复变函数答案2答案

合集下载

复变函数论第三版课后习题答案 2

复变函数论第三版课后习题答案 2

第一章习题解答(一)1.设z =z 及Arcz 。

解:由于3i z e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=±。

2.设121z z =,试用指数形式表示12z z 及12z z 。

解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。

3.解二项方程440,(0)z a a +=>。

解:12444(),0,1,2,3k ii z a e aek πππ+====。

4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。

5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。

因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

y
v ex ( y cos y x sin y) ex (sin y) ex ( y cos y x sin y sin y) x
v ex (cos y y( sin y ) x cos y) ex (cos y y sin y x cos y ) y
所以 u
v ,
u
v
xy
y
x
所以 f( z)处处可导,处处解析 .
v
xy
y
x
所以 v xv,v源自xyv ,即 u u v v 0
y
xyxy
从而 v 为常数, u 为常数,即 f(z)为常数 .
(3) Ref (z)=常数 .
证明:因为 Ref(z)为常数,即 u=C1, u x
u0 y
因为 f( z)解析, C-R 条件成立。故 u x
u 0 即 u=C2 y
从而 f( z)为常数 .
而 lim u x, y x, y 0,0
x 3 y3
lim
x, y 0,0
x2
y2
欢迎下载
7


x3 x2
y3 y2
xy x y 1 x2 y2
∴ 0≤
x3 x2
y3 3 y2 ≤ 2 x
y
x3 y3

lim
x, y 0,0
x2
y2
0
同理
x3
lim
x, y 0,0
x2
y3 y2
0
∴ lim f z 0 f 0 x, y 0,0
证明:因为 f ( z) 0 ,所以 u x
u 0, v
y
x
v 0.
y
所以 u,v 为常数,于是 f(z)为常数 .

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

复变函数参考答案(1-8章)

复变函数参考答案(1-8章)

复变函数与积分变换同步练习参考答案中北大学复变函数教研室编印1复变函数同步练习第一章参考答案三、作业题1、(1)设23412i z i +⎛⎞=⎜⎟−⎝⎠,则z = 5 ,辐角主值为4arctan()3π−。

(2)设55(1)1(1)1i z i −−=++,则其实部为125−,虚部为3225−。

提示:本题注意到2(1)2i i −=−,2(1)2i i +=。

则52225222(1)1[(1)](1)1(2)(1)1132(1)1[(1)](1)1(2)(1)12525i i i i i z i i i i i i −−−−−−−−====−−+++++++ 。

(3)一复数对应的向量按逆时针方向旋转23π时对应的复数为1i +,则原复数为1122−+−+。

提示:本题相当于解23111(1)()(1)2222i z ei i i i π−−+−=+=−−+=+。

(4)设1z =2z i =−,则12z z 的指数式i122e π,12zz 的三角式为 155[cos sin 21212i ππ+。

(5)2122lim1z zz z z z →+−−=−32。

提示:211122(2)(1)23limlim lim 1(1)(1)12z z z zz z z z z z z z z z →→→+−−+−+===−−++。

(6)设复数z 满足arg(2)3z π+=,5arg(2)6z π−=,那么z=1−+。

提示:(利用复数的几何意义)向量2z −与向量2z +夹角为5632πππ−=,在复平面上,代表复数2z −、z 、2z +的点在平行于x 轴的直线上(由于此三点的虚轴没有发生变2化)。

