2018届人教A版(理) 计数原理、概率、随机变量及其分布 检测卷 1

合集下载

2018高考数学(理)一轮复习课件 第九章 计数原理、概率、随机变量及其分布 第3讲 课件

2018高考数学(理)一轮复习课件 第九章 计数原理、概率、随机变量及其分布 第3讲 课件

60
2 a 5 5.在二项式x -x 的展开式中,x
的系数是-10,则实数 a
的值为________.
1
[解析]
ar r 2 5-r 10-3r Tr+1=C5(x ) · - =(-a)rCr · x . 5



x
3 当 10-3r=1 时,r=3,于是 x 的系数为(-a)3C3 5=-10a ,
A
)
2 8 [解析] 由题意得 a8=C8 102 (-1) =180.
4. (2016· 高考北京卷 ) 在 (1- 2x)6 的展开式中, x2 的系数为 ________.(用数字作答)
r r [解析] (1-2x)6 的展开式的通项 Tr+1=Cr 当 r=2 时, 6(-2) x , 2 2 2 2 T3=C2 ( - 2) x = 60 x ,所以 x 的系数为 60. 6
[典例引领] (1)(x
2
1 5 3 +2)x2-1 的展开式的常数项是________.
2
1 5 (2)(2016· 高考山东卷)若(ax + ) 的展开式中 x5 的系数是- x 80,则实数 a=________.
-2
【解析】 (x
2
(1)(x
2
1 5 +2)x2-1 =
n
(2)通项
k n k k C b na 第 k+1 项为:Tk+1=______________ .

(3)二项式系数
k C ) n(k=0,1,2,…,n 二项展开式中各项的二项式系数为:___________________ .
2.二项式系数的性质
1.辨明三个易误点
n- k k (1)通项 Tk+1=Ck a b 是展开式的第 k+1 项,不是第 k 项. n

2018届一轮复习人教A版计数原理、概率、统计 (5) 课件

2018届一轮复习人教A版计数原理、概率、统计 (5)  课件

第九章
考点一 考点二 考点三
第五节 用样本估计总体
主干知识回顾 名师考点精讲 综合能力提升
-11-
频率分布直方图的常见题型及解法 (1)求某组的频数或频率:利用各组频率之和为1,频率=频数/样本容量,各组频 率即为各个小矩形的面积等知识求解; (2)求概率:用频率估计概率.
第九章
考点一 考点二 考点三
第五节 用样本估计总体
第九章
考纲概述
第五节 用样本估计总体
主干知识回顾 名师考点精讲 综合能力提升
-2-
考查热点
考查频次 ★★★★
备考指导
(1)了解分布的意义和作用,能根据频 率分布表画频率分布直方图、频率 直方图、茎叶图等统计图表 折线图、茎叶图,理解它们各自的特 点; (2)理解样本数据标准差的意义和作 用,会计算数据标准差; (3)能从样本数据中提取基本的数字 特征(如平均数、标准差),并作出合 理的解释; (4)会用样本的频率分布估计总体分 均值、方差、标准差等统计特 布,会用样本的基本数字特征估计总 征数 体的基本数字特征,理解用样本估计 总体的思想; (5)会用随机抽样的基本方法和样本 估计总体的思想解决一些简单的实 际问题
组号 频率 1 0.1 2 0.15 3 0.2 4 0.25 5 0.15 6 0.05 7 0.05 8 0.05 分组 [2,4] (4,6] (6,8] (8,10] (10,12] (12,17] (17,22] (22,27]
根据题意,该市居民该月的人均水费估计为 4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 课时跟踪检测61 理 新人教A版(20

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 课时跟踪检测61 理 新人教A版(20

2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布课时跟踪检测61 理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布课时跟踪检测61 理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布课时跟踪检测61 理新人教A版的全部内容。

课时跟踪检测(六十一)[高考基础题型得分练]1.[2017·四川成都质检]某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种D.60种答案:D解析:解法一(直接法):若3个不同的项目投资到4个城市中的3个,每个城市一项,共A错误!种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共C错误!A错误!种方法.由分类加法计数原理知,共A错误!+C错误!A错误!=60(种)方法.解法二(间接法):先任意安排3个项目,每个项目各有4种安排方法,共43=64(种)排法,其中3个项目落入同一城市的排法不符合要求,共4种,所以总投资方案共64-4=60(种).2.[2017·河北石家庄质检]在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有( )A.34种B.48种C.96种D.144种答案:C解析:程序A有A错误!=2(种)结果,将程序B和C看作元素集团与除A外的元素排列有A错误!A错误!=48(种),∴由分步乘法计数原理,实验编排共有2×48=96(种)方法.3.将甲、乙等 5 位同学分别保送到北京大学、上海交通大学、浙江大学这三所大学就读,则每所大学至少保送一人的不同保送方法为( )A.240种B.180种C.150种D.540种答案:C解析:5名学生分成 2,2,1或3,1,1两种形式,当 5 名学生分成 2,2,1时,共有错误!C 错误!C错误!A错误!=90(种)方法;当 5 名学生分成 3,1,1时,共有C错误!A错误!=60(种)方法.根据分类加法计数原理知,共有90+60=150(种).4.[2017·山东青岛模拟]将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种答案:C解析:一个路口有3人的分配方法有C错误!C错误!A错误!种;两个路口各有2人的分配方法有C错误!C错误!A错误!种.∴由分类加法计数原理,甲、乙在同一路口的分配方案为C1,3C错误!A错误!+C错误!C错误!A 3,=36(种).35.[2017·山东师大附中一模]某班班会准备从甲、乙等7名学生中选派4名进行发言,要求甲、乙两人至少有一人参加.当甲、乙同时参加时,他们两人的发言不能相邻.那么不同的发言顺序的种数为()A.360 B.520C.600 D.720答案:C解析:当甲或乙只有一人参加时,不同的发言顺序的种数为2C错误!A错误!=480;当甲、乙同时参加时,不同的发言顺序的种数为A错误!A错误!=120。

2018版高考数学人教A版理科大一轮复习配套课件:第十

2018版高考数学人教A版理科大一轮复习配套课件:第十
X P 0
n 0 C0 MCN-M Cn N

1
n 1 C1 MCN-M Cn N

… …
M
n m Cm MCN-M n CN

诊断自测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)离散型随机变量的概率分布列中,各个概率之和可以小于
1.( )
(2) 离散型随机变量的各个可能值表示的事件是彼此互斥 的.( )
5
0.1
7
0.3
9
0.3
(2)|X-1|的分布列
|X-1| P 0 0.1 1 0.3 2 0.3 3 0.3
规律方法
(1)利用分布列中各概率之和为1可求参数的值,
此时要注意检验,以保证两个概率值均为非负数.
(2)若X是随机变量,则η=|X-1|等仍然是随机变量,求它的 分布列可先求出相应随机变量的值,再根据互斥事件概率 加法求对应的事件概率,进而写出分布列.
求事件A发生的概率;
(2)设X为选出的2人参加义工活动次数之差的绝对值,求随 机变量X的分布列.

1 2 C1 C + C 1 3 4 3 (1)由已知,有 P(A)= C2 =3. 10
1 所以,事件 A 发生的概率为 . 3
(2)随机变量 X 的所有可能取值为 0,1,2.
2 2 C2 + C + C 4 3 3 4 P(X=0)= =15, C2 10 1 1 1 C1 C + C 7 3 3 3C4 P(X=1)= =15, C2 10 1 C1 4 3C4 P(X=2)= C2 =15. 10
求:(1)2X+1的分布列; (2)|X-1|的分布列.
解 由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3.

