微型RNA miR-134於口腔癌化之探讨
关于微小RNA及其在肿瘤治疗中的作用
关于微小RNA及其在肿瘤治疗中的作用微小RNA(microRNA,miRNA)是一类分子量较小、长度为20-25个核苷酸的RNA分子,在调控细胞基因表达、细胞周期调控、细胞增殖和细胞凋亡等方面发挥着重要作用。
miRNA在肿瘤治疗中具有重要的应用价值,本文将简要介绍miRNA的基本特征,miRNA在肿瘤中的作用及其在肿瘤治疗中的潜在应用前景。
一、miRNA基本特征miRNA是起源于内质网和发生有丝分裂的细胞质的RNA分子,通过mRNA 降解和转译后的调节细胞基因表达,从而影响基因功能。
与其他蛋白质编码RNA 相比,miRNA的主要作用是靶向mRNA并将其废除,从而阻碍基因表达。
miRNA在生物体内的调控关系非常广泛,其中包括转录后调节、剪接后调节和翻译后调节等。
二、miRNA在肿瘤中的作用miRNA在肿瘤发生、进行和治疗中的重要作用已得到广泛确认。
miRNA主要通过基因表达调节、细胞周期稳定和凋亡控制等方面影响肿瘤生长和治疗反应。
基因表达调节miRNA可直接影响基因表达,通过降解或阻碍特定靶标基因的mRNA转录实现,从而阻止恶性病变的进一步发展。
RECK是一种miRNA靶标,它可通过调节钙离子与肿瘤细胞间的反应来抑制肿瘤生长。
细胞周期调控细胞周期是细胞分裂的重要过程,而miRNA正是通过在细胞周期调控方面发挥作用来帮助抗癌治疗的。
例如,miR-34能够抑制肿瘤细胞的增殖,促进细胞周期从G1阶段向S阶段转化,从而有效抑制肿瘤细胞的生长和扩散。
细胞凋亡控制miRNA也可以通过细胞凋亡来抵抗肿瘤,通过直接或间接地影响粘附蛋白等靶标基因的转录、翻译或原癌基因以及其靶标基因和肿瘤相关细胞因子的表达,激活或抑制肿瘤细胞的凋亡,从而达到抗癌的目的。
例如,miR-21能够影响PDCD4的表达,抑制细胞凋亡。
三、miRNA在肿瘤治疗中的应用前景miRNA在肿瘤治疗中的应用前景主要表现为三个方面: miRNA做为靶向肿瘤的新型治疗方法、治疗反应监测及预后评估的生物标志物和miRNA做为靶向药物的载体。
小干扰RNA与口腔癌研究进展综述
m i c r o R N A l e t 一 7同样可 以通过 下调 癌基 因 R A S的表 达产 物来 影 响口腔鳞癌的发生 。因而 , mi c r o R N A l e t 一7可 能在 口腔鳞 癌 的发生发展中起 到 了抑 制作用 , 但其 具体 调节机 制有待进 一 步 深入研究 。同时 T a k a m i z a w a等人 对肺癌细胞 中 的 m i c r o R N A
巴瘤患者 的体 内可 以检测该 m i c r o R N A拷贝数 的显著增高 , 提示 mi r 一1 7— 9 2在 口腔鳞癌 、 非小细胞肺癌等恶性肿瘤 的发生 发展 中起重要作用 ” 。另一个具有代表性 的癌基 因为 c —My c , 该 基 因的表达产物为一个螺旋一环一螺旋 的亮 氨酸拉链结构 的带
小干扰 R N A又 称 为 m i c r o R N A, 是 新 近 发 现 的一 类 由 内源 基
因编码 的长度约为 2 1— 2 5个核苷酸 的非编码单链 R N A分子 , 它 参 与人体 多种 生理病 理功能 。近年 来的研究 发现 mi c r o R N A与 肿瘤 的产生 、 发展 、 侵袭 和转 移 以及肿 瘤 耐药 等过程 均 密切 相 关, 有望为肿瘤的诊 断 、 治疗 以及预后评估提供新 的策 略。
mi c r o R N A s 起 源 为 内 源 性 表 达转 录本 , 总长度约为 2 1 —2 5 n t
c r o R N A被称为肿瘤 的抑癌基 因。如 最早 在秀 丽干线 虫 中发现
的l e t 一7即为肿瘤 抑制基 因编码 的 m i c r o R N A 。同时 , 新近 的研
究显示 l e t 一 7可 以直 接 靶 定 R A S基 因 的 转 录 产 物 , 并于 R A S转
miRNA在口腔癌前病变中的临床研究
miRNA在口腔癌前病变中的临床研究微核糖核酸(miRNA)是一种大小含21~23个核苷酸的非编码单链小RNA 分子,参与细胞的分化、增殖和凋亡以及个体发育等多种生物学过程。
它在免疫系统中发挥了极其重要的作用,在某些自身免疫病如类风湿性关节炎和系统性红斑狼疮中有异常表达,是自身免疫病发生发展中重要的调控因素。
本文就miRNA 及其在免疫反应中的功能和作用、与口腔癌前病变的相关性等研究进展作一综述。
标签:miRNA口腔癌前病变研究进展microRNAs即微小RNA(miRNA)是指长度约21~25nt小分子单链RNA。
位于基因组的非编码区,进化上高度保守,可在翻译水平上对基因表达进行调节的RNA家族。
它是一类非编码蛋白质的小分子RNA,具有抑制靶基因表达的功能,可以调节细胞生长、分化、增殖、凋亡等。
miRNA异常表达同各种癌症的发生发展密切相关。
目前,miRNA在口腔癌前病变的癌变过程中的功能还尚不清楚。
因此有必要分析miRNA在白斑癌变过程中的表达变化,寻找特异性miRNA,为后续的靶基因验证和功能分析打下基础。
1. miRNA的功能及作用微小RNA(microRNA,miRNA)是一种在进化上高度保守的非编码单链小分子RNA,由21~25个核苷酸组成,通常在转录后通过降解或抑制目标信使RNA(messengerRNA,mRNA)参与基因调控。
自1993年在线虫中发现以来,miRNA已被证实在生物发育、组织分化、细胞凋亡中发挥着重要作用。
目前发现与不同类型肿瘤相关miRNAs中最多的是miR一2,人们发现miRNA距今将近2O年,它首先由LeeRC等对变异的秀丽新小杆线虫在遗传学上进行深度解剖后,第一次探索到一些物质能够调节其在胚胎后期中一些发育基因表达的如RNA:Lin4。
第二个miRNA在第一个miRNA分子发现之后的数年,人们的注意力开始渐渐转向了miRNA。
21世纪初,ReinhartBJ等才又在线虫发现第2个异时性开关基因let一7。
微小RNA在肿瘤治疗中的应用
微小RNA在肿瘤治疗中的应用微RNA(miRNA)是一种长度为21-25个核苷酸的非编码RNA,与信使RNA(mRNA)结合并降解其分子,从而发挥重要的基因调控作用。
近年来,人们在肿瘤治疗中发现了微小RNA的重要作用。
本文将向您介绍微小RNA在肿瘤治疗中的应用。
微小RNA在癌症中的作用癌症发生是由于基因突变或染色体异位导致肿瘤细胞产生。
正常情况下,miRNA通常能够抑制癌细胞的生长和扩散。
而在某些情况下,这些miRNA的表达出现严重异常,导致癌细胞失去对肿瘤的抑制,顺利地完成癌症复制。
此外,miRNA在肿瘤转移中也发挥着重要的作用。
研究表明,miRNA通过其对靶基因的调节发挥了肿瘤细胞迁移和转移的能力,如miR-10b、miR-21、miR-155、miR-373等均是调控癌细胞转移的不可缺失的基因。
miRNA在肿瘤治疗中的应用1. 作为肿瘤诊断的工具一些miRNA在不同癌症种类的患者中表现出异质性,因此在肿瘤的早期诊断和治疗过程中应用miRNA,就可以达到更好的诊断效果,如在肝癌、乳腺癌、胃癌等方面的研究都有了不俗的应用。
2. 作为靶向治疗的工具由于miRNA在肿瘤机体中的作用,因此将某些已知可以促使肿瘤形成和生长的miRNA抑制剂(如抑制miR-155,miR-21等)或者 miRNA模拟剂(如增加miR-34a)引用到治疗中,就可以产生更好的治疗效果。
3. 微小RNA在放疗中的应用最近的研究表明,miRNA调节细胞的DNA修复,从而促进细胞的死亡,在放疗中应用miRNA,可能会促使肿瘤细胞死亡,增加治疗的灵敏度。
miRNA在肿瘤治疗中的优势相对于传统的药物或放疗方法,miRNA具有以下优势:1. 渐进性发挥作用相比于药物的高激活和高毒性过程,miRNA慢慢地渐进性地作用于细胞,减少了无意间的副作用。