连接0,2z +,2z −的三角形为Rt Δ。

因此推出向量2z =,2arg 3z π=,即1z =−+。

本题也可以利用代数法来做。

2、把复数πααα≤≤+−=0,sin cos 1i z 化为三角表示式与指数表示式,并求z 的辐角主值。

复变函数课后部分答案

复变函数课后部分答案

1 u v . 4
2 2
7.已知映射 z , 求:
3
2)区域0 arg z
解: 2)设z = re ,
3

3
在平面上的像。
i 3 3 3i
i
w (re ) r e ,

3 映成0 arg z .
映射 z 将区域0 arg z
8.下列函数何处可导?何处解析? 1 )f ( z) x2 yi; 3) f ( z) xy 2 ix 2 y;
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线)()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有0)()(lim )(0101001=--='→t t t z t z t z n n t t n此与假设矛盾.01001),(t t t t t >⇒+∈δ因为 [])()(a r g )()(a r g 010101t z t z t t t z t z -=-- 所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→ 3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z+-+-= ()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微.(2)在C 上处处不满足C R -条件. (3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-= 且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数.(4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Q x ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+=()s i n s i n c o sx y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有x c h y v x s h y v x s h y u x c h y u y x y x c o s ,s i n ,s i n ,c o s =-===故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且z x s h y i x c h y i v u z f x x c o s s i n c o s)(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有x c h y v x s h y v x s h y u x c h yu y x y x s i n ,c o s ,c o s ,s i n -=-==-= 故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且z x s h y i x c h yi v u z f x x s i n c o s s i n )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1c o s s i n s i n c o s r i u i u r θθθθθ=--+()()c o s s i n s i n c o s r r i u iv θθθθ=-++()()c o s s i n r r i u iv θθ=-+ ()()1c o s s i n r r r r ru i v u i v i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=--- (3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=-- 12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例 当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e e i ---+-=()112i i i e e -+++=c o s 11s i n 1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim0==-=→z z z z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)c o s ()c o s (c o s nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ib bn i ia ib b n i ia e e e e e e 111121)1()1(=)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=--(4) z z iz i iz cos )cos()cos()cosh(=-=⋅= (5) z i zzi iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+2121s h z s h z c h z c h z +=18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshy i xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( s h z e e e e c h z zz z z =-='+='--2)2()(20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z += (4)z z sin cos -=,即1tan -=z ,所以 ππk i i i z +-=+-=411ln 21(5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255izi e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦ 21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i e i w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i ieeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此1)()(4+-=-=R z f z f AB.26.证明:()f z =可能的支点为0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()a r g f z π=得()()arg c i f zi f i e π∆=()2a r g 1a r g3c c i z z e⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i eπ=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z zf z zz f z z z z+-+⋅==---()4242121Re m z I z i z z -+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z+-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim 0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i y v x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂所以x v y u y v x u ∂∂-=∂∂∂∂=∂∂,,得 0=∂∂zf5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y s h y Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+= 即 c h Rt ≤s i n 又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有(1) 10182)(,8)(arg ie c e i f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆ 2]0[21ππ-=-= 故 i z f 5)(-=.10.证明:因为()f z =的可能支点为0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f e π-==,i f 162)1(-=-''.。

复变函数—课后答案习题二解答

复变函数—课后答案习题二解答
⎞ ⎛ ∂ ⎞ ⎛ ∂ 2 | f (z ) |⎟ ⎜ | f (z ) | ⎟ + ⎜ ⎜ ⎟ =| f ' (z ) | ⎝ ∂x ⎠ ⎝ ∂y ⎠
2 2

| f (z ) |= u 2 + v 2 ,于是
2
∂ | f (z ) |= ∂x
u
∂u ∂v ∂v ∂u u +v +v ∂ ∂ y ∂ y ∂x , ∂x | f (z ) |= 2 2 2 2 ∂y u +v u +v
在 z 平面上处处连续,且在整个复平面 u,v 才满足 C-R 条件,故 f ( z ) = sin xchy + i cos xshy 在 z 平面处处可导,在 z 平面处处不解析。 3.指出下列函数 f ( z ) 的解析性区域,并求出其导数。 1) ( z − 1) ;
5
(2) z + 2iz ;
3

