2009年数学中考考卷——山东省
2009山东省青岛市中考数学试题
二○○九年山东省青岛市初级中学学业水平考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1-8题为选择题.请将所选答案的标号填写在第8题后面给出表格的相应位置上;9-14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15-24题请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列四个数中,其相反数是正整数的是( ) A .3B .13C .2-D .12-2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )3.在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图形的有( ) A .1种 B .2种 C .3种 D .4种4.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( )A .12B .13 C .14 D .165.如图所示,数轴上点P 所表示的可能是( )AB .10CD6.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ) A .0.4米 B .0.5米 C .0.8米 D .1米第2题图A .B . C. D .第5题图7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8Ω C .不小于14Ω D .不大于14Ω8.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是( )A.5030), B.(3050), C. D.(30,二、填空题(本题满分18分,共有6道小题,每小题3分)请将9-14各小题的答案填写在第14小题后面给出表格的相应位置上9.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为 公里.10.在第29届奥林匹克运动会上,青岛姑娘张娟娟为中国代表团夺得了历史上首枚奥运会张娟娟这次训练成绩的中位数是 环,众数是环.11.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,42ACD ∠=°,则BAD ∠=°. 12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 .13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .R /Ω 第7题图 x 第8题图 A 第11题图 C ' B ' 第13题图 B A 6cm3cm 1cm第14题图三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.为美化校园,学校准备在如图所示的三角形(ABC △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛. 解:结论:四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)化简:2211x x x x +-÷ (2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤17.(本小题满分6分)某中学为了解该校学生的课余活动情况,采用抽样调查的方式,从运动、娱乐、阅读和其他四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.根据图中提供的信息解答下列问题: (1)补全人数统计图;(2)若该校共有1500名学生,请你估计该校在课余时间喜欢阅读的人数;(3)结合上述信息,谈谈你对该校学生课余活动的意见和建议(字数不超过30字).AB C人数统计图 阅读 其他 娱乐 运动 40%分布统计图在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.19.(本小题满分6分) 在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)20.(本小题满分8分) 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)CG E D B A F第19题图第18题图已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示. (1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?23.(本小题满分10分)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n (n ≥9)个小正方形? 为解决上面问题,我们先来研究两种简单的“基本分割法”.A D G CB F E 第21题图y 2基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n (n ≥9)个小正方形.(1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459+=(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成639+=(个)小正方形. (2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加32⨯个小正方形,从而分割成43210+⨯=(个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n (n ≥9)个小正方形. 方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n (n ≥9)个小正方形. 从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n (n ≥9)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n (n ≥9)个小正三角形. (1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a 中画出草图). (2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b 中画出草图). (3)分别把图c 、图d 和图e 中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)请你写出把一个正三角形分割成n (n ≥9)个小正三角形的分割方法(只写出分割方法,不用画图).图① 图② 图③ 图④ 图⑤ 图⑥图a图b图c图d图e24.(本小题满分12分)如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题:(1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.F 第24题图二○○九年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分.但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心; ············································································ 2分确定半径; ······················································································································ 3分 正确画出图并写出结论. ······························································································· 4分 四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分)(1)解:原式21(1)(1)x x x x x +=+-1xx =-. ········································································································ 4分 (2)322131722x x x x ->+⎧⎪⎨--⎪⎩①≤② 解:解不等式①得 2x >, 解不等式②得 4x ≤.所以原不等式组的解集为24x <≤. ·········································································· 4分 17.