )=41(a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2c a +)k +1[例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -21成等比数列. (1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明. 错解分析:(2)中,S k =-321-k 应舍去,这一点往往容易被忽视. 技巧与方法:求通项可证明{n S 1}是以{11S }为首项,21为公差的等差数列,进而求得通项公式.解:∵a n ,S n ,S n -21成等比数列,∴S n 2=a n ·(S n -21)(n ≥2) (*) (1)由a 1=1,S 2=a 1+a 2=1+a 2,代入(*)式得:a 2=-32由a 1=1,a 2=-32,S 3=31+a 3代入(*)式得:a 3=-152同理可得:a 4=-352,由此可推出:a n =⎪⎩⎪⎨⎧>---=)1( )12)(32(2)1(1n n n n (2)①当n =1,2,3,4时,由(*)知猜想成立.②假设n =k (k ≥2)时,a k =-)12)(32(2--k k 成立故S k 2=-)12)(32(2--k k ·(S k -21)∴(2k -3)(2k -1)S k 2+2S k -1=0∴S k =321,121--=-k S k k (舍) 由S k +12=a k +1·(S k +1-21),得(S k +a k +1)2=a k +1(a k +1+S k -21).1,]1)1(2][3)1(2[22112122)12(1111211212命题也成立即+=-+-+-=⇒--+=-++-⇒++++++k n k k a a k a a k a a k k k k k k k由①②知,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对一切n ∈N 成立. (3)由(2)得数列前n 项和S n =121-n ,∴S =lim ∞→n S n =0.●锦囊妙记(1)数学归纳法的基本形式 设P (n )是关于自然数n 的命题,若 1°P (n 0)成立(奠基)2°假设P (k )成立(k ≥n 0),可以推出P (k +1)成立(归纳),则P (n )对一切大于等于n 0的自然数n 都成立.(2)数学归纳法的应用具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练 一、选择题1.(★★★★★)已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N ,都能使m 整除f (n ),则最大的m 的值为( )A.30B.26C.36D.62.(★★★★)用数学归纳法证明3k ≥n 3(n ≥3,n ∈N )第一步应验证( ) A.n =1B.n =2C.n =3D.n =4二、填空题3.(★★★★★)观察下列式子:474131211,3531211,2321122222<+++<++<+…则可归纳出_________.4.(★★★★)已知a 1=21,a n +1=33+n n a a ,则a 2,a 3,a 4,a 5的值分别为_________,由此猜想a n =_________.三、解答题5.(★★★★)用数学归纳法证明412+n +3n +2能被13整除,其中n ∈N *.6.(★★★★)若n 为大于1的自然数,求证:2413212111>+++++n n n .7.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1)求数列{b n }的通项公式b n ; (2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1)记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论.8.(★★★★★)设实数q 满足|q |<1,数列{a n }满足:a 1=2,a 2≠0,a n ·a n +1=-q n ,求a n 表达式,又如果lim ∞→n S 2n <3,求q 的取值范围.参考答案 难点磁场解:假设存在a 、b 、c 使题设的等式成立,这时令n =1,2,3,有⎪⎩⎪⎨⎧===∴⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=101133970)24(2122)(614c b a cb ac b a c b a 于是,对n =1,2,3下面等式成立 1·22+2·32+…+n (n +1)2=)10113(12)1(2+++n n n n 记S n =1·22+2·32+…+n (n +1)2设n =k 时上式成立,即S k =12)1(+k k (3k 2+11k +10) 那么S k +1=S k +(k +1)(k +2)2=2)1(+k k (k +2)(3k +5)+(k +1)(k +2)2=12)2)(1(++k k (3k 2+5k +12k +24)=12)2)(1(++k k [3(k +1)2+11(k +1)+10]也就是说,等式对n =k +1也成立.综上所述,当a =3,b =11,c =10时,题设对一切自然数n 均成立.歼灭难点训练一、1.解析:∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36 ∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除. 证明:n =1,2时,由上得证,设n =k (k ≥2)时, f (k )=(2k +7)·3k +9能被36整除,则n =k +1时, f (k +1)-f (k )=(2k +9)·3k +1 -(2k +7)·3k=(6k +27)·3k -(2k +7)·3k =(4k +20)·3k =36(k +5)·3k-2(k ≥2)⇒f (k +1)能被36整除∵f (1)不能被大于36的数整除,∴所求最大的m 值等于36. 答案:C2.解析:由题意知n ≥3,∴应验证n =3. 答案:C二、3.解析:11112)11(112321122++⨯<++<+即12122)12(1)11(11,35312112222++⨯<++++<++即112)1(131211222++<+++++n n n 归纳为(n ∈N *)112)1(131211:222++<+++++n n n 答案(n ∈N *) 53,553103,54393,5338333,5237332121333:.454223112+=+==+==+==+=+==+⨯=+=n a a a a a a a a a n 猜想同理解析 73:答案、83、93、10353=n三、5.证明:(1)当n =1时,42×1+1+31+2=91能被13整除(2)假设当n =k 时,42k +1+3k +2能被13整除,则当n =k +1时, 42(k +1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3 =42k +1·13+3·(42k +1+3k +2 )∵42k +1·13能被13整除,42k +1+3k +2能被13整除 ∴当n =k +1时也成立.由①②知,当n ∈N *时,42n +1+3n +2能被13整除.6.证明:(1)当n =2时,2413127221121>=+++ (2)假设当n =k 时成立,即2413212111>+++++k k k 2413)1)(12(21241322112124131122112124131111221121213121,1>+++=+-++=+-++++>+-++++++++++++=k k k k k k k k k k k k k k k n 时则当 7.(1)解:设数列{b n }的公差为d ,由题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-+=311452)110(10101111d b d b b ,∴b n =3n -2 (2)证明:由b n =3n -2知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n ) =log a [(1+1)(1+41)…(1+ 231-n )]而31log a b n +1=log a 313+n ,于是,比较S n 与31log a b n +1 的大小⇔比较(1+1)(1+41)…(1+231-n )与313+n 的大小.取n =1,有(1+1)=33311348+⋅=> 取n =2,有(1+1)(1+33312378)41+⨯=>> 推测:(1+1)(1+41)…(1+231-n )>313+n (*) ①当n =1时,已验证(*)式成立.②假设n =k (k ≥1)时(*)式成立,即(1+1)(1+41)…(1+231-k )>313+k 则当n =k +1时,)1311(13)2)1(311)(2311()411)(11(3+++>-++-+++k k k k 3131323+++=k k k333222333331)1(343)23(13130)13(49)13()13)(43()23()43()131323(++=+>+++∴>++=+++-+=+-+++k k k k k k k k k k k k k k k31)1(3)1311)(2311()411)(11(++>-+-+++k k k 从而,即当n =k +1时,(*)式成立由①②知,(*)式对任意正整数n 都成立. 于是,当a >1时,S n >31log a b n +1 ,当 0<a <1时,S n <31log a b n +1 8.解:∵a 1·a 2=-q ,a 1=2,a 2≠0, ∴q ≠0,a 2=-29, ∵a n ·a n +1=-q n ,a n +1·a n +2=-q n +1 两式相除,得qa a n n 12=+,即a n +2=q ·a n 于是,a 1=2,a 3=2·q ,a 5=2·q n …猜想:a 2n +1=-21q n(n =1,2,3,…) 综合①②,猜想通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时时下证:(1)当n =1,2时猜想成立 (2)设n =2k -1时,a 2k -1=2·q k-1则n =2k +1时,由于a 2k +1=q ·a 2k -1∴a 2k +1=2·q k 即n =2k -1成立. 可推知n =2k +1也成立. 设n =2k 时,a 2k =-21q k,则n =2k +2时,由于a 2k +2=q ·a 2k , 所以a 2k +2=-21q k+1,这说明n =2k 成立,可推知n =2k +2也成立. 综上所述,对一切自然数n ,猜想都成立.这样所求通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(221)(12 21N N k k n q k k n q k k 时当时当S 2n =(a 1+a 3…+a 2n -1)+(a 2+a 4+…+a 2n )=2(1+q +q 2+…+q n -1 )-21(q +q 2+…+q n ) )24)(11()1()1(211)1(2q q q q q q q q n n n ---=--⋅---=由于|q |<1,∴n n nn S q 2lim ,0lim ∞→∞→=故=)24)(11(qq q n --- 依题意知)1(24q q --<3,并注意1-q >0,|q |<1解得-1<q <0或0<q <52。