(1)若 f (z ) 恒取实值,则 v = 0 ,又根据 f (z ) 在区域 D 内解析,知 C-R 条件成立,于是
∂u ∂v ∂u ∂v =− = = 0, =0 ∂x ∂y ∂y ∂x
故 u 在区域 D 内为一常数,记 u = C (实常数 ) ,则 f ( z ) = u + iv = C 为一常数。 (2)若 f (z ) = u + iv = u − iv 在区域 D 内解析,则
2 2 ∂u ∂v ⎛ ∂v ⎞ ∂u ⎤ ⎛ ∂v ⎞ ⎛ ∂u ⎞ + 2uv⎜ − ⎟ ⎥ + v 2 ⎜ ⎟ + v 2 ⎜ ⎟ + 2uv ∂x ∂x ⎝ ∂x ⎠ ∂x ⎥ ⎝ ∂x ⎠ ⎝ ∂x ⎠ ⎦
= =

复变函数第二部分课后答案

复变函数第二部分课后答案

⎧ utt = a 2u xx (1 < x < 2, t > 0) ⎪ ⎪ u (0, t ) = u (l , t ) = 0(t ≥ 0) ⎪ (0 ≤ x ≤ 1) ⎧ hx ⎨ ⎪ u ( x, 0) = ⎨ h(2 − x) (1 ≤ x ≤ 2) ⎩ ⎪ ⎪ ⎩ut ( x, 0) = 0
1
2
解:其付氏解为:
∞ u (r ,θ ) = A0 + ∑ ( An cos nθ + B n sin nθ )r n 2 n =1

α sin ϕ An = 1 n ∫02π f (ϕ )cos nϕdϕ = 1 2π A cos nϕ dϕ = nA π −α π ∫0 πl 其中:
= 2 A sin nα nπ
u rr + r u r + r uθθ = 0 。
⎧ + 1u + 1 u =0 ⎪u rr r r r 2 θθ ⎪ ⎨ ⎧ A, θ < α , (− π ≤ θ ≤ π ) ⎪u (1,θ ) = ⎪ ⎨ ⎪ 0, θ ≥ α ⎪ ⎩ ⎩ 2、 求解狄利克雷问题 , 其中 A,α 为
已知常数。

0
2 ∞ − a 2 µ 2t e π ∫0
sin x π dx = x 2。 sin µ cos( µ x)d µ µ
u ( x, t ) = u (0, 0) =
2 sin µ e0 cos(0) d µ = 1 ∫ π µ ,
即:
2 ∞ sin µ dµ =1 π ∫0 µ
2 ∞ sin x ∫0 x dx = 1 令 x = µ ,则有: π ∞ sin x π dx = ∫ 0 x 2 得证。 即:

复变函数与积分第一章(2)答案

复变函数与积分第一章(2)答案

1、 指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通域还是多连通域? (1) 32<<z (2) 31<z (3) 313arg 4<<<<z z 且;
ππ (4) 21Im <>z z 且;
解:(1) 该区域是有界多连通域,为下图阴影部分。

(2)该区域是无界多连通域,为下图阴影部分。

( 3 ) 该区域是有界单连通域,为下图阴影部分。

(4)该区域是有界单连通域,为下图阴影部分。

2、 设
⎪⎩
⎪⎨⎧=≠+=,0,0,0,)(22z z y x y x z f 试证)(z f 在0=z 不连续。

证明: 若z 沿直线kx y =趋于0,则
()()()()()2
022220220,0,0,0,1lim lim lim lim k k x k x kx y x xy z f x x y x y x +=+=+=→→→→, 因该极限随k 的不同而不同,所以当()()0,0,→y x 时,()z f 的极限不存在。

而根据连续性的定义,只有当该极限存在并且极限值等于该函数在此处的函数值时,才认为函数在该点处连续,所以说)(z f 在0=z 不连续。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案之巴公井开创作1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 5. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥。

