2019年初中人教版数学八年级上册15.1分式优质课教案版本2.
数学人教版八年级上册15.1.1从分数到分式教案
然而,我也发现了一些不足之处。在实践活动过程中,部分学生对于如何将实际问题转化为分式模型感到困惑。这说明我在教学中需要更多关注学生的问题解决能力,培养他们从实际问题中提炼数学模型的能力。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《从分数到分式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过分母为零的情况?”(如:在平均分配物品时,若物品总数为零,该如何表示每个人得到的数量?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式的奥秘。
本节课将结合实际例题,让学生在实际操作中掌握分式的概念和性质,为后续学习分式的运算打下基础。
二、核心素养目标
1.培养学生的逻辑推理能力:通过从分数到分式的过渡,引导学生理解分式概念的内涵和外延,培养学生的抽象逻辑思维,提高其逻辑推理能力。
2.增强学生的数学运算能力:让学生掌握分式的性质,并运用这些性质简化分式,解决实际问题,提高学生的数学运算能力。
数学人教版八年级上册15.1.1从分数到分式教案
一、教学内容
本节课选自数学人教版八年级上册第15章《分式》中的第1节“从分数到分式”。教学内容主要包括以下两部分:
1.分式的概念:通过回顾分数的定义,引导学生理解分式的概念,即分母不为零的表达式称为分式。列举一些具体实例,让学生观察并总结分式的特点。
2.分式的性质:探讨分式的分子、分母与分式值之间的关系,引入分式的基本性质,如分子分母同乘(除)一个非零数,分式的值不变。结合实际例题,让学生运用这些性质简化分式,并解决相关问题。同时,强调分母不为零的重要性。
新人教版初中数学八年级上册《第十五章分式:15.1.1从分数到分式》优质课获奖教案_0
从分数到分式教学设计一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂讲解回顾与思考:1.下列两个整数相除如何表示成分数的形式:3÷4= , 10 ÷ 3= ,2、在代数式中,整式的除法也可以类似地表示。
试用用类似分数的形式表示下列整式的除法:(1) 90÷x 可以用式来表示。
(2)60÷(x-6)可以用式子来表示新课引入:引例11.长方形的面积为10cm²,长为7cm,宽应为____cm;长方形的面积为S,长为a,宽应为______.引例22.把体积为200cm ³的水倒入底面积为33cm ²的圆柱形容器中,水面高度为____cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为______.想一想有什么相同点?不同点?相同点都是(即A÷B )的形式不同点分数的分子A 与分母B 都是整数分式的分子A 与分母B 都是整式, 并且分母 B 中含有字母、a S 、S V 与a133200引入新知:一般地,如果A, B 表示两个整式,并且B 中含有字母,那么式子就叫做分式.判断:下面的式子哪些是分式?类比 分数 来 学习 分式 1、分数,有意义吗?2、分式成立有条件吗?有什么条件?3、计算a =-1, a =2时,分式值分别是多少? 讨论我们知道:除数不能为0,那么分式中的分母应满足什么条件呢?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式才能有意义,否则无意义. 讲解例1:(1)当x 时,分式 有意义;(2)当x 时,分式 有意义;(3)当b 时,分式 有意义; sb -275-x 7232S 5122+x SV 1222-+-x y xy x x 321-x xb351-(4)当x ,y 满足关系 时,分式 有意义.类比 分数 来 学习 分式补充例题:当 x 取什么值时,下列分式的值为零 :解:由分子|x|-2=0,得 x =±2。
人教版数学八年级上册教学设计15.1《分式》
人教版数学八年级上册教学设计15.1《分式》一. 教材分析人教版数学八年级上册第15.1节《分式》是初中数学的重要内容,主要让学生了解分式的概念、性质和分式的运算。
本节内容为后续的分式方程和不等式的学习打下基础。
教材通过丰富的实例引入分式,让学生在具体的情境中感受分式的意义,进而总结出分式的概念。
本节课的内容包括分式的定义、分式的基本性质、分式的运算以及分式的化简。
二. 学情分析八年级的学生已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维能力和抽象思维能力。
但是,对于分式的理解还需要通过具体的实例来帮助学生建立直观的认识。
学生在学习过程中可能对分式的运算规则和分式的化简部分存在一定的困难,因此需要教师在教学过程中进行详细的讲解和引导。
三. 教学目标1.知识与技能:让学生掌握分式的概念、性质和分式的运算方法,能够正确进行分式的化简。
2.过程与方法:通过实例引入分式,让学生在具体的情境中感受分式的意义,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生能够自主探究、合作交流。
四. 教学重难点1.重点:分式的概念、性质和分式的运算。
2.难点:分式的化简以及分式运算的灵活运用。
五. 教学方法1.情境教学法:通过具体的实例引入分式,让学生在实际情境中感受分式的意义。
2.启发式教学法:引导学生主动探究分式的性质和运算规律,培养学生的抽象思维能力。
3.小组合作学习:学生进行小组讨论,培养学生的团队合作精神,提高学生的交流能力。
六. 教学准备1.准备相关的实例和图片,用于引入分式和解释分式的概念。
2.准备分式的运算练习题,用于巩固学生的运算能力。
3.准备分式的化简示例,用于引导学生掌握分式的化简方法。
七. 教学过程1.导入(5分钟)利用实例引入分式,如“一块土地的长是宽的2倍,若长方形土地的面积为36平方米,求这块土地的宽是多少米?”让学生在具体的情境中感受分式的意义。
新人教版 数学 八年级上册 第十五章 分式 15.1.1从分数到分式1教案2
15.1.1 从分数到分式课标依据1、借助现实情境了解分式,进一步理解用字母表示数的意义。
2、能分析简单问题中的数量关系,并用代数式(分式)表示。
一、教材分析“从分数到分式”是人教版九年制义务教育课本中八年级上第十五章的第一节内容,是中学知识体系的重要组成部分。
分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。
学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。
学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。
从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素.这部分内容是本课的教学难点.二、学情分析我校是农村初中,学习基础有较大的差异,大部分学生数学基础比较薄弱,对数学学习感觉很困难,导致学习兴趣低下。
为了激发学生的学习数学的兴趣,平时我在课堂上鼓励学生积极发言、小组讨论、合作探究等多种形式调动学生学习的积极性。
三、教学目标知识与技能1.理解分式的概念,会辨别分式与整式.2.会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.过程与方法能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.情感态度与价值观通过生活中的实例让学生体验发现身边的数学,激发学生对数学的学习兴趣,进一步引导探究,培养学生严谨创新的思维能力.四、教学重点难点教学重点准确理解分式的概念;教学难点会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.五、教法学法本节课运用启发类比的教学方法,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。
人教版八年级数学上册第十五章《分式》教案