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 11.1 分类加法计数原理与分步乘法计

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 11.1 分类加法计数原理与分步乘法计

11.1 分类加法计数原理与分步乘法计数原理真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.1 分类加法计数原理与分步乘法计数原理真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.1 分类加法计数原理与分步乘法计数原理真题演练集训理新人教A版的全部内容。

11.1 分类加法计数原理与分步乘法计数原理真题演练集训理新人教A版1.[2016·新课标全国卷Ⅱ]如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9答案:B解析:由题意可知E→F共有6种走法,F→G共有3种走法,由分步乘法计数原理知,共有6×3=18(种)走法,故选B。

2.[2016·新课标全国卷Ⅲ]定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个 B.16个C.14个 D.12个答案:C解析:由题意可得,a1=0,a8=1,a2,a3,…,a7中有3个0、3个1,且满足对任意k≤8,都有a1,a2,…,a k中0的个数不少于1的个数,利用列举法可得不同的“规范01数列"有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.3.[2016·四川卷]用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48C.60 D.72答案:D解析:由题意可知,个位可以从1,3,5中任选一个,有A1,3种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A4,4种方法,所以奇数的个数为A错误!A错误!=3×4×3×2×1=72,故选D。

2018版高考数学人教A版理科大一轮复习配套讲义:第11章 计数原理、概率、随机变量及其分布 含解析 精品

2018版高考数学人教A版理科大一轮复习配套讲义:第11章 计数原理、概率、随机变量及其分布 含解析 精品

第1讲分类加法计数原理与分步乘法计数原理最新考纲 1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.知识梳理1.分类加法计数原理完成一件事有两类不同的方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()解析分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.答案(1)×(2)√(3)√(4)×2.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为()A.6B.5C.3D.2解析5个人中每一个都可主持,所以共有5种选法.答案 B3.(选修2-3P28B2改编)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种解析需要先给C块着色,有4种结果;再给A块着色,有3种结果;再给B 块着色,有2种结果;最后给D块着色,有2种结果,由分步乘法计数原理知共有4×3×2×2=48(种).答案 D4.5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种(用数字作答).解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2×2×2×2×2=32(种).答案325.已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为________(用数字作答).解析分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有5×4=20种走法.答案20考点一分类加法计数原理【例1】(1)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种(2)(2017·郑州质检)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10解析(1)分两类:甲第一次踢给乙时,满足条件有3种方法(如图),甲乙丙乙甲甲乙甲丙甲同理,甲先传给丙时,满足条件有3种踢法.由分类加法计数原理,共有3+3=6种传递方法.(2)①当a=0,有x=-b2,b=-1,0,1,2有4种可能;②当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)若a=-1时,b=-1,0,1,2有4种不同的选法;(ⅱ)若a=1时,b=-1,0,1有3种可能;(ⅲ)若a=2时,b=-1,0,有2种可能.∴有序数对(a,b)共有4+4+3+2=13(个).答案(1)B(2)B规律方法分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素、关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏,如本例(2)中易漏a=0这一类.【训练1】(1)如图,从A到O有________种不同的走法(不重复过一点).(2)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8解析(1)分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O共2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O共2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法.(2)以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2(2+1+1)=8个.答案(1)5(2)D考点二分步乘法计数原理【例2】(1)(2017·石家庄模拟)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()A.10种B.25种C.52种D.24种(2)定义集合A与B的运算A*B如下:A*B={(x,y)|x∈A,y∈B},若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为________(用数字作答).解析(1)每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.(2)显然(a,a),(a,c)等均为A*B中的关系,确定A*B中的元素是A中取一个元素来确定x,B中取一个元素来确定y,由分步计数原理可知A*B中有3×4=12个元素.答案(1)D(2)12规律方法(1)在第(1)题中,易误认为分5步完成,错选B.(2)利用分步乘法计数原理应注意:①要按事件发生的过程合理分步,即分步是有先后顺序的.②各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.【训练2】(1)(2017·威海模拟)某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的情况有()A.C26·45种B.A26·54种C.C26·A45种D.C26·54种(2)设集合A={-1,0,1},B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y ∈A∪B},则A*B中元素的个数为________(用数字作答).解析(1)有两个年级选择甲博物馆共有C26种情况,其余四个年级每个年级各有5种选择情况.故有且只有两个年级选择甲博物馆的情况有C26×54种.(2)易知A∩B={0,1},A∪B={-1,0,1,2,3},∴x有两种取法,y有5种取法.由分步乘法计数原理,A*B的元素有2×5=10(个).答案(1)D(2)10考点三两个计数原理的综合应用【例3】(1)(2015·四川卷)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个(2)(2017·成都诊断)如图所示,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________(用数字作答).解析(1)由题意,首位数字只能是4,5,若万位是5,则有3×A34=72(个);若万位是4,则有2×A34个=48(个),故比40 000大的偶数共有72+48=120(个).选B.(2)按区域1与3是否同色分类:①区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24种方法.②区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法.由分类加法计数原理,不同的涂色种数为24+72=96.答案(1)B(2)96规律方法(1)①注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.②注意对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.(2)解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.第(2)题中,相邻区域不同色,是按区域1与3是否同色分类处理.【训练3】(1)如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240B.204C.729D.920(2)从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).解析(1)若a2=2,则百位数字只能选1,个位数字可选1或0“凸数”为120与121,共2个.若a2=3,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).∴所有凸数有2+6+12+20+30+42+56+72=240(个).(2)由题意知本题是一个分类计数问题,共有8种不同的类型,当有3个键同时按下,有C310种结果,当有4个键同时按下,有C410种结果,…,以此类推,根据分类加法计数原理得到共有C310+C410+C510+…+C1010=C010+C110+C210+…+C1010-(C010+C110+C210)=210-(1+10+45)=968.答案(1)A(2)968[思想方法]1.应用两个计数原理的难点在于明确分类还是分步.在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选择合理的标准处理事情,可以避免计数的重复或遗漏.2.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,完成了所有步骤,恰好完成任务,当然步与步之间要相互独立,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律. [易错防范]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.基础巩固题组(建议用时:30分钟)一、选择题1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有()A.30个B.42个C.36个D.35个解析∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.答案 C2.某校举行乒乓球赛,采用单淘汰制,要从20名选手中决出冠军,应进行比赛的场数为()A.18B.19C.20D.21解析因为每一场比赛都有一名选手被淘汰,即一场比赛对应一个失败者,要决出冠军,就要淘汰19名选手,故应进行19场比赛.答案 B3.(2016·济南质检)有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则有几种不同的选择方式()A.24B.14C.10D.9解析第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式,第二类:选2套连衣裙中的一套服装有2种选法.∴由分类加法计数原理,共有12+2=14(种)选择方式.答案 B4.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20B.25C.32D.60解析依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.