课堂10分钟达标练 2.3.1
新人教版小学数学二年级下册单元课堂达标试题 全册
班级:姓名:【课堂达标】1.调查本班同学最喜欢哪个课外小组。
(1)参加()小组的人数最多,参加什么小组的人数最少。
(2)我们班参加计算机小组的有()人。
(3)我喜欢()小组,喜欢这个小组的有()人。
2.班里举行联欢会,要买下面的几种水果,统计我们班同学最爱吃的哪种水果。
填入下表,并回答下面的问题。
(1)能看出我们班有多少人吗?(2)如果你去买水果,()要多买些,()要少买一些。
别的班开联欢会,也这样买行不行?为什么?颗班级: 姓名:【课堂达标】1.2.几个同学正在统计一个路口10分钟内所通过的各种交通工具的数量。
(1)把他们统计的结果填在下表中。
这个路口10分钟内所通过的哪种车最多?哪种车最少? (2)如果再观察10分钟,哪种车通过的数量可能最多? 【学习评价】班级: 姓名:【课堂达标】1. 下面是某班同学出生的季节的统计表。
补充完整并回答问题。
(1)哪个季节出生的人最多?(2)冬天出生的比夏天出生的少( )人。
(3)这个班一共有( )人。
(4)你还能提什么问题?2. 这是二年级一班参加运动会项目的情况。
(1)参加( )的人最多。
(2)参加( )的人最少。
(3)你能看出每个小格表示几人吗? (4)你还能提什么问题?【学习评价】2.2.1 平均分的认识1.把6个草莓平均放在2个盘子里,谁分得对在括号里画☆。
3.想一想,填一填。
一共有( )个萝卜,每( )个萝卜一份,平均分成了( )份。
【学习评价】2.2.2 平均分----分配颗1.把15个萝卜平均分成3份,每份( )个。
2.(1)平均分给3只小猴,每只小猴分( )根。
(2)平均分给8只小猴,每只小猴分( )根。
【学习评价】2.2.3 平均分----包含颗【课堂达标】1.一共有()个萝卜,每4个萝卜放在一个篮子里,用()个篮子。
2.每2只手套为一副,请先连一连,再填一填。
可以组成( )副手套。
3.【学习评价】2.2.4 平均分的练习颗班级: 姓名:【课堂达标】1.把9粒扣子平均订在3件衣服上,哪种订法对?2.把下面的图形,平均分到3个圈里,可以连一连或者画一画。
人教版数学七年级上全册课堂10分钟小测(含答案)
第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m 的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章 有理数 1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方。
向量学案
2.3.1 平面向量基本定理学习目标:(1)了解平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 学习重点:平面向量基本定理.学习难点:平面向量基本定理的理解与应用.教学过程(一)自主学习(15分钟完成,自我认知,发现问题,教师对重点概念点评)阅读课本P93-- P94页,回答下列问题1. 平面向量基本定理:如果e1、e2是同一平面内的 向量,那么对于 一平面内的任一向量a,有且只有一对实数λ1,λ2使a = 探究:(1) 基底是不是惟一?基底向量应满足条件?(2) 任一向量a 在给出基底e1、e2的条件下能不能分解?若能分解,分解形式是不是惟一?2.填空:叫做向量a 与b 的夹角;当a 与b 同向时,夹角是 ;当a 与b 反向时,夹角是 ;向量a 与b 的夹角的取值范围是 。
3. 填空: ;则a 与b 垂直,记作 。
(二)探究学习(15分钟完成,小组合作,教师重点指导)阅读课本P94页例1,解答下列问题例1 已知向量e1、e2 求作向量 2e1+2.5e2例2 如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b表示,MB ,MC 和MD(三)达标检测(10分钟完成)1.设e1、e2是同一平面内的两个向量,则有( )A e1、e2一定平行B. e1、e2的模相等C. 同一平面内的任一向量a都有a=λe1+μe2(λ、μ∈R)D. 若e1、e2不共线,则同一平面内的任一向量a都有a=λe1+u e2(λ、u∈R)2.已知矢量a = e1-2e2,b=2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系()A. 不共线B. 共线C. 相等D. 无法确定3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于( )A. 3B. -3C. 0 D . 24.已知a、b不共线,且c =λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1= .5.已知λ1>0,λ2>0,e1、e2是一组基底,且a =λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).(四) 课堂总结:(五) 课后作业:1. 如图,,不共线,=t(t R)用OA,OB表示OP.(六) 拓展提升2 已知ABCD的两条对角线AC与BD交于E,O是任意一点,求证:++OC+=4(七) 错题档案2.3.2—2.3.3 平面向量的正交分解和坐标表示及运算学习目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算,能熟练进行向量的运算; 学习重点:平面向量的坐标运算学习难点:向量的坐标表示的理解及运算的准确性. 学习过程(一)自主学习(15分钟完成,自我认知,发现问题,教师对重点概念点评)阅读课本P94-- P96页,回答下列问题1. 填空: 叫做把向量正交分解。
北师大版数学八年级上全册全套课堂10分钟小测同步练习(含答案)
北师大版数学八年级上全册全套课堂10分钟小测第一章勾股定理1探索勾股定理第1课时探索勾股定理1.已知直角三角形两直角边的长分别为12,16,则其斜边的长为()A.16 B.18 C.20 D.282.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=________.3.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m.现需要在相对的顶点间用一块木板加固,则木板的长为________.4.如图,在Rt△ABC中,AC=8cm,BC=17cm.(1)求AB的长;(2)求阴影长方形的面积.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=5,AC=12,求AB、CD的长.第2课时验证勾股定理及其简单应用1.从某电线杆离地面8m处拉一根长为10m的缆绳,这条缆绳在地面的固定点到电线杆底部的距离为()A.2m B.4m C.6m D.8m2.图中不能用来证明勾股定理的是()3.如图,小丽和小明一起去公园荡秋千,秋千绳索OA长5m.小丽坐上秋千后,小明在距离秋千3m的点B处保护.当小丽荡至小明处时,试求小丽上升的高度AC.4.如图,在海上观察所A处,我边防海警发现正北方向6km的B处有一可疑船只正在向其正东方向8km的C处行驶,我边防海警即刻派船只前往拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?2一定是直角三角形吗1.下列各组数中不是勾股数的是()A.9、12、15 B.41、40、9C.25、7、24 D.6、5、42.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC 是直角三角形的是()A.∠A=∠C-∠B B.a∶b∶c=2∶3∶4C.a2=b2-c2D.a=3,b=5,c=43.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定4.已知a,b,c是△ABC的三边长,且满足关系式(a2+b2-c2)2+|a-b|=0,则△ABC 的形状为______________.5.在△ABC中,AB=8,BC=15,CA=17,则△ABC的面积为________.6.如图,每个小正方形的边长均为1.(1)直接计算结果:AB2=________,BC2=________,AC2=________;(2)请说明△ABC的形状.3勾股定理的应用1.如图是一个长方形公园的示意图,游人从A景点走到C景点至少要走()A.600m B.800m C.1000m D.1400m2.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条笔直的水管,则水管的长为()A.45m B.40m C.50m D.56m3.在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,如图,量得倒下部分的长是10米.请你帮张大爷分析一下,大树倒下时会砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对4.如图,一个无盖圆柱形纸筒的底面周长是60cm,高是40cm.一只小蚂蚁在圆筒底部的A处,它想吃到上底面上与点A相对的点B处的蜜糖,试问蚂蚁爬行的最短路程是多少?第二章 实 数1 认识无理数1.下列各数中,是无理数的是( )A .0.3333… B.227 C .0.1010010001 D .-π22.下列说法正确的是( )A .0.121221222…是有理数B .无限小数都是无理数C .面积为5的正方形的边长是有理数D .无理数是无限小数 3.若面积为15的正方形的边长为x ,则x 的范围是( ) A .3<x <4 B .4<x <5 C .5<x <6 D .6<x <74.有六个数:0.123,(-1.5)3,3.1416,117,-2π,0.1020020002….若其中无理数的个数为x ,整数的个数为y ,则x +y =________.5.下列各数中哪些是有理数?哪些是无理数?