第十五章分式15.1 分式15.1.1 从分数到分式1.理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.2.在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.3.进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为.思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与10060 2020v v+-,有什么共同点?谈谈你的看法.【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB 叫做分式.问题2(1)使分式11x-有意义,则x的取值有什么要求?(2)使分式A/B有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B有意义时,必有B≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.例2填空:(1)当x时,分式23x有意义?(2)当b时,分式153b-有意义?(3)当x ,y 满足关系 时,分式x y x y +-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b -有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y+-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n-+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.15.1.2分式的基本性质1.掌握分式的基本性质,能依据分式的性质进行约分和通分运算.2.通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.3.进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)试一试【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试4.约分:【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除1.掌握分式的乘除法运算法则,能进行分式的乘除法运算.2.在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.3.在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.第2课时分式的乘除混合运算与分式的乘方1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.2.理解分式乘方的意义,能进行有关分式乘方的运算.3.通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.4.进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.【教学重点】分式乘除、乘方混合运算能力.【教学难点】分式乘方法则的理解和运用.一、情境导入,初步认识问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?试一试参见教材P138例4.想一想小明同学在计算xy÷yx·xy时,其过程如下:原式=xy÷1=xy,你认为他的计算正确吗?说说你的理由,与同伴交流.【教学说明】教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P138“思考”.【归纳结论】参见教材P138最后一段.【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.试一试计算:【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.三、典例精析,掌握新知例计算:(1)参见教材P139例5第(2)小题;(2)参见教材P139练习第2题第(2)小题.【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.四、运用新知,深化理解1.参见教材P139“练习”第1题.2.计算:(1)参见教材P139“练习”第2题第(1)小题;(2)参见教材P146第3题第(4)小题.【教学说明】学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.五、师生互动,课堂小结本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.15.2.2 分式的加减第1课时 分式的加减1.理解并掌握分式的加减法法则,能用它进行简单的分式加减.2.经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.3.进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.第2课时分式的混合运算1.进一步掌握分式的加减法运算方法,能用它解决实际问题.2.能进行分式的乘除、加减、乘方混合运算.3.在具体问题情境的探索思考过程中,进一步增强学生的数学应用意识,锻炼分析问题、解决问题的能力.4.进一步培养学生严密的科学态度和良好的学习习惯.【教学重点】掌握分式乘除、加减、乘方混合运算.【教学难点】运用分式乘除、加减、乘方等解决实际问题.一、情境导入,初步认识问题1异分母分式的加减法的一般步骤有哪些?在运算过程中有哪些需要注意的问题?问题2在进行分式的乘除、加减,乘方混合运算时,你认为应该怎样做?谈谈你的想法.【教学说明】问题1的设置在于巩固上节课学过知识,并能用它解决本节问题,起承上启下作用;问题2则是让学生联想到分式乘除、分式加减法则是类比分数而得到的,因而可类比得到分式混合运算法则.在教学时,可让学生自主探究,相互交流,在探讨中形成认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】上述两个例题都应先让学生独立完成试试,然后教师再予以评讲,例1的(1)题侧重于展示分式的混合运算方法;先算乘方,再算乘除,最后算加减;而第(2)题进一步强调混合运算中的运算顺序:“先算乘方,再算乘除,最后算加减.有括号应先做括号内的运算,再算括号外的运算”.三、典例精析,掌握新知【教学说明】教学时,可让学生自主探索,获得结论,教师再行讲解.例1中计算(x2+xy+y2)(x-y)时,若已掌握公式(a2+ab+b2)(a-b)=a3-b3,可直接写出结果x3-y3,如果不知道此公式,可利用多项式乘多项式的法则计算.例2中含有一个开放性问题,这里教师应该强调:选择一个值代入时,一定要使原代数式有意义,即不能选x为0,1这两个值.四、运用新知,深化理解2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,需比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的多少倍?【教学说明】学生独立探究,教师巡视时,对有困难同学给予指导,最后予以评讲,让学生在自查中反思,积累解题经验和方法.五、师生互动,课堂小结1.通过这节课的学习,你有哪些收获?2.你还有哪些疑问?与同伴交流.【教学说明】让学生对照上述两个问题自我反思,既系统回顾本节所学知识,又查找问题所在,在与同伴交流中加深认识.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间让学生去演算并暴露问题,再指出问题所在,为后面的教学提供较好的对比分析材料.此外,教师还应引导学生发现并总结多。
人教版数学八年级上册15.1 分式(2课时)教案与反思
15.1 分式祸兮福之所倚,福兮祸之所伏。