(整理)黄冈中学高考数学典型例题32---极限及其运算

(整理)黄冈中学高考数学典型例题32---极限及其运算

黄冈中学高考数学典型例题详解极限每临大事,必有静气;静则神明,疑难冰释;积极准备,坦然面对;最佳发挥,舍我其谁?敬请搜索“黄冈中学高考数学知识点”结合起来看效果更好体会绝妙解题思路建立强大数学模型感受数学思想魅力品味学习数学快乐极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具.旧教材中原有的数列极限一直是历年高考中重点考查的内容之一.本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题.●难点磁场(★★★★)求1122lim +-∞→++n n n n n aa .●案例探究[例1]已知lim ∞→x (12+-x x -ax -b )=0,确定a 与b 的值.命题意图:在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律,既有章可循,有法可依.因而本题重点考查考生的这种能力.也就是本知识的系统掌握能力.属★★★★★级题目.知识依托:解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法.错解分析:本题难点是式子的整理过程繁琐,稍不注意就有可能出错. 技巧与方法:有理化处理. 解:bax x x b ax x x b ax x x x x +++-+-+-=--+-∞→∞→1)()1(lim)1(lim 2222bax x x b x ab x a x +++--++--=∞→1)1()21()1(lim2222要使上式极限存在,则1-a 2=0, 当1-a 2=0时,1)21(1)21(1111)21(lim 1)1()21(lim 22222=++-++-=+++--++-=+++--+--=∞→∞→a ab a ab a x b x xx b ab b ax x x b x ab x x 由已知得上式 ∴⎪⎩⎪⎨⎧=++-=-01)21(012aab a 解得⎪⎩⎪⎨⎧-==211b a[例2]设数列a 1,a 2,…,a n ,…的前n 项的和S n 和a n 的关系是S n =1-ba n -nb )1(1+,其中b 是与n 无关的常数,且b ≠-1.(1)求a n 和a n -1的关系式; (2)写出用n 和b 表示a n 的表达式;(3)当0<b <1时,求极限lim ∞→n S n .命题意图:历年高考中多出现的题目是与数列的通项公式,前n 项和S n 等有紧密的联系.有时题目是先依条件确定数列的通项公式再求极限,或先求出前n 项和S n 再求极限,本题考查学生的综合能力.属★★★★★级题目.知识依托:解答本题的闪光点是分析透题目中的条件间的相互关系. 错解分析:本题难点是第(2)中由(1)中的关系式猜想通项及n =1与n =2时的式子不统一性.技巧与方法:抓住第一步的递推关系式,去寻找规律. 解:(1)a n =S n -S n -1=-b (a n -a n -1)-1)1(1)1(1-+++n n b b =-b (a n -a n -1)+nb b)1(+ (n ≥2)解得a n =11)1(1+-+++n n b ba b b (n ≥2) 代入上式得把由此猜想21113211132321213212221221111)1()1()1(,)1()1()1(])1(1[)1()1()1()1(1])1(1[1)1(,111)2(b ba b b b b b a b b a b bb b a b b b b b b b a b b b b b bb a b b b b b a b b b b a b ba b ba S a n n n n n n n n n n n n n n n +=+++++++=+++++=+++++++=++++=++++++=∴+=∴+--==+--+-+--+-+-),1()11(1)()1(11)1(1)1)(1(1)1(11)3()1(2)1()1)(1()1(111111112≠+---+-=+-+--⋅-=+--=⎪⎪⎩⎪⎪⎨⎧=≠+--=++++=++++++++b b b b b b b b b b b b b b ba S b n b b b b b b b b b a n n nn n n n n n n n n n n n.1lim ,0)11(lim ,0lim ,10=∴=+=<<∞→∞→∞→n n nn n n S bb b 时●锦囊妙计1.学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限. 学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限.2.运算法则中各个极限都应存在.都可推广到任意有限个极限的情况,不能推广到无限个.在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限.3.注意在平时学习中积累一些方法和技巧,如:)1|(|0lim ,0)1(lim<==-∞→∞→a a nn n nn ⎪⎪⎪⎩⎪⎪⎪⎨⎧><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 01110110●歼灭难点训练 一、选择题1.(★★★★)a n 是(1+x )n 展开式中含x 2的项的系数,则)111(lim 21nn a a a +++∞→ 等于( )A.2B.0C.1D.-12.(★★★★)若三数a ,1,c 成等差数列且a 2,1,c 2又成等比数列,则nn ca c a )(lim 22++∞→的值是( )A.0B.1C.0或1D.不存在二、填空题3.(★★★★) )(lim x x x x n -+++∞→ =_________.4.(★★★★)若)12(lim 2nb n n a n --+∞→=1,则ab 的值是_________.三、解答题5.(★★★★★)在数列{a n }中,已知a 1=53,a 2=10031,且数列{a n +1-101a n }是公比为21的等比数列,数列{lg(a n +1-21a n }是公差为-1的等差数列.(1)求数列{a n }的通项公式; (2)S n =a 1+a 2+…+a n (n ≥1),求lim ∞→n S n .6.(★★★★)设f (x )是x 的三次多项式,已知ax x f a x x f a n a n 4)(lim2)(lim42-=-→→=1,试求a x x f n 3)(lim-∞→的值.(a 为非零常数).7.(★★★★)已知数列{a n },{b n }都是由正数组成的等比数列,公式分别为p 、q ,其中p >q ,且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求1lim-∞→n nn S S 的值.8.