|+5|,-789,π,0.01·8·,3.6161161116…,3.1415926,0,-5%,π3,223.6.已知半径为1的圆.(1)它的周长l 是有理数还是无理数?说说你的理由; (2)估计l 的值(结果精确到十分位).2 平方根第1课时 算术平方根1.数5的算术平方根为( )A. 5 B .25 C .±25 D .±52.如果a -3是一个数的算术平方根,那么a 的值可能为( ) A .0 B .1 C .2 D .43.下列有关说法正确的是( ) A .0.16的算术平方根是±0.4 B .(-6)2的算术平方根是-6 C.81的算术平方根是±9 D.4916的算术平方根是744.要切一块面积为0.81m 2的正方形钢板,则它的边长是________. 5.若|a -2|+b +3+(c -5)2=0,则a -b +c =________. 6.求下列各数的算术平方根: (1)0.25; (2)13; (3)⎝⎛⎭⎫-382; (4)179.7.如图,某玩具厂要制作一批体积为100000cm 3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少?第2课时 平方根1.81的平方根是( ) A .9 B .-9 C .±9 D .272.关于平方根,下列说法正确的是( )A .任何一个数都有两个平方根,并且它们互为相反数B .负数没有平方根C .任何一个数都只有一个算术平方根D .以上都不对3.如果一个数的一个平方根是-16,那么这个数是________. 4.计算:(1)( 3.1)2=________; (2)(-8)2=________. 5.求下列各数的平方根:(1)25; (2)1681; (3)0.16; (4)(-2)2.6.若一个正数的平方根为2x +1和x -7,求x 和这个正数.3 立方根1.9的立方根是( )A .3B .±3 C.39 D .±39 2.下列说法中正确的是( )A .-4没有立方根B .1的立方根是±1 C.136的立方根是16D .-5的立方根是3-5 3.已知(x -1)3=64,则x 的值为________. 4.-64的立方根为________. 5.求下列各式的值: (1)3-164; (2)30.001; (3)-3(-7)3.6.已知3x +1的平方根是±4,求9x +19的立方根.7.已知第一个立方体纸盒的棱长是6cm ,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127cm 3,求第二个立方体纸盒的棱长.4估算1.在3,0,-2,-2这四个数中,最小的数是()A.3 B.0C.-2 D.- 22.估计14+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.7的整数部分是________.4.比较大小:35________4 3.5用计算器开方1.用计算器求2018的算术平方根时,下列四个键中,必须按的键是() A.+ B.× C. D.÷2.计算器计算的按键顺序为1·69=,其显示的结果为________.3.用科学计算器计算:36+23≈________(结果精确到0.01).4.在某项工程中,需要一块面积为3平方米的正方形钢板,应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?6 实 数1.2的相反数是( )A .- 2 B. 2 C.12 D .22.下列各数是有理数的是( ) A .π B. 3 C.27 D.383.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示7的点是________.4.计算:(1)38+327-(-2)2; (2)|1-2|-(3)2+(6-π)0.5.在数轴上表示下列各数,并把这些数用“<”连接起来.-145,3,2,π,0.7 二次根式第1课时 二次根式及其性质1.下列式子中,不是二次根式的是( ) A.45 B.-3 C.a 2+3 D.232.下列根式中属于最简二次根式的是( ) A. 6 B.12C.8D.27 3.化简8的结果是( )A. 2 B .2 2 C .3 2 D .4 2 4.下列变形正确的是( )A.(-4)×(-9)=-4×-9B.1614=16×14=4×12=2 C.62=62= 3 D.252-242=25-24=15.3的倒数是________. 6.化简: (1)2581=________; (2)34=________; (3)3116=________. 7.化简:(1)3×25×25; (2)(-12)×(-8).第2课时 二次根式的运算1.下列根式中,能与18合并的是( ) A. 2 B. 3 C. 5 D. 62.计算12×3的结果为( ) A .2 B .4 C .6 D .36 3.下列计算正确的是( ) A .23+32=5 B.8÷2=2 C .53×52=5 6 D.412=2124.计算24-923的结果是( ) A. 6 B .- 6 C .-43 6 D.4365.若a =22+3,b =22-3,则下列等式成立的是( ) A .ab =1 B .ab =-1 C .a =b D .a =-b 6.计算:(1)(3+5)(3-5); (2)212+348; (3)153-8; (4)(3-1)2-2.第3课时二次根式的混合运算1.化简8-2(2-2)得()A.-2 B.2-2C.2 D.42-22.下列计算正确的是()A.6÷(3-6)=2-1B.27-123=9- 4C.2+5=7D.(-6)2=63.估计20×15+3的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.计算:(1)(548+12-627)÷3;(2)(23-1)2+(3+2)(3-2);(3)(25-2)0+|2-5|+(-1)2017-13×45;(4)6÷3+2(2-1).第三章位置与坐标1确定位置1.如果影剧院的座位8排5座用(8,5)表示,那么(4,6)表示()A.6排4座B.4排6座C.4排4座D.6排6座2.下列表述中,位置确定的是()A.北偏东30°B.东经118°,北纬24°C.淮海路以北,中山路以南D.银座电影院第2排3.小明向班级同学介绍自己家的位置时,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处D.在学校东南方向800米处4.生态园位于县城东北方向5公里处,下图表示准确的是()5.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示.这样,棋子①的位置可记为(C,4),棋子②的位置可记为(E,3),则棋子⑨的位置可记为________.6.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示;(2)已知秋千在大门以东400m,再往北300m处,请你在图中标出秋千的位置.2平面直角坐标系第1课时平面直角坐标系1.下列选项中,平面直角坐标系的画法正确的是()2.在平面直角坐标系中,点(6,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(3,-4)C.(-4,-6)D.(-1,3)4.已知点A的坐标为(-2,-3),则点A到x轴的距离为________,到原点的距离为________.5.在如图所示的平面直角坐标系xOy中.(1)分别标出点A(4,2),B(0,6),C(-1,3),D(-2,-3),E(2,-4),F(3,0)的位置;(2)写出点M,N,P的坐标.第2课时平面直角坐标系中点的坐标特点1.下列各点在第四象限的是()A.(-1,2) B.(3,-5)C.(-2,-3) D.(2,3)2.下列各点中,在y轴上的是()A.(0,3) B.(-3,0)C.(-1,2) D.(-2,-3)3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2) B.(-2,0)C.(4,0) D.(0,-2)5.已知M(1,-2),N(-3,-2),则直线MN与x轴、y轴的位置关系分别为() A.相交、相交B.平行、平行C.垂直、平行D.平行、垂直6.已知A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出△ABC;(2)求△ABC的面积.第3课时建立平面直角坐标系描述图形的位置1.如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)2.如图,已知等腰三角形ABC.若要建立直角坐标系求各顶点的坐标,则你认为最合理的方法是()A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴3.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,如果所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么所在位置的坐标为()A.(0,1) B.(4,0)C.(-1,0) D.(0,-1)4.如图,长方形ABCD的长AD=6,宽AB=4.请建立适当的直角坐标系使得C点的坐标为(-3,2),并且求出其他顶点的坐标.3轴对称与坐标变化1.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5) B.(5,3)C.(-3,5) D.(3,5)2.已知点P(a,3)和点Q(4,-3)关于x轴对称,则a的值为()A.-4 B.-3 C.3 D.43.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-54.将△ABC各顶点的横坐标都乘以-1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项中正确表示这种变换的是()5.已知点M(a,-1)和点N(2,b)不重合.