2. 可以避免患者的耐药性在使用传统的化学药物或靶向治疗时,患者会出现耐药的情况,而使用miRNA,患者的耐药性会大大降低。
口腔癌相关microRNA研究进展
移侵袭等 , 这些基 因在 口腔癌中的表达下调可导致 口腔癌 的
发生发 展 , 并造成 口腔癌 患者 的生 存期缩短 、 疾病复发 以及
远 处 转 移 。 2 mi c r o R NA 在 口腔 癌 中的 作 用 机 制
发生 、 转移及疾病预后有关I , 成为近年研究 的热点 。
疗靶点 。本文就 口腔癌相关 mi c r o R N A的研究进展进行综述 。 关键词 : 口腔癌 ; 微小 R N A; 进展 ; 治疗 ; 预后 ; 综述 中图分类 号 : R 7 3 9 . 8 文献标 志码 : A DOI : 1 0 . 1 1 9 5 8 / j . i s s n . 0 2 5 3 - 9 8 9 6 . 2 0 1 5 . 0 5 . 0 3 1
5 7 o
T i a n i i n Me d J , Ma y 2 0 1 5 , V o 1 . 4 3 N O . 5
口腔癌相关 m i c r o R N A研究进展
刘 晓楠 , 张 文超
摘要 : E l 腔癌是常 见 的头 颈部恶性 肿瘤 , 局部 复发及转移 是其 预后差 的主要 因素 , 但 具体分子 机制 尚不清楚 。 研究 发现 , 微小 R N A( m i c r 0 R N A) 在 口腔癌 的发生 、 侵袭 、 转移 中起 到重要作用 , 有望 成为有价值 的诊断标 志物和治
Re s e ar c hБайду номын сангаас a d v a n c e s o f mi c r o RNA r e l a t e d t o or a l c a n c e r
L I U Xi a o n a n, Z HANG We n c h a o
循环中的微小RNA与肿瘤
循环中的微小RNA与肿瘤循环中的微小RNA(miRNA)是一类非编码的小分子RNA,长度一般在20~25个核苷酸,可以在细胞内或循环系统中发挥重要的生物学功能。
最近,越来越多的研究表明,循环中的miRNA可以作为肿瘤的生物标志物,具有较高的敏感性和特异性,为肿瘤的早期诊断、治疗和预后评估提供了新的思路和方法。
miRNA在肿瘤发生和发展过程中发挥了重要的调控作用。
一方面,miRNA可以通过靶向转录后水平的调节,抑制肿瘤的相关基因表达,从而发挥肿瘤抑制作用。
例如,miR-34家族是一个重要的肿瘤抑制miRNA家族,它们可以抑制肿瘤细胞增殖、诱导细胞凋亡和抑制转移等生物学过程。
另一方面,一些miRNA也可以通过调节肿瘤相关信号通路的激活和抑制,发挥肿瘤促进作用。
例如,miR-21是一个重要的肿瘤促进miRNA,它可以抑制肿瘤细胞凋亡、促进细胞增殖和侵袭、增强肿瘤干细胞特性等,从而促进肿瘤的发生和发展。
循环中的miRNA可以通过多种途径被释放到血液中,例如细胞分泌、脂质体分泌、细胞外泡(exosome)释放等。
由于miRNA具有较高的稳定性和特异性,在血液中能够稳定存在并可以被检测到。
因此,循环中的miRNA已成为一类重要的肿瘤生物标志物。
临床研究表明,不同类型的肿瘤在循环中的miRNA表达模式存在明显差异。
例如,肝癌患者血液中miR-122表达明显降低,而胃癌患者血液中miR-223表达明显升高。
此外,循环中的miRNA也可以反映肿瘤的治疗效果和预后评估。
例如,肺癌治疗后患者血液中miR-21表达水平升高,与复发和预后不良有关。
在肿瘤诊断、治疗和预后评估中,循环中的miRNA具有很大的应用前景。
通过检测循环中的miRNA表达水平,可以实现肿瘤的早期诊断和筛查,以及肿瘤的治疗效果和预后评估。
此外,循环中的miRNA也可以作为新的治疗靶点,通过调节肿瘤的miRNA表达水平,来实现肿瘤治疗和预防的目的。
总之,循环中的miRNA在肿瘤发生和发展过程中发挥着重要的调节作用,并成为一类重要的肿瘤生物标志物。
微小RNA对口腔鳞状细胞癌调控机制的研究进展
复旦学报(医学版)F u d a n U n i v J M e d Sci2018 Jul. # 45(4)549微小RNA对口腔鱗状细胞癌调控机制的研究进展陈褀(综述$魏魁杰(审校$(复旦大学附属中山医院青浦分院口腔科上海201700)【摘要】口腔鳞状细胞癌(oral s q u a m o u s cell carcinoma,O S C C)是口腔颌面部最常见的恶性肿瘤之一,其主要的治疗手段是手术、放疗和化疗。
研究发现,微小A N A(m i cr〇R N A,m i R N A)在O S C C的发生发展、侵袭和转移中具有重要作用,不同种类m i R N A调控机制不同,其中大部分可以为O S C C提供有价值的病因、发生发展过程分析及侵袭转移机制参考。
本文就m i R N A在O S C C中相关调控机制的研究进展进行综述。
【关键词】微小R N A$口腔鳞癌;调控机制【中图分类号】R780. 2 【文献标识码】B do# 10. 3969/C.issn. 1672-8467. 2018. 04. 020Advances in the regulation by microRNA in oralsquamous cell carcinomaCHEN Qi,WEIKui-jie{D epartm ent o f Stom atolog y,Q ingpu B ra nch,Zhongshan H o sp ita l,Fudan U niversity,Shanghai201700 , China)【Abstract】Oral squamous cell carcinoma(OSCC) is one of the most common malignant tumors in the oral and maxillofacial region.Clinical treatments normally include surgery,radiotherapy and chemotherapy.Recent researches have proposed that microRNA(miRNA) plyy an important role in the development,invasion and metastasis of OSCC.Different miRNA have different regulatory mechanisms,and most of them can provide valuable evidences for OSCC etiology,occurrence and development process analysis.In t his review,advances in the regulation by miRNA in oral squamous cell carcinoma were summaried.【Keywords】microRNA; oral squamous cell carcinoma;regulatory mechanism% This work was supported by the Research Project of Science and Technology Commission,Shanghai Municipality (124119b0400).口腔鳞状细胞癌(oral squamous cell ca c inoma,OSCC)是口腔颌面部最常见的恶性肿瘤之一。
MicroRNA、内质网应激在口腔癌中研究进展
