坐标系与参数方程强化训练专题练习(一)带答案人教版高中数学新高考指导

合集下载

高考数学压轴专题人教版备战高考《坐标系与参数方程》专项训练及答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》专项训练及答案

高考数学《坐标系与参数方程》课后练习一、131.已知点N 在圆224x y +=上,()2,0A -,()2,0B ,M 为NB 中点,则sin BAM ∠的最大值为( ) A .12B .13C.10D【答案】B 【解析】 【分析】设(2cos ,2sin )N αα,则(1cos ,sin )M αα+先求出AM 的斜率的最大值,再得出sin NAM ∠的最大值. 【详解】解:设(2cos ,2sin )N αα,则(1cos ,sin )M αα+,sin 0sin tan 1cos 2cos 3BAM αααα-∠==+++„, 1sin 3BAM ∴∠„, 故选:C . 【点睛】本题考查了直线与圆的位置关系,属中档题.2.在满足极坐标和直角坐标互的化条件下,极坐标方程222123cos 4sin ρθθ=+经过直角坐标系下的伸缩变换123x x y y⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( ).A .直线B .椭圆C .双曲线D .圆【答案】D 【解析】 【分析】先把极坐标方程化为直角坐标方程,再经过直角坐标系下的伸缩变换,把直角坐标方程中的x ,y 分别换成得2x '',由此能求出结果. 【详解】 ∵极坐标方程222123+4cos sin ρθθ=∴22223cos 4sin 12ρθρθ+=∴直角坐标方程为223412x y +=,即22143xy +=∴经过直角坐标系下的伸缩变换1233x x y y⎧=⎪⎪⎨=''⎪⎪⎩后得到的曲线方程为22(2)(3)14x y ''+=,即22()()1x y ''+=. ∴得到的曲线是圆 故选D. 【点睛】本题考查曲线形状的判断,是基础题,解题时要认真审题,注意极坐标方程、直角坐标方程和直角坐标系下的伸缩变换公式的合理运用.3.如图所示,ABCD 是边长为1的正方形,曲线AEFGH ……叫作“正方形的渐开线”,其中¶AE ,¶EF ,·FG,¶GH ,……的圆心依次按,,,B C D A 循环,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π【答案】C 【解析】 【分析】分别计算»AE ,»EF,»FG ,¼GH 的大小,再求和得到答案. 【详解】根据题意可知,»AE 的长度2π,»EF 的长度为π,»FG的长度为32π,¼GH 的长度为2π,所以曲线AEFGH 的长是5π. 【点睛】本题考察了圆弧的计算,意在考察学生的迁移能力和计算能力.4.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.5.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D 【解析】 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系. 【详解】 圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+=直线的极坐标方程为34903490cos sin x y ραρα--=⇐--= 圆心到直线的距离为:925d r =<=相交 圆心坐标代入直线不满足,所以直线不过圆心. 故答案选D 【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.6.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。

坐标系与参数方程强化训练专题练习(四)含答案人教版高中数学新高考指导

坐标系与参数方程强化训练专题练习(四)含答案人教版高中数学新高考指导
8.已知直线 的参数方程为 ( 为参数),P是椭圆 上任意一点,求点P到直线 的距离的最大值
9.在极坐标系中,圆 的方程为 ,以极点为坐标原点,极轴为 轴的正半轴建立平面直角坐标系,直线 的参数方程为 ( 为参数),判断直线 和圆 的位置关系.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
圆心 到直线 的距离 ,
所以直线 和⊙ 相交.……………………………………………………10分
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案击修改第I卷的文字说明
评卷人
得分
一、选择题
1.直线l的参数方程是 ,则l的方向向量是 可以是【答】(C)
(A)(1,2) (B)(2,1) (C)(-2,1) (D)(1,-2)
即 ,

;
所以 极坐标方程为
.
(2) 的普通方程为 ,
所以 交点的极坐标为 .
5.选修4—4:坐标系与参数方程
解:将曲线 化为直角坐标方程得:

即 ,
圆心到直线的距离 ,
∴曲线 相离.
6.
7.
8.
9.消去参数 ,得直线 的直角坐标方程为 ;……………2分
即 ,
两边同乘以 得 ,
得⊙ 的直角坐标方程为: ,……………………6分
(Ⅰ)把 的参数方程化为极坐标方程;
(Ⅱ)求 与 交点的极坐标( ).(汇编年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程
5.已知曲线 的极坐标方程为 ,曲线 的极坐标方程为 ,判断两曲线的位置关系.

高考数学压轴专题人教版备战高考《坐标系与参数方程》真题汇编附答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》真题汇编附答案