当M、N关于________对称时,a=-2,b =-1.6.如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.第四章一次函数1函数1.有下面四个关系式:①y=|x|;②|y|=x;③2x2-y=0;④y=x(x≥0).其中y是x 的函数的是()A.①②B.②③C.①②③D.①③④2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是()3.某学习小组做了一个实验:从一幢100m高的楼顶随手放下一只苹果,测得有关数据如下:下落时间t(s),1,2,3,4下落高度h(m),5,20,45,80则下列说法错误的是()A.苹果每秒下落的高度越来越大B.苹果每秒下落的高度不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒4.一个正方形的边长为3cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,则y与x之间的函数关系式是__________.5.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元.(1)写出y与x之间的函数关系式;(2)当老师带领20名学生参观时,门票的总费用为多少元?2 一次函数与正比例函数1.下列函数中,是一次函数的有( )①y =πx ;②y =2x -1;③y =1x ;④y =2-3x ;⑤y =x 2-1.A .4个B .3个C .2个D .1个2.已知y =x +2-3b 是正比例函数,则b 的值为( ) A.23 B.32C .0D .任意实数 3.若y =(m -2)x +(m 2-4)是正比例函数,则m 的值是( ) A .2 B .-2 C .±2 D .任意实数4.汽车开始行驶时,油箱内有油40升.若每小时耗油5升,则油箱内余油量y (升)与行驶时间t (小时)之间的函数关系式为( )A .y =40t +5B .y =5t +40C .y =5t -40D .y =40-5t5.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩的钱数y (元)与买邮票的枚数x (枚)之间的关系式为____________.6.甲、乙两地相距520km ,一辆汽车以80km/h 的速度从甲地开往乙地.(1)写出汽车距乙地的路程s (km)与行驶时间t (h)之间的函数关系式(不要求写出自变量的取值范围);(2)当行驶时间为4h 时,求汽车距乙地的路程.3 一次函数的图象第1课时 正比例函数的图象和性质1.正比例函数y =3x 的大致图象是( )2.已知直线y =-2x 上有两点(-1,a ),(2,b ),则a 与b 的大小关系是( ) A .a >b B .a <b C .a =b D .无法确定 3.已知正比例函数y =kx (k ≠0),点(2,-3)在该函数的图象上,则y 随x 的增大而( ) A .增大 B .减小 C .不变 D .不能确定4.画出正比例函数y =12x 的图象,并结合图象回答下列问题:(1)点(4,2)是否在正比例函数y =12x 的图象上?点(-2,-2)呢?(2)随着x 值的增大,y 的值如何变化?5.已知正比例函数y =(2-m )x |m -2|,且y 随x 的增大而减小,求m 的值.第2课时一次函数的图象和性质1.函数y=-2x+3的图象大致是()2.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是() A.a>b B.a<bC.a=b D.与m的值有关3.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是() A.0 B.-1 C.-1.5 D.-24.把直线y=-5x+6向下平移6个单位长度,得到的直线的表达式为()A.y=-x+6 B.y=-5x-12C.y=-11x+6 D.y=-5x5.已知一次函数y=(m+2)x+(3-n).(1)当m满足什么条件时,y随x的增大而增大?(2)当m,n满足什么条件时,函数图象经过原点?4 一次函数的应用第1课时 确定一次函数的表达式1.某正比例函数的图象如图所示,则此函数的表达式为( ) A .y =-12x B .y =12x C .y =-2x D .y =2x2.已知y 与x 成正比例,当x =1时,y =8,则y 与x 之间的函数表达式为( ) A .y =8x B .y =2x C .y =6x D .y =5x 3.如图,直线AB 对应的函数表达式是( ) A .y =-32x +2 B .y =32x +3C .y =-23x +2D .y =23x +24.如图,长方形ABCO 在平面直角坐标系中,且顶点O 为坐标原点.已知点B (4,2),则对角线AC 所在直线的函数表达式为____________.5.已知直线y =kx +b 经过点A (0,3)和B (1,5). (1)求这个函数的表达式;(2)当x =-3时,y 的值是多少?第2课时单个一次函数图象的应用1.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(h)之间的函数关系用图象可以表示为()2.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为()A.x=2B.y=2C.x=-3D.y=-33.周末小丽从家出发骑单车去公园,途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用了20分钟B.公园离小丽家的距离为2000米C.小丽在便利店的时间为15分钟D.便利店离小丽家的距离为1000米4.若一次函数y=ax+b的图象经过点(2,3),则关于x的方程ax+b=3的解为________.5.某工厂加工一批零件,每名工人每天的薪金y(元)与生产件数x(件)之间的函数关系如图所示.已知当生产件数x大于等于20件时,y与x之间的函数表达式为y=4x+b.当工人生产的件数为20件时,求每名工人每天获得的薪金.第3课时两个一次函数图象的应用1.如图,图象l甲,l乙分别表示甲、乙两名运动员在校运动会800米比赛中所跑的路程s(米)与时间t(分钟)之间的关系,则()A.甲跑的速度比乙跑的速度快B.乙跑的速度比甲跑的速度快C.甲、乙两人所跑的速度一样快D.图中提供的信息不足,无法判断2.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系.当该公司盈利(收入大于成本)时,销售量()A.小于3t B.大于3t C.小于4t D.大于4t3.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢.如图,现在小明让小强先跑________米,直线________表示小明所跑的路程与时间的关系,大约________秒时,小明追上了小强,小强在这次赛跑中的速度是________.4.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先出发,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分钟)之间的关系(从小强开始爬山时计时).(1)小强让爷爷先出发多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)小强经过多长时间追上爷爷?第五章 二元一次方程组1 认识二元一次方程组1.下列属于二元一次方程的是( ) A .xy +2x -y =7 B .4x +1=y C.1x+y =5 D .x 2-y 2=2 2.下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +y =1,2x +y =5的解的是( )A.⎩⎪⎨⎪⎧x =-1,y =2B.⎩⎪⎨⎪⎧x =-2,y =3C.⎩⎪⎨⎪⎧x =2,y =1D.⎩⎪⎨⎪⎧x =4,y =-3 3.如果⎩⎪⎨⎪⎧x =3,y =-5是方程mx +2y =-2的一组解,那么m 的值为( )A.83 B .-83 C .-4 D.854.一个长方形的长的2倍比宽的5倍还多1cm ,宽的3倍又比长多1cm ,求这个长方形的长与宽.设长为x cm ,宽为y cm ,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧2x -5y =1,x -3y =1B.⎩⎪⎨⎪⎧5y -2x =1,3y -x =1C.⎩⎪⎨⎪⎧2x -5y =1,3y -x =1D.⎩⎪⎨⎪⎧5y -2x =1,x -3y =1 5.为了响应“足球进校园”的口号,某校计划为学校足球队购买一些足球.已知购买2个A 品牌的足球和3个B 品牌的足球共需380元,购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,请根据题意列出相应的方程组;(2)⎩⎪⎨⎪⎧x =40,y =100是(1)中列出的二元一次方程组的解吗?2 求解二元一次方程组第1课时 代入法1.方程组⎩⎪⎨⎪⎧3x -4y =2,x +2y =1用代入法消去x ,所得关于y 的一元一次方程为( )A .3-2y -1-4y =2B .3(1-2y )-4y =2C .3(2y -1)-4y =2D .3-2y -4y =22.方程组⎩⎪⎨⎪⎧y =3x ,x +y =16的解是( )A.⎩⎪⎨⎪⎧x =3,y =9B.⎩⎪⎨⎪⎧x =2,y =6C.⎩⎪⎨⎪⎧x =4,y =12D.⎩⎪⎨⎪⎧x =1,y =3 3.用代入消元法解二元一次方程组⎩⎪⎨⎪⎧3x -y =5①,5x +3y =9②,首先把方程________变形得__________,再代入方程________.4.用代入消元法解下列方程组:(1)⎩⎪⎨⎪⎧y =x +2,4x +3y =13; (2)⎩⎪⎨⎪⎧3x +2y =19,2x -y =1.5.