(★★★★★)已知数列{a n }是公差为d 的等差数列,d ≠0且a 1=0,b n =2n a (n ∈N *),S n 是{b n }的前n 项和,T n =nnb S (n ∈N *). (1)求{T n }的通项公式; (2)当d >0时,求lim ∞→n T n .参考答案 难点磁场⎪⎪⎩⎪⎪⎨⎧-=-⋅=-+-=⋅-=++-=-++-=++-==⋅⋅=++==++=++<<-=++=++-<>-+--+-+-+---∞→+-∞→∞→+-∞→-∞→+-∞→)(232232222)(612322222)2(22)2(22,2;21623lim 22lim ,2;41)2(221)2(lim 22lim ,22;1)2()2(11lim 22lim ,22:11111111111211111111为偶数为奇数时当时当时当时或当解n n a a a a a a a a a a a a aa aa a a a a a n n n n n nn n n nn n n nn n n n n n n n n n n n n n nn n n n n n n n n n n n n nn歼灭难点训练 一、1.解析:)111(21,2)1(C 2nn a n n a n n n --=∴-==, 2)11(2lim )111(lim 21=-=+++∴∞→∞→na a a n n n答案:A2.解析:⎩⎨⎧=+=+⎩⎨⎧=+=+⎩⎨⎧==+6222 ,12222222c a c a c a c a c a c a 或得答案:C二、3.解析:xx x x x x x x x x x x x x +++-++=-+++∞→+∞→lim)(lim.21111111lim23=++++=+∞→x xx x 答案:21 4.解析:原式=112)2(lim12)12(lim22222222222=+-+-+-=+-+--+∞→∞→nbn n a a n a n b a nbn n a b n n n a n n⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=-422120222b a b b a ∴a ·b =82 答案:82三、5.解:(1)由{a n +1-101a n }是公比为21的等比数列,且a 1=53,a 2=10031,∴a n +1-101a n =(a 2-101a 1)(21)n -1=(10031-53×101)(21)n -1=1121)21(41+-=n n ,∴a n +1=101a n +121+n ①又由数列{lg(a n +1-21a n )}是公差为-1的等差数列,且首项lg(a 2-21a 1)=lg(10031-21×53)=-2,∴其通项lg(a n +1-21a n )=-2+(n -1)(-1)=-(n +1),∴a n +1-21a n =10-(n +1),即a n +1=21a n +10-(n +1)②①②联立解得a n =25[(21)n +1-(101)n +1](2)S n =])101()21([2511111∑∑∑==++=-=n k n k k k nk k a911]1011)61(211)21([25lim 22=---=∴∞→n n S6.解:由于ax x f a x 2)(lim 2-→=1,可知,f (2a )=0①同理f (4a )=0②由①②可知f (x )必含有(x -2a )与(x -4a )的因式,由于f (x )是x 的三次多项式,故可设f (x )=A (x -2a )(x -4a )(x -C ),这里A 、C 均为待定的常数,,1))(4(lim 2))(4)(2(lim ,12)(lim222=--=----=-→→→C x a x A ax C x a x a x A a x x f a x a x a x 即由1)2)(42(=--C a a a A 得,即4a 2A -2aCA =-1③同理,由于ax x f a x 4)(lim 4-→=1,得A (4a -2a )(4a -C )=1,即8a 2A -2aCA =1④由③④得C =3a ,A =221a ,因而f (x )= 221a (x -2a )(x -4a )(x -3a ),21)(21)4)(2(21lim 3)(lim2233-=-⋅⋅=--=-∴→→a a aa x a x a a x x f a x a x 1111111111111111111)1()1()1()1()1()1()1()1(1)1(1)1(1)1(1)1(1)1(1)1(:.7----------+------+-=--+----+--=∴--+--=n n nn n n n n n nn n n q p b p q a p b q a q p b p q a p b q a qq b p p a q q b p p a S S q q b p p a S 解由数列{a n }、{b n }都是由正数组成的等比数列,知p >0,q >0.1)1(00)1(01))(1(1)1()1()1())(1()1()1()1(lim )1()1()1()1()1()1()1()1(lim lim 111111111111111111111111p pq a q a p p q p b p q a pp b q a p q p b q a p p b q a p q p b p q a p b q a p q p b p q a p b q a S S p n n nnn nn n nnn n n n n =------=-----+------+-=-----+------+-=>--∞→--∞→-∞→时当当p <1时,q <1, 0lim lim lim lim 11====-∞→∞→-∞→∞→n n n n n n n n q q p p1lim 1=∴-∞→n nn S S8.解:(1)a n =(n -1)d ,b n =2n a =2(n -1)dS n =b 1+b 2+b 3+…+b n =20+2d +22d +…+2(n -1)d由d ≠0,2d≠1,∴S n =dnd 21)2(1--∴T n =ndd n nd d n d nd n n b S 2221221)2(1)1()1(--=--=--(2)当d >0时,2d >1122121101211)2(1lim )2()2()2(1lim 2221lim lim 1)1(-=--=--=--=--=∴∞→-∞→-∞→∞→dd d d nd n nd n d nd n ndd n nd n n n T。

黄冈中学高考数学典型例题13---数列的通项与求和(3)

黄冈中学高考数学典型例题13---数列的通项与求和(3)