(本小题满分6分) 解:(1)正确补全统计图; ··································································································· 2分(2)300人. ························································································································· 4分 (3)合理即可. ···················································································································· 6分 18.(本小题满分6分)解:13580502016.5202020⨯+⨯+⨯=(元), ·································································· 4分 ∵16.55>元元∴选择转转盘对顾客更合算. ······························································································· 6分 19.(本小题满分6分)解:由题意知CD AD ⊥,EF AD ∥,∴90CEF ∠=°,设CE x =, 在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE ∠=,则4tan tan 373CE x GE x CGE ===∠°; ······················ 4分∵EF FG EG =+, ∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米).答:古塔的高度约是39米. ································································································· 6分 20.(本小题满分8分) 解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102x x-=, ········································································································· 3分 解这个方程,得200x =.经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以商场两次共购进这种运动服600套. ············································································ 5分 (2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套运动服的售价至少是200元. ················································································ 8分 21.(本小题满分8分) 证明:(1)∵四边形ABCD 是平行四边形, ∴AB CD =.∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成. ∴CG AD ⊥.∴90AEB CGD ∠=∠=°.CGEDB AF 第19题图∵AE CG =,∴Rt Rt ABE CDG △≌△. ∴BE DG =. ······················································································································· 4分(2)当32BC AB =时,四边形ABFC 是菱形. ∵AB GF ∥,AG BF ∥, ∴四边形ABFG 是平行四边形.∵Rt ABE △中,60B ∠=°, ∴30BAE ∠=°,∴12BE AB =.∵32BE CF BC AB ==,,∴12EF AB =.∴AB BF =.∴四边形ABFG 是菱形. ····································································································· 8分22.(本小题满分10分) 解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩ ························································································································ 4分(2)12y y y =- 23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++; ································································································ 6分 (3)21316822y x x =-++2111(1236)46822x x =--+++21(6)118x =--+ ∵108a =-<,A DG C B FE 第21题图∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. ···································· 9分 最大利润211(46)111082=--+=(元). ········································································ 10分 23.(本小满分10分)解:把一个正方形分割成11个小正方形:···················································································· 2分 把一个正三角形分割成4个小正三角形:···················································································· 3分 把一个正三角形分割成6个小正三角形:················································································ 5分 把一个正三角形分割成9个、10个和11个小正三角形:······················································ 8分 把一个正三角形分割成n (9n ≥)个小正三角形的分割方法:通过“基本分割法1”、“基本分割法2”或其组合,把一个正三角形分割成9个、10个和11个小正三角形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正三角形,从而把一个正三角形分割成12个、13个、14个小正三角形,依次类推,即可把一个正三角形分割成n (9n ≥)个小正三角形. ···························································································································· 10分24.(本小题满分12分)解:(1)∵PE AB ∥ ∴DE DP DA DB=. 而10DE t DP t ==-,, ∴10610t t -=, ∴154t =. ∴当15(s)4t PE AB =,∥. ··························· 2分图⑥图a图b图c 图e图dF(2)∵EF 平行且等于CD ,∴四边形CDEF 是平行四边形.∴DEQ C DQE BDC ∠=∠∠=∠,.∵10BC BD ==,∴DEQ C DQE BDC ∠=∠=∠=∠.∴DEQ BCD △∽△. ∴DE EQ BC CD=. 104t EQ =. ∴25EQ t =. 过B 作BM CD ⊥,交CD 于M ,过P 作PN EF ⊥,交EF 于N .BM ==∵ED DQ BP t ===,∴102PQ t =-.又PNQ BMD △∽△,PQ PN BD BM=, 10210t -=15t PN ⎫=-⎪⎭211212255PEQ t S EQ PN t ⎫==⨯⨯-=⎪⎭△. ···································· 6分(3)11422BCD S CD BM ==⨯⨯=△ 若225PEQ BCD S S =△△,则有2225=⨯, 解得1214t t ==,. ··············································································································· 9分(4)在PDE △和FBP △中,10DE BP t PD BF t PDE FBP PDE FBP ==⎫⎪==-⇒⎬⎪∠=∠⎭,,△≌△,∴PDE PFCDE PFCD S S S =+△五边形四边形FBP PFCD S S =+△四边形BCD S ==△∴在运动过程中,五边形PFCDE 的面积不变. ······························································· 12分。