已知|x +y -3|+(x -2y )2=0,求x ,y 的值.第2课时 加减法1.对于方程组⎩⎪⎨⎪⎧4x +7y =-19,4x -5y =17,用加减法消去x ,得到的方程是( )A .2y =-2B .2y =-36C .12y =-2D .12y =-362.方程组⎩⎪⎨⎪⎧x -y =2,2x -y =1的解为( )A.⎩⎪⎨⎪⎧x =-1,y =-3B.⎩⎪⎨⎪⎧x =1,y =-3 C.⎩⎪⎨⎪⎧x =-1,y =3 D.⎩⎪⎨⎪⎧x =1,y =3 3.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .34.用加减消元法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =2,6x -y =5; (2)⎩⎪⎨⎪⎧x +2y =5,x +y =2;(3)⎩⎪⎨⎪⎧2x +y =2,3x -2y =10; (4)⎩⎪⎨⎪⎧3x -4y =14,2x -3y =3.3 应用二元一次方程组——鸡兔同笼1.中国古代第一部数学专著《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A.⎩⎪⎨⎪⎧8y +3=x ,7y -4=xB.⎩⎪⎨⎪⎧8x +3=y ,7x -4=yC.⎩⎪⎨⎪⎧8x -3=y ,7x +4=yD.⎩⎪⎨⎪⎧8y -3=x ,7y +4=x 2.某年级共有学生246人,其中男生人数y 比女生人数x 的2倍多2人,则下面所列的方程组中符合题意的是( )A.⎩⎪⎨⎪⎧x +y =246,2y =x -2B.⎩⎪⎨⎪⎧x +y =246,2x =y +2C.⎩⎪⎨⎪⎧x +y =246,y =2x +2D.⎩⎪⎨⎪⎧x +y =246,2y =x +2 3.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中鸡和兔各有几只?4.小明同学发现他奶奶今年的年龄是他年龄的5倍,12年后,他奶奶的年龄是他年龄的3倍.问小明和他奶奶今年的年龄各是多少?4 应用二元一次方程组——增收节支1.小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,问今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程组为( )A.⎩⎪⎨⎪⎧x +y =50000,85%x +110y =95000B.⎩⎪⎨⎪⎧x +y =50000,85%x -110%y =95000 C.⎩⎪⎨⎪⎧x -y =50000,115%x -90%y =95000 D.⎩⎪⎨⎪⎧x -y =50000,85%x -110%y =95000 2.在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了10%,乙班比去年多种了12%,结果甲班比乙班还是多种100棵树.设甲班去年植树x 棵,乙班去年植树y 棵,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧x -y =100,10%x -12%y =100B.⎩⎪⎨⎪⎧x -y =100,112%x -110%y =100 C.⎩⎪⎨⎪⎧x -y =100,12%x -10%y =100 D.⎩⎪⎨⎪⎧x -y =100,110%x -112%y =1003.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组______________.4.某校初三(2)班40名同学为“希望工程”共捐款100元,捐款情况如下表:捐款(元),1,2,3,4人数(人),6,●,●,7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚了,求捐款2元和3元的同学各有多少名.5 应用二元一次方程组——里程碑上的数1.已知两数x 、y 之和是10,x 比y 的2倍大1,则下面所列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =10,y =2x +1 B.⎩⎪⎨⎪⎧x +y =10,y =2x -1 C.⎩⎪⎨⎪⎧x +y =10,x =2y +1 D.⎩⎪⎨⎪⎧x +y =10,x =2y -1 2.通讯员要在规定时间骑车到达某地,若他每小时行驶15千米,则可提前24分钟到达;若他每小时行驶12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( )A.⎩⎨⎧x 15-15=y ,x 12+12=yB.⎩⎨⎧x 15+15=y ,x 12-12=yC.⎩⎨⎧x 15-2460=y ,x 12-1560=yD.⎩⎨⎧x 15+2460=y ,x 12-1560=y 3.一个两位数的数字和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是________.4.甲、乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?6 二元一次方程与一次函数1.已知直线y =3x 与y =-x +b 的交点为(-1,-3),则关于x ,y 的方程组⎩⎪⎨⎪⎧y -3x =0,y +x -b =0的解为( )A.⎩⎪⎨⎪⎧x =1,y =3B.⎩⎪⎨⎪⎧x =-1,y =3C.⎩⎪⎨⎪⎧x =1,y =-3D.⎩⎪⎨⎪⎧x =-1,y =-3 2.以方程2x +y =5的解为坐标的所有点组成的图象与一次函数__________的图象相同.3.若一次函数y =2x -4的图象上有一点的坐标是(3,2),则方程2x -y -4=0必有一组解为__________.4.如图,一次函数y =kx +b 的图象l 1与一次函数y =-x +3的图象l 2相交于点P ,则关于x ,y 的方程组⎩⎪⎨⎪⎧y =kx +b ,y =-x +3的解为__________. 5.用图象法解方程组⎩⎪⎨⎪⎧y =2x -2,x +y =-5.6.已知一次函数y =ax -5与y =2x +b 的图象的交点坐标为A (1,-2).(1)直接写出关于x ,y 的方程组⎩⎪⎨⎪⎧ax -y =5,2x -y =-b 的解; (2)求a ,b 的值.7 用二元一次方程组确定一次函数表达式1.一次函数y =kx +b 的图象如图所示,则( )A.⎩⎪⎨⎪⎧k =-13,b =-1B.⎩⎪⎨⎪⎧k =13,b =1C.⎩⎪⎨⎪⎧k =3,b =1D.⎩⎪⎨⎪⎧k =13,b =-12.已知一次函数y =kx +b ,下表中列出了x 与y 的部分对应值,则( )x,…,-1,1,…y,…,1,-5,…A.⎩⎪⎨⎪⎧k =3,b =-2 B.⎩⎪⎨⎪⎧k =-3,b =2 C.⎩⎪⎨⎪⎧k =-3,b =-2 D.⎩⎪⎨⎪⎧k =3,b =2 3.已知y 是关于x 的一次函数,且当x =3时,y =-2;当x =2时,y =-3,则这个一次函数的表达式为____________.4.若某公司销售人员的个人月收入y (元)与其每月的销售量x (千件)是一次函数关系(如图),则个人月收入y (元)与每月销售量x (千件)之间的函数关系式为____________.5.如图是某长途汽车站旅客携带行李费用示意图.(1)求行李费y (元)与行李质量x (千克)之间的函数关系式;(2)当旅客携带60千克行李时,需付行李费多少元?*8 三元一次方程组1.以下方程中,属于三元一次方程组的是( )A.⎩⎪⎨⎪⎧2x +3y =4,2y +z =5,x 2+y =1B.⎩⎪⎨⎪⎧x +y +z =2,x -2y =3,y -6z =9C.⎩⎪⎨⎪⎧1x +1y +1z =16,3x -4y =3,x +z =2D.⎩⎪⎨⎪⎧x -y =2,2x -3y =4,2x -2y =42.已知三元一次方程组⎩⎪⎨⎪⎧2x -3y +2z =5,x -2y +3z =-6,3x -y +z =3消去未知数y 后,得到的方程组可能是( )A.⎩⎪⎨⎪⎧7x +z =4,5x -z =12B.⎩⎪⎨⎪⎧7x +z =4,x -5z =8C.⎩⎪⎨⎪⎧7x -z =12,x -5z =28D.⎩⎪⎨⎪⎧7x -z =4,x -5z =12 3.三元一次方程组⎩⎪⎨⎪⎧x -y =1,y -z =1,x +z =6的解是( )A.⎩⎪⎨⎪⎧x =2,y =3,z =4B.⎩⎪⎨⎪⎧x =2,y =4,z =3C.⎩⎪⎨⎪⎧x =3,y =2,z =4D.⎩⎪⎨⎪⎧x =4,y =3,z =24.有甲、乙、丙三种货物,如果购买甲3件、乙2件、丙1件共需315元;购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙各1件共需( )A .128元B .130元C .150元D .160元5.解方程组:⎩⎪⎨⎪⎧x +y =1,y +z =5,z +x =6.第六章数据的分析1平均数第1课时平均数1.数据:-2,-1,0,3,4的平均数是()A.0 B.0.8 C.1 D.22.7位评委给一个演讲者打分(满分10分)如下:9,8,9,10,10,7,9.若去掉一个最高分和一个最低分,则这名演讲者的最后平均得分是()A.7分B.8分C.9分D.10分3.若一组数据2,4,3,x,4的平均数是3,则x的值为()A.1 B.2 C.3 D.44.某大学招生考试只考数学和物理,计算综合得分时,按数学占60%、物理占40%计算.如果小明数学得分为95分,物理得分为90分,那么小明的综合得分是________分.5.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:,笔试,面试,体能甲,83,79,90乙,85,80,75丙,80,90,73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%、30%、10%的比例计入总分.根据规定,请你说明谁将被录用.第2课时加权平均数的应用1.小明在七年级第二学期的数学成绩如下表所示.