答案 C5.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15D.21解析当x=2时,x≠y,点的个数为1×7=7(个).当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).答案 B6.用10元、5元和1元来支付20元钱的书款,不同的支付方法的种数为()A.3B.5C.9D.12解析只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种.由分类加法计数原理得,共有3+5+1=9(种).答案 C7.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C12=2种,共有2×2×2×2×2=32个.故选A.答案 A8.(2016·全国Ⅱ卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9解析由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.答案 B二、填空题9.(2017·西安质检)如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个(用数字作答).解析当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理知共有“好数”C13+C13C13=12(个).答案1210.如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案4011.如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法(用数字作答).解析区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.答案26012.有六名同学报名参加三个智力竞赛项目(不一定六名同学都能参加),(1)每人恰好参加一项,每项人数不限,则有________种不同的报名方法;(2)每项限报一人,且每人至多参加一项,则有________种不同的报名方法;(3)每项限报一人,但每人参加的项目不限,则有________种不同的报名方法(用数字作答).解析(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有报名方法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).答案(1)729(2)120(3)216能力提升题组(建议用时:10分钟)13.(2017·衡水调研)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279解析0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).答案 B14.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对解析与正方体的一个面上的一条对角线成60°角的对角线有8条,故共有8对.正方体的12条面对角线共有12×8=96(对),且每对均重复计算一次,故共有962=48(对).答案 C15.一个旅游景区的游览线路如图所示,某人从P 点处进,Q 点处出,沿图中线路游览A ,B ,C 三个景点及沿途风景,则不重复(除交汇点O 外)的不同游览线路有________种(用数字作答).解析 根据题意,从点P 处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知共有6×4×2=48种不同游览线路.答案 4816.(2016.广州模拟)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,...,99.3位回文数有90个:101,111,121,...,191,202, (999)则(1)4位回文数有________个;(2)2n +1(n ∈N *)位回文数有________个.解析 (1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共计9×10=90(种)填法,即4位回文数有90个.(2)根据回文数的定义,此问题也可以转化成填方格.结合计数原理,知有9×10n 种填法.答案 (1)90 (2)9×10n第2讲 排列与组合最新考纲 1.理解排列、组合的概念;2.能利用计数原理推导排列数公式、组合数公式;3.能解决简单的实际问题.知 识 梳 理1.排列与组合的概念(1)从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.(2)从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)所有元素完全相同的两个排列为相同排列.()(2)两个组合相同的充要条件是其中的元素完全相同.()(3)若组合式C x n=C m n,则x=m成立.()(4)k C k n=n C k-1.()n-1解析元素相同但顺序不同的排列是不同的排列,故(1)不正确;若C x n=C m n,则x=m或n-m,故(3)不正确.答案(1)×(2)√(3)×(4)√2.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是()A.12B.24C.64D.81解析4本不同的课外读物选3本分给3位同学,每人一本,则不同的分配方法为A34=24.答案 B3.(选修2-3P28A17改编)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18B.24C.30D.36解析法一选出的3人中有2名男同学1名女同学的方法有C24C13=18种,选出的3人中有1名男同学2名女同学的方法有C14C23=12种,故3名学生中男女生都有的选法有C24C13+C14C23=30种.法二从7名同学中任选3名的方法数,再除去所选3名同学全是男生或全是女生的方法数,即C37-C34-C33=30.答案 C4.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________(用数字作答).解析末位数字排法有A12,其他位置排法有A34种,共有A12A34=48种.答案485.(2017·唐山调研)某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为________(用数字作答).解析法一(直接法)甲、乙两人均入选,有C17C22种.甲、乙两人只有1人入选,有C12C27种方法,∴由分类加法计数原理,共有C22C17+C12C27=49(种)选法.法二(间接法)从9人中选3人有C39种方法.其中甲、乙均不入选有C37种方法,∴满足条件的选排方法是C39-C37=84-35=49(种).答案49考点一排列问题【例1】(1)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种(2)(2017·北京西城区质检)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析(1)第一类:甲在最左端,有A55=5×4×3×2×1=120(种)方法;第二类:乙在最左端,有4A44=4×4×3×2×1=96(种)方法.所以共有120+96=216(种)方法.(2)记其余两种产品为D,E,A,B相邻视为一个元素,先与D,E排列,有A22A33种方法;再将C插入,仅有3个空位可选,共有A22A33C13=2×6×3=36种不同的摆法.答案(1)B(2)36规律方法(1)第(1)题求解的关键是按特殊元素甲、乙的位置进行分类.注意特殊元素(位置)的优先原则,即先排有限制条件的元素或有限制条件的位置.对于分类过多的问题,可利用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法等常用的解题方法.【训练1】(1)(2017·新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120B.240C.360D.480(2)(2017·抚顺模拟)某班准备从甲、乙等七人中选派四人发言,要求甲乙两人至少有一人参加,那么不同的发言顺序有()A.30B.600C.720D.840解析(1)第一步,从甲、乙、丙三人选一个加到前排,有3种,第二步,前排3人形成了4个空,任选一个空加一人,有4种,第三步,后排4人形成了5个空,任选一个空加一人有5种,此时形成6个空,任选一个空加一人,有6种,根据分步计数原理有3×4×5×6=360种方法.(2)若只有甲乙其中一人参加,有C12C35A44=480种方法;若甲乙两人都参加,有C22C25A44=240种方法,则共有480+240=720种方法,故选C.答案(1)C(2)C考点二组合问题【例2】某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?解(1)从余下的34种商品中,选取2种有C234=561种,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有C120C215=2 100种.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3件假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555种.∴至少有2种假货在内的不同的取法有2 555种.(5)选取3件的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090种.∴至多有2种假货在内的不同的取法有6 090种.规律方法组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.【训练2】(1)(2017·邯郸一模)现有6个不同的白球,4个不同的黑球,任取4个球,则至少有两个黑球的取法种数是()A.90B.115C.210D.385(2)(2017·武汉二模)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种解析(1)分三类,取2个黑球有C24C26=90种,取3个黑球有C34C16=24种,取4个黑球有C44=1种,故共有90+24+1=115种取法,选B.(2)共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,∴共有不同的取法有C45+C44+C25C24=66(种). 答案(1)B(2)D考点三排列、组合的综合应用【例3】4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C14C24C13×A22=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C34C11A22种方法;第二类有序均匀分组有C24C22A22·A22种方法.故共有C24(C34C11A22+C24C22A22·A22)=84(种).规律方法(1)解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).对于排列组合的综合题目,一般是将符合要求的元素取出或进行分组,再对取出的元素或分好的组进行排列.(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的差异.其次对于相同元素的“分配”问题,常用的方法是采用“隔板法”.【训练3】(1)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为()A.A26C24B.12A26C24C.A26A24D.2A26(2)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).解析(1)法一将4人平均分成两组有12C24种方法,将此两组分配到6个班级中的2个班有A26(种).所以不同的安排方法有12C24A26(种).法二先从6个班级中选2个班级有C26种不同方法,然后安排学生有C24C22种,故有C26C24C22=12A26C24(种).(2)把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有C23A24种分法,所以不同获奖情况种数为A44+C23A24=24+36=60.答案(1)B(2)60[思想方法]1.对于有附加条件的排列、组合应用题,通常从三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)。