《老子·五十八章》涵亚学校陈冠宇15.1.1 从分数到分式(第1课时)一、基本目标【知识与技能】1.理解分式的定义,能够根据定义判断一个式子是否是分式.2.能够确定一个分式有意义、无意义的条件.3.能用分式表示现实情境中的数量关系.【过程与方法】经历类比、探究的过程,理解分式的概念和分式有意义的条件,在此基础上,利用分式有意义的条件求分式中未知数的值.【情感态度与价值观】类比分数的概念理解分式的概念,养成类比思考的习惯,探究分式有意义的条件,形成缜密的思维方式.二、重难点目标【教学重点】分式的概念及分式有意义、无意义的条件.【教学难点】利用分式有意义的条件求未知数的值.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P127~P128的内容,完成下面练习.【3 min 反馈】一、分式的概念1.式子S a 、V S 以及引言中的9030+v ,6030-v,有什么特点? (1)它们与分数的相同点:形式相同都有分子和分母;(2)不同点:分式中分母含有字母,而分数的分母不含字母.2.一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,其中A 叫做分子,B 叫做分母. 3.下列各式中,是分式的有①②④⑦.①2bs ;②3000300a ;③27;④V S ;⑤S 32;⑥2x 2+15;⑦45bc ;⑧-5.二、分式A B的相关知识 1.当B =0时,分式A B无意义. 2.当B ≠0时,分式A B有意义. 3.当A =0且B ≠0时,分式A B的值为零. 4.当x 取何值时,下列分式有意义?(1)3x +2;(2)x +53-2x. 解:(1)x ≠-2. ()x ≠32. 环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】当x 取何值时,下列分式有意义?当x 取何值时,下列分式无意义?当x 取何值时,下列分式值为零?(1)x +1x -1; (2)x -2x 2-1; (3)x 2-1x 2-x. 【互动探索】(引发学生思考)根据分式有、无意义所满足的条件进行判断.分式的值为0,则分母不为0,且分子等于0.【解答】(1)有意义:x -1≠0,即x ≠1.无意义:x -1=,即x =1.值为0:x +1=0且x -1≠0,∴x =-1.(2)有意义:x 2-1≠0,即x ≠±1.无意义:x 2-1=0即x =±1.值为0:x -2=0且x 2-1≠0,∴x =2.(3)有意义:x 2-x ≠0,即x ≠0且x ≠1;无意义x 2-x =0,即x =0或x =1;值为0:x 2-1=0且x 2-x ≠0,即x =-1.【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为零一定是在有意义条件下成立的.活动2 巩固练习(学生独学)1.下列各式中,是分式的是( C )A .3x 2+x -1B .x -23 C.2x -3x -1 D .14(2x -1) 2.分式xx 2+1意义,则x 的取值范围( D)A .x ≠1B .x ≠-1C .x ≠1或x ≠-1D .全体实数3.若分式xx 2-16的值为0,则x 的值为0.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!15.1.2 分式基本性质(第2课时)一、基本目标【知识与技能】1.理解和掌握分式的基本性质.2.能运用分式的基本性质约分、通分.【过程与方法】经历观察、对比、猜想的过程,归纳出分式的基本性质,在理解分式基本性质的基础上对分式进行约分和通分,从中了解最简分式和最简公分母.【情感态度与价值观】通过对比归纳分式的基本性质的过程,养成对比的习惯,通过对分式进行约分和通分,加深对分式基本性质的理解.二、重难点目标【教学重点】分式的基本性质,最简分式.【教学难点】运用分式的基本性质对分式进行约分和通分.环节1 自学提纲,生成问题【5 min阅读】阅读教材P129~P132的内容,完成下面练习.【3 min反馈】1.分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为AB =A·CB·C,AB=A÷CB÷C(C≠0),其中A、B、C是整式.2.分式的约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.3.最简分式:分子与分母没有公因式的分式,叫做最简分式. 3.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 4.最简公分母:通分时,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】填空:(1)x y =x 2y; (2)x 2-y 2xy 2+y 3=x -y; (3)x -1y = xy 2. 【互动探索】(引发学生思考)根据分式的基本性质,当分式的分子(分母)乘或除以一个不等于0的整式时,分母(分子)该怎么变化?【分析】(1)因为x y的分子x 乘xy 才能化为x 2y ,为保证分式的值不变,根据分式的基本性质,分母也需乘xy ,即x y =x ·xy y ·xy=x 2y xy 2.(2)因为x 2-y 2xy +y 3的分子x 2-y 2除以x +y 才能化为x -y ,为保证分式的值不变,根据分式的基本性质,分母也需除以x +y ,即x 2-y 2xy 2+y 3=x 2-y 2÷x +y xy 2+y 3÷x +y =x -y y 2. (3)因为x -1y的分母y 乘xy 才能化为xy 2,为保证分式的值不变,根据分式的基本性质,分子也需乘xy ,即x -1y=x -1·xy y ·xy =x 2y -xy xy 2. 【答案】(1)xy 2 (2)y 2 (3)x 2y -xy【互动总结】(学生总结,老师点评)利用分式的基本性质对分式变形时,注意分子、分母乘(除以)同一个不等于0的整式.【例2】约分:(1)2bc ac ; (2)x +y y xy 2; (3)x 2+xy x +y 2. 【互动探索】(引发学生思考)分式的约分步骤→找出分子分母的公因式→化简为最简分式.【解答】(1)2bc ac =2bc ÷c ac ÷c =2b a. (2)x +y y xy 2=x +y y ÷y xy 2÷y =x +y xy. (3)x 2+xy x +y 2=x x +y x +y 2=x x +y. 【互动总结】(学生总结,老师点评)如果分子或分母是多项式,先分解因式再约分,约分的结果是最简分式或整式.【例3】通分: (1)x ac 与y bc ; (2)2x x 2-9与x 2x +6. 【互动探索】(引发学生思考)分式的通分步骤→确定各分式的公分母→化为分母相同的分式.【解答】(1)最简公分母是abc .x ac =x ·b ac ·b =bx abc. y bc =y ·a bc ·a =ay abc. (2)最简公分母是2(x +3)(x -3).2x x 2-9=2x ·22x +3x -3=4x 2x 2-18. x2x +6=x x -32x +3x -3=x 2-3x 2x 2-18. 【互动总结】(学生总结,老师点评)确定公分母时,一般取各分母的所有因式的最高次幂的积作公分母.活动2 巩固练习(学生独学)1.分式3a a 2-b 2的分母经过通分后变成2(a -b )2·(a +b ),那么分子应变为( C )A .6a (a -b )2(a +b )B .2(a -b )C .6a (a -b )D .6a (a +b ) 2.约分:(1)2-a a 2-4; (2)9-a 2-a 2-3a ; (3)m 2-7m 49-m 2. 解:(1)-1a +2. (2)a -3a. (3)-mm +7.3.通分:(1)12x 与1y; (2)a 2a +6与a -1a 2-9; (3)a -1a 2+2a -3与1-a 2-4a +2a 2. 解:(1)12x =y 2xy ,1y =2x 2xy. (2)a 2a +6=a a -32a +3a -3=a 2-3a 2a 2-18,a -1a 2-9=2a -12a +3a -3=2a -22a 2-18. (3)a -1a 2+2a -3=2a -12a +3a -1=2a -22a 2+4a -6,1-a 2-4a +2a 2=1-a 2a -12=-12a -1=-a +32a +3a -1=-a +32a 2+4a -6. 环节3 课堂小结,当堂达标(学生总结,老师点评) 请完成本课时对应练习!【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
新人教版初中数学八年级上册《第十五章分式:15.1分式》公开课获奖教案_0