如果按如图所显示的权重计分,那么小明该学期的总评得分为________.姓名,平时,期中,期末,总评小明,90分,90分,85分2.某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:,面试,笔试成绩,评委1,评委2,评委388,90,86,92(1)请计算小王面试的平均成绩;(2)如果将面试的平均成绩与笔试成绩按6∶4的比例确定最终成绩,请你计算出小王的最终成绩.3.学校对王老师和张老师的工作态度、教学成绩及业务学习三个方面做了一个初步评估,成绩如下表所示:,工作态度,教学成绩,业务学习王老师,98,95,96张老师,90,99,98若工作态度、教学成绩、业务学习分别占20%、60%、20%,请分别计算王老师和张老师三个方面的平均分,并以此判断谁应评为优秀.2中位数与众数1.数据21、12、18、16、20、21的众数是()A.21 B.20 C.18 D.162.某区在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81.该数据的中位数是()A.77.3 B.91 C.81 D.783.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了如下统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.30,30B.30,20C.40,40D.30,404.若一组数据6、7、4、6、x、1的平均数是5,则这组数据的众数是________.5.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品每月的生产定额,统计了这15人某月加工的零件个数(如下表).月加工零件数(件),54,45,30,24,21,12人数,1,1,2,6,3,2(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?请说明理由.3 从统计图分析数据的集中趋势1.在一次体育课上,体育老师对九年级(1)班的40名学生进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则该班40名学生这次测试的平均分为( ) A.53分 B.354分 C.403分 D .8分2.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是( )A .98,95B .98,98C .95,98D .95,953.如图是小华同学6次数学测验的成绩统计图,则该同学这6次成绩的众数和中位数分别是____________.4.某校八(4)班共有40人,每位同学都向“希望工程”捐献了图书,捐书情况绘制成了如图所示的扇形统计图,求捐书册数的平均数、众数和中位数.4数据的离散程度第1课时极差、方差和标准差1.在九年级体育中考中,某班一组女生(每组8人)参加仰卧起坐测试的成绩如下(单位:次/分):46,44,45,42,48,46,47,45,则这组数据的极差为()A.2 B.4 C.6 D.82.甲、乙两个样本,甲样本的方差是0.105,乙样本的方差是0.055,那么样本() A.甲的波动比乙大B.乙的波动比甲大C.甲、乙的波动一样大D.甲、乙的波动大小无法确定3.某兴趣小组为了解我市气温的变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,-4,-2,1,-2,2.关于这组数据,下列结论不正确的是() A.平均数是-2 B.中位数是-2C.众数是-2 D.方差是74.已知一组数据:2,4,5,6,8,则它的方差为________,标准差为________.5.甲、乙两名同学进行射击训练,在相同条件下各射靶10次,成绩统计如下(单位:环):甲:9,5,7,8,7,6,8,6,7,7;乙:7,9,6,8,2,7,8,4,9,10.谁的成绩射击成绩较稳定?。
人教版生物七上2.1.1练习使用显微镜10分钟达标练习(解析版)
2.1.1练习使用显微镜(10分钟达标练习)一.选择题(共20小题)1.在显微镜对光操作时,图中不需要调节的结构是()A.①反光镜B.②遮光器C.③物镜转换器D.④细准焦螺旋【解析】对光时,转动③转换器,使低倍镜正对通光孔,转动②遮光器选择合适的光圈,然后左眼对准目镜注视,右眼睁开,用手翻转①反光镜,对向光源,这时从目镜中可以看到一个明亮的圆形视野,光就对好了。
故D符合题意。
故选:D。
2.在观察洋葱表皮细胞实验中,一个小组用目镜为“16×”,物镜为“10”,在显微镜的视野内看到10个细胞,如果想看到更多的细胞,他们应该如何更换目镜和物镜()A.目镜换为“10×”,物镜换为“40”B.目镜不换,物镜换为“40”C.目镜换为“10×”物镜不换D.都不需更换,逆时针转动粗准焦螺旋即可【解析】显微镜的放大倍数与所观察到的范围之间的关系是:显微镜的放大倍数越大,所观察到的物像体积越大,视野内所看到的细胞数目越少;相反显微镜的放大倍数越小,所观察到的物像体积越小,视野内所看到的细胞数目越多。
所以用显微镜观察洋葱表皮细胞临时装片的同一部位时,要使视野内所看到的细胞数目最多,应该是放大倍数最小的显微镜。
四个选项,A、10×40═400(倍),B、16×40═640(倍),C、10×10═100(倍),D、逆时针转动粗准焦螺旋会上提镜筒,不会改变细胞数目多少,只能改变物像的清晰度;C选项中显微镜放大100倍,放大倍数比该小组使用显微镜放大倍数160倍小,所以其视野内所看到的细胞数目会变多。
故选:C。
3.小王同学用显微镜观察临时装片时,通过目镜没有看到明亮的圆形视野,原因不可能是()A.未开灯,没有充足的光线B.未转动反光镜,缺少反射光线C.未将物镜和光圈对准通光孔D.未将临时装片放在载物台上【解析】显微镜对光时,转动粗准焦螺旋,使镜筒上升;转动转换器使低倍物镜对准通光孔。
2.3.1课题3-活塞连杆组-活塞连杆组的构造-活塞
展示小试牛刀的练习题,让学生识记并回答问题。
知识点二:活塞的作用和结构
学习任务二:学习范围:P43-44时间:5min
学习要求:结合问题,自主阅读,探究答案,标记关键词,尝试记忆背诵。 时间:5min;
5min时间相互交流分享,尽可能多的总结出这部分的知识点,形成知识体系。
问题1:简述发动机活塞的作用和结构。
授课人
刘老师
课程名称
发动机
班级
22级汽修1班
课题名称
2.3.1课题3-活塞连杆组-活塞连杆组的构造-活塞
课堂类型
新授课
授课学时
2
授课时间
11.4
教学目标
素质目标
通过学习活塞连杆组的活塞构造,培养学生自主学习与合作探究学习的能力,在合作、交流的学习气氛中体验成功的喜悦和乐趣;培养学生严谨、细致、规范的职业素养,增强学生的责任感。(课程思政)
教师展示PPT、教学目标。
教师引导学生结合生活实际,思考提出的问题。
学生齐读学习目标,对本节课所学知识有一个整体的把握,用红色笔画出重难点。
学生以小组为单位进行讨论。
组长进行汇总发言。
通过对考纲的了解,让学生对本节知识的有一个整体的认识,在学习的过程中做到心中有数。
通过生活实际,激发学生的学习动力。
通过知识的整理与回顾让学生对知识的组成再次进行梳理与加工。
六、
实战演练
当堂达标
达标时间:10分钟
达标要求:完成当堂达标练习,找到自己还没有学会的知识点,再次进行回顾与学习。
(一)基础题
1.活塞的主要功用是承受燃烧气体压力,并将此力通过(活塞销)传给(连杆)以推动(曲轴)旋转。此外活塞位于(上止点)时,活塞顶部与气缸盖、气缸壁共同组成燃烧室。
小学二年级数学上册单元课堂达标试题 全册
2.1.1 长度单位班级: 姓名:【课堂达标】1. (1)大约有( )个 长,大约有( )个长。
(2)大约有( )个 长,大约有( )个长。
(3)大约有( )个 长,大约有( )个长。
2.要想让同一长度的物体测量结果一致,必须统一( )。
【动手练习】量一量,你家的餐桌、茶几等各有几个没使用过的铅笔长? 【学习评价】颗班级: 姓名:【课堂达标】 1.( )厘米2.量物体的长度,要把尺子的( )刻度对准物体的左端。
3.填一填。
从0刻度到5刻度之间的距离是( )厘米。
从0刻度到10刻度之间的距离是( )厘米。
从2刻度到6刻度之间的距离是( )厘米。
从4刻度到11刻度之间的距离是( )厘米。
4.谁量的对?对的画“√”。
【学习评价】8 7 6 5 49 颗班级: 姓名:【课堂达标】 1.填空。
1米=( )厘米 500厘米=( )米 3米=( )厘米 700厘米=( )米 15厘米+8厘米=( )厘米 35米—3米=( )米72厘米+28厘米=( )厘米=( )米 2.在○里填上“>”、“<”或“=”。
1米○100厘米 98厘米○98米 4米○40米 50米○600厘米 23厘米○32厘米 80厘米○18米 3.判断。
(1)铅笔长12米。
( ) (2)楼房高20厘米。
( ) (3)一棵松树高16米。
( ) (4)桌子高80厘米。
( ) 【拓展练习】小猪家、小兔家和学校在公路的同一侧,小猪家到学校35米,小兔从家到学校要走20米,从小猪家到小兔家要走多少米?【学习评价】颗班级: 姓名:【课堂达标】 1.(1)画一条2(2)画一条比3厘米短1厘米的线段。
2.判断。
(1)线段有两个端点。
( ) (2)线段不能量出长度。
( )(3)数学书上面的4条边都是线段。
( ) (4)弯曲的线也是线段。
( ) 3.数一数下面的图形是由几条线段组成的。
( )条 ( )条 ( )条 ( )条 【拓展练习】 4.【学习评价】颗2.1.5 解决问题班级:姓名:【课堂达标】1.比1米长□比1米高□比1米长□比1米短□比1米矮□比1米短□2. 下面的长度单位对吗?把不对的改正后写在括号里。
高中数学人教A版必修三课堂10分钟达标: 2
均分为 M,如果把 M 当成一个同学的分数,与原来的 40个分数一起,算
出这 41个分数的平均值为 N,那么 M∶N 为 ( )
A.4401
B.1
C.4410
D.2
【解析】选 B.N=40M41+ M=M,所以 M∶N=1.