精编2018版高考数学人教A版理一轮复习真题集训第十一章计数原理概率随机变量及其分布116和答案

精编2018版高考数学人教A版理一轮复习真题集训第十一章计数原理概率随机变量及其分布116和答案

真题演练集训1.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34答案:B解析:由题意画图,由图得等车时间不超过10分钟的概率为12. 2.从区间随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2n mC.4m nD.2m n答案:C解析:设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =14π1=m n ,所以π=4m n,故选C. 3.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12-1πD.14-12π 答案:D解析:|z |=x -2+y 2≤1,即(x -1)2+y 2≤1,表示的是圆及其内部,如图所示.当|z |≤1时,y ≥x 表示的是图中阴影部分,其面积为S =14π×12-12×1×1=π-24. 又圆的面积为π,根据几何概型公式,得概率P =π-24π=14-12π. 4.在上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.答案:34解析:圆(x -5)2+y 2=9的圆心为C (5,0),半径r =3,故由直线与圆相交可得|5k -0|k 2+1<r ,即|5k |k 2+1<3,整理得k 2<916,得-34<k <34. 故所求事件的概率P =34-⎝ ⎛⎭⎪⎫-341--=34. 课外拓展阅读转化与化归思想在几何概型中的应用甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.两人能会面的概率为________.(1)考虑甲、乙两人分别到达某处的时间.在平面直角坐标系内用x轴表示甲到达约会地点的时间,y轴表示乙到达约会地点的时间,用0分到60分表示6时到7时的时间段,则横轴0到60与纵轴0到60的正方形中任一点的坐标(x,y)就表示甲、乙两人分别在6时到7时时间段内到达的时间.(2)两人能会面的时间必须满足:|x-y|≤15.这就将问题化归为几何概型问题.以x轴和y轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示的平面直角坐标系中,(x,y)的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式,得P(A)=S阴影S=602-452602=3 600-2 0253 600=716.所以两人能会面的概率是7 16 .716方法点睛本题通过设置甲、乙两人到达约定地点的时间这两个变量x,y,将已知转化为x,y所满足的不等式,进而转化为坐标平面内的点(x,y)的相关约束条件,从而把时间这个长度问题转化为平面图形的二维面积问题,进而转化成面积型的几何概型问题求解.若题中涉及到三个相互独立的变量,则需将其转化为空间几何体的体积问题加以求解.。

【人教A版】2018版高考数学(理)一轮设计:第11章-计数原理、概率、随机变量及其分布第3讲

【人教A版】2018版高考数学(理)一轮设计:第11章-计数原理、概率、随机变量及其分布第3讲

基础诊断
考点突破
课堂总结
诊断自测
1.判断正误(在括号内打“√”或“×”)
n k k (1)Ck a b 是二项展开式的第 k 项.( n

精彩 PPT 展示 )
(2) 二 项 展 开 式 中 , 系 数 最 大 的 项 为 中 间 一 项 或 中 间 两 项.( )
(3)(a + b)n 的展开式中某一项的二项式系数与 a , b 无 关.( )
n 项式系数,所以 +1=6,n=10. 2
答案 10
基础诊断
考点突破
课堂总结
2 2 5 5.x -x3 展开式中的常数项为________.
解析
2 k k 2 5-k k k 10-5k - Tk+1=C5(x ) . 3 =C5(-2) x



x
2 令 10-5k=0,则 k=2.∴常数项为 T3=C2 ( - 2) =40. 5
的值为( A.2 C.2 017
) B.4 D.2 016×2 017
解析
22 017 原式= 2 016-1=22=4. 2
答案 B
基础诊断
考点突破
课堂总结
4.(2017· 石家庄调研)(1+x)n的二项式展开式中,仅第6项的 系数最大,则n=________.
解析 (1+x)n 的二项式展开式中,项的系数就是项的二
2.二项式系数的性质
性质 对称性 性质描述
n-k Ck 与首末等距离的两个二项式系数相等,即________ n=Cn
增减性
二项式 系数 Ck n
n+1 递增 的 当 k< 2 (n∈N*)时,是______ n+1 递减 的 当 k> 2 (n∈N*)时,是______