分式教案:15.1.1 分 式一、学习目标:(1)让学生了解分式的概念,能用分式表示实际问题中的数量关系;(2)能确定分式有意义的条件.二、学习重点:分式的概念三、学习难点:(1)分式有意义的条件;(2)分式的值为零的条件.四、教学思路:本课时由实际问题引入,通过类比分数的概念得到分式的概念,并进一步研究分式有意义的条件.五、教学设计:(一)引出新知【思考】(1)长方形的面积为102cm ,长为7cm,则宽为 Cm; 长方形的面积为s ,长为a,则宽为 .(2)把体积为2003cm 的水倒入底面积为332cm 的圆柱形容器中,则水面高度为 ;把体积为V 的水倒入底面积为S 的圆柱形容器中,则水面高度为 ; (二)探索新知1.分式的概念(1)概念:一般地,如果A ,B 表示两个整式,并且B .中含有字母.....,那么式子A B叫做分式. (2)三个要素(条件):①形如A B的式子; ②A ,B 为整式;③分母B 中含有字母.这三个条件缺一不可.破疑点 区分整式与分式 整式和分式的区别在于分式的分母中含有字母.因此,在判断一个式子是否是分式时,只看未化简的式子的分母中是否含有字母,即分母中含有字母的为分式.【例1】 在下列式子中,哪些是分式?哪些是整式?x 3,4x ,y -2y ,y x -y ,ab 2,3π,-x -y x +y. 解:分式有:4x ,y -2y ,y x -y ,-x -y x +y; 整式有:x 3,ab 2,3π. 2.分式有意义的条件(1)分式有意义的条件:分母不等于零(因为0不能作除数,所以分式有意义的条件是分母不等于零).(2)分式无意义的条件:分母等于零.(3)分式的值为零的条件:分子等于零,分母不等于零.二者缺一不可.分式的值为零,千万不要忽视分母不为零这个条件.谈重点 分式有意义的理解 (1)分式与分数不同,因为分数的分母是一个具体的数,是否为零,一目了然,而要明确分式是否有意义,需要分析、讨论分母中所含有的字母的取值范围,以免分母为零的情况发生.(2)必须在分式有意义的前提下,才能计算分式的值是多少;也必须在分式有意义的前提下,才能讨论分式的值等于零的条件.【例2】下列分式中的字母满足什么条件时分式有意义?x 32)1(; 1)2(-x x ; b351)3(-; y x y x -+)4(. 解:;,即有意义,则分母要使分式0033x2)1(≠≠x x ;,即有意义,则分母要使分式1011)2(≠≠--x x x x ;,即有意义,则分母要使分式35035351)3(≠≠--b b b .0)4(y x y x yx y x ≠≠--+,即有意义,则分母要使分式 (三)运用新知下列分式中,当x 取何值时,分式有意义?当x 取何值时,分式的值为零?(1)x -1x 2+1;(2)3x +12x -3;(3)|x |-2x +2;(4)2x 2+5. 解:(1)对于一切实数x ,x 2≥0恒成立,所以x 2+1>0.所以无论x 为何实数,分式x -1x 2+1都有意义.由⎩⎪⎨⎪⎧x -1=0,x 2+1≠0,得x =1,所以当x =1时,分式x -1x 2+1的值为零. (2)由分母2x -3≠0,得x ≠32,所以当x ≠32时,分式3x +12x -3有意义.由⎩⎪⎨⎪⎧3x +1=0,2x -3≠0,得x =-13,所以当x =-13时,分式3x +12x -3的值为零. (3)由分母x +2≠0,得x ≠-2,所以当x ≠-2时,分式|x |-2x +2有意义. 由⎩⎪⎨⎪⎧|x |-2=0,x +2≠0,得x =2,所以当x =2时,分式|x |-2x +2的值为零. (4)因为对于一切实数x ,x 2≥0,所以x 2+5>0恒成立,所以无论x 为何实数,分式2x 2+5都有意义.因为分子2≠0,所以分式的值不可能为零,即使该分式的值为零的x 的值不存在.(五)布置作业:.3,2,1129P1、用类比分数学习分式;2、分式中分母必含有字母;3、分式的分母不能为零;4、当①分子为零,②分母不为零时,分式值为零。
人教版八年级数学上册教学设计15.1 分式
人教版八年级数学上册教学设计15.1 分式一. 教材分析人教版八年级数学上册第15.1节“分式”是学生在掌握了实数、代数式等基础知识后,进一步学习数学的重要内容。
分式是数学中基本的代数表达式,它在生活中、物理、化学等学科中都有广泛的应用。
本节内容主要介绍分式的概念、性质和运算,为学生今后学习函数、方程等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的代数基础,能够进行简单的代数运算。
但是,对于分式的概念和性质,学生可能还比较陌生,需要通过具体的例子和练习来逐步理解和掌握。
同时,学生可能对分式的运算规则感到困惑,需要通过大量的练习来熟练运用。
三. 教学目标1.理解分式的概念,掌握分式的性质。
2.学会分式的基本运算,能够熟练进行分式的化简和求值。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.分式的概念和性质。
2.分式的运算规则。
五. 教学方法采用讲授法、例题演示法、练习法、小组合作法等教学方法。
通过生动的例子和丰富的练习,让学生理解和掌握分式的概念和性质,熟练运用分式的运算规则。
六. 教学准备1.教学PPT。
2.例题和练习题。
3.学生分组合作的学习材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如“某班级有男生和女生共60人,其中男生是女生的2倍,求男生和女生各有多少人?”让学生思考和讨论,引出分式的定义。
2. 呈现(15分钟)讲解分式的概念,通过PPT 展示分式的基本性质,如分式的分子、分母、分式的值等。
同时,给出一些分式的例子,让学生理解和掌握分式的概念和性质。
3.操练(15分钟)让学生进行分式的化简和求值的练习,如“化简分式2x 3x+5”,“求分式x−1x+2的值,当x =3时”。
通过这些练习,让学生熟练运用分式的性质和运算规则。
4. 巩固(10分钟)让学生分组合作,解决一些实际问题,如“某商品的原价是120元,打八折后的价格是多少?”让学生运用分式进行计算和解决实际问题,提高学生的应用能力。
人教版八年级数学上册15.1从分数到分式优秀教学案例
本节课的案例亮点体现了以学生为中心的教学理念,注重培养学生的自主学习能力、团队协作能力和解决问题的能力。同时,教师关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。这种教学方法不仅有助于提高学生的学习成绩,还能培养学生的综合素质,符合教育现代化的要求。
二、教学目标
(一)知识与技能
1.让学生理解分式的概念,掌握分式的基本性质和运算方法。
2.培养学生运用分式解决实际问题的能力,提高学生的数学应用意识。
3.引导学生了解分式在生活中的应用,拓宽学生的知识视野,提高学生的学习兴趣。
4.通过对分式的学习,培养学生逻辑思维能力、创新能力和团队协作能力。
(二)过程与方法
1.采用案例教学法,让学生在具体的情境中感受和理解分式的概念和运算方法。
2.运用探究式学习法,引导学生主动发现分式的规律,提高学生的自主学习能力。
3.利用小组讨论法,培养学生的团队协作精神,提高学生的沟通能力。
4.设计具有挑战性的数学问题,激发学生的思考,培养学生解决问题的能力。
(三)情感态度与价值观
3.采用多元化评价方式,既要关注学生的知识与技能掌握情况,也要关注学生在过程中表现出的态度、情感和价值观。
4.教师要关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入分式的概念,如计时、购物等,让学生感受分式在生活中的应用。
2.展示分式的数学问题,引发学生的思考,激发学生的学习兴趣。
3.回顾已学的分数知识,为学生学习分式打下基础。
人教版初中数学课标版八年级上册 第十五章 15.1 分式 教案
5x 7,
a b ,1 1 ,
3
a
3x2 1,
2, 4 , 3 .
7 5b c
x2 xy y2 , 2x 1
设置小试牛刀这一 环节,意在及时巩固刚 刚学会的新知识,进行 概念的辨析,能区分整 式与分式.
2.请你说出一个式子,让你的同桌判断是整式还是分式?
提炼方法 探究二
提炼方法
归纳小结:1、判断时,注意含有 的式子, 是常数.
学思想
学习效果.
教师引导 课堂小结
1、分式的概念; 2、分式有意义的条件; 3、分式值为零的条件; 4、数学思想方法:类比思想、从特殊到一般、从一般到特殊、转化 思想.
小结本节课所学知 识,引导学生建构自己 的学习框架,升华认识.
第5页/共8页
布置作业
1、书本 P133 习题 15.1 1,2,3 2、《优化设计》课时作业
第1页/共8页
的变式将本节课的三个知识点串起来,让学生对这节课的知识框架有一个清晰的认识,注重配合充足的练习题巩固新 知,鼓励学生参与合作交流,培养学生良好的观察能力、归纳总结能力以及沟通表达能力. 五、教学重点及难点
重点:了解分式的概念,能识别整式、分式; 难点:会判断分式中的字母满足什么条件时分式有意义.
同时,让学生对所 列式子分类,有助于学 生理解分式与分数、分 式与整式的区别和联系.
子中含有分母;
生 2: 5 , S 为一类,式子分母中不含有字母, S , x2 4 为一类,
33
a x2
式子分母中含有字母.
5S 33
x2 4 S x2 a
形成概念
师:像第一个圈中的式子,我们称他们为整式,分母中都不含有字
通过给分式中的字 母赋值,让学生体会分 式比分数更具有一般 性,从分式到分数,体 现了从一般到特殊的应 用过程.同时让学生发现 分母为 0 的情况,通过 与分数类比,得出分式 有意义的条件,渗透类 比的数学思想.