关闭 Word文档返回原板块
【解析】(1)x甲=51(60+80+70+90+70)=74. x乙=51(80+60+70+80(60-74)2+(80-74)2+(70-74)2+(90-74)2+(70-74)2]=104, s2乙=51[(80-73)2+(60-73)2+(70-73)2+(80-73)2+(75-73)2]=56, 由s2甲>s2乙知乙的各门功课发展较平衡.
2
1
其积为-3,5出现3 次,其积为15,则这10个数据之和为6+36-3+15=54,
则这组数据的平均数x=1504=5.4.
答案:5.4
5.对甲、乙两名同学的学习成绩进行抽样分析,各抽 5 门功课,得到的
观测值如下:
甲
60
80
70
90
70
乙
80
60
70
80
75
(1)甲、乙的平均成绩谁较好?
(2)谁的各门功课发展较平衡?
均成绩是 81分,则该校数学建模兴趣班的平均成绩是________分.
【解析】平均成绩为40
×
90
+ 50 90
×
人教版七下第一节人类的起源和发展10分钟达标练习解析版)
第一节人的起源和发展(10分钟达标练习)一.选择题(共13小题)1.下列有关人类起源与发展的叙述,错误的是()A.现代类人猿和人类的共同祖先是森林古猿B.古人类“露西”的脑容量接近现代人类,她能制造复杂的工具C.在从猿到人的进化过程中,首先出现的重要变化是直立行走D.古人类用火把食物烤熟,改善了身体的营养,促进了脑的发育【解答】A、人类和类人猿的关系最近,是近亲,它们有共同的原始祖先是森林古猿,A正确;B、“露西”生活在距今300万年以前,她已经能够独立行走。
“露西”属于南方古猿,南方古猿时期的人类脑容量是500毫升,现代人类的脑容量是1300﹣1500毫升,南方古猿阶段的古人类只会使用天然工具,不会制作工具,B错误;C、在从猿到人的进化过程中,首先出现的重要变化是直立行走,C正确;D、古人类用火把食物烤熟,改善了身体的营养,促进了脑的发育,D错误。
故选:B。
2.下列有关现代的类人猿与人类相对比的叙述中,不正确的是()A.有共同的祖先B.运动方式相同C.制造工具的能力不同D.脑发育的程度不相同【解答】A、人与类人猿有共同的原始祖先是森林古猿,不符合题意。
B、森林古猿以树栖生活为主,不会直立行走;而人类的前肢解放出来,会直立行走。
可见它们的运动方式不同。
符合题意。
C、类人猿以树栖生活为主,在丛林中采摘果子等为食,不会制造工具;而人类会制造和使用工具。
不符合题意。
D、由于类人猿以树栖生活为主,不会制造工具,手和脑得不到锻炼,因此这种简单的树栖生活不利于脑的发育;而人类会制造和使用工具,促进了脑的发达,且知道用火烧烤食物来吃,改善了身体的营养,有利于脑的发育,不符合题意;故选:B。
3.“人类从哪里来?”是人们一直探索的问题。
下列有关人类起源和进化的观点不正确的是()A.达尔文通过比较人类和类人猿的相似之处,提出它们的共同祖先是一类古猿B.根据露西化石和其他有关证据,科学家认为森林古猿能下地行走C.根据古人类石器的遗物表明露西之后的古人类能够使用工具D.在与大自然斗争中,人类越来越强大,可以按自己的意愿改造大自然【解答】A、达尔文是英国生物学家,进化论的奠基人。
人教A版高中数学选修1-1课堂10分钟达标练 2.3.1 抛物线及其标准方程 探究导学课型 Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课堂10分钟达标练1.抛物线x=y2的焦点坐标为( )A.(,0)B.(a,0)C.(0,)D.(0,a)【解析】选B.抛物线x=y2可化为y2=4ax.它的焦点坐标是(a,0).2.顶点在坐标原点,对称轴为坐标轴,过点(-2,3)的抛物线方程是( )A.y2=xB.x2=yC.y2=-x或x2=-yD.y2=-x或x2=y【解析】选D.因为点(-2,3)在第二象限,所以设抛物线方程为y2=-2px(p>0)或x2=2p′y(p′>0),又点(-2,3)在抛物线上,所以p=,p′=,所以抛物线方程为y2=-x或x2=y.3.抛物线y2=mx的焦点为F,点P(2,2)在此抛物线上,M为线段PF的中点,则点M到该抛物线准线的距离为( )A.1B.C.2D.【解析】选D.因为点P(2,2)在抛物线上,所以(2)2=2m,所以m=4,P到抛物线准线的距离为2-(-1)=3,F到准线的距离为2,所以M到抛物线准线的距离为d==.4.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线焦点为F,则△MPF的面积为________.【解析】设P(x0,y0),因为|PM|=5,所以x0=4,所以y0=±4,所以=|PM|·|y0|=10.答案:105.求顶点在原点,对称轴是坐标轴,且焦点在直线3x-5y-36=0上的抛物线方程.【解析】因为焦点在直线3x-5y-36=0上,且抛物线的顶点在原点,对称轴是坐标轴,焦点A的坐标为(12,0),或(0,-)设方程为y2=2px,求得p=24,所以此抛物线方程为y2=48x;设方程为x2=-2py,求得p=,所以此抛物线方程为x2=-y;所以顶点在原点,对称轴是坐标轴,且焦点在直线3x-5y-36=0上的抛物线方程为y2=48x或x2=-y.关闭Word文档返回原板块。
湘教版八年级数学上10分钟课堂训练2.3综合提升训练(PDF版)
A $ &#" A %* !/=%< = >(< = $ < > &= < >ò&< > =+*x Î5 #* $ 3! 1234 &! B > @c/ ? 2&= $ 0"A 1&< ? @+J8&))A $ < !! & ! !"-Lw:, % b7¾61-Lw:) &+ $ 4! %* !) =V !L w : < = >( < =$ % &< = > &< > = Î5 # * , ! + ! !V!+VLw: V!Lw: $ +* x c / E ¿ / E² E @ = E B > *@ '< '< ! . ! twLw: G< $ = >/ @ B 1 % E @ B+"8&%&! #! %* !! = %< = >( < = $ < > @ B > @ ? > ? B Î5 #* '= '< '$ E % & < = > E @ = PJHZ E @$ = @ ET '< $ -.K = < = 15(+VLw:ì, &. & ! B $ B > @2 %E @ B# 7 5 E @ ( @ B ( E B$ = @ ( @ B ( B >$ $ E , ! #+ ! %! /. ! )> $ < = $ %! $ = $ 8/94 $ !" ! %* !2ºÄÅ+w&= < > $ !""A Î5 #* $ ¿Ä <+XÆ < ? > ÄÇ < = $ < > Í (= $ &&&&&& &> &= < ? &> < ?+J! $ ~~&= %* !2 5 #* #* %* !! #* %* !# 5 5 = $ < > $ /_8 < %! ./ E)V!Lw:L!~/+/1,#$¥\ ! ! $ `a&=$ $ !3"A * < > $ 8 !3"A * !""A $/"A ! &> &= # # !/ E¨)L!~(x+/ $ ? > < = $ < > `a < ?*&= < > ! (= $ _8 < "/ E¨)L-Ow*x+/ ! ! $ `a&= #/ E=V!Lw:+O)! < > $ 8 !"" A $ )" A ! < ?$ < ?$ &= &> # # $ & ! '(;<+, &. %* !0< ?)V!Lw: < = >+( Î5 #* $ !! ! , ! "+ ! !! #. ! %$ x= < >~2 < @ $ < ? Í&@ ? >+J! /! %* !# + # % ÁÂ Ì Â ) $ å¿7!s+ÀbvÎ5 #* ? S -.cdS nz{| #NO < & ! *) &+ $ n %< = >#h 1 < ? &= < ># $ , ' + ' V!Lw: VLw: >nb #Õ I J P &? < @ &5 #* %* !0 $ % < = ' . ' twLw: H\< ? > ! bc d S n & S { < z { | > { < T P $ <&< )! 