2018版高考数学复习计数原理概率随机变量及其分布列教师用书理

2018版高考数学复习计数原理概率随机变量及其分布列教师用书理

第十一章⎪⎪⎪ 计数原理、概率、随机变量及其分布列第一节排列、组合突破点(一) 两个计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ³n 种不同的方法.3.两个计数原理的比较能用分类加法计数原理解决的问题具有以下特点:本节主要包括2个知识点:1.两个计数原理;2.排列、组合问题.(1)完成一件事有若干种方法,这些方法可以分成n 类.(2)用每一类中的每一种方法都可以完成这件事.(3)把各类的方法数相加,就可以得到完成这件事的所有方法数.[例1] (1)在所有的两位数中,个位数字大于十位数字的两位数共有________个.(2)如图,从A 到O 有________种不同的走法(不重复过一点).(3)若椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________. [解析] (1)法一:按个位数字分类,个位可为2,3,4,5,6,7,8,9,共分成8类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个,则共有1+2+3+4+5+6+7+8=36个两位数.法二:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.(2)分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.(3)当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.[答案] (1)36 (2)5 (3)20[易错提醒](1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.分步乘法计数原理(1)完成一件事需要经过n 个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.[例2] (1)从-1,0,1,2这四个数中选三个数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).(2)如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.[解析] (1)一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3³3³2=18个二次函数.若二次函数为偶函数,则b=0,同理可知共有3³2=6个偶函数.(2)因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.[答案(1)18 6 (2)63[易错提醒](1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.两个计数原理的综合问题原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求解.分类的关键在于做到“不重不漏”,分步的关键在于正确设计分步的程序,即合理分类,准确分步.[例3] (1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个 B.120个 C.96个 D.72个(2)某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F6名教师中安排4人分别上一节课,第一节课只能从A、B两人中安排一个,第四节课只能从A、C两人中安排一人,则不同的安排方案共有________种.(3)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.[解析] (1)由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2³4³3³2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3³4³3³2=72个偶数.故符合条件的偶数共有48+72=120(个).(2)①第一节课若安排A,则第四节课只能安排C,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有4³3=12种安排方案.②第一节课若安排B,则第四节课可由A或C上,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有2³4³3=24种安排方案.因此不同的安排方案共有12+24=36(种).(3)区域A有5种涂色方法,区域B有4种涂色方法,区域C的涂色方法可分2类:若C 与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5³4³1³4+5³4³3³3=260种涂色方法.[答案(1)B (2)36 (3)260[方法技巧]使用两个计数原理进行计数的基本思想对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.能力练通抓应用体验的“得”与“失”1.[考点二]某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为( )A.504 B.210 C.336 D.120解析:选A 分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7³8³9=504种不同的插法.2.[考点二]教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( ) A.10种 B.25种 C.52种 D.24种解析:选D 由一层到二层、由二层到三层、由三层到四层、由四层到五层各有2种走法,故共有2³2³2³2=24种不同的走法.3.[考点一]已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40 B.16 C.13 D.10解析:选C 分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.[考点一]我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A.18个 B.15个 C.12个 D.9个解析:选B 依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112.共计3+6+3+3=15个“六合数”.5.[考点三]如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有________种.解析:按区域1与3①区域1与3同色:先涂区域1与3,有4种方法,再涂区域2,4,5(还有3种颜色),有3³2³1=6种方法.所以区域1与3涂同色时,共有4³6=24种方法.②区域1与3不同色:先涂区域1与3,有4³3=12种方法,第二步,涂区域2有2种涂色方法,第三步,涂区域4只有一种方法,第四步,涂区域5有3种方法.所以这时共有12³2³1³3=72种方法.故由分类加法计数原理,不同的涂色方法的种数为24+72=96.答案:966.[考点三]有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种(用数字作答).解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2³2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8突破点(二) 排列、组合问题1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质4.排列与组合的比较解决排列问题的主要方法(1)解决“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看做一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.[例1] (1)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( ) A.324 B.648 C.328 D.360(2)市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数为( )A.48 B.54 C.72 D.84(3)用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.[解析] (1)首先应考虑是否含“0”.当含有0,且0排在个位时,有A29=9³8=72个三位偶数,当0排在十位时,有A14A18=4³8=32个三位偶数.当不含0时,有A14²A28=4³8³7=224个三位偶数.由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).(2)先把3名乘客进行全排列,有A33=6种排法,排好后,有4个空,再将1个空位和余下的2个连续的空位插入4个空中,有A24=12种排法,则共有6³12=72种候车方式.(3)首先排两个奇数1,3,有A22种排法,再在2,4中取一个数放在1,3排列之间,有C12种排法,然后把这3个数作为一个整体与剩下的另一个偶数全排列,有A22种排法,即满足条件的四位数的个数为A22C12A22=8.[答案] (1)C (2)C (3)8组合问题组合问题的常见题型及解题思路(1)常见题型:一般有选派问题、抽样问题、图形问题、集合问题、分组问题等.(2)解题思路:①分清问题是否为组合问题;②对较复杂的组合问题,要搞清是“分类”还是“分步”,一般是先整体分类,然后局部分步,将复杂问题通过两个计数原理化归为简单问题.[例2] (1)某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为( ) A.85 B.86 C.91 D.90(2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是( )A.60 B.63 C.65 D.66(3)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.[解析] (1)法一(直接法):由题意,可分三类考虑:第1类,男生甲入选,女生乙不入选的方法种数为:C13C24+C23C14+C33=31;第2类,男生甲不入选,女生乙入选的方法种数为:C14C23+C24C13+C34=34;第3类,男生甲入选,女生乙入选的方法种数为:C23+C14C13+C24=21.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.法二(间接法):从5名男生和4名女生中任意选出4人,男、女生都有的选法有C49-C45-C44=120种;男、女生都有,且男生甲与女生乙都没有入选的方法有C47-C44=34种.所以男生甲与女生乙至少有1人入选的方法种数为120-34=86.(2)因为1,2,3,…,9中共有4个不同的偶数和5个不同的奇数,要使取出的4个不同的数的和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故有C45+C44+C25C24=66种不同的取法.(3)第一类,含有1张红色卡片,不同的取法有C14C212=264(种).第二类,不含有红色卡片,不同的取法有C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法共有264+208=472(种).[答案(1)B (2)D (3)472[方法技巧]有限制条件的组合问题的解法组合问题的限制条件主要体现在取出元素中“含”或“不含”某些元素,或者“至少”或“最多”含有几个元素:(1)“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型.考虑逆向思维,用间接法处理.分组分配问题分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有整体均分、部分均分和不等分三种,无论分成几组,都应注意只要有一些组中元素的个数相等,就存在均分现象.[例3] (1)教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.(2)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为________.(3)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] (1)先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故将6个毕业生平均分到3所学校,共有C 26C 24C 22A 33²A 33=90种不同的分派方法. (2)分两步完成:第一步,将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第二步,将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22²A 33=36种. (3)将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种分法;第2步,在余下的5名教师中任取2名作为一组,有C 25种分法;第3步,余下的3名教师作为一组,有C 33种分法.根据分步乘法计数原理,共有C 16C 25C 33=60种分法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60³6=360种不同的分法.[答案 (1)90 (2)36 (3)360[方法技巧] 分组分配问题的三种类型及求解策略能力练通抓应用体验的“得”与“失”1.[考点一]A ,B ,C ,D ,E ,F 六人围坐在一张圆桌周围开会,A 是会议的中心发言人,必须坐在最北面的椅子上,B ,C 二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )A .60种B .48种C .30种D .24种解析:选B 由题知,可先将B ,C 二人看作一个整体,再与剩余人进行排列,则不同的座次有A 22A 44=48种.2.[考点一]有5列火车分别准备停在某车站并行的5条轨道上,若快车A 不能停在第3道上,货车B 不能停在第1道上,则5列火车不同的停靠方法数为( )A .56B .63C .72D .78解析:选D 若没有限制,5列火车可以随便停,则有A 55种不同的停靠方法;快车A 停在第3道上,则5列火车不同的停靠方法为A 44种;货车B 停在第1道上,则5列火车不同的停靠方法为A 44种;快车A 停在第3道上,且货车B 停在第1道上,则5列火车不同的停靠方法为A 33种.故符合要求的5列火车不同的停靠方法数为A 55-2A 44+A 33=120-48+6=78.3.[考点三]某局安排3名副局长带5名职工去3地调研,每地至少去1名副局长和1名职工,则不同的安排方法总数为( )A .1 800B .900C .300D .1 440解析:选B 分三步:第一步,将5名职工分成3组,每组至少1人,则有⎝ ⎛⎭⎪⎫C 35C 12C 11A 22+C 15C 24C 22A 22种不同的分组方法;第二步,将这3组职工分到3地有A 33种不同的方法;第三步,将3名副局长分到3地有A 33种不同的方法.根据分步乘法计数原理,不同的安排方案共有⎝ ⎛⎭⎪⎫C 35C12C 11A 22+C 15C 24C 22A 22²A 33A 33=900(种),故选B.4.[考点二]如图所示,要使电路接通,则5个开关不同的开闭方式有________种.解析:当第一组开关有一个接通时,电路接通有C12²(C13+C23+C33)=14种方式;当第一组两个都接通时,电路接通有C22(C13+C23+C33)=7种方式,所以共有14+7=21种方式.答案:215.[考点二]有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有________种不同的选派方法.解析:设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C,则选派2名参赛同学的方法可以分为以下4类:第一类:A中选1人参加象棋比赛,B中选1人参加围棋比赛,选派方法为C12²C13=6种;第二类:C中选1人参加象棋比赛,B中选1人参加围棋比赛,选派方法为C14²C13=12种;第三类:C中选1人参加围棋比赛,A中选1人参加象棋比赛,选派方法为C14²C12=8种;第四类:C中选2人分别参加两项比赛,选派方法为A24=12种;由分类加法计数原理,不同的选派方法共有6+12+8+12=38(种).答案:38[全国卷5年真题集中演练——明规律]1.(2016²全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18 C.12 D.9解析:选B 分两步:第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6³3=18条可以选择的最短路径.故选B.2.(2016²全国丙卷)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有( )A.18个 B.16个C.14个 D.12个解析:选C 当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C14=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C13=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任意一个为0均可,有C12=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C13=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.3.(2012²新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A.12种 B.10种C.9种 D.8种解析:选A 2名教师各在1个小组,给其中1名教师选2名学生,有C24种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有A22种方案,故不同的安排方案共有C24A22=12种,选A.[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.(2016²四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72解析:选D 奇数的个数为C13A44=72.2.世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数有( )A.12种 B.10种C.8种 D.6种解析:选D 因为甲、乙两人被分配到同一展台,所以可以把甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上进行全排列,即有A33种分配方法,所以甲、乙两人被分配到同一展台的不同分法的种数有A33=6种.3.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )A.36个 B.24个C.18个 D.6个解析:选B 各位数字之和是奇数,则这三个数字中三个都是奇数或两个偶数一个奇数,所以符合条作的三位数有A33+C13A33=6+18=24(个).4.如图所示的几何体由一个正三棱锥P­ABC与正三棱柱ABC­A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.解析:先涂三棱锥P­ABC的三个侧面,然后涂三棱柱ABC­A1B1C1的三个侧面,共有3³2³1³2=12种不同的涂色方案.答案:12[练常考题点——检验高考能力]一、选择题1.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( )A.56 B.54C.53 D.52解析:选D 在8个数中任取2个不同的数可以组成A28=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).2.如图所示,在A、B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有( )A.9种 B.11种C.13种 D.15种解析:选C 按照焊接点脱落的个数进行分类.若脱落1个,则有(1),(4),共2种情况;若脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种情况;若脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种情况;若脱落4个,有(1,2,3,4),共1种情况.综上共有2+6+4+1=13种焊接点脱落的情况.3.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数是( )A.12 B.6C .8D .16解析:选A 若第一门安排在开头或结尾,则第二门有3种安排方法,这时共有C 12³3=6种安排方案;若第一门安排在中间的3天中,则第二门有2种安排方法,这时共有C 13³2=6种安排方案.综上可得,不同的考试安排方案共有6+6=12(种).4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A .24B .48C .72D .96解析:选B 据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可,此时共有A 22A 24种摆放方法;当1本物理书放在2本语文书一侧时,共有A 22A 12C 12C 13种不同的摆放方法,由分类加法计数原理可得共有A 22A 24+A 22A 12C 12C 13=48种摆放方法.5.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为( )A .13B .24C .18D .72解析:选D 可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C 34种不同的选法;第二步, 在调查时,“住房”安排的顺序有A 13种可能情况;第三步,其余3个热点调查的顺序有A 33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C 34A 13A 33=72.6.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有( )A .12种B .20种C .40种D .60种解析:选C 五个元素没有限制全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得这样的排列数有A 55A 33³2=40种.二、填空题7.某班组织文艺晚会,准备从A ,B 等 8 个节目中选出 4 个节目演出,要求A ,B 两个节目至少有一个选中,且A ,B 同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为________.解析:当A ,B 节目中只选其中一个时,共有C 12C 36A 44=960 种演出顺序;当A ,B 节目都被选中时,由插空法得共有C 26A 22A 23=180 种演出顺序,所以一共有1 140种演出顺序.。