复变函数第二章答案

复变函数第二章答案

第二章第二章 解析函数解析函数1.用导数定义,求下列函数的导数:.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z D ®+D -D0()Re()Re lim z z z z z z zz D ®+D +D -=D 0Re Re Re limz z z z z z zz D ®D +D +D D =D0Re lim(ReRe )z zz z z z D ®D =+D +D00Re lim(Re )lim(Re ),z x y zx z z z z z x i y D ®D ®D ®D D =+=+D D +D当0z ¹时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =× 解: 22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =×=××=×=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x yu u v v 均连续,故2().f z z z =×仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az bc d cz d++至少有一不为零解: 当0c ¹时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点, 222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +¢¢=+¢¢++-++=++-+-==++ 当0c =时,显然有0d ¹,故()az b f z d +=在复平面上处处解析,且()a f z d ¢=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数; (4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件条件,,u v u v x y y x¶¶¶¶==-¶¶¶¶又()f z u iv =-也在D 中解析,也满足C R -条件条件()(),.u v u v x y y x¶¶-¶¶-==-¶¶¶¶ 从而应有0u u v v x y x y¶¶¶¶====¶¶¶¶恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u uu x y u u u yx ¶¶ì=ﶶïí¶¶ï=-ﶶî 则可推出0u u x y¶¶==¶¶,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u =,从而22(/)(/)0,0,1(/)1(/)v u v u yx v u v u ¶¶¶¶==++计算得计算得2222()/0v uu u v u xxu v ¶¶-¶¶=+,2222()/0,v uu u v u yy u v ¶¶-¶¶=+化简,利用C R -条件得条件得0,0.uu u v yx u u u v xy ¶¶ì--=ﶶïí¶¶ï-=ﶶî 所以0,u u x y ¶¶==¶¶同理0,v vx y ¶¶==¶¶即在D 中,u v 为常数,故()f z 在D 中为常数. (4) 法一:设0,a ¹则()/,u c bv a =-求导得求导得,,u b v u b v xa x ya y ¶¶¶¶=-=-¶¶¶¶由C R -条件条件,,u b u v b vx a y x a y ¶¶¶¶==¶¶¶¶ 故,u v 必为常数,即()f z 在D 中为常数. 设0,0,0a b c =¹¹则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数. 法二:等式两边对,x y 求偏导得:00x x y y au bv au bv +=ìí+=î,由C R -条件,我们有条件,我们有0,00x y x x y y au bu u a b bu au u b a -=-ìæöæö=íç÷ç÷+=èøîèø即, 而220a b+¹,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z xy¶¶¢+=¶¶证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().uuu u f z i f z x yx y ¶¶¶¶¢¢=-=+¶¶¶¶ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v xyx y u u v v u u v vu v u v x x x x y y y y ¶¶¶¶+=+++¶¶¶¶éù¶¶¶¶¶¶¶¶=+++++++êú¶¶¶¶¶¶¶¶ëû又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v v u v xyx y¶¶¶¶=+==+=¶¶¶¶则22222222()|()|4(()())4|()|.u u f z f z x yxy¶¶¶¶¢+=+=¶¶¶¶6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y ¶¶==+-¶¶所以所以 22(363)v x xy y dy =+-ò22333(),x y xy y x j =+-+又222263(),363,()3,v u xy y x x xy y x x xxj j ¶¶¢¢=++=--=-¶¶而所以 则3()x x C j =-+.故2222222233332222222233()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ciz i x y xyi iz i Cii z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---×-+=---+=-+ (2) 23;v xy x =+解: 因23,2,v v y x xy¶¶=+=¶¶由()f z 解析,有22,2().u v x u xdx x y x yf ¶¶====+¶¶ò又23,u v y y x ¶¶=-=--¶¶而(),u y y f ¶¢=¶所以()23,y y f ¢=--则2()3.y y y C f =--+故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=-解: 因2,2(1),u u y x x y ¶¶==-¶¶由()f z 的解析性,有2(1),v ux x y ¶¶=-=--¶¶22(1)(1)(),v x d x x y f =--=--+ò 又2,v uy y x ¶¶==¶¶而(),v y yf ¶¢=¶所以2()2,(),y y y y C f f ¢==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,pxv e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+解: 要使(,)v x y 为调和函数,则有0.xx yyv v v D =+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.xy y x uv u v ==-1(,)cos cos (),1sin ()sin .pxpx x px px y u x y u dx e ydx e y y pu e y y pe y pf f ===+¢=-+=-òò()3i 33)i 3p),i p p p.22ee e e ==c t 3(1)l n 2(2)4l n22l n 2244ln 224cos(ln 2)sin(ln 2).44i i k k i k k ee ei p p p p p p pp p p éù++-+êúëûéù+-++-êúëû+-==éù=-+-êúëû(4) 33;i- 解: 3(3)ln3(3)(ln32)3ii i k i eep---+==(3)l n 323l n 32227(c o s l n3s i n l n 3).i k k i ik ee eee i p p p-+-=×=×=-。