2009年青岛市中考数学试题及答案
★★★★★二○○九年山东省青岛市初级中学学业水平考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1-8题为选择题.请将所选答案的标号填写在第8题后面给出表格的相应位置上;9-14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15-24题请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列四个数中,其相反数是正整数的是( ) A .3B .13C .2-D .12-2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )3.在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图形的有( ) A .1种 B .2种 C .3种 D .4种4.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( )A .12B .13 C .14 D .165.如图所示,数轴上点P 所表示的可能是( )AB .10CD6.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )第2题图A .B . C. D .第5题图A .0.4米B .0.5米C .0.8米D .1米7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8Ω C .不小于14Ω D .不大于14Ω8.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是( )A.5030),B.(3050), C. D.(30, 二、填空题(本题满分18分,共有6道小题,每小题3分)请将9-14各小题的答案填写在第14小题后面给出表格的相应位置上9.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为 公里.10.在第29届奥林匹克运动会上,青岛姑娘张娟娟为中国代表团夺得了历史上首枚奥运会射箭金牌,为祖国争得了荣誉.下表记录了她在备战奥运会期间的一次训练成绩(单位:环):根据表中的数据可得:张娟娟这次训练成绩的中位数是环,众数是 环. 11.如图,AB 为O ⊙的直径,CD为O ⊙的弦,42ACD∠=°,则BAD ∠=°. 12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 .13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4R /Ω 第7题图 x 第8题图 A 第11题图 C ' B ' 第13题图 B A 6cm 3cm 1cm第14题图个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm . 三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.为美化校园,学校准备在如图所示的三角形(ABC △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛. 解:结论:四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)化简:2211x x x x +-÷ (2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤17.(本小题满分6分)某中学为了解该校学生的课余活动情况,采用抽样调查的方式,从运动、娱乐、阅读和其他四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.根据图中提供的信息解答下列问题: (1)补全人数统计图;(2)若该校共有1500名学生,请你估计该校在课余时间喜欢阅读的人数;(3)结合上述信息,谈谈你对该校学生课余活动的意见和建议(字数不超过30字).AB C人数统计图 阅读 其他 娱乐 运动 40%分布统计图18.(本小题满分6分)在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.19.(本小题满分6分) 在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)20.(本小题满分8分) 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)CG E D B A F第19题图红 黄黄 绿绿绿 绿黄绿第18题图21.(本小题满分8分)已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?23.(本小题满分10分)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n (n ≥9)个小正方形?A D G CB F E 第21题图y 2为解决上面问题,我们先来研究两种简单的“基本分割法”.基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n (n ≥9)个小正方形.(1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459+=(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成639+=(个)小正方形. (2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加32⨯个小正方形,从而分割成43210+⨯=(个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n (n ≥9)个小正方形. 方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n (n ≥9)个小正方形. 从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n (n ≥9)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n (n ≥9)个小正三角形. (1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a 中画出草图). (2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b 中画出草图). (3)分别把图c 、图d 和图e 中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)请你写出把一个正三角形分割成n (n ≥9)个小正三角形的分割方法(只写出分割方法,不用画图).图① 图② 图③ 图④ 图⑤ 图⑥图a图b图c图d图e24.(本小题满分12分)如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题:(1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.第24题图二○○九年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分.但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分24分,共有8道小题,每小题3分)15.