精编2018版高考数学人教A版理一轮复习真题集训第十一章计数原理概率随机变量及其分布118和答案

精编2018版高考数学人教A版理一轮复习真题集训第十一章计数原理概率随机变量及其分布118和答案

真题演练集训1.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432C.0.36 D.0.312答案:A解析:3次投篮投中2次的概率为P(k=2)=C23×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C23×0.62×(1-0.6)+0.63=0.648.故选A.2.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75C.0.6 D.0.45答案:A解析:根据条件概率公式P(B|A)=P ABP A,可得所求概率为0.60.75=0.8.课外拓展阅读误用“二项分布与超几何分布”二项分布和超几何分布是两类重要的概率分布模型,这两种分布存在着很多的相似之处,在应用时应注意各自的适用条件和情境,以免混用出错.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.现在在总共8小块地中,随机选4小块地种植品种甲,另外4小块地种植品种乙.种植完成后若随机选出4块地,其中种植品种甲的小块地的数目记为X,求X的分布列和数学期望.判断分布的类型→确定X的取值及其概率→列出分布列并求数学期望X的所有可能取值为0,1,2,3,4,且P(X=0)=1C48=170,P(X=1)=C14C34C48=835,P(X=2)=C24C24C48=1835,P(X=3)=C34C14C48=835,P(X=4)=1C48=170.故X的分布列为X的数学期望为E(X)=0×170+1×835+2×1835+3×835+4×170=2.易错提示本题容易错误地得到X服从二项分布,每块地种植甲的概率为12,故X~B(4,0.5).错误的根源在于每块地种植甲或乙不是相互独立的,它们之间是相互制约的,无论怎么种植都要保证8块地中有4块种植甲,4块种植乙,事实上X应服从超几何分布.如果将题目改为:在8块地中,每块地要么种植甲,要么种植乙,那么在选出的4块地中种植甲的数目为X,则这时X~B(4,0.5)(这时这8块地种植的方法总数为28,会出现所有地都种植一种作物的情况,而题目要求4块地种植甲,4块地种植乙,其方法总数为C48).某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.(1)设考生甲、乙正确完成实验操作的题数分别为ξ,η,则ξ的所有可能取值分别为1,2,3;η的所有可能取值分别为0,1,2,3.P(ξ=1)=C14C22C36=15,P(ξ=2)=C24C12C36=35,P(ξ=3)=C34C02C36=15.所以考生甲正确完成题数的概率分布列为E (ξ)=1×15+2×35+3×15=2.因为P (η=0)=C 03⎝ ⎛⎭⎪⎫1-233=127,同理,P (η=1)=29,P (η=2)=49,P (η=3)=827.所以考生乙完成题数的概率分布列为E (η)=0×127+1×29+2×9+3×27=2.(2)因为P (ξ≥2)=35+15=0.8,P (η≥2)=49+827=2027,所以P (ξ≥2)>P (η≥2).故从正确完成题数的数学期望分析,两人水平相当; 从至少完成2题的概率分析,甲通过的可能性大. 因此可以判断甲的实验操作能力较强. 易错提示本题容易错误地得到甲、乙两考生正确完成的题数均服从二项分布,实际上题目中已知甲、乙两考生按照题目要求独立完成全部实验操作,甲考生正确完成的题数服从超几何分布,乙考生正确完成的题数服从二项分布.。

2018年高考数学课标通用(理科)一轮复习配套课件:第十一章 计数原理、概率、随机变量11-4

2018年高考数学课标通用(理科)一轮复习配套课件:第十一章 计数原理、概率、随机变量11-4

A 中的两个事件是包含关系,不是互斥事件;B 中
的两个事件是对立事件;C 中的两个事件都包含“一个黑球、一 个红球”的事件,不是互斥关系;D 中的两个事件是互斥而不对 立的关系.
(2) 一 个 均 匀 的 正 方 体 玩 具 的 各 个 面 上 分 别 标 有 数 字 1,2,3,4,5,6.将这个玩具向上抛掷 1 次, 设事件 A 表示“向上的 一面出现奇数点”,事件 B 表示“向上的一面出现的点数不 超过 3”,事件 C 表示“向上的一面出现的点数不小于 4”, 则( D ) A.A 与 B 是互斥而非对立事件 B.A 与 B 是对立事件 C.B 与 C 是互斥而非对立事件 D.B 与 C 是对立事件
解析:因为只有 2 名女生,所以任选 3 人,至少有 1 人是男 生.
概率的基本概念:事件的概念;频率与概率的关系. (1)抛掷骰子一次,出现的点数可能是 1,2,3,4,5,6,设事件 A {2,4,5,6} 表示出现的点数是偶数或不小于 5,则 A=__________.
解析:出现偶数有 2,4,6,不小于 5 有 5,6,所以事件 A= {2,4,5,6}.
必考部分
第十一章 分布
计数原理、概率、随机变量及其
§11.4 随机事件的概率
考纲展示► 1.了解随机事件发生的不确定性和概率的稳定性,了解概率 的意义以及频率与概率的区别. 2.了解两个互斥事件的概率加法公式.
考一定会 一定不会 可能发生也可能不
2.频率和概率 (1)在相同的条件 S 下重复 n 次试验,观察某一事件 A 是否 次数 出现,称 n 次试验中事件 A 出现的________nA 为事件 A 出现的 nA 频数,称事件 A 出现的比例 fn(A)= n 为事件 A 出现的频率. (2)对于给定的随机事件 A,如果随着试验次数的增加,事件