人教版数学八年级上册15.1《从分数到分式》名师教案
15.1 分式15.1.1 从分数到分式〔蔡林〕一、教学目标〔一〕学习目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,建立数学模型,并理解分式的概念.2.探究并理解分式有意义的条件和分式的值为零的条件.3.能熟练准确地求出分式有意义的条件,分式的值为零的条件.〔二〕学习重点理解分式有意义的条件,分式的值为零的条件.〔三〕学习难点能熟练地求出分式有意义的条件,分式的值为零的条件.二、教学设计〔一〕课前设计1. 预习任务〔1〕一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式,分式AB中,A叫做分子,B叫做分母.〔2〕分式AB有意义的条件是:B≠0;分式AB的值为零的条件是:A=0且B≠0.2. 预习自测〔1〕面积为4平方米的长方形的一边长为a米,那么另一边长为()A.4a米B.4a米 C.4a米 D.8a米【知识点】列分式代数式.【解题过程】由长方形的面积公式可以得到:4a 米.【思路点拨】长方形的面积=底×高. 【答案】B.〔2〕以下式子中,是分式的是()A .3a B .3a C .13a + D .13a+【知识点】分式的定义. 【解题过程】因为3a中,分母中含有字母a ,所以它为分式. 【思路点拨】抓住分式的定义,分母中含有字母. 【答案】B. 〔3〕要使分式12x -有意义,那么x 的取值应满足( ) A .x≠2 B .x≠-1 C .x =2 D .x =-1 【知识点】分式有意义的条件.20x -≠,即2x ≠.【思路点拨】分式有意义的条件为分母不等于零. 【答案】A . 〔4〕假设分式34x x -+的值为0,那么x 的值是( ) A .x =3 B .x =0 C .x =-3 D .x =-4 【知识点】分式的值为零的条件.30x -=,3x =.【思路点拨】分式的值为零的条件:分子为零,分母不为零. 【答案】A . (二)课堂设计什么是单项式?什么是多项式?什么是整式?探究一 分式的定义●活动① 回忆旧知,回忆整式的概念 问题:判断以下各式中,哪些是整式?①83m n +;②21x +;③223a b +;④241x x ++;⑤2412x x +;⑥221a b+; 学生答复:①②③.【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动② 整合旧知,探究分式的概念. 填一填:cm²,长为7cm .宽应为______cm ;长方形的面积为S ,长为a ,宽应为______;cm³的水倒入底面积为33cm²的圆柱形容器中,水面高度为_____cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为______;3.一艘轮船在静水中的最大航速为30千米/时,假设江水的流速为v 千米/时,它沿江以最大航速顺流航行90千米所用时间为 小时,与以最大航速逆流航行60千米所用的时间为 小时. 【答案】710,a s ,33200,s v ,v +3090,v-3060问题1:所填式子中,哪些是整式?问题2:比拟不是整式的这一类式子,它们有什么共同点?它们与分数有什么一样点和不同点?【设计意图】让学生从自我知识体系中完善代数式的知识,进一步理解字母表示数的意义.题目的精心设计为学生提供从事数学活动的时机. ●活动③ 集思广益,归纳概念师问:这类不同于整式,而形式和分数一样的式子,我们定义为分式.请同学们根据我们讨论的分式的特点,试着概括分式的概念及一般表达式.学生活动:学生试着概括总结,小组内互相补充,完善对分式概念的认识.分式的概念:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式. 【设计意图】在活动中激发学生的学习潜能,引导学生积极自主探索,在探索、交流中获取新知,掌握方法,提升能力,从而归纳分式的概念. ●活动④ 运用新知,辨析概念例1:指出以下代数式中,哪些是分式?1421.37πx xy a x y --; ;; ;【知识点】分式的概念【解题过程】因为14a x y -;从形式上满足A B ,并且分母中含有字母,所以14a x y-;是分式.【思路点拨】一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.注意π是常数,不是字母.【答案】14 a x y-;练习:从“-1、4、5、a、b、c〞中任选几个数字或字母,编一个分式. 【知识点】分式的概念【解题过程】5a;4a b+等〔答案不唯一〕【思路点拨】一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.【答案】4a b+等〔答案不唯一〕【设计意图】强化对概念的理解,设置开放性问题,可培养学生的问题意识. 探究二分式有意义的条件和分式的值为零的条件●活动①探究分式有意义的条件和分式的值为零的条件填表:问题1问题2:分式在什么条件下有意义?问题3:分式在什么条件下值为0?归纳:分式AB有意义:B≠0,分式AB的值为0:0,0.BA≠⎧⎨=⎩【设计意图】通过对字母赋予值,求出式子的值,将“代数式〞的有理式复原为学生熟悉的数,通过类比分数何时有意义,将陌生的问题向熟悉的问题转化,得出分式有意义的条件和分式值为0的条件.●活动②分式有意义的条件,分式的值为零的条件例2 以下分式中的字母满足什么条件时分式有意义? 〔1〕23x ;(2)1x x -;(3)153b-;(4)x y x y +-.【知识点】分式有意义的条件 【解题过程】(1) 要使分式23x 有意义,那么分母3x ≠0,即x ≠0; (2) 要使分式1xx -有意义,那么分母x -1≠0,即x ≠1;(3) 要使分式153b-有意义,那么分母5-3b ≠0,即b ≠53;(4) 要使分式x yx y+-有意义,那么分母x -y ≠0,即x ≠y . 【思路点拨】要使得分式有意义,即分母不等于零 【答案】(1)x ≠0;(2)x ≠1;(3)b ≠53;(4)x ≠y . 练习:假设分式219x -有意义,那么x ________. 【知识点】分式有意义的条件 【解题过程】要使分式219x -有意义,那么分母290x -≠,即3x ≠±. 【思路点拨】要使得分式有意义,即分母不等于零 【答案】3x ≠±例3 假设分式2122x x -+的值为0,那么x 的值是 .【知识点】分式的值为零的条件 【数学思想】建模思想、分类讨论思想【解题过程】要使分式2122x x -+=0,那么210220x x ⎧-=⎨+≠⎩,即x =1【思路点拨】要使得分式 A B 的值为零的条件0,0.B A ≠⎧⎨=⎩【答案】x =1 练习:假设33x x -+的值为0,那么x= . 【知识点】分式的值为零的条件【数学思想】建模思想、分类讨论思想 【解题过程】要使分式33x x -+=0,那么3030x x ⎧-=⎪⎨+≠⎪⎩,即x =3 【思路点拨】要使得分式 A B 的值为零的条件0,0.B A ≠⎧⎨=⎩【答案】x =3【设计意图】强化对分式有意义的条件,分式的值为零的条件的理解. 探究三 能熟练准确求出分式有无意义的条件,分式的值为零的条件 例4 无论a 取何值时,以下分式总有意义的是( ) A.21a a + B .211a a -+ C .211a - D .11a + 【知识点】分式有意义的条件 【解题过程】220,10a a ≥+>∴分母不可能等于0,选B【思路点拨】要使得分式有意义,即分母不等于零 【答案】B 练习:分式212x x m-+不管x 取何实数总有意义,那么m 的取值范围 . 【知识点】分式有意义的条件【解题过程】∵x 2-2x +m =x 2-2x +1-1+m =(x -1)2+m -1,(x -1)2≥0,∴当m -1>0时,(x -1)2+m -1的值不可能为零. ∴当m >1时,不管x 取何实数,212x x m-+总有意义 【思路点拨】要使得分式有意义,即分母不等于零 【答案】m >1例5 当x= 时,分式()()6231xx x -+-的值为零.【知识点】分式的值为零的条件 【数学思想】建模思想、分类讨论思想【解题过程】由题意,得()()620310x x x ⎧-=⎪⎨+-≠⎪⎩解得x =3,∴当x =3时,分式的值为0【思路点拨】要使得分式A B 的值为零的条件0,0.B A ≠⎧⎨=⎩【答案】x =3练习:x =-4时,分式x bx a-+无意义,x =2时分式的值为零,那么a -b= . 