临床医药文献杂志Journal of Clinical Medical2018 年第 5 卷第 9 期2018 Vol.5 No.9195MicroRNA 、内质网应激在口腔癌中研究进展韩 瑞1,张 配2,王尚华1,程如玉1,刘 浩2*,徐锦程1*(1.蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004;2.蚌埠医学院药学院,安徽 蚌埠 233030)【关键词】MicroRNA ;内质网应激;口腔癌;肿瘤【中图分类号】R739.8 【文献标识码】A 【文章编号】ISSN.2095-8242.2018.09.195.02口腔癌是头颈癌的一种,其中90%是口腔鳞状细胞癌,每年全世界约有30万例新发病例[1]。
肿瘤一般处于缺糖、酸中毒及严重缺氧状态,伴发内质网应激(ERS )产生[2]。
microRNA 与口腔颌面-头颈癌研究成果的报道越来越多,其口腔癌预后有关[3]。
本文就microRNA 、内质网应激参与口腔癌的近期研究进行综述,并展望口腔癌新的靶点。
1 内质网应激与口腔肿瘤内质网是真核生物蛋白质合成的主要细胞器,在收到多种因素刺激时导致内质网中聚集大量未折叠或错误折叠的蛋白质发生内质网应激。
内质网应激状态下为避免发生细胞凋亡,激发未折叠蛋白反应作为保护机制[4]。
持续或是过度外源性应激则会使细胞产生凋亡,内质网应激诱导的凋亡主要通过三种途径:CHOP 途径、ASK1-JNK 途径、Caspase-12途径[5]。
口腔鳞癌组织中内质网应激蛋白GRP78在蛋白水平上的表达量与临床病理特征、预后情况存在相关性,可以作为一个潜在口腔鳞癌症标记物用以判断口腔鳞癌的恶性程度以及预测其预后[6]。
2 MicroRNA 及在口腔肿瘤中的表达微小RNA (micro RNA )是一类长约21-25nt 的小分子非编码RNA ,最近研究表明,miRNA 参与多种肿瘤的发生、发展、并和诸多肿瘤的诊断及预后相关,单个miRNA 可以调节成百上千的mRNA 表达和功能蛋白质和调节生物过程对癌症的发展很重要,在不同肿瘤组织中发挥着致癌基因或抑癌基因的作用[7]。
口腔鳞状细胞癌组织中差异微小RNA/mRNA表达谱的对接研究
口腔鳞状细胞癌组织中差异微小RNA/mRNA表达谱的对接研究目的构建分析口腔鳞状细胞癌(OSCC)中差异表达的微小RNA(miRNA)和mRNA表达谱,初步预测与OSCC发生和发展相关的miRNA和mRNA。
方法运用高通量深度测序技术构建miRNA和mRNA表达谱,通过Gene Ontology 功能显著性富集分析预测与OSCC细胞周期、增殖、分化和凋亡相关的miRNA 和mRNA。
结果共发现77个miRNA和1 298个mRNA显著性差异表达,富集分析显示与OSCC细胞周期、增殖、分化和凋亡相关的miRNA共73个,且一个miRNA可调控多个mRNA。
结论OSCC中差异表达的miRNA和mRNA对OSCC的发生和发展有潜在的作用。
标签:口腔鳞状细胞癌;微小RNA;mRNA;高通量测序口腔鳞状细胞癌(oral squamous cell carcino-mas,OSCC)是头颈部恶性肿瘤中发病率最高的恶性肿瘤,其易发生细胞侵袭和转移,患者预后较差,术后5年的存活率低于50%[1]。
研究[2]发现:OSCC的发生和发展受基因水平的调控,基因表达受DNA水平、转录水平、转录后水平及蛋白水平等多层面调控,过程复杂。
近年来,微小RNA(microRNAs,miRNA)在转录后水平对基因表达的精细调控备受关注。
大量研究[3-4]表明miRNA既可作为原癌基因参与恶性肿瘤的发生和发展过程,又可作为抑癌基因参与抑制恶性肿瘤的形成,其在肿瘤细胞的增殖、分化、凋亡及机体发育、代谢等基本生命活动过程中发挥重要作用,并可以作为OSCC早期诊断和治疗的生物标志物[5]。
据估计,人类基因组中miRNA的种类约有1 000多种,其在基因转录后通过抑制靶mRNA的翻译或降解mRNA调控近30%的人类基因[6]。
因此,了解OSCC发生和发展相关的遗传过程及参与的生物学通路,为疾病的分级、早期诊断及治疗提供重要的信息,对新药的开发也有很大帮助[7-8]。
微小RNA与口腔癌前病变
微小RNA与口腔癌前病变微小RNA是非编码单链小分子RNA,通常在转录后水平通过降解抑制目标信使RNA参与基因调控,目前研究发现微小RNA与口腔癌关系密切,在某些口腔癌前疾病的癌变过程中发挥着重要作用,此文就微小RNA与口腔癌前病变的关系作一综述。
标签:微小RNA;口腔癌前病变;口腔肿瘤Micro RNAs and oral premalignant lesionsZhu Xiaohan, Fu Ji, Chen Qianming, Zeng Xin.(Dept. of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)[Abstract]Micro RNAs are small non-coding RNAs that mediate gene expression at the post-transcriptional level by degrading or repressing target messenger RNAs. The current studies showed micro RNAs were related to many oral cancers and played a key role in the tumorigenesis of some oral premalignant lesions. The relationship of mi-cro RNAs and oral premalignant lesions was reviewed in the article.[Key words]micro RNA;oral premalignant lesion;mouth neoplasm微小RNA(micro RNA,miRNA)是一种在进化上高度保守的非编码单链小分子RNA,由21~ 25个核苷酸组成,通常在转录后通过降解或抑制目标信使RNA(messenger RNA,mRNA)参与基因调控[1]。
口腔鳞状细胞癌miR的生物信息学挖掘与分析
收 稿 日 期 :2017G12G25 基 金 项 目 :福 建 省 自 然 科 学 基 金 (2015J01492) 作者单位:1.南京军区 福 州 总 医 院 口 腔 科,福 建 医 科 大 学 福 总 临
J福F建uji医an科M大ed学U学ni报v 2018June,Vol52 No3
195
口腔鳞状细胞癌 miR 的生物信息学挖掘与分析
樊 丽 娜1,胡 雪 刚2,邱 在 玲2,吕 红 兵2,周 文 土1 ,傅 升1
摘要: 目的 筛选与口腔鳞状细胞癌(OSCC)相关 的 微 小 RNA(miR)生 物 标 志 物,并 分 析 其 靶 基 因 的 功 能. 方法 从癌症基因 组 图 谱 数 据 库 中 下 载 人 OSCC 的 miR 高 通 量 数 据,使 用 R 软 件 筛 选 差 异 miR,然 后 使 用 DAVID在线工具对选定的差异 miR 进行生物信息学分 析. 结 果 表 达 上 调 差 异 超 过 10 倍 的 miR 有 11 个,下 调的 miR 有6个.差异 miR 靶基因预测共得到564个共 同 靶 基 因,GO 功 能 注 释 显 著 富 集 于 钙 离 子 结 合、金 属 离 子、转换生长因子受体结合、磷脂酶的活动等功能. 结论 差异 miR 或许可作为 OSCC 重要的的分子标志 物,为 进一步探讨其在 OSCC 诊断或靶向治疗中的运用提供实验依据.
1.5 统 计 学 处 理 采 用 SPSS22.0 与 GraphPad Prism7 进 行 统 计 学 处 理.OSCC 与 癌 旁 组 织 的 miR 表达比较采用非配对t检验.P<0.05 为差别 有统计学意义.