正确画出两条角平分线,确定圆心; ···························································· 2分确定半径;······························································································ 3分 正确画出图并写出结论. ··········································································· 4分 四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分)(1)解:原式21(1)(1)x x x x x +=+-1xx =-. ·················································································· 4分 (2)322131722x x x x ->+⎧⎪⎨--⎪⎩①≤② 解:解不等式①得 2x >, 解不等式②得 4x ≤.所以原不等式组的解集为24x <≤. ·························································· 4分 17.(本小题满分6分)解:(1)正确补全统计图; ·············································································· 2分 (2)300人. ································································································ 4分 (3)合理即可. ···························································································· 6分 18.(本小题满分6分)解:13580502016.5202020⨯+⨯+⨯=(元), ···················································· 4分 ∵16.55>元元∴选择转转盘对顾客更合算. ··········································································· 6分 19.(本小题满分6分)解:由题意知CD AD ⊥,EF AD ∥,∴90CEF ∠=°,设CE x =, 在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE ∠=, 则4tan tan 373CE x GE x CGE ===∠°; ················· 4分 ∵EF FG EG =+, ∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米). 答:古塔的高度约是39米. ············································································· 6分 20.(本小题满分8分) 解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102x x-=, ··················································································· 3分 解这个方程,得200x =.经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以商场两次共购进这种运动服600套. ···························································· 5分 (2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套运动服的售价至少是200元. ······························································· 8分 21.(本小题满分8分) 证明:(1)∵四边形ABCD 是平行四边形, ∴AB CD =.∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成. ∴CG AD ⊥.CGEDB AF 第19题图∴90AEB CGD ∠=∠=°. ∵AE CG =,∴Rt Rt ABE CDG △≌△. ∴BE DG =. ······························································································ 4分(2)当32BC AB =时,四边形ABFC 是菱形. ∵AB GF ∥,AG BF ∥, ∴四边形ABFG 是平行四边形.∵Rt ABE △中,60B ∠=°, ∴30BAE ∠=°,∴12BE AB =.∵32BE CF BC AB ==,,∴12EF AB =.∴AB BF =.∴四边形ABFG 是菱形. ················································································ 8分22.(本小题满分10分) 解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩ ······························································································· 4分(2)12y y y =- 23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭ 21316822x x =-++; ············································································ 6分 (3)21316822y x x =-++2111(1236)46822x x =--+++21(6)118x =--+A DG C B FE 第21题图∵108a =-<, ∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. ···························· 9分 最大利润211(46)111082=--+=(元). ························································ 10分 23.(本小满分10分)解:把一个正方形分割成11个小正方形:·································································· 2分 把一个正三角形分割成4个小正三角形:·································································· 3分 把一个正三角形分割成6个小正三角形:······························································· 5分 把一个正三角形分割成9个、10个和11个小正三角形:·········································· 8分 把一个正三角形分割成n (9n ≥)个小正三角形的分割方法:通过“基本分割法1”、“基本分割法2”或其组合,把一个正三角形分割成9个、10个和11个小正三角形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正三角形,从而把一个正三角形分割成12个、13个、14个小正三角形,依次类推,即可把一个正三角形分割成n (9n ≥)个小正三角形. ·································································································· 10分24.(本小题满分12分)解:(1)∵PE AB ∥ ∴DE DP DA DB=. 而10DE t DP t ==-,, ∴10610t t -=, ∴154t =.图⑥图a图b图c 图e图dF∴当15(s)4t PE AB =,∥. ···················· 2分 (2)∵EF 平行且等于CD ,∴四边形CDEF 是平行四边形. ∴DEQ C DQE BDC ∠=∠∠=∠,.∵10BC BD ==,∴DEQ C DQE BDC ∠=∠=∠=∠.∴DEQ BCD △∽△. ∴DE EQ BC CD=. 104t EQ =. ∴25EQ t =. 过B 作BM CD ⊥,交CD 于M ,过P 作PN EF ⊥,交EF 于N .BM ====.∵ED DQ BP t ===,∴102PQ t =-.又PNQ BMD △∽△,PQ PN BD BM=, 10210t -=,15t PN ⎫=-⎪⎭211212255255PEQ t S EQ PN t ⎫==⨯⨯-=-+⎪⎭△. ···························· 6分(3)11422BCD S CD BM ==⨯⨯=△ 若225PEQ BCD S S =△△,则有2225525-+=⨯,解得1214t t ==,. ······················································································· 9分(4)在PDE △和FBP △中,10DE BP t PD BF t PDE FBP PDE FBP ==⎫⎪==-⇒⎬⎪∠=∠⎭,,△≌△,∴PDE PFCDE PFCD S S S =+△五边形四边形FBP PFCD S S =+△四边形BCD S ==△.∴在运动过程中,五边形PFCDE 的面积不变. ················································· 12分。