黄冈中学高考数学典型例题详解数列的通项与乞降每临大事必有静气静则神明疑难冰释踊跃准备坦率面对最正确发挥舍我其谁数列是函数看法的持续和延长数列的通项公式及前n 项和公式都能够看作项数n 的函数是函数思想在数列中的应用数列以通项为纲数列的问题最后究结为对数列通项的研究而数列的前n 项和 Sn 可视为数列 Sn 的通项通项及乞降是数列中最基本也是最重要的问题之一与数列极限及数学概括法有着亲密的联系是高考对数列问题考查中的热门本点的动向函数看法解决有关问题为其供给卓有成效的方法●难点磁场★★★★★设 an 是正数构成的数列其前 n 项和为 Sn而且关于全部的自然数 nan 与 2 的等差中项等于 Sn 与 2 的等比中项1写出数列 an 的前 3 项2求数列 an 的通项公式写出推证过程3令 bn n ∈N 求 b1b2b3bn -n●事例研究〔例1〕已知数列an 是公差为 d 的等差数列数列bn 是公比为q 的q ∈Rq≠1 的等比数列若函数 f x x -1 2 且a1 f d -1 a3 且f d1 b1 f q1 b3 f q -11求数列 an 和 bn 的通项公式2设数列 cn 的前 n 项和为 Sn 对全部 n∈N都有 an1 建立求命题企图此题主要考察等差等比数列的通项公式及前n 项和公式数列的极限以及运算能力和综合剖析问题的能力属★★★★★级题目知识依靠此题利用函数思想把题设条件转变为方程问题特别明显而 2 中条件等式的左侧可视为某数列前 n 项和实质上是该数列前 n 项和与数列 an 的关系借助通项与前 n 项和的关系求解 cn 是该条件转变的打破口错解剖析此题两问环环相扣1问是基础但解方程求基本量a1b1dq 计算禁止易犯错2问中对条件的正确认识和转变是重点技巧与方法此题1问运用函数思想转变为方程问题思路较为自然 2问借鸡生蛋结构新数列dn 运用和与通项的关系求出dn 丝丝入扣解 1 ∵a1 f d -1 d -2 2a3 f d1 d2∴a3-a1 d2 - d -2 2 2d∵ d 2 ∴an a1 n -1 d 2 n -1 又 b1 f q1 q2b3 f q-1q-2 2∴q2 由 q∈R且 q≠1 得 q -2∴bn b ·qn-1 4 · -2 n -12 令 dn 则 d1d2dn an1 n ∈N∴dn an1 -an 2∴2 即 cn 2 ·bn 8 · -2 n -1∴Sn 〔1--2 n 〕∴〔例 2〕设 An为数列 an 的前 n 项和 An an -1 数列 bn 的通项公式为 bn 4n31求数列 an 的通项公式2把数列 an 与 bn 的公共项按从小到大的次序排成一个新的数列证明数列 dn 的通项公式为 dn 32n13设数列 dn 的第 n 项是数列 bn 中的第 r 项 Br 为数列 bn 的前 r 项的和 Dn为数列 dn 的前 n 项和 Tn Br -Dn求命题企图此题考察数列的通项公式及前n 项和公式及其互相关系会合的有关看法数列极限以及逻辑推理能力知识依靠利用项与和的关系求an 是此题的先决 2 问中探访 an与 bn 的相通之处须借助于二项式定理而 3 问中利用乞降公式乞降则是最基本的知识点错解剖析待证通项 dn 32n1 与 an 的共同点易被忽略而举步维艰注意不到 r 与 n 的关系使 Tn 中既含有 n 又含有 r 会使所求的极限模糊不清技巧与方法 1 问中项与和的关系为惯例方法 2 问中把 3 拆解为 4-1 再利用二项式定理找寻数列通项在形式上相通之处可谓妙笔3 问中发掘出 n 与 r 的关系正确表示Br 问题即可水到渠成解 1 由 An an -1 可知 An1 an1 -1∴ an1-an an1 -an 即 3 而 a1 A1 a1 -1 得 a1 3 所以数列是以3 为首项公比为 3 的等比数列数列an 的通项公式an 3n 2∵32n1 3·32n 3·4 -1 2n 3·〔42nC·42n-1 -1 C·4· -1 -1 2n 〕4n3∴ 32n1∈ bn 而数 32n 4 -1 2n 42nC·42n-1· -1 C·4· -1 -1 2n 4k1∴ 32n bn 而数列 an a2n1 ∪ a2n ∴dn 32n1 3 由32n1 4 ·r3 可知 r∴Br●神机妙算1数列中数的有序性是数列定义的灵魂要注意辨析数列中的项与数集中元素的异同所以在研究数列问题时既要注意函数方法的广泛性又要注意数列方法的特别性2数列 an 前 n 项和 Sn 与通项 an 的关系式 an3求通项常用方法①作新数列法作等差数列与等比数列②累差叠加法最基本形式是an an -an- 1 an -1an-2 a2 -a1 a1③概括猜想法4 数列前 n 项和常用求法①重要公式12n n n11222n2 n n1 2n11323n3 12n 2 n2 n1 2②等差数列中Smn SmSnmnd等比数列中 Smn SnqnSm SmqmSn③裂项乞降将数列的通项分红两个式子的代数和即an f n1-fn而后累加时抵消中间的很多项应掌握以下常有的裂项④错项相消法⑤并项乞降法数列通项与和的方法多种多样要视详细情况采用适合方法●剿灭难点训练一填空题1★★★★★设 zn n n ∈N 记 Sn |z2-z1||z3-z2||zn1-zn|则 Sn _________2 ★★★★★作边长为a的正三角形的内切圆在这个圆内作新的内接正三角形在新的正三角形内再作内切圆这样持续下去全部这些圆的周长之和及面积之和分别为_________二解答题3★★★★数列 an 知足 a1 2 关于随意的 n∈N 都有 an>0 且n1 an2an ·an1-nan12 0 又知数列 bn 的通项为 bn 2n -111求数列 an 的通项 an 及它的前 n 项和 Sn2求数列 bn 的前 n 项和 Tn3猜想 Sn 与 Tn 的大小关系并说明原因4 ★★★★数列an中a1 8a4 2且知足an2 2an1-an n∈N1求数列 an 的通项公式2设 Sn |a1|| a2|| an|求 Sn3设 