【人教A版】2018版高考数学(理)一轮设计:第11章-计数原理、概率、随机变量及其分布第2讲

【人教A版】2018版高考数学(理)一轮设计:第11章-计数原理、概率、随机变量及其分布第2讲
3 末位数字排法有 A1 ,其他位置排法有 A 2 4种,共有
3 A1 2A4=48 种.
答案 48
基础诊断
考点突破
课堂总结
5.(2017· 唐山调研)某市委从组织机关10名科员中选3人担任驻 村第一书记,则甲、乙至少有1人入选,而丙没有入选的不 同选法的种数为________(用数字作答).
解析 法一
解 (1)为保证“恰有 1 个盒不放球”,先从 4 个盒子中任意
取出去一个,问题转化为“4 个球,3 个盒子,每个盒子都要 放入球,共有几种放法?”即把 4 个球分成 2,1,1 的三组, 然后再从 3 个盒子中选 1 个放 2 个球, 其余 2 个球放在另外 2
2 1 2 个盒子内,由分步乘法计数原理,共有 C1 C C × A 4 4 3 2=144(种).
基础诊断
考点突破
课堂总结
解析
(1)第一步,从甲、乙、丙三人选一个加到前排,有3
种,第二步,前排 3 人形成了 4 个空,任选一个空加一人, 有4种,第三步,后排4人形成了5个空,任选一个空加一人 有5种,此时形成6个空,任选一个空加一人,有6种,根据 分步计数原理有3×4×5×6=360种方法.
3 4 (2)若只有甲乙其中一人参加,有 C1 C 2 5A4=480 种方法;若 2 4 甲乙两人都参加, 有 C2 则共有 480+240 2C5A4=240 种方法,
30 种. 法二 从 7 名同学中任选 3 名的方法数,再除去所选 3 名同学
3 3 全是男生或全是女生的方法数,即 C3 - C - C 7 4 3=30.
答案 C
基础诊断 考点突破 课堂总结
4.用数字 1 ,2,3,4,5组成的无重复数字的四位偶数的个 数为________(用数字作答).

2018版高考数学人教A版理科一轮复习课件:第十一章 计数原理、概率、随机变量及其分布 11-2 精品

2018版高考数学人教A版理科一轮复习课件:第十一章 计数原理、概率、随机变量及其分布 11-2 精品
m C n ________ .
3.组合数公式及性质 公 式
m nn-1…n-m+1 A n m Cn = m = Am m!
n! = m!n-m!
性 质 备 注
1 (1)C0 ; n=________
n-m m C n (2)Cn =________;
按照一定的顺序排成一列 ________________________________ , 叫做从 n 个不同元素中取
出 m 个元素的一个排列.
2.排列数 从 n 个 不 同 元 素 中 取 出 m(m≤n) 个 元 素 的
所有不同排列的个数 _______________________ 叫做从 n 个不同元素中取出 m 个元素
的排列数,记作 Am n.
3.排列数公式及性质 公 式 性 质 备 注
n(n-1)(n-2)…(n-m+1) = Am = __________________________ n
n n! 1 (1)An =________ ;(2)0!=________
n! n-m!
n,m∈N*,且 m≤n
含了甲在最左边,同时乙在最右边的情形,有 A6 6种.因此共有
7 6 A8 - 2A + A 8 7 6=30 960(种).
[点石成金]
1.对于有限制条件的排列问题,分析问题时有
位置分析法、元素分析法,在实际进行排列时一般采用特殊元素 优先原则,即先安排有限制条件的元素或有限制条件的位置,对 于分类过多的问题可以采用间接法. 2.对相邻问题采用捆绑法,不相邻问题采用插空法,定序 问题采用倍缩法是解决有限制条件的排列问题的常用方法.
体,这样同五个男生合在一起有 6 个元素,排成一排有 A6 6种排 法,而其中每一种排法中,三个女生间又有 A3 3种排法,因此共

2018版高考数学人教A版理科一轮复习课件:第十一章 计数原理、概率、随机变量及其分布 11-9 精品

2018版高考数学人教A版理科一轮复习课件:第十一章 计数原理、概率、随机变量及其分布 11-9 精品
3-k Ck C 3 7 则 P(ξ=k)= C3 (k=0,1,2,3). 10
C3 35 7 7 所以 P(ξ=0)= 3 = = ; C10 120 24
2 C1 · C 63 21 3 7 P(ξ=1)= C3 =120=40; 10
C2 C1 7 3· 7 P(ξ=2)= C3 =40; 10 C3 1 3 P(ξ=3)=C3 =120. 10 则 ξ 的分布列为 ξ P 0 1 2 3 1 120
解析:设这台机器一周内可能获利 X 万元,则 P(X=5)=(1 -0.1)5=0.590 49,
1 P(X=2.5)=C5 ×0.1×(1-0.1)4
=0.328 05,
2 P(X=0)=C5 ×0.12×(1-0.1)3=0.072 9,
P(X=-1)=1-P(X=5)-P(X=2.5)-P(X=0)=0.008 56, 所以 X 的分布列为 X P 5 2.5 0 -1 0.008 56
0.590 0.328 0.072 49 05 9
所以,这台机器一周内可能获利的均值为 5×0.590 49 + 2.5×0.328 05+0×0.072 9+(-1)×0.008 56=3.764 015(万元).
(3)[教材习题改编]随机变量 ξ 的分布列为 ξ P -1 0 1 a b c
5 1 9 其中 a,b,c 成等差数列,若 E(ξ)=3,则 D(ξ)=________.
考点 1 离散型随机变量 的均值与方差
若离散型随机变量 X 的分布列为 X P x1 p1 x2 p2 … … xi pi … … xn pn
1p1+x2p2+…+xipi+…+xnpn 为随机变 (1)均值:称 E(X)=x ___________________________

2018版高考数学人教A版理科一轮复习课件:第十一章 计

2018版高考数学人教A版理科一轮复习课件:第十一章 计

[典题 1]
(1)袋中共有 15 个除了颜色外完全相同的球,
其中有 10 个白球、5 个红球.从袋中任取 2 个球,所取的 2 个球中恰有 1 个白球、1 个红球的概率为( B 5 A. 21 10 B. 21 11 C. 21 D.1 )
[解析]
2 从 15 个球中任取 2 个球共有 C15 种取法,其中有 1 1 C1 10C5=50(种),所以
2.古典概型 具有以下两个特点的概率模型称为古典概率模型, 简称古典 概型.
只有有限个 . (1)试验中所有可能出现的基本事件____________
相等 (2)每个基本事件出现的可能性________ .
3.如果一次试验中可能出现的结果有 n 个,而且所有结果 出现的可能性都相等,那么每一个基本事件的概率都是 1 ________ ;如果某个事件 A 包括的结果有 m 个,那么事件 A 的 n m 概率 P(A)=________. n 4.古典概型的概率计算公式
考点 2
较复杂古典概型的概率
古典概型:基本事件的个数;古典概型概率公式. (1)[2015· 云南昆明模拟]抛掷两颗相同的正方体骰子 (骰子质 地均匀,且各个面上依次标有点数 1,2,3,4,5,6)一次,则两颗骰子 1 9 向上点数之积等于 12 的概率为__________ .
解析: 抛掷两颗相同的正方体骰子, 共有 36 种等可能的 结果:(1,1),(1,2),(1,3),„,(6,6).点数之积等于 12 的结 果有(2,6),(3,4),(4,3),(6,2),共 4 种,故所求事件的概率 4 1 为36=9.
A包含的基本事件的个数 基本事件的总数 P(A)=________________________________.