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C )A (ac+bd, a )B (ac-bd, b)C (ac-bd, ac+bd )D (ac+bd, bc-ad)2、若R>0,则N (∞,R )={ z :(D )}A |z|<RB 0<|z|<RC R<|z|<+∞D |z|>R3、若z=x+iy, 则y=(D) A B C D4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2二、填空题1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy )2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。

2zz +2z z -izz 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。

三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。

解:Re(-1-i)=-1 Im(-1-i)=-1|-1-i|=2、写出复数-i 的三角式。

解:3、写出复数 的代数式。

解:4、求根式的值。

+∞→n lim +∞→n lim ππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明若 ,则a 2+b 2=1。

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案
(3) .
解:f(z)除 外处处可导,且 .
(4) .
解:因为
.所以f(z)除z=0外处处可导,且 .
6.试判断下列函数的可导性与解析性.
(1) ;
解: 在全平面上可微.
所以要使得
, ,
只有当z=0时,
从而f(z)在z=0处可导,在全平面上不解析.
(2) .
解: 在全平面上可微.
只有当z=0时,即(0,0)处有 , .
它们分别为

∴满足C-R条件.
(3)当z沿y=x趋向于零时,有
∴ 不存在.即f(z)在z=0处不可导.
11.设区域D位于上半平面,D1是D关于x轴的对称区域,若f(z)在区域D内解析,求证 在区域D1内解析.
证明:设f(z)=u(x,y)+iv(x,y),因为f(z)在区域D内解析.
所以u(x,y),v(x,y)在D内可微且满足C-R方程,即 .
15.计算下列各值.
(1)
(2)
(3)ln(ei)=ln1+iarg(ei)=ln1+i=i
(4)
16.试讨论函数f(z)=|z|+lnz的连续性与可导性.
解:显然g(z)=|z|在复平面上连续,lnz除负实轴及原点外处处连续.
设z=x+iy,
在复平面内可微.
故g(z)=|z|在复平面上处处不可导.
所以f(z)在z=0处可导,在全平面上不解析.
(3) ;
解: 在全平面上可微.
所以只有当 时,才满足C-R方程.
从而f(z)在 处可导,在全平面不解析.
(4) .
解:设 ,则
所以只有当z=0时才满足C-R方程.
从而f(z)在z=0处可导,处处不解析.