bn n ∈N Tn b1b2bn n ∈N 能否存在最大的整数 m使得对随意 n∈N均有 Tn>建立若存在求出 m的值若不存在说明原因5★★★★★设数列 an 的前 n 项和为 Sn 且 Sn m1 -man对随意正整数 n 都建立此中 m为常数且 m<- 11 求证 an 是等比数列2设数列 an 的公比 q f m 数列 bn 知足 b1 a1bn f bn -1 n≥2n∈N 试问当 m为什么值时建立6 ★★★★★已知数列bn是等差数列b1 1b1b2b10 1451求数列 bn 的通项 bn2设数列an 的通项 an loga 1 此中a>0 且a≠1 记 Sn 是数列an 的前n 项和试比较Sn与 logabn1 的大小并证明你的结论7★★★★★设数列 an 的首项 a1 1 前 n 项和 Sn 知足关系式3tSn- 2t3 Sn -1 3t t>0n 2341求证数列 an 是等比数列2 设数列 an 的公比为 f t 作数列 bn 使 b1 1bn f n 234 求数列 bn 的通项 bn3乞降b1b2-b2b3b3b4-b2n-1b2n-b2nb2n1参照答案难点磁场分析 1由题意当n 1时有S1 a1∴解得 a1 2 当 n 2 时有 S2 a1a2 将 a1 2 代入整理得 a2 -2 2 16 由 a2>0 解得 a2 6 当 n 3 时有 S3 a1a2a3 将 a1 2a2 6 代入整理得 a3 -2 2 64 由 a3>0 解得 a3 10 故该数列的前 3 项为 26102 解法一由 1 猜想数列 an 有通项公式 an 4n-2 下边用数学概括法证明 an 的通项公式是 an 4n -2 n ∈N①当 n 1 时因为 4×1-2 2 又在 1中已求出a1 2所以上述结论建立②假定当 n k 时结论建立刻有 ak 4k -2 由题意有将 ak 4k -2 代入上式解得2k 得Sk 2k2 由题意有Sk1 Skak1 将Sk 2k2 代入得 2 2 ak12k2 整理得 ak12-4ak14-16k2 0 由 ak1>0 解得 ak1 24k 所以 ak1 24k 4 k1 -2 即当 n k1 时上述结论建立依据①②上述结论对所有的自然数 n∈N建立解法二由题意知n ∈N 整理得 Sn an2 2由此得Sn1 an12 2∴an1 Sn1-Sn 〔an12 2 -an2 2 〕整理得an1an an1 -an-4 0 由题意知an1an≠0∴an1-an 4 即数列an 为等差数列此中a1 2 公差d 4 ∴an a1 n -1 d 24 n -1 即通项公式为an 4n -2解法三由已知得n ∈N ①所以有②由②式得整理得Sn1-2·2-Sn 0 解得因为数列an 为正项数列而因此即Sn 是认为首项认为公差的等差数列所以n -1 nSn 2n2故 an 即 an 4n -2 n ∈N3 令 cn bn -1 则 cn剿灭难点训练一答案12 分析由题意全部正三角形的边长构成等比数列an 可得an 正三角形的内切圆构成等比数列rn 可得rn a∴这些圆的周长之和 c 2 πr1r2rn a2面积之和S π n2r22rn2 a2答案周长之和πa 面积之和a2二 3 解1 可解得进而an 2n 有Sn n2n2 Tn 2nn -13 Tn -Sn 2n -n2-1 考证可知 n 1 时 T1 S1n 2 时 T2<S2n 3 时T3<S3n4 时 T4<S4n5 时 T5>S5n6 时 T6>S6 猜想当 n≥5 时Tn>Sn 即 2n>n21可用数学概括法证明略4 解 1 由 an2 2an1 -anan2-an1 an1-an 可知 an 成等差数列d -2∴an 10 -2n2由an 10-2n≥0可得n≤5当n≤5时Sn-n29n当n>5时Sn n2-9n40 故 Sn3 bn要使 Tn>总建立需< T1 建立刻 m<8 且 m∈Z 故适合条件的 m的最大值为 75 解 1 由已知 Sn1 m1 -man1Sn m1 -man②由①-②得an1 man-man1即 m1 an1 man 对随意正整数n 都建立∵ m为常数且 m<- 1∴即为等比数列2当n 1 时 a1 m1-ma1∴a1 1 进而b1由1 知q f m ∴bn f bn -1 n∈N且n≥2∴即∴为等差数列∴ 3 n -1 n2n ∈N6 解1 设数列bn 的公差为 d 由题意得解得b1 1d 3∴bn 3n -22由bn 3n-2知Sn loga 11 loga 1 loga 1loga 〔1111 〕logabn1 loga所以要比较Sn 与logabn1 的大小可先比较1111 与的大小取 n 1 时有 11 >取n 2 时有111 >由此推断1111 >①若①式建立则由对数函数性质可判断当 a>1 时 Sn>logabn1当 0<a<1 时 Sn<logabn1 下边用数学概括法证明①式②③ⅰ当 n 1 时已考证①式建立ⅱ假定当 n k 时 k ≥1①式建立刻那么当 n k1 时这就是说①式当 n k1 时也建立由 ⅰⅱ可知①式对任何正整数 n 都建立由此证得当 a >1 时 Sn >logabn1 当 0<a < 1 时 Sn <logabn17 解 1 由 S1 a1 1S2 1a2 得 3t 1a2 - 2t3 3t∴ a2又 3tSn - 2t3 Sn -1 3t①3tSn -1- 2t3 Sn -2 3t②①-②得3tan -2t3 an-1 0∴ n 2342 由 f t所以an 得 是一个首项为bn f bn-11 公比为的等比数列 可见bn是一个首项为1 公差为的等差数列于是 bn 1 n -13 由 bn 可知 b2n -1 和 b2n 是首项分别为 1 和公差均为的等差数列于是 b2n∴ b1b2-b2b3b3b4-b4b5b2n -1b2n -b2nb2n1b2 b1 -b3 b4 b3 -b5 b2n b2n -1-b2n1- b2b4b2n -· n - 2n23n第1页共11页。