1#$¤¥;<+, && ! .-Lw:+6BOw8 2"A ? @ /H&@ ? > ! $ &< !-Lw:)wLw: $ / _8 < ?)V!%< = >+(x "-Lw:)VLw: $ ! < ?$ < ?$ 8 2" A $ %" A & < ? > $ 4" A ! &= #-Lw:)V!Lw: # $ `a&> $:qGD< $ ! !3"A * %"A $0)A @ $ < ? `a&< ? @ $ @ ? $ 8 b_8 < &< # $ &GÃ=:+Lw:! $ `a&@ ? > $ ? > * ? @ $ 4" A * 0) A $ !) A ! &< &< , ' !+ ' #' %. ! /$ 5674 $ 2! %* !% = %< = >( < >$ = > %< = >+ w &< > @$ Î5 # * $ :;<=>4 &)"&A ! !"" A 1 & < $ $ !# ! %* !3 n c ~ È !! L Î5 #* >$ = > 5 &<$&= ! D &< > @ %< = ># ² { $ -. D < %" *= <É C ÊË == A $ ! ! !"" A $ )" A ! > @ $ 8 5&< > @ $ ( 5 & < $ &< cazL !" ÊC &< &= Ì) 2" A # # $ $ +x)asC >É C %* !3 5 #* a sC ? $ ÊË == AÌ) %" A K]c C Ý >É L Ñ ò Ê $ ÉCÊË ==AÌÔ %" A $ Ë =cÙ #" ÊC! IC<]cCÝ >É° ?É+L¶! $ &&& &&& < ?$ %" A & = > ?$ ? > $ 2" A /\µ/"&= &= $ %* !% %* !/ %* !) 5 #* 5 #* 5 #* = ?$ 2" A `a%= > ?8V!Lw:! `a&> $ 0! VLw :(,- w ) P - w + / F 1g+ w 8 > $ #" `a > ?$ = ?$ #" ! $ \!"¸] =
人教A版高中数学选修一课堂10分钟达标练1.1.3.docx
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课堂10分钟达标练
1.命题“若a>-1,则a>-3”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )
A.1
B.2
C.3
D.4
【解析】选B.原命题为真,则其逆否命题为真,而逆命题为假,则其否命题为假,故选B.
2.如果命题“若p,则q”的逆命题是真命题,则下列命题一定为真命题的是
( ) A.若p,则q B.若p,则q
C.若q,则p
D.以上都不对
【解析】选B.逆命题与否命题互为逆否命题,为等价命题,它们同真同假,故选B.
3.命题“若两条直线没有公共点,则这两条直线是异面直线”与“若两条直线是异面直线,则这两条直线没有公共点”的关系是________.
【解析】命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题是“若两条直线是异面直线,则这两条直线没有公共点”.
答案:互为逆命题
4.命题“圆内接四边形是等腰梯形”的等价命题是________________.
【解析】等价命题是“若一个四边形不是等腰梯形,则这个四边形不内接于圆”. 答案:若一个四边形不是等腰梯形,则这个四边形不内接于圆
5.判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆命题的真假.
【解析】原命题的逆命题为“若方程x2+2x-3m=0有实数根,则m>0”,若方程x2+2x-3m=0有实数根,则Δ=12m+4≥0,解得m≥-,所以原命题的逆命题为假命题.
关闭Word文档返回原板块。
人教A版高中数学选修一课堂10分钟达标练1.1.1.docx
高中数学学习材料鼎尚图文*整理制作温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课堂10分钟达标练1.下列语句是命题的是( )A.2015是一个大数B.若两直线平行,则这两条直线没有公共点C.对数函数是增函数吗?D.a≤2015【解析】选B.A不能判断真假,故A错,而C不是陈述句,D不能判断真假,故不是命题;B是陈述句,且能判断真假.2.下列命题中,是真命题的是( )A.若ab=0,则a2+b2=0B.若a>b,则<C.若M∩N=M,则N⊆MD.若M⊆N,则M∩N=M【解析】选D.A中,a=0,b≠0时,a2+b2=0不成立;B中,a=2,b=-1时,a>b,但<-1不成立;C中,M∩N=M,说明M⊆N;D中,M⊆N,则M∩N=M成立.3.命题“角平分线上的点到角两边的距离相等”的条件是__________________,结论是________________.【解析】该命题写成“若p,则q”的形式为:若一个点是一个角的角平分线上的点,则该点到这个角的两边的距离相等.故其条件为:角平分线上的点;结论为:该点到角两边的距离相等.答案:角平分线上的点该点到角两边的距离相等4.下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.其中假命题的序号是________.【解析】①面积相等的三角形,不一定全等;②当x=0,y≠0时,|x|+|y|≠0;③当c=0时,ac2=bc2;④矩形的对角线不一定垂直,故①②③④皆为假命题. 答案:①②③④5.把下列命题改写为“若p,则q”的形式,指出条件和结论.(1)直角三角形的两个锐角互余.(2)正弦值相等的两个角的终边相同.【解析】(1)“若一个三角形是直角三角形,则它的两个锐角互余”,条件是“一个三角形是直角三角形”,结论是“两个锐角互余”.(2)“若两个角的正弦值相等,则它们的终边相同”,条件是“两个角的正弦值相等”,结论是“它们的终边相同”.关闭Word文档返回原板块。
高中数学选修1-1(检测):2.3 抛 物 线 课堂10分钟达标 2.3.2.2 Word版含解析
课堂10分钟达标1.直线y=2与抛物线y2=8x的公共点的个数为( )A.0个B.1个C.2个D.无数个【解析】选B.直线y=2与抛物线y2=8x的对称轴平行,故直线与抛物线只有一个公共点.2.抛物线y2=4x上与焦点相距最近的点的坐标是( )A.(0,0)B.(1,2)C.(2,1)D.以上都不是【解析】选A.抛物线上过焦点的弦中,通径最短,y2=4x的焦点为(1,0).令x=1代入y2=4x中得y=±2,抛物线上的点(1,2)或(1,-2)到焦点的距离为2,而顶点(0,0)到焦点的距离为1,所以抛物线y2=4x上与焦点相距最近的点的坐标是(0,0).3.过(1,1)作直线与抛物线y2=x只有一个公共点,这样的直线有( )A.4条B.3条C.2条D.1条【解析】选C.由于点(1,1)在抛物线y2=x上,所以过点(1,1)作与抛物线只有一个公共点的直线,可作2条,一条是与抛物线对称轴平行的直线,另一条是与抛物线相切的直线.4.已知点P为抛物线y2=2x上的动点,点P在y轴上的射影是M,点A的坐标是,则|PA|+|PM|的最小值是________.【解析】抛物线y2=2x的焦点为F,点A在抛物线外部,显然P,A,F三点共线时,|PA|+|PM|有最小值,此时|PA|+|PM|=|PA|+|PF|-=|FA|-=.答案:5.已知F是抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,设|FA|>|FB|,则=________.【解析】抛物线y2=4x的焦点F(1,0),过F且斜率为1的直线方程为y=x-1,设A(x1,y1),B(x2,y2),由消去y得x2-6x+1=0,求得x1=3+2,x2=3-2,故由抛物线的定义可得==3+2.答案:3+26.