小RNA调节在癌症中的应用
小RNA调节在癌症中的应用在癌症治疗中,越来越多的研究表明,非编码RNA(ncRNA)在癌症的发生和发展中发挥着重要作用。
其中,小RNA(miRNA和siRNA)是研究的焦点之一。
小RNA调节作用着癌症的相关基因,因此成为重要的治疗手段之一。
一、miRNA在癌症中的作用miRNA是一类长度约22nt的小分子RNA,在转录后的成熟过程中发挥作用,通过RNA结合蛋白而与mRNA结合,起到基因表达调控的作用。
癌症与miRNA的关系广泛研究,大量研究表明: miRNA在癌症中起着重要作用,调节着多个癌症相关因子的表达水平,进而影响细胞的生长、增殖、分化、凋亡等。
例如,miR-21在多种癌症中都表现为上调的趋势。
miR-21的下调可以抑制癌细胞的增殖、侵袭、转移和抵抗放疗等。
而let-7在癌症中则表现为下调趋势,let-7家族与肿瘤相关基因MYC、RAS等直接相互作用,发挥抑制作用。
因此,调控miRNA的表达有望成为治疗癌症的新策略。
二、siRNA在癌症中的作用siRNA是一种特殊的双链RNA,长约2kb,通过RNA干扰技术可以靶做到靶向调控基因的表达。
在癌症中应用siRNA技术也得到了广泛研究。
例如,siRNA可以针对癌细胞的抗凋亡基因BCL-2或MCL-1发挥作用,诱导癌细胞凋亡,从而抑制其生长和分裂。
此外,siRNA也可靶向机体免疫系统中的免疫抑制分子如PD-L1等,增强机体免疫力,使得癌细胞更容易被机体清除。
三、小RNA的应用前景小RNA因其靶向性等特点,被广泛应用于肿瘤治疗。
临床前研究表明:miRNA可以作为诊断和预后预测的生物标志物,为患者的个性化治疗提供指导。
siRNA的研究也取得了许多进展,经过有限的临床试验表明siRNA治疗潜力巨大。
此外,新型的siRNA递送策略,如利用纳米技术或生物启发的创新技术,增加了siRNA的穿透能力和靶向性,从而使siRNA的临床应用更加安全有效。
发展快速的基因测序技术与bioinformatics技术的应用,使得研究者能够快速地获取更加全面的miRNA和siRNA信息,增加了其研究的深度和广度。
微小RNA与口腔鳞状细胞癌
微小RNA与口腔鳞状细胞癌吴修胤;佟冬冬;张风河【期刊名称】《生物医学工程研究》【年(卷),期】2011(030)001【摘要】微小RNA( MicroRNA,miRNA),是在转录后水平调节基因表达的非编码小RNA,其广泛参与生物体内多种细胞进程的调控,包括细胞发育、细胞分化、细胞增殖和细胞凋亡.miRNA在正常细胞的发育和肿瘤的产生和发展中均起到重要的作用,其在肿瘤的关系既有其普遍性又因肿瘤的始发部位和性质有所差异.在这篇综述中,我们将讨论miRNA的生物合成和功能,其在肿瘤的发生及发展中可能起到的作用,以及近年来其与口腔鳞状细胞癌关系的研究工作中取得的新进展.【总页数】4页(P63-66)【作者】吴修胤;佟冬冬;张风河【作者单位】山东大学口腔医学院口腔颌面外科山东省口腔生物医学重点实验室,山东,济南,250012;山东大学口腔医学院口腔颌面外科山东省口腔生物医学重点实验室,山东,济南,250012;山东大学口腔医学院口腔颌面外科山东省口腔生物医学重点实验室,山东,济南,250012【正文语种】中文【中图分类】R318【相关文献】1.微小RNA⁃224对口腔鳞状细胞癌细胞侵袭迁移和KLLN表达的影响 [J], 李启期; 吕锡旌; 周政; 查小雨; 李琦2.微小RNA-145-5p靶向抑制同源形成素样蛋白2基因介导Notch信号通路对口腔鳞状细胞癌细胞增殖、凋亡的调控机制 [J], 冯素亚; 郭佳; 路学文3.基于生物信息学分析的口腔鳞状细胞癌微小RNA预后模型 [J], 赵格;黎昌学;郭超;朱慧4.长链非编码RNA DLX6-AS1调控微小RNA-15b和磷脂酶D1影响口腔鳞状细胞癌侵袭转移的分子机制研究 [J], 杨利杰;田欣欣;管臻洁5.外泌体为载体的微小RNA-1基因运送抑制人口腔鳞状细胞癌CAL-27细胞增殖的研究 [J], 伍宝琴;黎春晖;张梦莲;聂敏海因版权原因,仅展示原文概要,查看原文内容请购买。
microRNA与口腔鳞状细胞癌的研究新进展
microRNA与口腔鳞状细胞癌的研究新进展
汤伟伟;祝常青;何永文
【期刊名称】《临床与病理杂志》
【年(卷),期】2018(038)001
【摘要】microRNA即miRNA,又被称为微小RNA,是一组由18~24个核苷酸长度组成的内源性非编码单链RNA,研究发现miRNA在包括口腔鳞状细胞癌在内的恶性肿瘤的发生发展中起重要的调控作用。
以miRNA为靶标的靶向治疗受到人们的关注,针对miRNA的研究或许能为口腔鳞状细胞癌的治疗找到新的策略。
【总页数】6页(P156-161)
【作者】汤伟伟;祝常青;何永文
【作者单位】[1]昆明医科大学附属口腔医院口腔颌面外科,昆明650031;[2]昆明医科大学基础医学院病理教研室,昆明650000;[1]昆明医科大学附属口腔医院口腔颌面外科,昆明650031
【正文语种】中文
【中图分类】R394.1
【相关文献】
1.microRNA与口腔鳞状细胞癌的研究新进展 [J], 汤伟伟;祝常青;何永文
2.microRNA-199a-5p对口腔鳞状细胞癌细胞上皮间质转化及侵袭转移的影响机制 [J], 卢静;李杰;张莹;吴栋材
3.口腔鳞状细胞癌患者唾液microRNA-342和Naa10p表达与颈淋巴结隐匿性转移的关系 [J], 淦岷;王永武;王丽;陆伟;段青云
4.microRNA-199a-5p对口腔鳞状细胞癌细胞上皮间质转化及侵袭转移的影响机制 [J], 卢静;李杰;张莹;吴栋材
5.口腔鳞状细胞癌患者外周血microRNA的表达及预后意义 [J], 杨凯成;杨蕾;赵建广;罗风玉;陈彦平;崔子峰;陈赫;满莎莎
因版权原因,仅展示原文概要,查看原文内容请购买。
microRNA表达调控与口腔鳞状细胞癌
microRNA表达调控与口腔鳞状细胞癌杨宗澄;闫广兴;王若琳;徐欣【摘要】微小RNA(microRNA,miRNA)属于一类小非编码RNA,可以通过作用于目标信使RNA(messenger RNA, mRNA)来调控生物进程.miRNA具有作为肿瘤生物标志物和药物作用靶点的潜能,因此阐明其在肿瘤发生发展中的作用机制十分重要.口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)是一种常见的口腔恶性肿瘤,预后不良.该文对miRNA在OSCC中的生物学功能,相关表达谱改变,调控机制和临床应用前景作一综述.%MicroRNAs(miRNAs)are a group of small non-coding RNAs that regulate biological process through messenger RNAs (mRNAs)degradation or translational repression. Because of the role as tumor biomarker and therapeutic target,miRNA is now essen-tial to understanding the molecular mechanism of cancer initiation and progression. Oral squamous cell carcinoma(OSCC)is a common worldwide cancer causing numerous deaths with a very poor prognosis. This review highlights miRNA functions,alterations in gene ex-pressionprofile,mechanisms of regulation and clinical applications in OSCC.【期刊名称】《口腔医学》【年(卷),期】2018(038)005【总页数】5页(P476-480)【关键词】微小RNA;口腔鳞状细胞癌;基因调控【作者】杨宗澄;闫广兴;王若琳;徐欣【作者单位】山东大学口腔医学院种植科,山东济南250012;山东省口腔组织再生重点实验室,山东济南250012;吉林大学口腔医院病理科,吉林长春130021;山东大学口腔医学院牙周科,山东济南250012;山东大学口腔医学院种植科,山东济南250012;山东省口腔组织再生重点实验室,山东济南250012【正文语种】中文【中图分类】R739.8微小RNA(microRNA, miRNA)是一类长度约为22个核苷酸的内源性单链非编码RNA。
微小RNA在口腔鳞状细胞癌中的研究进展
微小RNA在口腔鳞状细胞癌中的研究进展方川;李雅冬【摘要】微小RNA(miRNA)是一类由内源性基因编码的非编码单链RNA分子,参与基因转录后调控.在口腔鳞状细胞癌研究中,miRNA的异常表达可通过靶基因或信号通路影响肿瘤的生长,肿瘤细胞的凋亡、侵袭、转移、放射治疗与化学治疗敏感性等多个方面,其可能作为早期诊断和预后的标志物,具有良好的临床应用潜力.本文对miRNA在口腔鳞状细胞癌的异常表达,以及miRNA-靶基因/下游信号通路-肿瘤效应进行综述,并展望miRNA在临床应用中的前景.【期刊名称】《国际口腔医学杂志》【年(卷),期】2018(045)006【总页数】6页(P646-651)【关键词】口腔鳞状细胞癌;微小RNA;靶基因;信号通路【作者】方川;李雅冬【作者单位】重庆医科大学附属第一医院口腔颌面外科重庆 630014;重庆医科大学附属第一医院口腔颌面外科重庆 630014【正文语种】中文【中图分类】R739.8口腔鳞状细胞癌是头颈部恶性肿瘤中比较常见的恶性肿瘤之一,随着病变的发展,可造成患者进食、咀嚼、言语、吞咽及呼吸等功能障碍,严重影响患者的生存质量。
在过去的几十年中,口腔鳞状细胞癌的存活率仍没有明显改善,发病率逐年升高,平均每年确诊的病例中死亡率仍达约50%。
因此,目前迫切需要深入了解口腔鳞状细胞癌的发病机制,并寻找更有效的治疗方法。
近年来,许多学者聚焦于异常表达的微小RNA(microRNA,miRNA)参与调控口腔鳞状细胞癌的发生和发展,并取得了许多新的进展。
现已发现人类约有2 500种miRNA参与复杂的体内调控活动[1]。
miRNA是一类由18~22个核苷酸r所构成的非编码RNA,通常通过连接于靶基因mRNA的3’-非翻译区(3’-untranslated region,3’-UTR)负向调节靶基因以及蛋白质的表达[2-3],有些miRNA在肿瘤细胞增殖、分化、凋亡、生存、运动、侵袭、转移以及形态改变的调节中起着关键作用,并被认为可作为癌症诊断的新型分子生物标记物[4-5]。
MicroRNA及基于microRNA的新型靶向纳米药物的抗肿瘤活性及机制研究
MicroRNA及基于microRNA的新型靶向纳米药物的抗肿瘤活性及机制研究MicroRNAs(miRNAs)是一类非编码的单链RNA,它们的长度在20至25个碱基之间。
miRNA通过与mRNA的3’-非编码区结合,形成局部碱基配对以抑制mRNA 的翻译或使其降解。
一个mi RNA可以识别多个mRNA并与之结合,一个mRNA也可以被多个不同的mi RNA所识别并与之相互作用。
研究显示miRNA的异常表达与肿瘤的发生和发展有着密切的关系,在此过程中,mi RNA可发挥抑癌基因或癌基因的作用。
宫颈癌在女性恶性肿瘤中是发病率和死亡率仅次于乳腺癌的恶性肿瘤。
Hsa-mi R-124(miR-124)的表达在包括宫颈癌在内的许多种肿瘤中都显著降低。
为探索miR-124在宫颈癌细胞中的调节作用,本研究构建了miR-124的表达载体并筛选了稳定表达miR-124的宫颈癌细胞株。
研究结果显示miRNA-124的高表达显著抑制了宫颈癌细胞的生长和迁移及侵袭能力。
进一步的研究发现,CUB domain containing protein 1(CDCP1)的表达在miR-124高表达的细胞中显著降低。
萤荧光素酶实验结果显示Cdcp1基因是miR-124的直接下游靶点。
miR-124通过与Cdcp1基因3’-UTR位点结合从而抑制其表达。
为进一步验证Cdcp1是否为有效的miR-124的下游靶点,本研究在宫颈癌细胞中共转染了miR-124和含Cdcp1开放阅读框(Open Reading Frame,ORF)位点的载体,并对细胞的迁移能力进行了定量分析。
实验结果显示Cdcp1基因与miR-124的共表达可以抵消miR-124对宫颈癌细胞的迁移和侵袭的抑制作用,提示miR-124通过抑制Cdcp1基因的表达来抑制宫颈癌细胞的迁移和侵袭。
本研究揭示了miR-124在宫颈癌细胞中的调节作用及机制,为寻求宫颈癌治疗的新技术新方法奠定了前期基础。
微小RNA与口腔癌前病变