湖北省黄冈中学高考数学压轴题精编精解(五)

湖北省黄冈中学高考数学压轴题精编精解(五)

湖北省黄冈中学高考数学压轴题精编精解(五)的首项(1)证明:(2)设的首项,((a是常数,且)。

),(),数列从第2项起是以2为公比的等比数列;的前n项和,且的最小项。

上任意一点到焦点F的距离比到y轴的距离大1。

是等比数列,求实数a的值;为数列(3)当a>0时,求数列42.已知抛物线C:(1)求抛物线C的方程;(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为,求所有侧面面积之和的最小值”.,求侧棱长”;也可以是“若正四棱锥的体积为现有正确命题:过点的直线交抛物线C:于P、Q两点,设点P关于某轴的对称点为R,则直线RQ必过焦点F。

试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题。

43.已知函数f(某)=(I)写出,的值;,设正项数列满足=l,.(Ⅱ)试比较与的大小,并说明理由;(Ⅲ)设数列满足=-,记Sn=.证明:当n≥2时,Sn<(2n-1).44.已知函数f(某)=某3-3a某(a∈R).(I)当a=l时,求f(某)的极小值;(Ⅱ)若直线菇某+y+m=0对任意的m∈R都不是曲线y=f(某)的切线,求a的取值范围;(Ⅲ)设g(某)=|f(某)|,某∈[-l,1],求g(某)的最大值F(a)的解析式.45.在平面直角坐标系中,已知三个点列{An},{Bn},{Cn},其中线上,满足向量与向量共线,且点(B,n)在方向向量为(1,6)的(1)试用a与n表示;(2)若a6与a7两项中至少有一项是an的最小值,试求a的取值范围。

46.已知(1)求轨迹E的方程;(2)若直线l过点F2且与轨迹E交于P、Q两点.(i)无论直线l 绕点F2怎样转动,在某轴上总存在定点,使恒成立,求实数m的值.,记点P的轨迹为E.(ii)过P、Q作直线47.设某1、(1)若(2)若(3)若48{an}(1)求{an}的通项an;.已的垂线PA、OB,垂足分别为A、B,记的两个极值点.,求函数f(某)的解析式;的最大值;,求证:知,成等差数列.,求λ的取值范围.若数列(2)设若{bn}的前n项和是Sn,且49.点P在以为焦点的双曲线上,已知,,O为坐标原点.(Ⅰ)求双曲线的离心率;(Ⅱ)过点P作直线分别与双曲线渐近线相交于双曲线E的方程;(Ⅲ)若过点(两点,且,,求为非零常数)的直线与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(为非零常数),问在轴上是否存在定点G,使?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.50.已知函数(Ⅰ)求的值;(Ⅱ)是否存在的值,使直线值;如果不存在,说明理由.(Ⅲ)如果对于所有的,都有成立,求的取值范围.既是曲线的切线,又是的切线;如果存在,求出的,,和直线,又.黄冈中学2022年高考数学压轴题汇总详细解答41.解:(1)∵∴由∵即得,∴(n≥2)…………3分,,…………4分,从第2项起是以2为公比的等比数列。