【知识点】分式有意义的条件,分式的值为零的条件 【解题过程】由x =-4时,分式x b x a -+无意义,得-4+a =0,即ax =2时,分式x bx a-+的值为零,得2-b =0,即ba -b =4-2=2【思路点拨】要使得分式A B 的值为零的条件0,0.B A ≠⎧⎨=⎩【答案】2【设计意图】锻炼学生的思维,提升学习能力,能熟练的求分式有无意义的条件和分式的值.知识梳理〔1〕一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式. 〔2〕分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义. 〔3〕分式的值为零的条件:①分母不能为零;②分子为零. 重难点归纳分式A B 有意义:B ≠0,分式A B 的值为0:0,0.B A ≠⎧⎨=⎩〔三〕课后作业 根底型 自主突破1.以下式子是分式的是( )A .2x B .1x x + C .2x y + D .12x +【知识点】分式的概念【解题过程】因为1x x +分母含有字母,所以1x x +是分式 【思路点拨】一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.【答案】B 2.如果分式23xx +有意义,那么x 的取值范围是〔 〕 A . x ≠-3 B . x =-3 C . x ≠3 D . x =3 【知识点】分式有意义的条件 【解题过程】要使分式23xx +有意义,那么分母30x +≠,即3x ≠-. 【思路点拨】要使得分式有意义,即分母不等于零 【答案】A21x x -+的值为0,那么x 的值为( ) A .2或-1 B .0 C .2 D .-1 【知识点】分式的值为零的条件 【数学思想】建模思想【解题过程】要使分式21x x -+=0,那么2010x x -=⎧⎨+≠⎩,即x =2【思路点拨】要使得分式A B 的值为零的条件0,0.B A ≠⎧⎨=⎩【答案】C 4.当x =2时,分式22x kx -+的值为0,那么k =〔 〕 A .2 B .0 C .4 D .-1 【知识点】分式的值 【解题过程】当x=2时,22x k x -+=422k-+=0,那么k =4 【思路点拨】x 的值,代入分式即可求出k 的值 【答案】C31x ax +-中,当x =-a 时,以下说法正确的选项是( ) A .分式的值为0 B .分式无意义C .当a ≠-13时,分式的值为0D .当a ≠13时,分式的值为0 【知识点】分式的值 【解题过程】当x=-a 时,31x a x +-=31a a a -+--=0,又因为分母310a --≠,所以13a ≠-【思路点拨】x 的值,代入分式即可求出分式值 【答案】C6.当a =-3时,分式2aa -+的值为〔 〕 A .2 B .-3 C .4 D .-1 【知识点】分式的值 【解题过程】当a=-3时,2a a -+=()332---+=-3 【思路点拨】a 的值,代入分式即可求出分式值 【答案】B能力型 师生共研 7.假设分式()()122x x x +++的值为0,那么x = .【知识点】分式的值为零的条件 【数学思想】建模思想、分类讨论思想 【解题过程】要使分式()()122x x x +++=0,那么()()12020x x x ++=⎧⎪⎨+≠⎪⎩,即x =-1【思路点拨】要使得分式 A B 的值为零的条件0,0.B A ≠⎧⎨=⎩【答案】x =-1212x x+-的值为正数,那么x 的取值范围是. 【知识点】分式的值 【数学思想】建模思想【解题过程】要使分式212x x +-的值为正数,那么21020x x ⎧+>⎨->⎩,所以2x <【思路点拨】要使得分式 AB 的值为正,分子分母同号 【答案】2x <探究型 多维突破 x 取何值时,分式()()332x x x --+:(1)有意义?(2)无意义?(3)值为0?【知识点】分式有无意义的条件,分式的值为零的条件 【数学思想】建模思想、分类讨论思想 【解题过程】〔1〕要使分式()()332x x x --+有意义,那么()()320x x -+≠,即3x ≠且2x ≠-〔2〕要使分式()()332x x x --+无意义,那么()()320x x -+=,即3x =或2x =-〔3〕要使分式()()332x x x --+=0,那么()()30320x x x ⎧-=⎪⎨-+≠⎪⎩,即x =-3【思路点拨】要使得分式有意义,即分母不等于零,要使得分式 A B 的值为零的条件0,0.B A ≠⎧⎨=⎩ 【答案】〔1〕3x ≠且2x ≠-〔2〕3x =或2x =-〔3〕x =-310.分式2x mx n-+,当x =3时分式无意义;当x 22m n m n +-的值.【知识点】分式无意义的条件,分式的值为零的条件 【解题过程】当x =3时分式无意义,所以3+n =0,即n =-3;当x =-1时,分式的值为0,所以-2-m =0,即m 22m n m n+-=13 【思路点拨】要使得分式有意义,即分母不等于零,要使得分式 A B 的值为零的条件0,0.B A ≠⎧⎨=⎩ 【答案】13 自助餐24a a -无意义的条件是( ) A .a =2 B .a =-2 C .a =2且a =-2 D .a =2或a =-2【知识点】分式有意义的条件 【解题过程】要使得分式24a a -无意义,那么240a -=,即2a =± 【思路点拨】要使得分式无意义,即分母等于零【答案】Da =1,b =2,那么aba -b的值是( ) A.12 B .-12 C .2 D .-2【知识点】分式的值【解题过程】当a =1,b =2,那么aba -b =-2 【思路点拨】a ,b 的值,代入分式即可求出分式值【答案】D3.假设分式23x x-的值为负数,那么x 的取值范围是________. 【知识点】分式的值【解题过程】由题意得2300x x -<⎧⎨≠⎩,解得3x <且0x ≠ 【思路点拨】要使得分式的值为负,分子分母异号【答案】3x <且0x ≠4.观察以下一组数:14,39,516,725,936,…,它们是按一定规律排列的,这一组数的第n 个数是___________.(n 是正整数)【知识点】找规律列分式代数式【解题过程】分子1,3,5,7,9为奇数,所以分子2n -1,分母4,9,16,25,36为平方数,所以分母()21n +,所以第n 个数为()2211n n -+【思路点拨】在解决分数类型的数字规律问题时,一般从分子分母两个方面去寻找规律【答案】()2211n n -+123x x--的值为负数,求x 的取值范围. 【知识点】分式的值为零的条件【数学思想】建模思想、分类讨论思想【解题过程】由题意得10230x x ->⎧⎨-<⎩或10230x x -<⎧⎨->⎩,解得x >1或x<23 【思路点拨】要使得分式的值为负,分子分母异号【答案】x >1或x<236.学完分式的概念后,教师出了一道题:当m 取哪些整数时,分式41m -的值是整数? 小芳的解答如下:当m -1=1,2,4,即m =2,3,5时,分式41m -的值是整数. 小芳的解答对吗?如果不对,请改正.【知识点】分式的值【数学思想】建模思想、分类讨论思想 【解题过程】∵分式41m -的值为整数 ∴m -1是4的因数,又∵m 为整数,∴m =5,3,2,0,-1,-3.故小芳的解答错误【思路点拨】要使式子是整数,分子一定要被分母整除,因而m -1的值是±1,±2,±4,故可以求出m 的值.【答案】小芳的解答错误, 假设使分式41m -值是一个整数,那么m−1一定是4的约数,4的约数有±1,±2,±4共6个, 当m−1=±1时,m=0或m=2,当m−1=±2时,m=−1或m=3,当m−1=±4时,m=−3或m=5,即m=−3,−1,0,2,3,5时,分式41m -的值是整数.。
人教版数学八年级上册精品教案15.1 分式