新数学《坐标系与参数方程》专题解析(1)一、131.参数方程21,11x ty t t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)所表示的曲线是( )A .B .C .D .【答案】D 【解析】 【分析】消参化简整理得221x y +=,即得方程对应的曲线. 【详解】将1t x =代入y =,化简整理得221x y +=,同时x 不为零,且x ,y 的符号一致, 故选:D. 【点睛】本题主要考查参数方程与普通方程的互化,考查圆的方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.在极坐标系中,设圆8:sin C ρθ=与直线 ():4l R πθρ=∈交于A B ,两点,则以线段AB 为直径的圆的极坐标方程为( )A .4πρθ⎛⎫=+ ⎪⎝⎭B .4πρθ⎛⎫=- ⎪⎝⎭C .4πρθ⎛⎫=+ ⎪⎝⎭D .4πρθ⎛⎫=-⎪⎝⎭【答案】A 【解析】 【分析】首先把极坐标方程化为直角坐标方程,进一步求出圆心坐标和半径,再把直角坐标方程化为极坐标方程,即可得到答案. 【详解】由题意,圆8:sin C ρθ=化为直角坐标方程,可得22(4)16x y +-=,直线():4l R πθρ=∈化为直角坐标方程,可得y x =,由直线与圆交于,A B 两点,把直线y x =代入圆22(4)16x y +-=,解得00x y =⎧⎨=⎩或44x y =⎧⎨=⎩,所以以线段AB 为直径的圆的圆心坐标为(2,2),半径为, 则圆的方程为22(2)(2)8x y -+-=,即22440x y x y +--=, 又由cos sin x y ρθρθ=⎧⎨=⎩,代入可得24cos 4sin 0ρρθρθ--=,即4cos 4sin 4θπρθθ⎛⎫=+= ⎝+⎪⎭,故选A . 【点睛】本题主要考查了极坐标方程与直角坐标方程的互化,以及圆的标准方程的求解,其中解答中把极坐标方程互为直角坐标方程,得到以线段AB 为直径的圆的标准方程是解答的关键,着重考查了推理与运算能力,属于基础题.3.设曲线C 的参数方程为35cos ()15sin x y θθθ⎧=+⎪⎨=-+⎪⎩为参数,直线l 的方程310x y -+=,则曲线C 上到直线l 的距离为52的点的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:()()223125x y -++=,圆心()3,1-到直线310x y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.4.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。

高考数学压轴专题人教版备战高考《坐标系与参数方程》全集汇编及答案解析

高考数学压轴专题人教版备战高考《坐标系与参数方程》全集汇编及答案解析

高考数学《坐标系与参数方程》课后练习一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+14sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.在平面直角坐标系xOy 中,曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的方程为4x y +=,则曲线C 上的点到直线l 的距离的最小值是( ) ABC .1D .2【答案】B 【解析】 【分析】设曲线C上任意一点的坐标为),sinθθ,利用点到直线的距离公式结合辅助角公式可得出曲线C上的点到直线l的距离的最小值.【详解】设曲线C上任意一点的坐标为),sinθθ,所以,曲线C上的一点到直线l的距离为d==42sinπθ⎛⎫-+⎪=当()232k k Zππθπ+=+∈时,d取最小值,且mind== B.【点睛】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题.3.在极坐标系中,曲线1C的极坐标方程为2sinρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C与2C交于A、B两点,则AB等于()A.1BC.2D.【答案】B【解析】【分析】由题意可知曲线1C与2C交于原点和另外一点,设点A为原点,点B的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出ABρ=,即可得出AB的值.【详解】易知,曲线1C与2C均过原点,设点A为原点,点B的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C与2C的坐标方程2sinρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,ABρ==故选:B.【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) AB.CD.【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d=,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2)求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.5.已知曲线T的参数方程1x ky ⎧=⎪⎪⎨⎪=⎪⎩(k 为参数),则其普通方程是()A .221x y +=B .()2210x y x +=≠ C.00x y x ⎧>⎪=⎨<⎪⎩D.y =0x ≠)【答案】C 【解析】 【分析】 由已知1x k =得1k x=代入另一个式子即可消去参数k ,要注意分类讨论。

高考数学压轴专题人教版备战高考《坐标系与参数方程》分类汇编附答案解析

高考数学压轴专题人教版备战高考《坐标系与参数方程》分类汇编附答案解析

新高中数学《坐标系与参数方程》专题解析一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+14sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A.BC.D.2【答案】B 【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=, ∴BC ==,故选B . 【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.3.在符合互化条件的直角坐标系和极坐标系中,直线l :20y kx ++=与曲线C :2cos ρθ=相交,则k 的取值范围是( )A .34k <-B .34k ≥-C .k R ∈D .k R ∈但0k ≠【答案】A 【解析】分析:一般先将原极坐标方程2cos ρθ=两边同乘以ρ后,把极坐标系中的方程化成直角坐标方程,再利用直角坐标方程进行求解即可.详解:将原极坐标方程2cos ρθ=,化为:22cos ρρθ=,化成直角坐标方程为:2220x y x +-=, 即22(1)1x y -+=.则圆心到直线的距离d =由题意得:1d <,即1d =<,解之得:34k <-. 故选A .点睛:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得.4.在极坐标系中,已知圆C 经过点6P π⎛⎫⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ=B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】在sin 4πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0). 因为圆C 经过点6P π⎛⎫⎪⎝⎭,,所以圆C 的半径2r ==,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.5.将正弦曲线sin y x =先保持纵坐标y 不变,将横坐标缩为原来的12;再将纵坐标y 变为原来的3倍,就可以得到曲线3sin 2y x =,上述伸缩变换的变换公式是( )A .1'2'3x x y y⎧=⎪⎨⎪=⎩B .'2'3x xy y =⎧⎨=⎩C .'21'3x x y y =⎧⎪⎨=⎪⎩D .1'21'3x x y y ⎧=⎪⎪⎨⎪=⎪⎩【答案】A 【解析】 【分析】首先设出伸缩变换关系式,把伸缩变换关系式代入变换后的方程,利用系数对应相等,可得答案。

坐标系与参数方程强化训练专题练习(五)含答案人教版高中数学新高考指导

坐标系与参数方程强化训练专题练习(五)含答案人教版高中数学新高考指导

高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为
( ) A .=0()cos=2R θρρ∈和 B .=()cos=22R π
θρρ∈和
C .=()cos=12R π
θρρ∈和 D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.直线2,34x lt y t =-+⎧⎨=+⎩(t 为参数,l 为常数)恒过定点 ▲ .。

高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点训练及答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点训练及答案