过点Q(4,1)作抛物线y2=8x的弦AB,恰被Q所平分,求AB所在的直线方程.【解析】方法一:设以Q为中点的弦AB端点坐标为A(x1,y1),B(x2,y2), 则有=8x1,①=8x2, ②因为Q(4,1)是AB的中点,所以x1+x2=8,y1+y2=2. ③①-②,得(y1+y2)(y1-y2)=8(x1-x2). ④将③代入④得y1-y2=4(x1-x2),即4=,所以AB所在直线的斜率k=4.所以所求弦AB所在的直线方程为y-1=4(x-4),即4x-y-15=0.方法二:设弦AB所在直线方程为y=k(x-4)+1.由消去x,得ky2-8y-32k+8=0,此方程的两根就是线段端点A,B两点的纵坐标,由根与系数的关系和中点坐标公式,得y1+y2=,又y1+y2=2,所以k=4.所以所求弦AB所在的直线方程为4x-y-15=0.【补偿训练】已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A,B两点.(1)若直线l的倾斜角为60°,求|AB|的值.(2)若|AB|=9,求线段AB的中点M到准线的距离.【解析】(1)因为直线l的倾斜角为60°,所以其斜率k=tan60°=.又F,所以直线l的方程为y=.联立消去y得x2-5x+=0.设A(x1,y1),B(x2,y2),则x1+x2=5,而|AB|=|AF|+|BF|=x1++x2+=x1+x2+p,所以|AB|=5+3=8.(2)设A(x1,y1),B(x2,y2),由抛物线定义知|AB|=|AF|+|BF|=x1+x2+p=x1+x2+3,所以x1+x2=6,于是线段AB的中点M的横坐标是3.又准线方程是x=-,所以M到准线的距离为3+=.。
人教A版高中数学选修1-1课堂10分钟达标练 1.1.2 四种命题 探究导学课型 Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课堂10分钟达标练1.命题“若a2≤b2,则a≤b”的逆命题是( )A.“若a<b,则a2<b2”B.“若a>b,则a2>b2”C.“若a≤b,则a2≤b2”D.“若a≥b,则a2≥b2”【解析】选C.原命题“若a2≤b2,则a≤b”的逆命题为“若a≤b,则a2≤b2”.2.命题“若p,则q”的逆否命题是( )A.若p,则qB.若p,则qC.若q,则pD.若q,则p【解析】选C.条件p的否定为p,结论q的否定为q,交换顺序得逆否命题“若q,则p”.3.已知命题:“若x≥0,y≥0,则xy≥0”,则它的原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.1B.2C.3D.4【解析】选B.原命题为真命题,逆命题:“若xy≥0,则x≥0,y≥0”为假命题.否命题:“若x<0或y<0,则xy<0”为假命题.逆否命题:“若xy<0,则x<0或y<0”为真命题.故有两个真命题.4.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为________.【解析】否命题为:△ABC中,若∠C≠90°,则∠A,∠B不都是锐角.答案:在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角5.把命题“平行于同一条直线的两条直线平行”改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题,同时判断它们的真假.【解析】“若p,则q”的形式:若两条直线平行于同一条直线,则这两条直线平行,是真命题;逆命题:若两条直线平行,则这两条直线平行于同一条直线,是真命题;否命题:若两条直线不平行于同一条直线,则这两条直线不平行,是真命题;逆否命题:若两条直线不平行,则这两条直线不平行于同一条直线,是真命题.关闭Word文档返回原板块高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
人教版生物七上3.1.2种子植物10分钟达标练习(解析版)
3.1.2种子植物(10分钟达标练习)一.选择题(共17小题)1.下列有关松树与槐树的对比分析,不科学的是()A.槐具有根、茎、叶、花、果实和种子B.槐的种子不裸露,松的种子裸露C.松的茎坚硬,叶针形,果实可食用D.二者的幼小植物体都是由胚发育来的【解析】A、槐属于被子植物,具有根、茎、叶、花、果实和种子六大器官,A叙述科学。
B、槐属于被子植物,种子不裸露,五大夫松茎坚硬,叶针形,种子裸露,B叙述科学。
C、松茎坚硬,叶针形,种子没有果皮包被,属于裸子植物,所以没有果实;C叙述是不科学的。
D、二松树与槐树的幼小植物体都是由胚发育来的,D叙述科学。
故选:C。
2.夏季喝啤酒时来上一盘冰毛豆,其味道特别好。
毛豆含脂肪约20%,蛋白质约40%,还含有丰富的维生素,富含的这些营养物质主要储存在种子的()A.胚芽中B.子叶中C.胚轴中D.胚乳中【解析】毛豆种子结构包括种皮和胚,胚包括胚根、胚轴、胚芽、子叶。
其营养物质储存在子叶里。
故选:B。
3.“苔花如米小,也学牡丹开”这句诗描述的植物类型分别是()A.藻类植物和苔藓植物B.苔藓植物和蕨类植物C.苔藓植物和被子植物D.被子植物和被子植物【解析】苔藓植物无根,起固着作用的是假根,有茎、叶的分化,体内无输导组织,植株矮小,受精过程离不开水,适于生活在阴湿处。
被子植物又叫绿色开花植物,一株完整的绿色开花植物体由根、茎、叶、花、果实和种子六大器官构成。
“苔花如米小也学牡丹开”中描写的植物是苔藓植物和被子植物。
故选:C。
4.仔细观察如图中的枇杷结构,你认为枇杷属于()A.苔藓植物B.蕨类植物C.裸子植物D.被子植物【解析】仔细观察图中的枇杷,枇杷的种子外面有果皮包被着,能形成果实,具有根、茎、叶、花、果实和种子六大器官,因此属于被子植物。
故选:D。
5.银杏是我国特有树种,具有很高的观赏、药用和生态价值。
如图是银杏所结“白果”的结构示意图,据此判断银杏属于()A.苔藓植物B.蕨类植物C.裸子植物D.被子植物【解析】植物分类的重要依据是花、果实和种子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课堂10分钟达标练
1.抛物线x=y2的焦点坐标为( )
A.(,0)
B.(a,0)
C.(0,)
D.(0,a)
【解析】选B.抛物线x=y2可化为y2=4ax.它的焦点坐标是(a,0).
2.顶点在坐标原点,对称轴为坐标轴,过点(-2,3)的抛物线方程是( )
A.y2=x
B.x2=y
C.y2=-x或x2=-y
D.y2=-x或x2=y
【解析】选D.因为点(-2,3)在第二象限,
所以设抛物线方程为y2=-2px(p>0)或x2=2p′y(p′>0),又点(-2,3)在抛物线上,所以p=,p′=,
所以抛物线方程为y2=-x或x2=y.
3.抛物线y2=mx的焦点为F,点P(2,2)在此抛物线上,M为线段PF的中点,则点M到该抛物线准线的距离为( )
A.1
B.
C.2
D.
【解析】选D.因为点P(2,2)在抛物线上,所以(2)2=2m,所以m=4,P到抛物线准线的距离为2-(-1)=3,F到准线的距离为2,所以M到抛物线准线的距离为d==.
4.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线焦点为F,则△MPF的面积为________.
【解析】设P(x0,y0),因为|PM|=5,所以x0=4,所以y0=〒4,
所以=|PM|·|y 0|=10.
答案:10
5.求顶点在原点,对称轴是坐标轴,且焦点在直线3x-5y-36=0上的抛物线方程. 【解析】因为焦点在直线3x-5y-36=0上,且抛物线的顶点在原点,对称轴是坐标轴,焦点A的坐标为(12,0),或(0,-)
设方程为y2=2px,求得p=24,所以此抛物线方程为y2=48x;
设方程为x2=-2py,求得p=,
所以此抛物线方程为x2=-y;
所以顶点在原点,对称轴是坐标轴,且焦点在直线3x-5y-36=0上的抛物线方程为y2=48x或x2=-y.
关闭Word文档返回原板块。