复变函数与积分变换答案-第2章解析函数

复变函数与积分变换答案-第2章解析函数

11 27、第二章 解析函数习题详解1、(1) f 1(z )= z 4在定义域(-,+) 内连续;2) f 2(z ) =4z +5在定义域(-,+)内连续; 1在定义域-, 3,3, +内连续。

- 4, v = 16u + 64, 为一抛物线。

4、(1)w = z 3,则w = (2i )3= -8i , w =( 2+2i )3=2 2+12i -12 2-8i =-10 2+4i ;5、 f (z )=Re z =x ,当 y →0时, f (z )→1;当x →0时, f (z )→0,因为极限不等, z x + iy 所以当z →0时, f (z )极限不存在。

1在原点处不连续,故 w =i arg z +1 在负实轴上与原点 zz3) f 3 (z )= 22、w = z2u =x 2-y 2v = 2 xy u =x 2 -4,把直线C :y =2映射成:u =x -4v = 4 xvx = ,代入第一个式子,4u =3、1zw = = = z zzx - iy22,x + yv =x 22 x + y-y 22 x + y把直线C :x =1映射成,:vu =v =1 1+y 2-y 1+y 21-u u 2u= (1- u ) u v 2 + u 22)w = z 3,像域为0arg w 26、i arg z 在负实轴上与原点处不连续, 处不连续。

f (z +z )- f (z )z →0z= limz →0(z +z )2zy 2 = 1 -1 = u为一个圆周。

uz 2-(z +z )2z 2(z +z )2z 2 -z 2 -2z z -z 22= lim = lim = - 。

z →0 z z →0z 2(z +z )2zz 38、(1) f (z ) =5-3z +5z 2,在(-,+)内解析,且导数为 f (z ) = -3+10z ;12、(1) z =e 1-2i =ecos -i sin=-ei ;1222) f (z )=1 1 1z 4 -1 (z 2 -1)(z 2 +1) (z -1)(z +1)(z +i )(z -i )在(-,+)内除z =1,5z +431 1 5 3) f (z )= z +4,在(-,+)内除z = - 3外解析, f (z )=1+ 2 =1+ 52z + 32 2 2z +32 2(2z +3)且导数为: f(z )= 1(2z +3)-2(-2)=-5 (2z +3)29、(1) f (z )=Im z = y 在z 平面上的点点不可导,不解析(因柯西-黎曼条件不满足);2) f (z )= z 4 ,在平面上的点解析。

复变函数与积分变换 第二章课后答案

复变函数与积分变换 第二章课后答案

e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)

C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得

求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,

C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,

(含答案)复变函数与积分变换习题解析2

(含答案)复变函数与积分变换习题解析2

习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明. (1)如果()f z 在0z 连续,那么0()f z '存在. (2)如果0()f z '存在,那么)(z f 在0z 解析. (3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导. (4) 如果0z 是()f z和()g z 的一个奇点,那么0z 也是()()f z g z +和()()f z g z ⋅的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应用导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导. 习题2.21. 设试证)(z f 在原点满足柯西-黎曼方程,但却不可导.(提示:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=; (2)i y x y x z f 22332)(+-=; (3)=)(z f232z z -+; (4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=; (4 4. (1)iz z z f 2)(3+=; (25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--; (2 (0)z ≠; (3)1(33)x iy ω-=-; (4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+. (1)2(1)u x y =-; (2)3223u x x xy =-+;(3)323u x xy =-; (4)23v xy x =+;(5)x y x v 222+-=; (62. 求k 值使22ky x u +=为调和函数,并求满足1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是一个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满足下列条件之一,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ; (7)i 3; (8)i i )1(+;(9)1(34)i i ++; (10))1sin(i +;(11)cos(5)i π+; (12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ; (3(4 (55.证明:(1)122=-z sh z ch ; (2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复 习 题 二一、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B一、单项选择题1. ). D.z sin2. 下列说法正确的是( ).A.函数的连续点一定不是奇点B.可微的点一定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内无奇点D.不存在处处不可导的函数3. 下列说法错误的是( ). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是( ).A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满足C-R 方程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是( ).A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是( ).7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是( ). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数( ). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是( ).A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是( ).A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是( ). A. )(z f 在复平面上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是( ).A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==二、填空题 在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivuzf+=)(.(1)xu=;(2)xyu=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22yxvu-=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数),(yxu和),(yxv都具有二阶连续偏导数,且满足拉普拉斯方程,现令xyvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第二章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)Re()(zzf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导, (44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(; (2)ci z z z f +-=32)(; (3)=)(z f 3z ci +; (4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2; (62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈; ((5(6(7)3ln 2i k e e π-)(Zk ∈; (9 ( (2.(1 (23.(1)正确; (2)正确; (3)正确.复习题二二、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0( ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平面内处处不可导,处处不解析;(2)在0=z 处可导,但在复平面内处处不解析,0)0(='f ;(3)在复平面内处处不可导,处处不解析;6.(1)4e -; (2))4sin 4(cos 3i e +; (3(4(6 (7。