2018版高考数学人教A版理一轮复习真题集训第十一章计数原理概率随机变量及其分布117和答案

2018版高考数学人教A版理一轮复习真题集训第十一章计数原理概率随机变量及其分布117和答案

真题演练集训1.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解:(1)由柱状图并以频率代替概率可得,1台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04 =4 080.可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.2.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得 0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X的分布列和数学期望E(X).解:(1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,记事件E:“‘星队’至少猜对3个成语”.由题意,E=ABCD+A BCD+A B CD+AB C D+ABC D.由事件的独立性与互斥性,得P(E)=P(ABCD)+P(A BCD)+P(A B CD) +P(AB C D) +P(ABC D)=P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)=34×23×34×23+2×14×23×34×23+34×13×34×23=23.所以“星队”至少猜对3个成语的概率为2 3 .(2)由题意,随机变量X可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得P(X=0)=14×13×14×13=1144,P(X=1)=2×34×13×14×13+14×23×14×13=10144=572,P(X=2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P(X=3)=34×23×14×13+14×13×34×23=12144=112,P(X=4)=2×34×23×34×13+34×23×14×23=60144=512,P(X=6)=34×23×34×23=36144=14.可得随机变量X的分布列为所以数学期望E(X)=0×144+1×72+2×144+3×12+4×12+6×14=236.课外拓展阅读离散型随机变量的分布列答题模板已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.(1)第一次检测出的是次品且第二次检测出的是正品的概率P1=25×34=310.(2)由题意,X的可能取值为200,300,400.则P(X=200)=2×15×4=110;P(X=300)=3×25×4×3+2×3×25×4×3=310;P(X=400)=1-P(X=200)-P(X=300)=3 5 .∴X的分布列如下:第一步:找出随机变量X的所有可能取值;第二步:求出X取每一个值时的概率;第三步:列出分布列.方法点睛(1)解决此类问题的关键是弄清随机变量的取值,正确应用概率公式.(2)此类问题还极易发生如下错误:虽然弄清随机变量的所有取值,但对某个取值考虑不全面.(3)避免以上错误发生的有效方法是验证随机变量的概率和是否为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A组基础演练
1.用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为( )
A.8 B.24
C.48 D.120
解析:选C.分两步:(1)数字2、4先排个位有A12种排法.
(2)余下4个数字再排前三位有A34种排法,故共有A12A34=48种排法.
2.10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为( )
A.C27A55B.C27A22
C.C27A25D.C27A35
解析:选C.从后排抽2人的方法种数是C27;前排的排列方法种数是A25.由分步乘法计数原理知不同调整方法种数是C27A25.
3.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )
A.12种B.18种
C.24种D.36种
解析:选A.先排第一列,因为每列的字母互不相同,因此共有A33种不同的排法.
再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.
因此共有A33·A12·1=12(种)不同的排列方法.
4.把标号为1,2,3,4,5的同色球全部放入编号为1~5号的箱子中,每个箱子放一个球且要求偶数号的球必须放在偶数号的箱子中,则所有的放法种数为( )
A.36 B.20
C.12 D.10
解析:选C.依题意,标题为2、4的球放入编号为2、4的箱子中有A22种放法,再把标号为1,3,5的球放入编号为1,3,5的箱子中有A33种放法,所以满足题意的放法种数为A22·A33=12,选C.
5.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )
A.4种B.10种
C.18种D.20种
解析:选B.分两种情况:①选2本画册,2本集邮册送给4位朋友,有C24=6种方法;②选1本画册,3本集邮册送给4位朋友,有C14=4种方法,所以不同的赠送方法共有6+4=10(种),故选B.
6.在数字1,2,3与符号“+”,“-”这五个元素的所有全排列中,任意两个数字都不相邻的全排列方法共有( )
A.6种B.12种
C.18种D.24种
解析:选B.先排符号“+”,“-”,有A22种排列方法,此时两个符号中间与两端共有3个空位,把数字1,2,3“插空”,有A33种排列方法,因此满足题目要求的排列方法共有A22A33=12(种).
7.将A,B,C,D,E五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A,B必须放入相邻的抽屉内,文件C,D也必须放入相邻的抽屉内,则所有不同的放法有( )
A.120种B.210种
C.420种D.240种
解析:选D.可先排相邻的文件,再作为一个整体与其他文件排列,则有A22A22A35=240种排法,所以选D.
8.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )
A.192种B.216种
C.240种D.288种
解析:选B.根据甲、乙的位置要求分类解决,分两类.
第一类:甲在左端,有A55=5×4×3×2×1=120种方法;
第二类:乙在左端,有4A44=4×4×3×2×1=96种方法.
所以共有120+96=216种方法.
9.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( ) A.36种B.42种
C.48种D.54种
解析:选B.分两类,第一类:甲排在第一位时,丙排在最后一位,中间4个节目无限制条件,有A44种排法;第二类:甲排在第二位时,从甲、乙、丙之外的3个节目中选1个节目排在第一位有C13种排法,其他3个节目有A33种排法,故有C13A33种排法.依分类加法计数原理,知共有A44+C13A33=42(种)编排方案.
10.把3盆不同的兰花和4盆不同的玫瑰花摆放在如图中的1,2,3,4,5,6,7所示的位置上,其中3盆兰花不能放在一条直线上,则不同的摆放方法有( )
A .2 680种
B .4 320种
C .4 920种
D .5 140种
解析:选B.先将7盆花全排列,共有A 7
7种排法,其中3盆兰花排在一条直线上的排法有5A 3
3×A 44(种),故所求摆放方法有A 77-5A 33A 4
4=4 320(种).
B 组 能力突破
1.将甲、乙、丙、丁、戊五位同学分别保送到北大、上海交大和浙大3所大学,若每所大学至少保送1人,且甲不能被保送到北大,则不同的保送方案共有( ) A .150种 B .114种 C .100种
D .72种
解析:选C.先将五人分成三组,因为要求每组至少一人,所以可选择的只有2,2,1或者3,1,1,所以共有C 25C 23C 1
12+C 35C 12C 1
12=25种分组方法.因为甲不能去北大,所以有甲的那组只有上海交大
和浙大两个选择,剩下的两组无限制,一共有4种方法,所以不同的保送方案共有25×4=100(种).
2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种. 解析:①有1名女生的选派方法有C 12C 3
4=8(种). ②有2名女生的选派方法有C 22C 2
4=6(种). ∴不同的选派方案有8+6=14(种). 答案:14
3.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴省运会的四个不同场馆服务,不同的分配方案有________种(用数字作答). 解析:先分组再分配,共有C 16C 15C 242A 22·A 4
4=1 080(种)分配方案.
答案:1 080
4.张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为________.(用数字作答)
解析:第一步:将两位爸爸排在两端有2种排法;第二步:将两个小孩视作一人与两位妈妈
任意排在中间的三个位置上有A33种排法;第三步:将两个小孩排序有2种排法.故总的排法有2×2×A33=24(种).
答案:24
5.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是__________种.
解析:5张参观券分成4份,1份2张,另外3份各1张,且2张参观券连号,则有4种分法,把这4份参观券分给4人,则不同的分法种数是4A44=96(种).
答案:96。

相关文档
最新文档