a S 20+v 20-v B15.1 分式(第 1 课时)教学目标1.了解分式的概念,知道分式与整式的区别和联系.2.了解分式有意义的含义,会根据具体的分式求出分式有意义时字母所满足的条件.3.理解分式的值为 0、为正数、为负数时,分子分母应具备的条件.教学重点分式的意义.教学难点准确理解分式的意义,明确分母不为 0.一、创设情景,明确目标一艘轮船在静水中的最大航速是 20 km/h ,它沿江以最大船速顺流航行 100 km 所用时间,与以最大航速逆流航行 60 km 所用的时间相等.江水的流速是多少?提示:顺流速度=水速+静水中的速度;逆流速度=静水中的速度-水速.●自主学习 指向目标自学教材第 127 至 128 页.三、合作探究,达成目标探究点一 分式的概念S V 100 60活动一:阅读教材思考问题:式子 , 以及式子 和 有什么共同特点?它们与分数有什么相同点和不同点?A展示点评:如果 A ,B 表示两个 整式 ,并且 B 中含有字母 ,那么式子 叫做分式.小组讨论:如何判断一个式子是否为分式?分式与整式有什么区别?反思小结:判断一个式子是否为分式,可根据:①具有分数的形式;②分子、分母都是整式;③分母中含有字母.分式与整式的区别:分式的分母中含有字母,而整式的分母中不含字母.探究点二 分式有意义的条件3x x -1 1 (3)当 b ≠ 时,分式 有意义;5-3b x -y x + 2 x + 2x 分式2 x 2 - 4 的值是 9 - 4 = -5+ -3 + 2x 2活动二:(1)当 x ≠0 时,分式 有意义;x(2)当 x ≠1 时,分式 有意义;53x +y(4)x ,y 满足__x ≠y__时,分式 有意义.展示点评:教师示范解答的一般步骤,强调分母不为零.小组讨论:归纳分式有意义的条件.反思小结:对于任何分式,分母均不能为零,即当分母不为零时,分式有意义;反之,分母为零时,分式无意义.探究点三 分式值为 0 的条件1.当A= 0 时,分子和分母应满足什么条件?B答:当分子 A 等于 0 且分母 B 不等于 0 时分式2. 典型例题例 2 在什么条件下,下列分式的值为 0?A B的值为 0.(1)x - 1 x(2)x - 2x + 3学生独立思考,完成上题的解答,教师及时点评. 例 3 已知分式 x 2 - 4 .(1) 当 x 为何值时,分式有意义?(2) 当 x 为何值时,分式无意义?(3) 当 x 为何值时,分式的值为零?(4) 当 x= - 3 时,分式的值是多少?解:(1)当分母等于零时,分式无意义,即 x+2 = 0,∴ x = -2.∴当 x = -2 时,分式x 2 - 4无意义.(2)由(1)得 当 x ≠-2 时,分式有意义。
人教版初中数学八年级上册15.1.1从分数到分式(教案)
2.教学难点
-分式的概念理解:学生可能难以理解从具体的分数到抽象的分式的过渡,特别是分母含有字母时的情况。
-分式的约分与通分:学生在约分和通分时容易出错,如忽略掉分子分母的公因数,或在通分时计算错误。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-分式的性质:掌握分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变;分子分母互换,分式的值取倒数等。
-分式的约分与通分:学会对分式进行约分和通分,掌握其基本方法。
-分式的简单运算:掌握分式的加、减、乘、除等基本运算,并能够熟练运用。
举例解释:
-分式的定义及其结构:例如,分式$\frac{2x}{3y}$,重点讲解分子$2x$、分母$3y$的意义以及分式有意义的条件(分母不为零)。
4.增强数学运算和数据分析能力:在分式的约分、通分等运算过程中,培养学生的数学运算技能,提高数据处理和分析能力。
5.培养数学交流与合作能力:鼓励学生在学习过程中进行讨论、交流,共同解决分式相关问题,提升合作学习能力。
三、教学难点与重点
1.教学重点
-分式的定义及其结构:理解分式的分子、分母以及分式有意义的条件,掌握分式的表示方法。
人教版 15.1分式 教案
人教版15.1分式教案一、教学目标1. 了解分式的基本定义、性质和意义。
2. 掌握分数的基本运算法则。
3. 能够简化分式,化简复杂分式。
4. 能够解决实际问题中的分式应用问题。
二、教学重点难点1. 分式的基本定义、性质和意义。
2. 分数的基本运算法则。
3. 化简复杂分式的技巧和方法。
三、教学内容及进度1. 教师提问:“你们都见过什么是分式吗?分式有什么特性?”引导学生重温自己已经学过的关于分数的概念,并通过讨论引出分式的定义和基本性质。
2. 教师出示几个简单的分式,教导学生如何进行约分、通分和化简分式。
3. 引导学生认识到,在进行分式的加减、乘除运算时,要先找到它们的公共因式,然后进行合并或者约分。
4. 补充几个对应的分式应用例子,并指导学生如何根据问题所需策略最优化化处理分式运算方案。
5. 最后,老师出示几个多项式以及它们的分式形式,让学生体会把式子转化为分式,以及了解分式在现实生活中的应用场景。
四、教学方法1. 演示法:教师通过演示一些实例,让学生通过实际操作来体验分式的相关知识和技能。
2. 协作学习法:老师将学生分成小组,分配一些任务,要求学生成员相互合作,共同完成任务。
3. 讨论法:老师通过讨论引导学生深入理解分式的定义、性质和意义。
同时,学生也可以在讨论中相互学习,尝试更合理、清晰地表达自己的观点。
五、教学评价1. 能够简洁、清晰、准确地解释分式的定义、性质和意义,并且能够建立正确的数学思维方式。
2. 能够熟练掌握分数的基本运算法则,并对数字或者问题进行相应的运算处理。
3. 能够分析、解决实际问题中的分式应用问题,以及正确应用知识来解决问题。
4. 能够独立思考分式的相关知识和技能,并能够自由汽车选择最有效、最合适的解决问题的方法。
5. 能够在群体合作中有效履行自己的角色,并且积极参与到教学讨论中来。
2019年八年级数学上册《15.1.2 分式的基本性质》教案 (新版)新人教版.doc
2019年八年级数学上册《15.1.2 分式的基本性质》教案(新版)新人教版教学内容:分式的基本性质(1)知识目标:使学生理解并掌握分式的基本性质,能力目标:能运用这些性质将分式变形.通过分式的化简提高学生的运算能力.情感目标:渗透类比转化的数学思想方法.教学重点:理解分式的基本性质. 分式的分子、分母和分式本身符号变号的法则。
教学难点:灵活应用分式的基本性质将分式变形。
利用分式的变号法则,把分子或分母是多项式的变形。
教学方法:分组讨论.类比学习教具准备:小黑板教学过程:一、情境引入1.数学小笑话:从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”二、类比学习1.类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:=,=(其中M是不等于零的整式)强调:学生对C≠0理解不容易掌握,且在运用中容易出错,提醒学生多思考,深入理解。
2.加深对分式基本性质的理解:例1 下列等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c ≠0?解:∵c ≠0,∴==(2)=学生口答,教师设疑:为什么题目未给x ≠0的条件?(引导学生学会分析题目中的隐含条件.)例2、化简:(1);(2)3、分式的分子、分母和分式本身符号变号的法则例3.不改变分式的值,使下列分式的分子和分母都不含“-”号. a b56--, y x 3-, n m --2, n m 67--, y x 43---。
引导学生分析:每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.三 、 课堂练习1.填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x - 2.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317b a --- (3) 2135x a -- (4) m b a 2)(-- 3.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数: (1)13232-+---a a a a (2)32211x x x x ++-- (3)1123+---a a a 4.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)b a b a +---2 (2)yx y x -+--32 四、课堂小结通过本节课学习,你有什么收获?五、作业P133 4、5、8、13六 板书设计教学反思。
初中新人教版数学八年级上册15.1分式优质课公开课教学设计版本2.