高中数学《坐标系与参数方程》复习知识点一、131.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( ) A .1 B .1- C .21- D .21--【答案】C 【解析】 【分析】设圆上一点()2,3P cos sin αα+-,则1x y sin cos αα+=+-,利用正弦型函数求最值,即可得出结论 【详解】设22(2)(3)1x y -++=上一点()2,3P cos sin αα+-,则2312sin 1214x y cos sin sin cos πααααα⎛⎫+=++-=+-=+-≤- ⎪⎝⎭,故选:C 【点睛】本题考查圆的参数方程的应用,考查正弦型函数的最值2.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。

【详解】 由题意知将代入,得,解得,因为,所以.故选:D 。

本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。

消参时要注意参数本身的范围,从而得出相关变量的取值范围。

3.已知点是曲线:(为参数,)上一点,点,则的取值范围是 A . B .C .D .【答案】D 【解析】 【分析】将曲线的参数方程化为普通方程,可知曲线是圆的上半圆,再利用数形结合思想求出的最大值和最小值。

【详解】 曲线表示半圆:,所以.取,结合图象可得.故选:D 。

【点睛】本题考查参数方程与普通方程之间的转化,同时也考查了点与圆的位置关系,在处理点与圆的位置关系的问题时,充分利用数形结合的思想,能简化计算,考查计算能力与分析问题的能力,属于中等题。

4.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为312x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( ) A 87B 47C 813D 413【解析】分析:首先将取消C 的方程化为直角坐标方程,然后结合直线参数方程的几何意义整理计算即可求得最终结果.详解:曲线C 的参数方程2x cos y sin θθ=⎧⎨=⎩(θ为参数)化为直角坐标方程即:2214y x +=,与直线l的参数方程12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)联立可得:21613t =,则12t t ==,结合弦长公式可知:12AB t t =-=. 本题选择C 选项.点睛:本题主要考查参数方程的应用,弦长公式等知识,意在考查学生的转化能力和计算求解能力.5.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() AB.CD.±【答案】D 【解析】 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。

高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点训练附答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点训练附答案

高中数学《坐标系与参数方程》复习知识点(1)一、131.在极坐标系中,曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为43cos ρθ=,若曲线1C 与2C 的关系为( )A .外离B .相交C .相切D .内含【答案】B 【解析】 【分析】将两曲线方程化为普通方程,可得知两曲线均为圆,计算出两圆圆心距d ,并将圆心距d 与两圆半径差的绝对值和两半径之和进行大小比较,可得出两曲线的位置关系. 【详解】在曲线1C 的极坐标方程两边同时乘以ρ,得24sin ρρθ=,化为普通方程得224x y y +=,即()2224x y +-=,则曲线1C 是以点()10,2C 为圆心,以12r =为半径的圆,同理可知,曲线2C 的普通方程为()222312x y -+=,则曲线2C 是以点()223,0C 为圆心,以223r =为半径的圆, 两圆圆心距为()()22023204d =-+-=,12223232r r -=-=-,12223r r +=+,1212r r d r r ∴-<<+,因此,曲线1C 与2C 相交,故选:B.【点睛】本题考查两圆位置关系的判断,考查曲线极坐标方程与普通方程的互化,对于这类问题,通常将圆的方程化为标准方程,利用两圆圆心距与半径和差的大小关系来得出两圆的位置关系,考查分析问题和解决问题的能力,属于中等题.2.如图所示,ABCD 是边长为1的正方形,曲线AEFGH ……叫作“正方形的渐开线”,其中¶AE ,¶EF ,·FG,¶GH ,……的圆心依次按,,,B C D A 循环,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π【答案】C 【解析】 【分析】分别计算»AE ,»EF,»FG ,¼GH 的大小,再求和得到答案. 【详解】根据题意可知,»AE 的长度2π,»EF 的长度为π,»FG的长度为32π,¼GH 的长度为2π,所以曲线AEFGH 的长是5π. 【点睛】本题考察了圆弧的计算,意在考察学生的迁移能力和计算能力.3.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.4.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D 【解析】 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系. 【详解】圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+= 直线的极坐标方程为34903490cos sin x y ραρα--=⇐--=圆心到直线的距离为:925d r=<=相交圆心坐标代入直线不满足,所以直线不过圆心.故答案选D【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.5.参数方程(为参数)所表示的图象是A.B.C.D.【答案】D【解析】【分析】由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。

高考数学压轴专题人教版备战高考《坐标系与参数方程》难题汇编含答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》难题汇编含答案

新数学《坐标系与参数方程》专题解析一、131.记椭圆221441x ny n +=+围成的区域(含边界)为n Ω(12n =L ,,),当点()x y ,分别在1Ω,2Ω,…上时,x y +的最大值分别是1M ,2M ,…,则lim n n M →+∞=( ) A .0 B .14C .2 D.【答案】D 【解析】分析:先由椭圆221441x nyn +=+得到这个椭圆的参数方程为:2x cos y θθ=⎧⎪⎨=⎪⎩(θ为参数),再由三角函数知识求x+y 的最大值,从而求出极限的值.详解:把椭圆221441x ny n +=+得,椭圆的参数方程为:2x cos y θθ=⎧⎪⎨=⎪⎩(θ为参数), ∴x+y=2cos θ, ∴(x+y )max∴nlim →∞M n=n故选D .点睛:本题考查数列的极限,椭圆的参数方程和最大值的求法,解题时要认真审题,注意三角函数知识的灵活运用.2.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫-⎪⎝⎭ 2+y 2=14.它表示以1,02骣琪琪桫为圆心,以12为半径的圆.由x=-1-t得t=-1-x,代入y=2+t中,得y=1-x表示直线.3.参数方程(为参数)所表示的图象是A.B.C.D.【答案】D【解析】【分析】由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。

【详解】由题意知将代入,得,解得,因为,所以.故选:D。

【点睛】本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。

消参时要注意参数本身的范围,从而得出相关变量的取值范围。

4.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A.B.C.D.【答案】C【解析】【分析】由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。