(完整word版)2009年临沂市中考数学试题及答案
2009年临沂市中考数学试题一、选择题(本大题共14小题,每小题3分,共42分). 1.9-的相反数是( )A .19B .19-C .9-D .92.某种流感病毒的直径是0.00000008m ,这个数据用科学记数法表示为( ) A .6810m -⨯B .5810m -⨯C .8810m -⨯D .4810m -⨯3.下列各式计算正确的是( ) A .34x x x +=B .2510·x x x =C .428()x x =D .224(0)x x x x +=≠4.下列图形中,由AB CD ∥,能得到12∠=∠的是( )5的结果是( ) A .1B .1-CD6.化简22422b a a b b a+--的结果是( )A .2a b --B .2b a -C .2a b -D .2b a +7.已知1O ⊙和2O ⊙相切,1O ⊙的直径为9C m ,2O ⊙的直径为4cm .则12O O 的长是( )A .5cm 或13cmB .2.5cmC .6.5cmD .2.5cm 或6.5cm8.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP9.对于数据:80,88,85,85,83,83,84.下列说法中错误的有( ) A .这组数据的平均数是84 B .这组数据的众数是85 C .这组数据的中位数是84 D .这组数据的方差是36 A .1个 B .2个 C .3个 D .4个 10.若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y> 11.如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC BD ⊥于点O ,AE BC DF BC ⊥⊥,,垂足分别为E 、F ,设AD =a ,BC =b ,则四边形AEFD的周长是( ) A .3a b +B .2()a b +C .2b a +D .4a b +12.如图是一个包装盒的三视图,则这个包装盒的体积是( )A CB D 1 2 AC BD 1 2 A . B . 1 2 A C D C . B CA D .12 DC ABE FO(第11题图)O(第8题图)BAPA .3192πcmB .31152πcmC.3 D.313.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( )A .13B .14 C .16 D .11214.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( )二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上. 15.分解因式:22x xy xy -+=_________________.16.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,.则这种药品的成本的年平均下降率为______________. 17.若一个圆锥的底面积是侧面积的13,则该圆锥侧面展开图的圆心角度数是____ _度. 18.如图,在菱形ABCD 中,72ADC ∠=o,AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连接CP ,则CPB ∠=______度.19.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是_______.三、开动脑筋,你一定能做对!(本大题共3小题,共20分) 20.(本小题满分6分)解不等式组3(21)2102(1)3(1)x x x ---⎧⎨-+-<-⎩≥,并把解集在数轴上表示出来.21.(本小题满分7分)为了了解全校1800名学生对学校设置的体操、球类、跑步、踢毽子等课外体育活动项目的喜爱情况,在全校范围ADF CHB(第14题图)A .B .C .D .D C BAEP (第18题图)内随机抽取了若干名学生.对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整). (1) 在这次问卷调查中,一共抽查了多少名学生? (2) 补全频数分布直方图;(3) 估计该校1800名学生中有多少人最喜爱球类活动?22.(本小题满分7分) 如图,A ,B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,B 村在A 村的南偏东45o方向上.(1)求出A ,B 两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺规在图中作出点P 的位置(保留清晰的作图痕迹,并简要写明作法).四、认真思考,你一定能成功!(本大题共2小题,共19分)23.(本小题满分9分)如图,AC 是O ⊙的直径,P A ,PB 是O ⊙的切线,A ,B 为切点,AB =6,P A =5. 求(1)O ⊙的半径;(2)sin BAC 的值.24.(本小题满分10分) 在全市中学运动会800m 比赛中,甲乙两名运动员同时起跑,刚跑出200m后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y (m )与比赛时间x (s )之间的关系,根据图像解答下列问题:(1)甲摔倒前,________的速度快(填甲或乙);(2)甲再次投入比赛后,在距离终点多远处追上乙?北 东 ACD(第22题图) l 0C (第23题图)五、相信自己,加油啊!(本大题共2小题,共24分) 25.(本小题满分11分)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.26.(本小题满分13分) 如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.A D F GB 图1 A D FG B 图2 A D FC G B 图3 (第25题图)2009年临沂市中考数学试题参考答案及评分标准说明:第三、四、五大题给出了一种或两种解法,考生若用其它解法,应参照本评分标准给分.二、填空题(每小题3分,共15分)15.2(1)x y - 16.10% 17.120 18.72 19. 三、开动脑筋,你一定能做对!(共20分)20.解:解不等式()3212x ---≥,得3x ≤. ··········································· (2分) 解不等式102(1)3(1)x x -+-<-,得1x >-. ············································· (4分) 所以原不等式组的解集为13x -<≤. ························································· (5分) 把解集在数轴上表示出来为·························································· (6分)21.解:(1)1012580.%÷=(人). 一共抽查了80人. ·················································································· (2分) (2)802520%⨯=(人), 图形补充正确. ······················································································· (4分) (3)36180081080⨯=(人). 估计全校有810人最喜欢球类活动. ···························································· (7分)22.解:(1)方法一:设AB 与CD 的交点为O ,根据题意可得45A B ∠=∠=°.ACO ∴△和BDO △都是等腰直角三角形. ·················································· (1分) AO ∴=,BO =.∴A B ,两村的距离为AB AO BO =+==(km ). ··················· (4分)方法二:过点B 作直线l 的平行线交AC 的延长线于E .