复变函数试题1-3答案

复变函数试题1-3答案

1-3参考答案试题一一 1.11)),22i -++ 2.526632,2,2ii i e e eπππ 3.2exp(2)2z π+ 4. 1ln 2(2)22e e i k k ππ-+++为整数 5. 2(1)i e π+6.27.21(2)(1)(21)!n nn z n +∞=-+∑ 823Re()09s s >+ 二.1-5 D A A C D三.1. 解:由于=1z ,=2z i ,均位于圆周内,由柯西积分公式得23431212C C Cdz dz dz z z i z z i ⎛⎫+=+ ⎪--++⎝⎭⎰⎰⎰ 224212i i i πππ=⨯+⨯=注:其他解法正确也应给分2. 解: ()f z 在C 所围成的区域内有121,1z z ==-两个孤立奇点,2211213211Re [(),1]lim(1),Re [(),1]lim(1)1212z z z z s f z z s f z z z z →→-++=-=-=+=--,2' 所以由留数定理,原式()2Re [(),1]Re [(),1]224i s f z s f z i i πππ=⋅+-=⨯=.注:其他解法正确也应给分 3. 解:11sin cos z zdz z d z ⋅=-⎰⎰111000cos |cos cos1sin |z z z zdz z =⎡⎤⎡⎤=--=--⎣⎦⎢⎥⎣⎦⎰sin1cos1.=-四.1. 解:因为22u x axy by =++,22v cx dxy y =++2,2,2,2u u vvx a y a x b y c x d y d x yx y x y∂∂∂∂=+=+=+=+∂∂∂∂ 要使,u v u v x y y x∂∂∂∂==-∂∂∂∂ 只需22,22x ay dx y ax by cx dy +=++=-- 得到2,1,1,2a b c d ==-=-=2. 解:23231,2!3!!(1)1,2!3!!nzn zn z z z e z n z z e z z n -=++++++-=-+-+++ 3521()23!5!(21)!z z n n e e z z z f z z n -+∞=-∴==+++=+∑收敛半径.R =+∞3. 解:011z <-<时,()21111()()(1)(1)22f z z z z z '=⋅=⋅----- 因为()()0111121111nn z z z z ∞===-=----+---∑所以()111()12n n n z z ∞-='=---∑所以 ()()12111()111n n n n f z n z n z z ∞∞--===-=--∑∑ 当 021z <-<时,220111()(1)(2)(2)12(2)n n n f z z z z z ∞==⋅=⋅---+--∑ 2(1)(2)nn n z ∞-==--∑4. 22(2)()(sin )z z f z z π-=sin()0z z k πππ=⇒=,故()f z 的奇点为,0,1,2,z k k ==±± ---------当()(),sin |0,sin |0z k z k z k z z ππ=='==≠,z k ∴=是sin()z π的一级零点, 是2(sin())z π的二级零点 ------------------又由于12z =,是(1)(2)z z --的一级零点 所以12z =,是()f z 的一级极点,-------当,1,2z k z =≠时,k 是()f z 的二级极点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、判断题(30分):
四 川 大 学 高 等 教 育 自 学 考 试
(2012 年 上 半年)
电子工程专 业
试 卷(B)
一、判断(20分)
1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )
2. cos z 与sin z 在复平面内有界. ( )
3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )
4. 有界整函数必为常数. ( )
5. 如z 0是函数f (z )的本性奇点,则)(lim 0
z f z z →一定不存在. ( )
1. 若()f z 在区域D 内解析,则对D 内任一简单闭曲线C 都有()0C
f z dz =⎰.( )
2. 若()0()f z z D '≠∀∈,则函数()f z 在是D 内的单叶函数.( )
3. 若0z 是()f z 的m 阶零点,则0z 是
1()
f z 的m 阶极点.( )
4. 如果函数()f z 在{}:1D z z =≤上解析,且()1(1)f z z ≤=,则()1(1)f z z ≤≤.( )
5.
sin 1()z z C ≤∀∈.( )
二、填空题(20分) 1. 若21(1)1n
n n z i n
n
+=
++-,则lim n z =___________.
2. 设2
1
()1
f z z =
+,则()f z 的定义域为____________________________.
3. 函数sin z 的周期为_______________________.
4.
2
2
sin cos z z +=_______________________.
5. 幂级数0
n
n nz +∞
=∑的收敛半径为________________.
6. 函数e z 的周期为__________.
7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设2
11)(z
z f +=
,则)(z f 的孤立奇点有_________.
9. 函数||)(z z f =的不解析点之集为________. 10. ____)1,1(
Res 4
=-z
z .
三、计算题(40分) 1、2lim 6n
n i →∞
-⎛⎫
⎪⎝⎭
. 2、设2
()1
z
e
f z z =
+,求Re ((),)s f z i .
3、求复数11
z w z -=+的实部与虚部.
4、求3
i
e
π
-
的值.
四、证明题(20分)
1、 方程7639610z z z ++-=在单位圆内的根的个数为6.
2、 若函数()(,)(,)f z u x y iv x y =+在区域D 内解析,(,)v x y 等于常数,则()f z 在D 恒等于常数.
(试 卷 用 纸) ______________地市州______________县市区 姓名______________准考证号□□□□□□□□□□□□座位号___________
----------------------------------------------------------密------------------------------------------封-----------------------------------------线------------------------------------------------------------
答 题 不 要 过 此 线