第15章 分式 (1)课题:从分数到分式研学目标:1、了解分式产生的背景和分式的概念以及分式与整式概念的区别与联系。
2、掌握分式有意义的条件和分式的值为0的条件分别是什么?一、自学探究:阅读课本P127—128 1、列式表示:(1)长方形的面积是10cm 2,长是7cm ,则宽是 cm 。
(2)某村有n 个人,耕地40公顷,人均耕地面积为________公顷。
(3)△ABC 的面积为S ,BC 边长为a,高AD 为__________2、在①3x 2,②11x +,③15x+y ,④a b a b +-, ⑤0,⑥a π•这几个式子中, 单项式有: 多项式有: 整式的有: _____________________ (只填序号)3、什么是分式?4、分式有意义的条件是什么?分式没有意义的条件又是什么?5、分式的值等于0的条件是什么?二、自学训练1、下列各式中,哪些是整式?哪些是分式?①5x-7 ; ②3x 2-1 ; ③123+-a b ; ④7)(p n m +; ⑤—5 ; ⑥1222-+-x y xy x ; ⑦72; ⑧c b +54。
整式: ; 分式:2、当x ___________时,分式21x x -有意义;当x ___________时,分式21x x -没有意义。
3、使分式2xx +有意义的条件是 ( ) A .x ≠2 B .x ≠-2 C .x ≠2且x ≠-2 D .x ≠04、下列分式中的字母满足什么条件是分式的值为0?(1)11+-x x ; (2)392+-x x ; (3)11--x x三、自学检测:1、下列各式中, ①yx y x -+; ②132+x ; ③x x 13-; ④π22y xy x ++; ⑤14.3--πb a ; ⑥0。
整式是 ,分式是 。
(只填序号) 2、当x= 时,分式2+x x 没有意义。
3、当x= 时,分式112+-x x 的值为0 。
2019最新人教版数学八年级上册分式教案
2019最新人教版数学八年级上册分式教案15.1.1从分数到分式一、 教学目标1. 了解分式概念.2.理解分式有意义的条件;分式的值为零的条件;能熟练地求出分式有意义的条件;分式的值为零的条件.二、重点、难点重点:理解分式有意义的条件;分式的值为零的条件.难点:能熟练地求出分式有意义的条件;分式的值为零的条件.三、教学过程1.让学生填写[思考];学生自己依次填出:710;a s ;33200;sv .2.问题:一艘轮船在静水中的最大航速为20千米/时;它沿江以最大航速顺流航行100千米所用实践;与以最大航速逆流航行60千米所用时间相等;江水的流速为多少?设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时;逆流航行60千米所用时间v-2060小时;所以v +20100=v -2060.3. 以上的式子v +20100;v -2060;a s ;sv ;有什么共同点?它们与分数有什么相同点和不同点?可以发现;这些式子都像分数一样都是 (即A ÷B )的形式.分数的分子A 与分母B 都是整数;而这些式子中的A 、B 都是整式;并且B 中都含有字母.[思考]引发学生思考分式的分母应满足什么条件;分式才有意义?由分数的分母不能为零;用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件;分式才有意义.即当B ≠0时;分式BA 才有意义. 3、例题讲解P5例1. 当x 为何值时;分式 有意义. [分析]已知分式有意义;就可以知道分式的分母不为零;进一步解 出字母x 的取值范围.(补充)例2. 当m 为何值时;分式的值为0?(1) (2) (3) [分析] 分式的值为0时;必须同时..满足两个条件:○;1分母不能为零;○;2分子为零;这样求出的m 的解集中的公共部分;就是这类题目的解.4、随堂练习1.判断下列各式哪些是整式;哪些是分式?9x+4; x 7 ; 209y +; 54-m ; 238y y -;91-x 2. 当x 取何值时;下列分式有意义?(1) (2) (3) 3. 当x 为何值时;分式的值为0? (1) (2) (3) 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x xx 57+x x 3217-x x x --2212312-+x x5、小结:谈谈你的收获6、布置作业7、板书设计四、教学反思:分式与分数有许多类似之处;研究分式往往要类比分数;学生总体掌握得不错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15章 分式 (1)
课题:从分数到分式
研学目标:1、了解分式产生的背景和分式的概念以及分式与整式概念的区别与联系。
2、掌握分式有意义的条件和分式的值为0的条件分别是什么?
一、自学探究:阅读课本P127—128 1、列式表示:
(1)长方形的面积是10cm 2,长是7cm ,则宽是 cm 。
(2)某村有n 个人,耕地40公顷,人均耕地面积为________公顷。
(3)△ABC 的面积为S ,BC 边长为a,高AD 为__________
2、在①3x 2,②11x +,③15x+y ,④a b a b +-, ⑤0,⑥a π
•这几个式子中, 单项式有: 多项式有:
整式的有: _____________________ (只填序号)
3、什么是分式?
4、分式有意义的条件是什么?分式没有意义的条件又是什么?
5、分式的值等于0的条件是什么?
二、自学训练
1、下列各式中,哪些是整式?哪些是分式?
①5x-7 ; ②3x 2-1 ; ③123+-a b ; ④7
)(p n m +; ⑤—5 ; ⑥1
222-+-x y xy x ; ⑦72; ⑧c b +54。
整式: ; 分式:
2、当x ___________时,分式
21x x -有意义;当x ___________时,分式21x x -没有意义。
3、使分式2
x
x +有意义的条件是 ( ) A .x ≠2 B .x ≠-2 C .x ≠2且x ≠-2 D .x ≠0
4、下列分式中的字母满足什么条件是分式的值为0?
(1)11+-x x ; (2)392+-x x ; (3)1
1--x x
三、自学检测:
1、下列各式中, ①y
x y x -+; ②132+x ; ③x x 13-; ④π22y xy x ++; ⑤
14
.3--πb a ; ⑥0。
整式是 ,分式是 。
(只填序号) 2、当x= 时,分式2+x x 没有意义。
3、当x= 时,分式1
12+-x x 的值为0 。
4、当x 时,分式22x x +的值为正,当a 时,分式1
132+-a a 的值为非负数。
5、无论x 取任何值时,下列式子都有意义的是( )
A .1232--x x B. 221x
x + C .352+--x x D .1||2-x 6、下列分式中得字母满足什么条件时分式有意义?
(1)1
12+-a a (2)9x -31+x
7、下列分式中的字母满足什么条件分式的值等于0?
(1)21x x ++ (2)2
42+-a a
四、巩固拓展:
1、下列分式中得字母满足什么条件时分式有意义?
(1)
4
82+-x x (2)234x a x +-
2、已知分式112+-x x (1) 若分式无意义,求x 的值; (2) 若分式的值为0,求x 的值;
3、若211
x x --有意义,则x 的取值范围是 4、当x= 时,分式2
2--x x 的值为零;当x 时,分式33+-x x 有意义.
5、若分式2242
x x x ---的值为零,则x 的值是( ) A.2或-2 B.2 C.-2 D.4
6、如果m 个人完成一项工作需要d 天,则(m+n)个人完成这项工作需要的天数为( ) A.d+n B.d-n C.
md m n + D.d m n +
7、甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同而行则b 小时甲追上乙,那么甲的速度是乙的速度的( )倍. 21世纪教育网版权所有
A .b b a +
B .b a b +
C .a b a b -+
D .a b a b +- 8、一辆汽车b 千米,则它的平均速度为 km/h ;一列火车行驶a km 比这辆汽车少用1 小时,则它的平均速度为 km/h 。
21教育网。