高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点训练附答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点训练附答案

数学《坐标系与参数方程》高考复习知识点一、131.直线122x ty t=+⎧⎨=+⎩(t 是参数)被圆229x y +=截得的弦长等于( )A .125B .910C .925D .125【答案】D 【解析】 【分析】先消参数得直线普通方程,再根据垂径定理得弦长. 【详解】直线122x t y t=+⎧⎨=+⎩(t 是参数),消去参数化为普通方程:230x y -+=.圆心()0,0O 到直线的距离5d =,∴直线被圆229x y +=截得的弦长222312522955r d ⎛⎫=-=-= ⎪⎝⎭.故选D . 【点睛】本题考查参数方程化普通方程以及垂径定理,考查基本分析求解能力,属基础题.2.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。

【详解】 由伸缩变换得,代入,有,即.所以变换后的曲线方程为.故选:C 。

【点睛】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。

3.在极坐标系中,已知圆C 经过点236P π⎛⎫⎪⎝⎭,,圆心为直线sin 24πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ= B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点236P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】 在sin 24πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0). 因为圆C 经过点236P π⎛⎫⎪⎝⎭,,所以圆C 的半径()222322223cos26r π=+-⨯⨯=,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.4.已知曲线C 的极坐标方程为:22cos 2sin 0ρρθρθ--=,直线l 的极坐标方程为:4πθ=(ρ∈R ),曲线C 与直线l 相交于A B 、两点,则AB 为( )A 2B .2C 3D .23【答案】B 【解析】【分析】把圆和直线的极坐标方程都转化成直角坐标方程,可得弦AB 过圆心,则2AB r =。

高考数学压轴专题人教版备战高考《坐标系与参数方程》难题汇编附答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》难题汇编附答案

【最新】高中数学《坐标系与参数方程》专题解析一、131.如图,扇形的半径为1,圆心角150BAC ∠=︒,点P 在弧BC 上运动,AP mAB nAC =+u u u v u u u v u u u v,则3m n -的最大值是()A .1B .3C .2D .23【答案】C 【解析】 【分析】以A 为原点可建立坐标系,设()cos ,sin P θθ,0150θ≤≤o o;根据AP mAB nAC=+u u u v u u u v u u u v 可求得cos 3sin 2sin m n θθθ⎧=+⎪⎨=⎪⎩,从而得到()32sin 60m n θ-=+o,利用三角函数值域求解方法可求得结果. 【详解】以AB 为x 轴,以A 为原点,建立坐标系,如下图所示:设()cos ,sin P θθ,0150θ≤≤o o ,则()0,0A ,()10B ,,31,22C ⎛⎫- ⎪ ⎪⎝⎭()cos ,sin AP θθ∴=u u u v ,()1,0AB =u u u v ,3122AC ⎛⎫=- ⎪ ⎪⎝⎭u u u vAP mAB nAC =+u u u v u u u v u u u v Q 3cos 21sin 2m n nθθ⎧=-⎪⎪∴⎨⎪=⎪⎩,解得:cos 32sin m n θθθ⎧=⎪⎨=⎪⎩ ()33sin 2sin 60m n θθθ∴-=+=+o0150θ≤≤o o Q 6060210θ∴≤+≤o o o ()1sin 6012θ∴-≤+≤o12n ∴-≤-≤n -的最大值为2本题正确选项:C 【点睛】本题考查利用圆的参数方程求解最值的问题,关键是能够建立坐标系,利用圆的参数方程将问题转化为三角函数最值的求解问题.2.在极坐标系中,设圆8:sin C ρθ=与直线 ():4l R πθρ=∈交于A B ,两点,则以线段AB 为直径的圆的极坐标方程为( )A .4πρθ⎛⎫=+ ⎪⎝⎭B .4πρθ⎛⎫=- ⎪⎝⎭C .4πρθ⎛⎫=+ ⎪⎝⎭D .4πρθ⎛⎫=-⎪⎝⎭【答案】A 【解析】 【分析】首先把极坐标方程化为直角坐标方程,进一步求出圆心坐标和半径,再把直角坐标方程化为极坐标方程,即可得到答案. 【详解】由题意,圆8:sin C ρθ=化为直角坐标方程,可得22(4)16x y +-=,直线():4l R πθρ=∈化为直角坐标方程,可得y x =,由直线与圆交于,A B 两点,把直线y x =代入圆22(4)16x y +-=,解得00x y =⎧⎨=⎩或44x y =⎧⎨=⎩,所以以线段AB 为直径的圆的圆心坐标为(2,2),半径为, 则圆的方程为22(2)(2)8x y -+-=,即22440x y x y +--=, 又由cos sin x y ρθρθ=⎧⎨=⎩,代入可得24cos 4sin 0ρρθρθ--=,即4cos 4sin 4θπρθθ⎛⎫=+= ⎝+⎪⎭,故选A . 【点睛】本题主要考查了极坐标方程与直角坐标方程的互化,以及圆的标准方程的求解,其中解答中把极坐标方程互为直角坐标方程,得到以线段AB 为直径的圆的标准方程是解答的关键,着重考查了推理与运算能力,属于基础题.3.在满足极坐标和直角坐标互的化条件下,极坐标方程222123cos 4sin ρθθ=+经过直角坐标系下的伸缩变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( ).A .直线B .椭圆C .双曲线D .圆【答案】D 【解析】 【分析】先把极坐标方程化为直角坐标方程,再经过直角坐标系下的伸缩变换,把直角坐标方程中的x ,y 分别换成得2x '',由此能求出结果. 【详解】 ∵极坐标方程222123+4cos sin ρθθ=∴22223cos 4sin 12ρθρθ+=∴直角坐标方程为223412x y +=,即22143x y +=∴经过直角坐标系下的伸缩变换12x x y y⎧=⎪⎪⎨=''⎪⎪⎩后得到的曲线方程为2(2)14x '=,即22()()1x y ''+=. ∴得到的曲线是圆 故选D. 【点睛】本题考查曲线形状的判断,是基础题,解题时要认真审题,注意极坐标方程、直角坐标方程和直角坐标系下的伸缩变换公式的合理运用.4.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.5.已知点是曲线:(为参数,)上一点,点,则的取值范围是 A . B .C .D .【答案】D 【解析】 【分析】将曲线的参数方程化为普通方程,可知曲线是圆的上半圆,再利用数形结合思想求出的最大值和最小值。