微小RNA与口腔癌前病变朱晓寒;付纪【期刊名称】《国际口腔医学杂志》【年(卷),期】2012(39)3【摘要】微小RNA 是非编码单链小分子RNA,通常在转录后水平通过降解抑制目标信使RNA 参与基因调控,目前研究发现微小RNA 与口腔癌关系密切,在某些口腔癌前疾病的癌变过程中发挥着重要作用,此文就微小RNA与口腔癌前病变的关系作一综述.%Micro RNAs are small non-coding RNAs that mediate gene expression at the post-transcriptional level by degrading or repressing target messenger RNAs. The current studies showed micro RNAs were related to many oral cancers and played a key role in the tumorigenesis of some oral premalignant lesions. The relationship of micro RNAs and oral premalignant lesions was reviewed in the article.【总页数】4页(P394-396,400)【作者】朱晓寒;付纪【作者单位】四川大学华西口腔医院黏膜科,成都,610041;四川大学华西口腔医院黏膜科,成都,610041【正文语种】中文【中图分类】R318【相关文献】1.代谢组学在口腔癌及口腔癌前病变标志物研究中的应用 [J], 于雪迪;孙红英2.口腔黏膜癌前病变和口腔癌动物模型的研究进展 [J], 程俊鑫; 白贺天; 常治楠; 李敬; 陈谦明3.口腔扁平苔藓及口腔鳞癌患者口腔黏膜组织中微小RNA-590的表达及临床价值探讨 [J], 刘鹏; 韩国良; 王世普; 屈瑞博; 张中月4.Naa10p、TSGF及RUNx2在口腔黏膜癌前病变、口腔鳞癌中的应用 [J], 刘春丽;王国杰;郑朝辉;曹瑞5.Stat3和cyclinD1在口腔黏膜癌前病变和口腔鳞癌中的表达 [J], 汤根兄;吴国英;李静因版权原因,仅展示原文概要,查看原文内容请购买。
非编码小RNA在口腔黏膜下纤维性变中的研究进展
非编码小RNA在口腔黏膜下纤维性变中的研究进展彭慧;吴颖芳【期刊名称】《口腔疾病防治》【年(卷),期】2024(32)4【摘要】口腔黏膜下纤维性变(oral submucous fibrosis,OSF)是口腔黏膜最常见的癌前病变之一,其发病机制至今尚未完全阐明。
非编码小RNA(small non-coding RNAs,SncRNAs)是一类不编码蛋白质的RNA分子,已被广泛报道参与多种人类疾病的调控。
越来越多的研究表明多种SncRNAs在OSF发病过程中发挥重要作用。
现有研究表明,微RNA(microRNAs,miRNAs)通过调控相关转录因子和基因表达或上皮间充质转化来调控成纤维细胞(fbroblasts,FB)活化而参与OSF疾病进展;长非编码RNA(long noncoding RNAs,lncRNAs)通过调控转化生长因子-β/母体抗瘫抑制因子(transforming growth factor-β/suppressor of mothers against decapentaplegic,TGF-β/Smad)信号通路或与miRNA相互作用参与OSF的发生发展;环状RNA(circular RNAs,circRNAs)通过与miRNA相互作用在OSF中发挥作用;tRNA衍生的小RNA(tRNA-derived small RNAs,tsRNAs)参与多种纤维化疾病的进展,但其在OSF中的具体作用机制仍需进一步探索。
未来仍需重点关注SncRNAs介导OSF进展的作用靶点,探究其对OSF的作用功能及分子机制,以期为诊断和治疗OSF提供新思路。
【总页数】5页(P310-314)【作者】彭慧;吴颖芳【作者单位】中南大学湘雅医院口腔医学中心口腔内科【正文语种】中文【中图分类】R78【相关文献】1.国家级继续教育项目(卫生部立项)——“口腔黏膜下纤维性变(OSF)及其他口腔黏膜病诊治进展”学习班通知2.国家级继续教育项目(卫生部立项)——“口腔黏膜下纤维性变(OSF)及其他口腔黏膜病诊治进展”学习班通知3.“口腔黏膜下纤维性变(OSF)及其他口腔黏膜病诊治进展”学习班通知4.咀嚼槟榔与口腔黏膜下纤维性变及口腔癌的研究进展5.口腔黏膜下纤维性变癌变的分子机制研究进展因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AbstractBeing the sixth most common cancer worldwide, oral squamous cell carcinoma (OSCC) also ranks the fourth among Taiwanese male cause of cancer death. MicroRNAs (miRNA; miR) are regulatory RNAs involved in post-transcriptional gene regulation, which can affect homeostasis, metabolism, and carcinogenesis. Aberrant expression of miRNAs can be seen in various cancers. Our results indicate that miR-134is markedly up-regulated in cancerous tissues than in non-cancerous matched tissues in clinical OSCC specimens after qRT-PCR analysis. Higher miR-134 expression is also associated with more extensive tumor size and vascular invasion. According to the result of in vitro study, over-expression of miR-134enhances oncogenic potentials of OSCC cells by increasing proliferation, migration, and colony formation abilities; conversely, when miR-134 expression is down-regulated, the oncogenic potentials of OSCC cells are inhibited. Besides, increased radio-resistant ability is noted in miR-134over-expressed OSCC cells. In vivo study also shows more and larger tumor formation in nude mice injected by miR-134 over-expressed OSCC cells. In addition, transient induction of NFκB, AKT, and HIF signals increases miR-134 expression, and down-regulation of NFκB by co-transfecting IκB reduces expression of miR-134. miR-134may be related to the development of OSCC. A thorough comprehending towards regulation of miR-134expression and miR-134target gene will be beneficial to OSCCdiagnosis and therapeutic intervention.Keywords: carcinoma, microRNA, oral cavity, miR-134IntroductionOral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide.[1] Taiwan also has one of the highest incidences of OSCC in the world.[2] In Taiwan, OSCC median age of cause of cancer death is only 55 years old; OSCC standardized mortality rate in male increased 36.4% in past 10 years[3]. Although diagnosis and treatment of OSCC have improved, the survival rate has not increased substantially in recent years. Altered microRNA (miRNA) expression profiles have been observed in numerous malignancies, including OSCC.[4] miRNAs are short RNAs that direct messenger RNA degradation or disrupt mRNA translation in a sequence-dependent manner and thereby significantly influence cell development, homeostasis, metabolism, neuronal and immunological regulation, even carcinogenesis[5]. In recent studies of Professor Chang’s team show that miR-31 contributes to the development of OSCC by impeding FIH to activate HIF under normoxic conditions[6], and up-regulation of miR-221/222 is associated with OSCC development by enhancing cell proliferation abilities.Among all kinds of miRNAs, miR-134is found to be a differential marker of stem cells[7] and is considered to be involved in the regulation of memory as well[8]. Recently, miR-134is reported to be involved in drug-resistant small cell lung cancers[9]. It is also reported that miR-134 is elevated in tissues of tongue OSCC in Honk Kong people[10]. Furthermore, the level of miR-134is high in the saliva ofnormal individuals, which means miR-134may be useful to be a biomarker for detecting and monitoring various physiopathological conditions of oral cavity[11]. In our preliminary data, we have found that the level of miR-134is elevated in the plasma of OSCC patients (n=10), which indicates that miR-134 is associated with OSCC development.This study hypothesizes that miR-134to be an oncogenic miRNA. Our short-term aims are as below: first, to validate the elevation of miR-134in the plasma of OSCC patients by using more samples. Second is to verify whether the level of miR-134 is elevated in saliva of OSCC patients, and to see if the level of miR-134in saliva is valuable for diagnosis of OSCC. Our long-term aims are as following: first, to confirm the in vitro function of miR-134through transient transfection; second, to see the induction of in vivo tumorigenesis driven by miR-134 by using stable cell lines and perform animal studies. By using stable cell lines, our final aim is to find out the target of miR-134 for pathogenesis.Materials and MethodsOSCC tissueTissue specimens were taken from 42 patients with primary OSCC, together with matched paired non-cancerous oral mucosa (NOM) samples. The epithelial cells were retrieved from frozen-sectioned NOM or OSCC tissues using