湖北省黄冈中学高考数学 典型例题29 排列、组合的应用问题

湖北省黄冈中学高考数学 典型例题29 排列、组合的应用问题

高考数学典型例题详解 排列与组合 应用问题排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有1~2道排列组合题,考查排列组合的基础知识、思维能力.●难点磁场(★★★★★)有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?●案例探究[例1]在∠AOB 的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共m +n +1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )1212111121212121211211C C C D.C C C C C C C.C C C C .C B C C C A.C nm n m n m mn nm m n n m m n n m +++++++++命题意图:考查组合的概念及加法原理,属★★★★★级题目. 知识依托:法一分成三类方法;法二,间接法,去掉三点共线的组合.错解分析:A 中含有构不成三角形的组合,如:C 11+m C 2n 中,包括O 、B i 、B j ;C 11+n C 2m 中,包含O 、A p 、A q ,其中A p 、A q ,B i 、B j 分别表示OA 、OB 边上不同于O 的点;B 漏掉△A i OB j ;D有重复的三角形.如C 1m C 21+n 中有△A i OB j ,C 21+m C 1n 中也有△A i OB j .技巧与方法:分类讨论思想及间接法.解法一:第一类办法:从OA 边上(不包括O )中任取一点与从OB 边上(不包括O )中任取两点,可构造一个三角形,有C 1m C 2n 个;第二类办法:从OA 边上(不包括O )中任取两点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 2m C 1n 个;第三类办法:从OA 边上(不包括O )任取一点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 1m C 1n 个.由加法原理共有N =C 1m C 2n +C 2m C 1n +C 1m C 1n 个三角形.解法二:从m +n +1中任取三点共有C 31++n m 个,其中三点均在射线OA (包括O 点),有C 31+m 个,三点均在射线OB (包括O 点),有C 31+n 个.所以,个数为N =C 31++n m -C 31+m -C 31+n 个.答案:C[例2]四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________.命题意图:本题主要考查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学问题的能力,属★★★★级题目.知识依托:排列、组合、乘法原理的概念.错解分析:根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而后将剩的一人送到一所学校,故有3A 34种.忽略此种办法是:将同在一所学校的两名学生按进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序要求的.技巧与方法:解法一,采用处理分堆问题的方法.解法二,分两次安排优等生,但是进入同一所学校的两名优等生是不考虑顺序的.解法一:分两步:先将四名优等生分成2,1,1三组,共有C 24种;而后,对三组学生安排三所学校,即进行全排列,有A 33种.依乘法原理,共有N =C 2433A =36(种).解法二:分两步:从每个学校至少有一名学生,每人进一所学校,共有A 34种;而后,再将剩余的一名学生送到三所学校中的一所学校,有3种.值得注意的是:同在一所学校的两名学生是不考虑进入的前后顺序的.因此,共有N =21A 34·3=36(种). 答案:36●锦囊妙计排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.前两种方式叫直接解法,后一种方式叫间接解法.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.解排列与组合应用题常用的方法有:直接计算法与间接计算法;分类法与分步法;元素分析法和位置分析法;插空法和捆绑法等八种.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.●歼灭难点训练一、填空题1.(★★★★)从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条(用数值表示).2.(★★★★★)圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为_________.二、解答题3.(★★★★★)某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?4.(★★★★)二次函数y=ax2+bx+c的系数a、b、c,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?5.(★★★★★)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置.(2)全体排成一行,其中甲不在最左边,乙不在最右边.(3)全体排成一行,其中男生必须排在一起.(4)全体排成一行,男、女各不相邻.(5)全体排成一行,男生不能排在一起.(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.(7)排成前后二排,前排3人,后排4人.(8)全体排成一行,甲、乙两人中间必须有3人.6.(★★★★★)20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.7.(★★★★)用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的方法共有几种?8.(★★★★)甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?参考答案难点磁场解:(间接法):任取三张卡片可以组成不同三位数C35·23·A33(个),其中0在百位的有C24·22·A22(个),这是不合题意的,故共有不同三位数:C35·23·A33-C24·22·A22=432(个).歼灭难点训练一、1.解析:因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B两数的顺序不同,表示的直线不同,所以直线的条数为A26=30.答案:302.解析:2n个等分点可作出n条直径,从中任选一条直径共有C1n种方法;再从以下的(2n-2)个等分点中任选一个点,共有C122-n种方法,根据乘法原理:直角三角形的个数为:C1 n ·C122-n=2n(n-1)个.答案:2n(n-1)二、3.解:出牌的方法可分为以下几类:(1)5张牌全部分开出,有A55种方法;(2)2张2一起出,3张A一起出,有A25种方法;(3)2张2一起出,3张A一起出,有A45种方法;(4)2张2一起出,3张A分两次出,有C23A35种方法;(5)2张2分开出,3张A一起出,有A35种方法;(6)2张2分开出,3张A分两次出,有C23A45种方法.因此,共有不同的出牌方法A55+A25+A45+A23A35+A35+C23A45=860种.4.解:由图形特征分析,a>0,开口向上,坐标原点在内部⇔f(0)=c<0;a<0,开口向下,原点在内部⇔f(0)=c>0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部⇔af(0)=ac <0,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有C1 3C14A22A16=144条.5.解:(1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选择.有A13种,其余6人全排列,有A66种.由乘法原理得A13A66=2160种.(2)位置分析法.先排最右边,除去甲外,有A16种,余下的6个位置全排有A66种,但应剔除乙在最右边的排法数A15A55种.则符合条件的排法共有A16A66-A15A55=3720种.(3)捆绑法.将男生看成一个整体,进行全排列.再与其他元素进行全排列.共有A3 3A55=720种.(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有A33A44=144种.(5)插空法.先排女生,然后在空位中插入男生,共有A44A35=1440种.(6)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此A77=N×A33,∴N=3377AA= 840种.(7)与无任何限制的排列相同,有A77=5040种.(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A35种,甲、乙和其余2人排成一排且甲、乙相邻的排法有A23A33.最后再把选出的3人的排列插入到甲、乙之间即可.共有A35×A22×A33=720种.6.解:首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O”表示小球,“|”表示空档.将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数.对应关系是:以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数.最左侧的空档可以同时插入两个小盒.而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C23种;若恰有一个小盒插入最左侧空档,有1313CC种;若没有小盒插入最左侧空档,有C213种.由加法原理,有N=2131131323CCCC++=120种排列方案,即有120种放法.7.解:按排列中相邻问题处理.(1)(4)或(2)(4).可以涂相同的颜色.分类:若(1)(4)同色,有A35种,若(2)(4)同色,有A35种,若(1)(2)(3)(4)均不同色,有A45种.由加法原理,共有N=2A35+A45=240种.8.解:每人随意值两天,共有C26C24C22个;甲必值周一,有C15C24C22个;乙必值周六,有C15C24C22个;甲必值周一且乙必值周六,有C14C13C22个.所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N=C26C24C22-2C15C24C22+ C14C13C22=90-2×5×6+12=42个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学典型例题详解 数学归纳法解题数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场(★★★★)是否存在a 、b 、c 使得等式1·22+2·32+…+n (n +1)2=12)1(+n n (an 2+bn +c ).●案例探究[例1]试证明:不论正数a 、b 、c 是等差数列还是等比数列,当n >1,n ∈N *且a 、b 、c 互不相等时,均有:a n +c n >2b n .命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目. 知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤. 错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况. 技巧与方法:本题中使用到结论:(a k-c k)(a -c )>0恒成立(a 、b 、c 为正数),从而a k +1+c k +1>a k ·c +c k ·a .