高考数学压轴专题人教版备战高考《坐标系与参数方程》全集汇编含答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》全集汇编含答案

【最新】高考数学《坐标系与参数方程》练习题一、131.已知曲线Γ的参数方程为(3cos ln x t t t y t ⎧=-⎪⎨=⎪⎩其中参数t R ∈,,则曲线Γ( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点对称D .没有对称轴【答案】C 【解析】 【分析】设()x f t =,()y g t = t R ∈,首先判断这两个函数都是奇函数,然后再判断函数关于原点对称. 【详解】设()x f t =,()y g t = t R ∈()()()()()333cos cos cos f t t t t t t t t t t x -=----=-+=--=-,()x f t ∴=是奇函数, ()()((ln ln g t g t t t -+=-+++((ln ln ln10t t =-+== ,()y g t ∴=也是奇函数,设点()()(),P f t g t 在函数图象上,那么关于原点的对称点是()()(),Q f t g t --,()f t Q 和()g t 都是奇函数,所以点Q 的坐标是()()(),Q f t g t --,可知点Q 在曲线上,∴ 函数图象关于原点对称.故选:C 【点睛】本题考查函数图象和性质的综合应用,意在考查转化与计算能力,属于中档题型.2.设曲线C 的参数方程为5cos ()15sin x y θθθ⎧=⎪⎨=-+⎪⎩为参数,直线l 10y -+=,则曲线C 上到直线l 的距离为52的点的个数为( ) A .1 B .2C .3D .4【答案】C【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:()()223125x y -++=,圆心()3,1-到直线310x y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.3.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离的最大值为( )A .1B .3C .2D .4【答案】C 【解析】 【分析】根据点到直线的距离求最值. 【详解】曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离为:2224cos sin 13cos 2θθθ+=+…,当且仅当cos 1θ=±时取得等号 故选C. 【点睛】本题考查椭圆参数方程的应用.4.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。

坐标系与参数方程强化训练专题练习(一)附答案人教版高中数学高考真题汇编

坐标系与参数方程强化训练专题练习(一)附答案人教版高中数学高考真题汇编
即: ,即 ,………………4分
即: ,………………7分
所以圆心到直线的距离 ,即直线经过圆心,………………9分
所以直线截得的弦长为 .………………10分
7.(C)解:由题设知,圆心 ………………………………………………2分
∠CPO=60°,故过P点的切线飞倾斜角为30°……………………………………4分
设 ,是过P点的圆C的切线上的任一点,则在△PMO中,
∠MOP=
由正弦定理得 ……………7分
,即为所求切线的极坐标方程。……10分
8.
9.消去参数 ,得直线 的普通方程为 …………………………………2分
即 ,
两边同乘以 得 ,
…………………………………6分
(2)圆心 到直线 的距离 ,
所以直线 和⊙ 相交.…………………………………10分
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第1.若θ∈[0, ],则椭圆x2+2y2-2 xcosθ+4ysinθ=0的中心的轨迹是()(汇编上海理,7)
8.在极坐标系中,已知圆C: 和直线 相交于A、B两点,求线段AB的长。
9.已知直线 的参数方程: ( 为参数)和圆 的极坐标方程: .
(1)将直线 的参数方程化为普通方程,圆 的极坐标方程化为直角坐标方程;
(2)判断直线 和圆 的位置关系.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.C
解析:D
解析:把已知方程化为标准方程,得 +(y+sinθ)2=1.

高考数学压轴专题人教版备战高考《坐标系与参数方程》技巧及练习题附答案解析

高考数学压轴专题人教版备战高考《坐标系与参数方程》技巧及练习题附答案解析

【最新】单元《坐标系与参数方程》专题解析一、131.曲线1cos {2sin x y θθ=-+=+,(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上【答案】B 【解析】试题分析:参数方程所表示的曲线为圆心在,半径为1的圆,其对称中心为,逐个代入选项可知,点满足,故选B.考点:圆的参数方程,圆的对称性,点与直线的位置关系,容易题.2.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.3.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() A 3B .3C 3D .3±【答案】D 【解析】 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。

【详解】Q 曲线C :2cos sin x y θθ=+⎧⎨=⎩,消去θ,得∴曲线C : 22(2)1x y -+=又知圆C 与直线相切。

可得,1=解得3k =±,给故答案选D 。

【点睛】本题主要考查了参数方程与普通方程的转化以及圆与直线的关系的几何关系表达。

4.已知曲线C 的极坐标方程为:2cos 4sin ρθθ=-,P 为曲线C 上的动点,O 为极点,则PO 的最大值为( ) A .2 B .4CD.【答案】D 【解析】 【分析】把极坐标方程变成直角坐标方程,通过最大距离d r =+求得答案。

高考数学压轴专题人教版备战高考《坐标系与参数方程》分类汇编附答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》分类汇编附答案