laser capture micro-dissection (LCM) for total RNA isolation; the blood samples were available in 34 patients prior to surgery and 20 control subjects without oral lesion. The study was approved by an Institutional Review Board. All samples were collected only after receiving informed consent from the patients.qRT-PCRA TaqMan MicroRNA Assays kit and TaqMan microRNA Assays supplies were used to quantify the expression of miR-134according to the manufacturer’s instructions (Applied Biosystems, Foster City, CA). Quantitative RT-PCR (qRT-PCR) was carried out on a TECHNE QUANTICATM thermocycler (TECHEN, Milford, MA) using RNU6B and/or Let-7a as the internal controls. Ct was the number of cycle at which the fluorescence signal passed threshold. △Ct was the difference in Ct values between miR-134 in relation to the controls. -△△Ct was the difference in △Ct values between the paired samples or the different experimental settings. 2Ct represents the fold change in miR-134 expression.Cell cultureThe OECM-1 OSCC cell line was grown in RPMI medium (Invitrogen, Carlsbad, CA) containing 10% heat-inactivated fetal bovine serum (FBS; Biological Industries, Kibbutz Beit Haemek, Israel). The SAS OSCC cell line was grown in DMEM medium (Invitrogen) supplemented with 10% FBS. Both cells were cultured at 37℃in a humidified atmosphere of 5% CO2. SAS is a tumorigenic cell line, while OECM-1 is a non-tumorigenic cell line. Precursor miR-134 and antisense miR-134 together with control scrambles (Scr) were purchased from Ambion (Austin, TX). The doses of precursor miR-134 and antisense miR-134 were determined as 30 nM and 60 nM by pilot studies, respectively.Cell proliferationA total of 5 x 103 cells were seeded into 24-well culture plates. The viability of cells was measured with the trypan blue exclusion assay.Cell migrationA total of 1 x 105 cells were grown in a Transwell (Corning, Acton, MA) having a pore diameter of 8 μm. The cell growth was arrested by the addition of hydroxyurea (Sigma-Aldrich) to a final concentration of 1 μM. The bottom chamber and lower side of the membrane was coated with 20 μg/ml fibronectin (Sigma-Aldrich) to induce migration. The bottom chamber and lower side of the membrane was soaked in 10% FBS supplemented medium, with upper side soaked in FBS-freemedium to induce cell migration.Anchorage-independent colony formation assayIn a 6-well plate, a lower agar layer was fabricated using a 1:1 mixture of 1.8% agarose and 60% FBS. An upper agar layer was formed with 1:1 mixture of methylcellulose (Sigma-Aldrich, St Louise, MO) and 60% FBS after lower layer had set. A total of 1 x 105 cells for SAS OSCC cell lines and 8 x 104 for OECM-1 OSCC cell lines were seeded into 6-well culture plates. Colonies with a diameter larger that 50 and 100 μM were counted by crystal violet staining.Establishment of SAS-miR-134 cellsStable cell line of SAS OSCC cells were established by infecting lentivirus containing premature miR-134with its negative control (BioSettia). Transduced cells were selected using DMEM medium (containing 10% FBS) with puromycin (25 mg/ml) for 7 days. The concentration of puromycin was determined by pilot studies. The vector contained RFP to monitor the infection rate by fluorescence microscopy. The expression of ectopic miR-134 was assayed by qRT-PCR.In vivo tumorigenesis assay105 SAS OSCC cells per nude mice were injected subcutaneously to total 10 nude mice. The xenografts grown afterwards were collected and analyzed by qRT-PCR to quantify miR-134 expressions.Radio-resistance assay300 SAS-miR-134-RFP and SAS-RFP were seeded to 3-cm plate and incubated for 14 days. Cisplatin were then treated. Different X-ray exposures of 0 Grey, 2 Grey and 8 Grey were then given.Reporter assayCo-transfection of reporter plasmids with pCMV-Luc into lentivirus-transduced cells was performed with TransFectin Lipid Reagent (BIO-RAD, Hercules, CA, USA). Over-expressed miR-134 targeted to their complementary sequence and decreased β-galactosidase activity. Normalization was done by luciferase activity.Statistical analysisMann-Whitney and ANOVA analysis were used for statistical analysis and p < 0.05 was considered statistically significant.ResultsmiR-134 expression in OSCCqRT-PCR analysis from LCM-retrieved NOM and OSCC showed higher expression of miR-134in tumors than in normal tissues (Fig. 1 A). In larger and invasive tumors, the miR-134 expression was even higher (Fig. 1 B). As in 34 pairs of patient blood samples, miR-134 expression was slightly elevated in pre-operative OSCC patients than in normal controls. After operation, miR-134expression reduced in plasma samples (Fig. 1 C).After qRT-PCR analysis, OC3, SAS, and OECM-1 OSCC cells all showed higher miR-134 expression than NHOK cells (Fig. 1 D). OECM-1 and SAS OSCC cells were chosen due to their slightly elevated endogenous miR-134 expression; OC3 cells were discarded because of their higher endogenous miR-134 expression might interfere with experiments.Modulation of miR-134 expressionUp-regulated and down-regulated miR-134OSCC cells after transfecting precursor and antisense miR-134 were established as transient models to study oncogenic phenotypes. OECM-1- and SAS-precursor-miR-134cells showed an increase in miR-134 expression for 30000 folds and 10000 folds, respectively (Fig.2 A). OECM-1- and SAS-antisense-miR-134 cells showed a decrease in miR-134 expression for 0.6 folds and 0.5 folds, respectively (Fig. 2 B).Stable OSCC cell line (SAS-miR-134-RFP cells)showed bright red fluorescence relative to negative control (Fig. 2 C) with an increase in miR-134 expression for 19.6 folds (Fig. 2 D).Association between miR-134 expression and oncogenic phenotypes.Both OECM-1- and SAS-precursor-miR-134 cells had a higher growth rate than controls (Fig. 3 A). OECM-1- and SAS-precursor-miR-134 showed higher migration abilities relative to controls (Fig. 3 C). The anchorage-independent colony formation assays also revealed that OECM-1- and SAS-precursor-miR-134formed more colonies (Fig. 3 D). Conversely, OECM-1- and SAS-antisense-miR-134 showed slower growth rate (Fig. 3 B), lower migration abilities (Fig. 3 C), and smaller and less colony formation (Fig. 3 D) than their controls. Both OECM-1- and SAS-mutant-miR-134showed no statistical significant differences in proliferation assay, migration assay, and anchorage-independent colony formation assay compared to controls (Fig. 4 A, B , C, D); OECM-1 and SAS-precusor-miR-134 were set as positive controls, which showed higher growth rate, more competent migration ability, and fortified colony formation ability.Stable clones of SAS OSCC cells were also studied. SAS-miR-134–RFP showed higher growth rate, strengthened migration ability, and reinforced colony formation ability compared to SAS-RFP (Fig. 5 A, B, C). Xenografts retrieved from nude mice also showed more and larger tumor formed by SAS-miR-134. TheqRT-PCR analysis of xenografts showed elevated miR-134expression in tissue samples retrieved from SAS-miR-134-RFP injected nude mice compared to SAS-RFP injected nude mice (Fig. 5 D). Radio-resistance assay showed more colonies of SAS-miR-134-RFP survived after exposure of 2 Grey and 8 Grey radiation compared to SAS-RFP (Fig. 6).By transfecting NFκB, AKT, and HIF into OECM-1 and SAS OSCC cells, respectively, increases of miR-134 expression were detected by qRT-PCR analysis (Fig. 7 A). After co-transfecting IκB to inhibit NFκB expression, expression of miR-134 decreased (Fig. 7 B). The result showed that miR-134 might be regulated through the oncogenic NFκB, AKT, or HIF signaling pathways.The result of reporter assay of PDCD-7 (programmed cell death protein 7) showed no significant statistical differences between SAS-miR-134-RFP and control.DiscussionOur data had shown elevated miR-134expression in both tissue specimens and plasma samples from OSCC patients, which was consistent with recent studies showing that increased miR-134expression might be related to carcinogenesis. Elevated expression of miR-134was also related with more advanced cancer stages, such as larger tumor formation and invasion; miR-134plasma levels reduced after surgical removal of cancer tissues. These results indicated that the up-regulation of miR-134 was associated with OSCC development.Our results of transient OSCC cell lines revealed that in both OECM-1- and SAS-precursor-miR-134 cells, the oncogenic potentials were enhanced; conversely, the oncogenic potentials were inhibited in OECM-1- and SAS-antisense-miR-134 cells. To further confirm the specificity of miR-134 sequence used in our study, we used mutant-miR-134. The results for phenotype studies of OECM-1- and SAS-mutant-miR-134 showed no significant difference from controls, which implied the specificity of miR-134sequence used in our study was reliable despite that transfecting antisense-miR-134did not significantly reduce the expression of miR-134.In SAS-miR-134 stable clones, our results also showed increased cell proliferation, migration, and colony formation abilities in miR-134 up-regulated SAS cells, which conformed to the results of transient cell lines. The radio-resistance assay also indicated SAS-miR-134-RFP possessing stronger radio-resistant ability.The result of qRT-PCR analysis also showed higher miR-134 expression in tumors retrieved from SAS-miR-134-RFP injected nude mice groups. These results further supported our hypothesis that elevation of miR-134 expression might contribute to OSCC development.Moreover, our results implied that regulation of miR-134could be possibly through oncogenic NFκB, HIF, or AKT signaling pathways. The result was consistent with our in vitro experiments which showed intensified cell proliferation, migration, and colony formation abilities, and our in vivo experiments showing more and larger tumors formed in SAS-miR-134-RFP injected nude mice.The result of reporter assay of PDCD-7 revealed that PDCD-7 might not be the target of miR-134. Other possible targets could be screened by using stable clone of over-expressed miR-134 OSCC cells.References1. Jemal, A., et al., Cancer statistics, 2009. CA Cancer J Clin, 2009. 59(4): p.225-49.2. Ferlay, J., et al., GLOBOCAN 2000: Cancer Incidence, Mortality andPrevalence Worldwide, Version 1.0. IARC CancerBase No. 5. Lyon, IARCPress, 2001. Links.3. Department of Health, E.Y., R.O.C. (Taiwan). 2008 statistics of causes ofdeath. 2009 Oct. 1, 2009 [cited 2009 Feb. 28]; Available from: .tw.4. Henson, B.J., et al., Decreased expression of miR-125b and miR-100 in oralcancer cells contributes to malignancy. Genes Chromosomes Cancer, 2009.48(7): p. 569-82.5. Cho, W.C., OncomiRs: the discovery and progress of microRNAs in cancers.Mol Cancer, 2007. 6: p. 60.6. Liu, C.J., et al., miR-31 ablates expression of the HIF regulatory factor FIH toactivate the HIF pathway in head and neck carcinoma. Cancer Res, 2010.70(4): p. 1635-44.7. Tay, Y.M., et al., MicroRNA-134 modulates the differentiation of mouseembryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells, 2008. 26(1): p. 17-29.8. Gao, J., et al., A novel pathway regulates memory and plasticity via SIRT1and miR-134. Nature, 2010. 466(7310): p. 1105-9.9. Guo, L., et al., Gene expression profiling of drug-resistant small cell lungcancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer, 2010. 46(9): p. 1692-702.10. Wong, T.S., et al., Mature miR-184 as Potential Oncogenic microRNA ofSquamous Cell Carcinoma of Tongue.Clin Cancer Res, 2008. 