易证四边形CDBE 是矩形, ······································································· (1分) ∴2CE BD ==.在Rt AEB △中,由45A ∠=°,可得3BE EA ==. ∴AB ==km )∴A B ,两村的距离为. (4分)(2)作图正确,痕迹清晰. ································· (5分)BACD 第22题图lN MOP作法:①分别以点A B ,为圆心,以大于12AB 的长为 半径作弧,两弧交于两点M N ,,作直线MN ;②直线MN 交l 于点P ,点P 即为所求. ················ (7分) 四、认真思考,你一定能成功!(共19分) 23.解:(1)连接PO OB ,.设PO 交AB 于D . Q PA PB ,是O ⊙的切线.∴90PAO PBO ∠=∠=°, PA PB =,APO BPO ∠=∠. ∴3AD BD ==,PO AB ⊥. ·························· (2分)∴4PD ==. ····································· (3分)在Rt PAD △和Rt POA △中,tan AD AOAPD PD PA==∠. ∴·351544AD PA AO PD ⨯===,即O ⊙的半径为154. ····································· (5分) (2)在Rt AOD △中,94DO ===. ··················· (7分)∴934sin 1554OD BAC AO ∠===. ································································· (9分) 24.解:(1)甲. ···················································································· (3分) (2)设线段OD 的解析式为1y k x =. 把(125800),代入1y k x =,得1325k =. ∴线段OD 的解析式为325y x =(0125x ≤≤). ········································ (5分) 设线段BC 的解析式为2y k x b =+.把(40200),,(120800),分别代入2y k x b =+.得2220040800120k b k b =+⎧⎨=+⎩,. 解得2152100k b .⎧=⎪⎨⎪=-⎩,∴线段BC 的解析式为151002y x =-(40120x ≤≤). ······························· (7分) 解方程组325151002y x,y x .⎧=⎪⎪⎨⎪=-⎪⎩得100011640011x y .⎧=⎪⎪⎨⎪=⎪⎩, ······················································ (9分)C(第23题图)640024008001111-=. 答:甲再次投入比赛后,在距离终点2400m 11处追上了乙. ····························· (10分) 五、相信自己,加油啊!(共24分) 25.解:(1)正确. ·············································· (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF Q 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=Q °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ·································································· (5分) AE EF ∴=. ························································································ (6分) (2)正确. ···················································· (7分) 证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ·································· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. Q 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ·································································· (10分) AE EF ∴=. ······················································································· (11分) 26.解:(1)Q 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-. 将(40)A ,,(10)B ,代入,得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-. ················································ (3分)(2)存在. ··························································································· (4分)如图,设P 点的横坐标为m , 则P 点的纵坐标为215222m m -+-, 当14m <<时,4AM m =-,215222PM m m =-+-.又90COA PMA ∠=∠=Q °,AD F C GE B M A DF CG B N∴①当21AM AO PM OC ==时, APM ACO △∽△,即21542222m m m ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,. ··················································· (6分) ②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,. ····································································· (7分) 类似地可求出当4m >时,(52)P -,. ······················································· (8分) 当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. ························· (9分) (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215222t t -+-. 过D 作y 轴的平行线交AC 于E . 由题意可求得直线AC 的解析式为122y x =-. ··········································· (10分) E ∴点的坐标为122t t ⎛⎫- ⎪⎝⎭,.2215112222222DE t t t t t ⎛⎫∴=-+---=-+ ⎪⎝⎭. ········································· (11分)22211244(2)422DAC S t t t t t ⎛⎫∴=⨯-+⨯=-+=--+ ⎪⎝⎭△.∴当2t =时,DAC △面积最大.(21)D ∴,. ··························································································· (13分)。
2009年山东烟台数学中考题答案