新数学《坐标系与参数方程》复习知识点(1)一、131.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( ) A .1 B .1- C .21- D .21--【答案】C 【解析】 【分析】设圆上一点()2,3P cos sin αα+-,则1x y sin cos αα+=+-,利用正弦型函数求最值,即可得出结论 【详解】设22(2)(3)1x y -++=上一点()2,3P cos sin αα+-,则2312sin 1214x y cos sin sin cos πααααα⎛⎫+=++-=+-=+-≤- ⎪⎝⎭,故选:C 【点睛】本题考查圆的参数方程的应用,考查正弦型函数的最值2.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫-⎪⎝⎭ 2+y 2=14. 它表示以1,02骣琪琪桫为圆心,以12为半径的圆. 由x =-1-t 得t =-1-x ,代入y =2+t 中,得y =1-x 表示直线.3.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】 【分析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。

【详解】 依题意得:、,,所以,故选:A 。

【点睛】本题考查利用极坐标求三角形的面积,理解极坐标中极径、极角的含义,体会数与形之间的关系,并充分利用正弦、余弦定理以及三角形面积公式求解弦长、角度问题以及面积问题,能起到简化计算的作用。

4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )A 14B .14C 2D .22【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d 20422--=,直线l 被圆C 截得的弦长为222(2)22-= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2) 求直线和圆相交的弦长,一般解直角三角形,利用公式22||2AB r d =-.5.若实数x ,y 满足()()22512196x y ++-=,则22x y +的最大值为( )A .1B .14C .729D .27【答案】C 【解析】 【分析】设14cos 5x t =-,14sin 12y t =+,利用辅助角公式可得22x y +()364sin 365t α=-+,由三角函数的有界性可得结果.【详解】由222(5)(12)19614x y ++-==,2251211414x y +-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 令5cos 14x t +=, 12sin 14y t -=, 则14cos 5x t =-,14sin 12y t =+,因此22xy +22(14cos 5)(14sin 12)t t =-++140cos 336sin 365t t =-++1252813sin cos 3651313t t ⎛⎫=⨯⨯⨯-⨯+ ⎪⎝⎭()364sin 365t α=-+(其中5sin 13α=,12cos 13α=) 又1sin()1t α-≤-≤Q221729x y ∴≤+≤因此最大值为729,故选C. 【点睛】本题主要考查圆的参数方程的应用,考查了辅助角公式以及三角函数的有界性,属于综合题.6.如图,边长为4的正方形ABCD 中,半径为1的动圆Q 的圆心Q 在边CD 和DA 上移动(包含端点A 、C 、D ),P 是圆Q 上及其内部的动点,设BP mBC nBA =+u u u v u u u v u u u v(,m n ∈R ),则m n +的取值范围是( )A .[221]B .[422,42]-+C .22[1]22-+ D .22[144-+ 【答案】D【解析】 【分析】建立如图所示平面直角坐标系,可得,BA BC u u u r u u u r的坐标,进而可得BP u u u r的坐标.分类讨论,当动圆Q 的圆心在CD 上运动或在AD 上运动时,利用圆的参数方程相关知识,设出点P 坐标,再利用三角函数求m n +的最值. 【详解】解:建立如图所示平面直角坐标系,可得,(0,4),(4,0)BA BC ==u u u r u u u r ,可得(4,0)(0,4)(4,4)BP m n m n =+=u u u r,当点Q 在CD 上运动时,设(4,),[0,4]Q t t ∈,则点P 在圆Q :22(4)()1x y t -+-=上及内部,故可设(4cos ,sin ),(,01)P r t r R r θθθ++∈≤≤,则(4cos ,sin )BP r t r θθ=++u u u r,44cos 4sin m r n t r θθ=+⎧∴⎨=+⎩, 444(sin cos )42sin 4m n t r t r πθθθ⎛⎫∴+=+++=+++ ⎪⎝⎭,04,01,t r R θ≤≤≤≤∈Q ,当50,1,4t r πθ===时,m n +取最小值为424-,即214-; 当4,1,4t r πθ===时,m n +取最大值为824+,即224+m n ∴+的取值范围是221244⎡-+⎢⎣⎦; 当点Q 在AD 上运动时,设(,4),[0,4]Q s s ∈,则点P 在圆Q :22()(4)1x s y -+-=上及其内部,故可设(cos ,4sin ),(,01)P s r r R r θθθ++∈≤≤,则(cos ,4sin )BP s r r θθ=++u u u r,4cos 44sin m s r n r θθ=+⎧∴⎨=+⎩,444(sin cos )4sin 4m n s r s πθθθ⎛⎫∴+=+++=+++ ⎪⎝⎭,04,01,s r R θ≤≤≤≤∈Q ,当50,1,4s r πθ===时,m n +取最小值为44-,即14-;当4,1,4s r πθ===时,m n +,即24+,m n ∴+的取值范围是1244⎡-+⎢⎣⎦; 故选:D . 【点睛】本题考查了向量的坐标运算、点与圆的位置关系,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.7.将点的直角坐标(-化为极径ρ是正值,极角在0到2π之间的极坐标是( )A .24,3π⎛⎫ ⎪⎝⎭B .54,6π⎛⎫ ⎪⎝⎭C .6π⎛⎫⎪⎝⎭D .3π⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】由P 点的直角坐标(-,可得tan yxρθ==,再利用P 点在第二象限且极角在0到2π之间即可求. 