14(9): p.2588-92.11. Weber, J.A., et al., The MicroRNA Spectrum in 12 Body Fluids. Clin Chem,2010.Figure 1. miR-134expression in OSCC. A, qRT-PCR analysis performed to detect expression of miR-134in LCM-retrieved NCMT (non-cancerous matched tissues) and OSCC tissues. C t was the number of cycle at which the fluorescence signal passed threshold. ΔC t was the difference of C t values between miR-134 and internal control, RNU6B. Note the up-regulation of miR-134 in OSCC tissues. B, Comparison across different clinical settings. N, lymph node involvement. T, tumor size. T1-3 represented smaller tumor size, and T4 represented largest tumor size. VI (-), no vascular invasion. VI (+), vascular invasion. Higher expression of miR-134 could be seen in tissues with larger tumor size and vascular invasion. Slightincrease in expression of miR-134could be found in tissues with lymph nodeinvolvement. The tissues indicated that miR-134might be involved in the carcinogenesis and progression of OSCC. C, miR-134expression in patients’ plasma before and after operation of removing OSCC. It was noted that plasma miR-134levels were found to be slightly elevated in OSCC patients relative to normal controls, and the miR-134 levels were reduced after surgery. Un-paired or paired t-test. D, endogenous miR-134expressions in OC3, OECM-1, SAS, and NHOK cells. miR-134 expressions were higher in OC3, OECM-1, and SAS OSCC cells relative to NHOK cells.Figure 2. Modulation of miR-134 expression. A, qRT-PCR analysis performed to compare the expressions of miR-134 between control and miR-134 up-regulated OSCC cells. 2 ΔΔCt represented fold change in miR-134 expression. OECM-1 and SAS were both OSCC cells. OSCC cells transfected by precursor-miR-134to up-regulate miR-134. Note the over-expression of miR-134after transfecting precursor-miR-134into OECM-1 and SAS OSCC cells. B, miR-134expression between control and miR-134down-regulated OSCC cells. The expression of miR-134 slightly decreased after transfecting antisense-miR-134 into OECM-1 and SAS OSCC cells. Data shown were mean ± SE from duplicate analysis. C, Redfluorescence in stable SAS OSCC cells infected with miR-134-RFP and RFP (ascontrol). D, qRT-PCR analysis of stable SAS OSCC cells. The result showed an increase in ectopic miR-134 expression in stable cells.A B CDFigure 3. Association between miR-134expression and oncogenic phenotypes in transient models.A, Proliferation assays performed after transfecting precursor-miR-134 and scramble (as control)into OECM-1 and SAS OSCC cells. Note the significant difference between precursor-miR-134 transfected OECM-1 (p = 0.0011) and SAS (p = 0.0176) OSCC cells and control. B, Proliferation assays performed after transfecting antisense- miR-134and scramble (as control) into OSCC cells. There were decreases in growth rate in antsense-miR-134transfected OSCC cells. C, Migration assays performed after transfecting precursor- and antisense-miR-134 into OECM-1 and SAS OSCC cells. Note the up-regulated miR-134 enhanced migration abilities in both OECM-1 (p < 0.0001) and SAS (p = 0.001) cells. D, Anchorage-independent colony formation assays of OECM-1 and SAS OSCC cells after transfecting precursor- and antisense- miR-134, respectively. Precursor-miR-134transfected OSCC cells showed larger and more colonies formed; antisense-miR-134transfected OSCC cells showed smaller and less colonies formed. Data shown were mean ± SE from duplicate or triplicate analysis. *, p< 0.1, **, p < 0.01; ***, p< 0.001. Two-Way ANOVA analysis or Mann-Whitney analysis.ABCFigure 4. Comparison of mutant-miR-134expression and oncogenic phenotypes with control groups.A, Proliferation assays performed after transfecting precursor-, mutant-miR-134, and scramble (as control) into OECM-1 and SAS OSCC cells. No statistical significant difference between mutant-miR-134 and control was noted. Precursor-miR-134was set as a positive control. B, Migration assays performed after transfecting precursor-, mutant-miR-134and scramble into OECM-1 and SAS OSCC cells. There was no significant differencebetween mutant-miR-134 transfected OSCC cells and control. Precursor-miR-134 was set as a poasitive control. C, Anchorage-independent colony formation assays of OECM-1 and SAS OSCC cells after transfecting precursor-, mutant-miR-134 and scramble into OSCC cells. There was no significant difference between mutant-miR-134 and control. Data shown were mean ± SE from duplicate or triplicate analysis. *, p< 0.1, **, p < 0.01; ***, p< 0.001. Two-Way ANOVA analysis or Mann-Whitney analysis.Figure 5. Association between miR-134expression and oncogenic phenotypes in stable clones.A, Proliferation assays performed after infecting miR-134-RFP and RFP (as control) via lentivirus into SAS OSCC cells. SAS-miR-134-RFP showed higher growth rate than control (p < 0.0001). B, Migration assays performed after infecting miR-134-RFP and RFP via lentivirus into SAS OSCC cells. SAS-miR-134-RFP showed higher migration ability than control. C, Anchorage-independent colony formation assays of SAS OSCC cells after infecting miR-134-RFP and RFP. SAS-miR-134-RFP showed larger and more colonies formed than control. D, qRT-PCR analysis of xenografts retrieved from nude mice. Xenografts from SAS-miR-134-RFP injected nude mice showed highermiR-134expression compared to control. Data shown were mean ± SE from duplicate or triplicate analysis. *, p< 0.1, **, p < 0.01; ***, p< 0.001. Two-Way ANOVA analysis or Mann-Whitney analysis.Figure 6. Radio-resistance assay of stable clone. The result of radio-resistance assay of SAS OSCC cell showed more colonies survived of SAS-miR-134-RFPafter 2 Grey and 8 Grey radiation exposures compared to SAS-RFP (as control).A BFigure 7. Possible pathways influencing miR-134 expression. A, qRT-PCR analysis performed to detect expressions of miR-134after transfecting NFĸB, HIF and AKT plasmids into SAS OSCC cells. miR-134expressions were found to be elevated after transfection. B, miR-134 expressions quantified by qRT-PCR after transfecting NFĸB, IĸB, and NFĸB with IĸB.Note the reduction of miR-134 expression after co-transfecting IĸB to inhibit NFĸB action.。