页(共
页)
.一、判断题:1.√2.×3.√4.√5.× 6.√ 7.× 8.√ 9.√ 10.×
二、填空题:1.1ei
-+ 2. 1
z≠± 3. 2π 4. 1 5. 1
6. 2k iπ,()
k z
∈. 7. 0;8. i±;9. R;10. 0.
三、计算题:
1.解:因为
2
1,
66
i
-
==<

2
lim()0
6
n
n
i
→∞
-
=.
2.解:2
11
()
12
z z
e e
z z i z i
=⋅+
++-
Re((),).
2
i
e
s f z i
∴=
4.解:设z x iy
=+, 则
22
22
11(1)2
11(1)
z x iy x y yi
w
z z iy x y
--++-+
===
+++++
.
22
2222
12
R e,Im.
(1)(1)
x y y
w w
x y x y
+-
∴==
++++
5.解:3
1
cos()sin()(1).
332
i
e i
πππ
-
=-+-=-
四、1. 证明:设673
()9,()61,
f z z z z z
ϕ
==+-
则在1
z=上,()9,()1618,
f z z
ϕ
=≤++=即有()()
f z z
ϕ
>.
根据儒歇定理,()
f z与()()
f z z
ϕ
+在单位圆内有相同个数的零点,而()
f z的零点个数为6,故
763
9610
z z z
++-=在单位圆内的根的个数为6.
2.证明:设(,)
v x y a bi
=+,则0
x y
v v
==, 由于()
f z u iv
=+在内D解析,因此(,)
x y D
∀∈有
x y
u v
==, 0
y x
u v
=-=.
于是(,)
u x y c di
≡+故()()()
f z a c b d i
=+++,即()
f z在内D恒为常数.
.
第页(共页)。

相关文档
最新文档