【详解】解:∵点P 的直角坐标(-,∴4ρ===,tan y x θ=== 又点P 在第二象限,极角θ在0到2π之间,∴23πθ=. ∴满足条件的点P 的极坐标为24,3π⎛⎫⎪⎝⎭.故选:A . 【点睛】考查直角坐标和极坐标的互化. 极坐标概念:点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠xOM 叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记为(,)M ρθ.8.参数方程21,11x ty t t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)所表示的曲线是( )A .B .C .D .【答案】D【解析】 【分析】消参化简整理得221x y +=,即得方程对应的曲线. 【详解】 将1t x =代入y =,化简整理得221x y +=,同时x 不为零,且x ,y 的符号一致, 故选:D. 【点睛】本题主要考查参数方程与普通方程的互化,考查圆的方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.10.若点P的直角坐标为(1,,则它的极坐标可以是( ) A .52,3π⎛⎫ ⎪⎝⎭B .42,3π⎛⎫ ⎪⎝⎭C .72,6π⎛⎫ ⎪⎝⎭D .112,6π⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】设点P 的极坐标为()(),02ρθθπ≤<,计算出ρ和tan θ的值,结合点P 所在的象限求出θ的值,可得出点P 的极坐标. 【详解】设点P 的极坐标为()(),02ρθθπ≤<,则2ρ==,tan θ==.由于点P 位于第四象限,所以,53πθ=,因此,点P 的极坐标可以是52,3π⎛⎫⎪⎝⎭,故选:A. 【点睛】本题考查点的直角坐标化极坐标,要熟悉点的直角坐标与极坐标互化公式,同时还要结合点所在的象限得出极角的值,考查运算求解能力,属于中等题.11.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =1【答案】C 【解析】 【分析】先化简极坐标方程,再代入极坐标化直角坐标的公式得解. 【详解】由题得22(cos 1)0,0cos 1,0 1.x y x ρρθρρθ-=∴==∴+==或或 故答案为C. 【点睛】(1)本题主要考查极坐标和直角坐标互化,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 求点的极坐标一般用公式222=tan x y y x ρθ⎧+⎪⎨=⎪⎩,求极角时要先定位后定量.把极坐标化成直角坐标,一般利用公式cos sin x y ρθρθ=⎧⎨=⎩求解.(3)本题容易漏掉220x y +=.12.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+142con θθ⎛⎫=+⎪⎪⎝⎭4sin 6πθ⎛⎫=+ ⎪⎝⎭.因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭, 所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.13.已知圆的极坐标方程为4sin 4P πθ⎛⎫=- ⎪⎝⎭,则其圆心坐标为( ) A .2,4π⎛⎫⎪⎝⎭B .32,4π⎛⎫ ⎪⎝⎭ C .2,4π⎛⎫-⎪⎝⎭D .()2,0【答案】B 【解析】 【分析】把圆的极坐标方程化为直角坐标方程,求得圆心坐标(,再根据极坐标与直角坐标的互化公式,即可求解. 【详解】由题意知,圆的极坐标方程为4sin 4πρθ⎛⎫=-⎪⎝⎭,即ρθθ=-,即2sin cos ρθθ=-,所以220x y ++-=,所以圆心坐标为(, 又由cos sin x y ρθρθ=⎧⎨=⎩,可得圆心的极坐标为3(2,)4π,故选B. 【点睛】本题主要考查了极坐标与直角坐标的互化,及圆的方程应用,其中解答中熟记极坐标与直角坐标的互化公式,把极坐标化为直角坐标方程是解答的关键,着重考查了运算与求解能力,属于基础题.14.在平面直角坐标系中,O 为原点,()1,0A -,(0B ,()30C ,,动点D 满足1CD =u u u r, 则OA OB OD ++u u u r u u u r u u u r的取值范围是( )A .[]46,B.⎤⎦ C.⎡⎣D.⎤⎦【答案】D 【解析】试题分析:因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos {sin D D x y θθ=+=(θ为参数且[)0,2θπ∈),所以设D 的坐标为为()[)()3cos ,sin 0,2θθθπ+∈,则OA OB OD ++=u u u r u u u r uu u r=因为2cos θθ+的取值范围为⎡⎡=⎢⎣⎣1==1==,所以OA OB OD ++u u u r u u u r uu u r的取值范围为1⎤=⎦,故选D.考点:参数方程 圆 三角函数15.方程sin cos k ρθθ=++ 的曲线不经过极点,则k 的取值范围是( ) A .0k ≠B .k R ∈C.k >D .k …【答案】C 【解析】 【分析】由题意可知,极点不在方程表示的sin cos k ρθθ=++曲线上,可知sin cos k θθ+=-无解,利用辅助角公式得出4sin cos πθθθ⎛⎫+=+ ⎪⎝⎭,结合正弦函数的性质,即可得出k 的取值范围. 【详解】当0ρ=时,sin cos k θθ+=-,则此方程无解由4sin cos πθθθ⎛⎫+=+≤ ⎪⎝⎭k >时,方程无解.故选:C【点睛】本题主要考查了点与直线的位置关系,涉及了正弦函数的性质,属于中档题.16.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是A .(1,)2πB .(1,)2π-C .(1,0)D .(1,π)【答案】B【解析】【分析】【详解】由题圆2sin ρθ=-,则可化为直角坐标系下的方程, 22sin ρρθ=-,222x y y +=-,2220x y y =++,圆心坐标为(0,-1), 则极坐标为1,2π⎛⎫- ⎪⎝⎭,故选B. 考点:直角坐标与极坐标的互化.17.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C 的极坐标方程为2cos ρθ=。

高考数学压轴专题人教版备战高考《坐标系与参数方程》专项训练及解析答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》专项训练及解析答案