证明:(1)设a 、b 、c 为等比数列,a =qb,c =bq (q >0且q ≠1) ∴a n+c n=n n qb +b n q n =b n (n q 1+q n )>2b n(2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2c a +)n (n ≥2且n ∈N *)下面用数学归纳法证明:①当n =2时,由2(a 2+c 2)>(a +c )2,∴222)2(2c a c a +>+ ②设n =k 时成立,即,)2(2kk k c a c a +>+ 则当n =k +1时,41211=+++k k c a (a k +1+c k +1+a k +1+c k +1)>41(a k +1+c k +1+a k ·c +c k·a )=41(a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2c a +)k +1[例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -21成等比数列. (1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明. 错解分析:(2)中,S k =-321-k 应舍去,这一点往往容易被忽视. 技巧与方法:求通项可证明{n S 1}是以{11S }为首项,21为公差的等差数列,进而求得通项公式.解:∵a n ,S n ,S n -21成等比数列,∴S n 2=a n ·(S n -21)(n ≥2) (*) (1)由a 1=1,S 2=a 1+a 2=1+a 2,代入(*)式得:a 2=-32由a 1=1,a 2=-32,S 3=31+a 3代入(*)式得:a 3=-152同理可得:a 4=-352,由此可推出:a n =⎪⎩⎪⎨⎧>---=)1( )12)(32(2)1( 1n n n n (2)①当n =1,2,3,4时,由(*)知猜想成立.②假设n =k (k ≥2)时,a k =-)12)(32(2--k k 成立故S k 2=-)12)(32(2--k k ·(S k -21)∴(2k -3)(2k -1)S k 2+2S k -1=0∴S k =321,121--=-k S k k (舍) 由S k +12=a k +1·(S k +1-21),得(S k +a k +1)2=a k +1(a k +1+S k -21).1,]1)1(2][3)1(2[22112122)12(1111211212命题也成立即+=-+-+-=⇒--+=-++-⇒++++++k n k k a a k a a k a a k k k k k k k由①②知,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对一切n ∈N 成立. (3)由(2)得数列前n 项和S n =121-n ,∴S =lim ∞→n S n =0.●锦囊妙记(1)数学归纳法的基本形式 设P (n )是关于自然数n 的命题,若 1°P (n 0)成立(奠基)2°假设P (k )成立(k ≥n 0),可以推出P (k +1)成立(归纳),则P (n )对一切大于等于n 0的自然数n 都成立.(2)数学归纳法的应用具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练 一、选择题1.(★★★★★)已知f (n )=(2n +7)·3n+9,存在自然数m ,使得对任意n ∈N ,都能使m 整除f (n ),则最大的m 的值为( )A.30B.26C.36D.62.(★★★★)用数学归纳法证明3k≥n 3(n ≥3,n ∈N )第一步应验证( ) A.n =1B.n =2C.n =3D.n =4二、填空题3.(★★★★★)观察下列式子:474131211,3531211,2321122222<+++<++<+…则可归纳出_________.4.(★★★★)已知a 1=21,a n +1=33+n n a a ,则a 2,a 3,a 4,a 5的值分别为_________,由此猜想a n =_________.三、解答题5.(★★★★)用数学归纳法证明412+n +3n +2能被13整除,其中n ∈N *.6.(★★★★)若n 为大于1的自然数,求证:2413212111>+++++n n n .7.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1)求数列{b n }的通项公式b n ; (2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1)记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论.8.(★★★★★)设实数q 满足|q |<1,数列{a n }满足:a 1=2,a 2≠0,a n ·a n +1=-q n,求a n 表达式,又如果lim ∞→n S 2n <3,求q 的取值范围.参考答案 难点磁场解:假设存在a 、b 、c 使题设的等式成立,这时令n =1,2,3,有⎪⎩⎪⎨⎧===∴⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=101133970)24(2122)(614c b a cb ac b a c b a 于是,对n =1,2,3下面等式成立 1·22+2·32+…+n (n +1)2=)10113(12)1(2+++n n n n 记S n =1·22+2·32+…+n (n +1)2设n =k 时上式成立,即S k =12)1(+k k (3k 2+11k +10) 那么S k +1=S k +(k +1)(k +2)2=2)1(+k k (k +2)(3k +5)+(k +1)(k +2)2=12)2)(1(++k k (3k 2+5k +12k +24)=12)2)(1(++k k [3(k +1)2+11(k +1)+10]也就是说,等式对n =k +1也成立.综上所述,当a =3,b =11,c =10时,题设对一切自然数n 均成立.歼灭难点训练一、1.解析:∵f (1)=36,f (2)=118=3×36,f (3)=360=10×36 ∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除. 证明:n =1,2时,由上得证,设n =k (k ≥2)时,f (k )=(2k +7)·3k +9能被36整除,则n =k +1时, f (k +1)-f (k )=(2k +9)·3k +1 -(2k +7)·3k=(6k +27)·3k-(2k +7)·3k=(4k +20)·3k=36(k +5)·3k -2(k ≥2)⇒f (k +1)能被36整除∵f (1)不能被大于36的数整除,∴所求最大的m 值等于36. 答案:C2.解析:由题意知n ≥3,∴应验证n =3. 答案:C二、3.解析:11112)11(112321122++⨯<++<+即 12122)12(1)11(11,35312112222++⨯<++++<++即 112)1(131211222++<+++++n n n 归纳为(n ∈N *) 112)1(131211:222++<+++++n n n 答案(n ∈N *) 53,553103,54393,5338333,5237332121333:.454223112+=+==+==+==+=+==+⨯=+=n a a a a a a a a a n 猜想同理解析 73:答案、83、93、10353=n三、5.证明:(1)当n =1时,42×1+1+31+2=91能被13整除(2)假设当n =k 时,42k +1+3k +2能被13整除,则当n =k +1时,42(k +1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3=42k +1·13+3·(42k +1+3k +2)∵42k +1·13能被13整除,42k +1+3k +2能被13整除∴当n =k +1时也成立. 由①②知,当n ∈N *时,42n +1+3n +2能被13整除.6.证明:(1)当n =2时,2413127221121>=+++ (2)假设当n =k 时成立,即2413212111>+++++k k k 2413)1)(12(21241322112124131122112124131111221121213121,1>+++=+-++=+-++++>+-++++++++++++=k k k k k k k k k k k k k k k n 时则当7.(1)解:设数列{b n }的公差为d ,由题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-+=311452)110(10101111d b d b b ,∴b n =3n -2(2)证明:由b n =3n -2知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n )=log a [(1+1)(1+41)…(1+ 231-n )]而31log a b n +1=log a 313+n ,于是,比较S n 与31log a b n +1 的大小⇔比较(1+1)(1+41)…(1+231-n )与313+n 的大小.取n =1,有(1+1)=33311348+⋅=> 取n =2,有(1+1)(1+33312378)41+⨯=>> 推测:(1+1)(1+41)…(1+231-n )>313+n (*) ①当n =1时,已验证(*)式成立.②假设n =k (k ≥1)时(*)式成立,即(1+1)(1+41)…(1+231-k )>313+k 则当n =k +1时,)1311(13)2)1(311)(2311()411)(11(3+++>-++-+++k k k k 3131323+++=k k k333222333331)1(343)23(13130)13(49)13()13)(43()23()43()131323(++=+>+++∴>++=+++-+=+-+++k k k k k k k k k k k k k k k 31)1(3)1311)(2311()411)(11(++>-+-+++k k k 从而,即当n =k +1时,(*)式成立由①②知,(*)式对任意正整数n 都成立. 于是,当a >1时,S n >31log a b n +1 ,当 0<a <1时,S n <31log a b n +1 8.解:∵a 1·a 2=-q ,a 1=2,a 2≠0, ∴q ≠0,a 2=-29,∵a n ·a n +1=-q n ,a n +1·a n +2=-q n +1两式相除,得qa a n n 12=+,即a n +2=q ·a n 于是,a 1=2,a 3=2·q ,a 5=2·q n…猜想:a 2n +1=-21q n(n =1,2,3,…) 综合①②,猜想通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时时下证:(1)当n =1,2时猜想成立 (2)设n =2k -1时,a 2k -1=2·qk -1则n =2k +1时,由于a 2k +1=q ·a 2k -1∴a 2k +1=2·q k即n =2k -1成立. 可推知n =2k +1也成立. 设n =2k 时,a 2k =-21q k,则n =2k +2时,由于a 2k +2=q ·a 2k , 所以a 2k +2=-21q k+1,这说明n =2k 成立,可推知n =2k +2也成立. 综上所述,对一切自然数n ,猜想都成立.这样所求通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时当时当S 2n =(a 1+a 3…+a 2n -1)+(a 2+a 4+…+a 2n )=2(1+q +q 2+…+q n -1)-21 (q +q 2+…+q n ) )24)(11()1()1(211)1(2q q q q q q q q n n n ---=--⋅---=由于|q |<1,∴n n nn S q 2lim ,0lim ∞→∞→=故=)24)(11(qq q n --- 依题意知)1(24q q --<3,并注意1-q >0,|q |<1解得-1<q <0或0<q <52。

相关文档
最新文档