新高考数学《坐标系与参数方程》专题解析一、131.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合 D .关于直线()2R πθρ=∈对称【答案】A 【解析】 【分析】由点(),ρπθ--和点(,)ρθ-为同一点. 则比较点(,)ρθ-和点(),ρθ,可推出点(),ρθ与(),ρπθ--的位置关系.【详解】解:点(),ρπθ--与点(),ρθ-是同一个点,(),ρθ-与点(),ρθ关于极轴对称.∴点(),ρθ与(),ρπθ--关于极轴所在直线对称.故选:A. 【点睛】考查极坐标的位置关系.题目较为简单,要掌握极坐标的概念.2.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( )A .4B C .2D 【答案】A 【解析】 【分析】先求出椭圆的普通方程,再求其离心率得解. 【详解】椭圆3cos 4sin x y θθ=⎧⎨=⎩的标准方程为221916x y +=,所以.所以e =4. 故答案为A 【点睛】(1) 本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力. (2)在椭圆中,222,.c c a b e a=-=3.221x y +=经过伸缩变换23x xy y''=⎧⎨=⎩后所得图形的焦距( ) A .25 B .213C .4D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=, ∴椭圆的焦距为29425-=,故选A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.4.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。

高考数学压轴专题新备战高考《坐标系与参数方程》专项训练解析附答案

高考数学压轴专题新备战高考《坐标系与参数方程》专项训练解析附答案

【最新】数学高考《坐标系与参数方程》专题解析一、131.直线34100x y ++=和圆25cos 15sin x y θθ=+⎧⎨=+⎩的位置关系是( )A .相切B .相离C .相交但不过圆心D .相交且过圆心【答案】C 【解析】 【分析】 将圆的参数方程25cos ()15sin x y θθθ=+⎧⎨=+⎩为参数化成圆的普通方程,则可得其圆心,和半径r ,再用点到直线的距离公式求出圆心到直线34100x y ++=的距离d ,再将距离d 与圆的半径r 比大小即可解. 【详解】解:由25cos 15sin x y θθ=+⎧⎨=+⎩,得圆的普通方程为()()222125x y -+-=,∴圆的圆心为()2,1,半径=5r .圆心到直线的距离4d ==.∵0d r <<,∴直线与圆相交但不过圆心. 故选:C . 【点睛】考查圆的参数方程化普通方程,考查直线和圆的位置关系,运用了点到直线的距离公式. 点到直线距离公式:点()00,P x y 到直线:0l Ax By C ++=的距离为:d =.2.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D 【解析】 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系.圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+=直线的极坐标方程为34903490cos sin x y ραρα--=⇐--= 圆心到直线的距离为:925d r =<=相交 圆心坐标代入直线不满足,所以直线不过圆心. 故答案选D 【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.3.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】 【分析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.直线323y x =+与圆心为D 的圆33cos ,([0,2))13sin
x y θθπθ⎧=+⎪∈⎨=+⎪⎩交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )
(A ) 76π (B ) 54π (C ) 43π (D ) 5
3
π(汇编重庆理)
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.在极坐标系中,曲线23sin ρθ=和cos 1ρθ=相交于点,A B ,则线段AB 的中点E 到极点的距离是 .
3.已知点(m ,n)在椭圆8x 2+3y 2=24上,则2m +4的取值范围是____________. 评卷人
得分 三、解答题
4.在极坐标系中,已知圆sin a ρθ=(0a >)与直线()cos 1ρθπ+=4
相切,求实数a 的值.
5.若圆()2221x y r -+=与椭圆2cos sin x αα
=⎧⎨⎩(α为参数)有公共点,求圆的半径
r 的取值范围
6.已知圆的参数方程为32cos 2sin x y θθ⎧=+⎪⎨
=⎪⎩(θ为参数),在直角坐标系中,P 是圆C 与y 轴正半轴的交点 (1)求圆的标准方程
(2)若以圆心C 为极点,x 轴的正半轴为极轴建立极坐标系,求过点P 的圆C 的切线的极坐标方程
7.椭圆中心在原点,离心率为
12
,点(,)P x y 是椭圆上的点,若23x y -的最大值为10,求椭圆的标准方程.
8.已知极坐标系的极点O 与直角坐标系的原点重合,极轴与x 轴的正半轴重
合,曲线C 1:cos()224ρθπ+=与曲线C 2:24,4x t y t ⎧=⎨=⎩(t ∈R )交于A 、B 两点.求证:OA ⊥OB .
9.在极坐标系中,O 为极点,已知两点,M N 的极坐标分别为2
(4,)3
π,1(2,)4
π,求OMN 的面积。

【参考答案】***试卷处理标记,请不要删除
评卷人
得分 一、选择题
1.C 数形结合 301-=∠α βπ-+=∠
302由圆的性质可知21∠=∠ βπα-+=-∴ 3030故=+βα43
π 第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.
3. 评卷人
得分 三、解答题
4.选修4—4:坐标系与参数方程
本小题主要考查直线与圆的极坐标方程等基础知识,考查运算求解能力.满分10分.
解:将圆sin a ρθ=化成普通方程为22x y ay +=,整理,得()22224
a
a x y +-=. 将直线()c o s 1ρθπ
+=4化成普通方程为
20x y --=. ……………………………………6分 由
题意,得2222a a --=.解
得422
a =+.…………………………………………… 10分 5.
6.
7.解:离心率为12
,设椭圆标准方程是2222143x y c c +=,高考资源网w 。

w-w*k&s%5¥u
它的参数方程为⎧⎨⎩2cos 3sin x y θθ
==(θ是参数) ………5分 23x y +4cos 3sin 5sin()c c c θθθϕ=+=+最大值是5c , 依题意510c =,2c =,椭圆的标准方程是22
11612
x y += ………10分 8.曲线1C 的直角坐标方程4x y -=,曲线2C 的直角坐标方程是抛物线24y x =,…4分
设11(,)A x y ,22(,)B x y ,将这两个方程联立,消去x , 得212416016y y y y --=⇒=-,421=+y y .……………………………………6分 016)(42)4)(4(212121212121=+++=+++=+∴y y y y y y y y y y x x .…………8分 ∴0OA OB ⋅=,∴OB OA ⊥.………………………………………………………10分
9.。

相关文档
最新文档