2009年烟台市初中学生学业考试数学试题参考答案及评分意见一、选择题(本题共12个小题,每小题4分,满分48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D C C B A A B B B D C 二、填空题(本题共6个小题,每小题4分,满分24分)13.1414.15.1716.1 17.20 18.①,③,④三、解答题(本题共8个小题,满分78分)19.(本题满分6分)2)+(11|1=++.·············································································2分111 =.··················································································4分1= ······························································································································6分20.(本题满分8分)解:(1)12·····························································································································1分(2)13···································································································································3分(3)根据题意,画树状图: ·································································································6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)41164==.·······················································································8分或根据题意,画表格:···········································································································6分第一次第二次1 2 3 41 11 12 13 142 21 22 23 243 31 32 33 344 41 42 43 44由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,1 2 3 41第一次第二次 1 2 3 421 2 3 431 2 3 44开始所以,P (4的倍数)41164==.…………8分 21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=.……1分初一学生总数:2010%200÷=(人).……2分(2)活动时间为5天的学生数:20025%50⨯=(人).活动时间为7天的学生数:2005%10⨯=(人).……3分 频数分布直方图(如图)……4分(3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°.……5分 (4)众数是4天,中位数是4天.…………7分(5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人).…………8分 22.(本题满分8分)解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-= °°,°°°,90CAD ∴∠=°.11052CD AC CD =∴== ,. ·································3分 在Rt ACE △中,5sin 5sin 302AE AC ACE =∠== °, ·····················4分cos 5cos30CE AC ACE =∠== ° ················ 5分 在Rt BCE △中,45tan 45BCE BE CE ∠=∴== °,°6分551) 6.822AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ····················································································· 8分23.(本题满分10分)解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ····························································································· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. ······················································································· 4分 解这个方程,得12100200x x ==,. ················································································· 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ··································· 6分DB A(第22题图)C(第21题图)(3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时,…………8分 150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. ············ 10分24.(本题满分10分)(1)证明:连接OC ,HC HG HCG HGC =∴∠=∠ ,. ································ 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°, ·············· 2分 12OB OC =∴∠=∠ ,, ················································ 3分 3HGC ∠=∠ ,2390∴∠+∠=°. ···························· 4分 90BFG ∴∠=°,即DE AB ⊥. ···································· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径, ∴ BDBE =.…………6分 B E D B M E ∴∠=∠.………………7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠.……………………8分 HMD BME ∴∠=∠.BME ∠ 是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ······································ 9分 HMD MHE MEH ∴∠=∠+∠.······················································································· 10分 25.(本题满分14分)证明:(1)延长DE 交BC 于F . AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ··································· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠= ,2CDCF∴=,即2CD CF =. 22CD AD BF == ,BF CF ∴=. ···························· 3分 1122BC BF CF CD CD CD ∴=+=+=,即BC CD =.……………………4分(2)CE 平分BCD ∠,∴BCE DCE ∠=∠. 由(1)知BC CD CE CE == ,,BCE DCE ∴△≌△,BE DE ∴=. ······················ 6分 由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ··············································· 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ··············································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠.······································································· 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ···································· 12分 又BD BD = ,BAD BPD ∴△≌△,DP AD ∴=. ·················································· 13分 12AD CD = ,12DP CD ∴=.P ∴是CD 的中点. ···················································· 14分 28.(本题满分14分)AD GEC B (第25题图) F P(第24题图)解:(1)根据题意,得34231.2a a b b a -=+-⎧⎪⎨-=⎪⎩, ················· 2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ·········· 3分 (2)存在.在223y x x =--中,令0x =,得3y =-.令0y =,得2230x x --=,1213x x ∴=-=,. (10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ·············································································· 5分 容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.(30)N ∴-,,2AN ∴=. ···································································································· 6分 在223y x x =--中,令3y =-,得1202x x ==,.2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ···································· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,. OD OB ∴=,45OBD ∴∠=°. ························································································· 9分 又 点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ······················································· 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ············································· 11分90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ···································· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ······························ 14分(第26题图)。
2009年山东省聊城市中考数学试题及答案
Q -1.3 0 2.4 1 3.7 (单位:km ) O P R SAB FD2009年中考聊城市数学试题一、选择题(本题共12小题,每小题3分,共36分)1.计算(-3)2+4的结果是( )A .-5B .-2C .10D .132.如图,数轴上的点P 、O 、Q 、R 、S 表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km ,距Q 站点0.7km ,则这辆公交车的位置在( ) A .R 站点与S 站点之间 B .P 站点与O 站点之间C .O 站点与Q 站点之间D .Q 站点与R 站点之间3.在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的半径约为0.00000078m ,这个数据用科学记数法表示为( )A .0.78×10-4mB .7.8×10-7mC .7.8×10-8mD .78×10-8m 4.如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是( )5.下列运算正确的是( )A .2m 3+m 3=3m 6B .m 3·m 2=m 6C .(-m 4)3=m 7D .m 6÷2m 2= 12m 46.如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么∠DBF =( ) A .62º B .38º C .28º D .26º7.下列事件中是不确定事件的为( ) A .367人中至少有2人的生日相同 B .今年国庆节这一天,我市的最高气温是28℃ C .掷6枚相同的硬币,3枚正面向上4枚正面向下D .掷两枚普通的骰子,掷得的点数之和不是奇数就是偶数8.已知矩形ABCD 的边AB =6,AD =8.如果以点A 为圆心作⊙A ,使B 、C 、D 三点中在圆内和在圆外都至少有一个点,那么⊙A 的半径r 的取值范围是( ) A .6<r <10 B .8<r <10 C .6<r ≤8 D .8<r ≤109.小莹准备用纸板制作一顶圆锥形“圣诞帽”,使“圣诞帽”的底面周长为π18cm ,高为40cm .裁剪纸板时,小莹应剪出的扇形的圆心角约为( ) A .72º B .79º C .82º D .85º10.如图,一次函数y =kx +b 的图象与反比例函数y = mx 的图象交于A 、B 两点.当一次函数的值大于反比例函数的值时,自变量x 的 取值范围是( )A .-2<x <1B .0<x <1C .x <-2和0<x <1D .-2<x <1和x >1 11.如图,已知矩形ABCD 中,AB =8,BC =π5.分别以A .B .C .D .BA CD E FO……B 、D 为圆心,AB 为半径画弧,两弧分别交对角线BD 于点E 、F ,则图中阴影部分的面积为( )A .π4B .π5C .π8D .π1012.在一次“寻宝”游戏中,寻宝人找到了如图所示两个标志点A (2,1)、B (4,-1),这两个标志点到“宝藏”点的距离都 是10,则“宝藏”点的坐标是( ) A .(10,10) B .(-2,1)C .(5,2)或(1,-2)D .(2,-1)或(-2,1) 二、填空题(本题共5小题,每小题3分,共15分)13.一元二次方程(x +1)(x -1)=2(x +1)的根是 . 14.如图,O 是正六边形ABCDEF 的中心,图形中可由△OBC 绕点O 逆时针旋转120º得到的三角形是 .15.一副三角板如图叠放在一起,则图中∠α的度数是 .16.“五一”节期间,某商场开展购物抽奖活动.抽奖箱内有标号分别为1、2、3、4四个质地、大小相同的小球,顾客从中任意摸出一个球,然后放回,摇匀后再摸出一个球.如果两次摸出的球的标号之和为“8”得一等奖,那么顾客抽出一等奖概率是 . 17.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为 .三、解答题(本题共8小题,共69分)18.(6分)解方程:x -2 x +2 +84-x 2 =1.19.(7分)如图,某住宅楼进入地下储藏室的坡道AB 的长为3.2m ,坡角是45º.为改善坡道的安全性,将原坡道AB 改建成坡道AC ,使BC 的长为1.5m ,求坡角α的度数(精确到1º).20.(8分)“立定跳远”是我市初中毕业生体育测试项目之一.测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男生立定跳远的评注:成绩栏里的每个范围,含最低值,不含最高值.某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:分)如下:1.962.38 2.56 2.04 2.34 2.17 2.60 2.26 1.87 2.32请完成下列问题:(1)求这10名男生立定跳远成绩的极差和平均数;(2)求这10名男生立定跳远得分的中位数和众数;(3)如果将9分(含9分)以上定为“优秀”,请你估计这480名男生中得优秀的人数.21.(8分)今年2月份,电脑被列为国家惠农政策的“家电下乡”商品,小亮家在这个月买了一台电脑和一套沙发共消费4560元.购买这台电脑享受政府补贴13%(即电脑销售价格的13%由政府支付),沙发价格也比上月降价10%,这样小亮家购买这两种商品比上月购买少花640元.小亮家购买电脑和沙发各消费多少元?N 22.(8分)如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作MN ∥BC ,交∠ACB的平分线于点E ,交∠ACB 的外角平分线于点F .(1)求证:OC = 12EF ;(2)当点O 位于AC 边的什么位置时,四边形AECF 是矩形?并给出证明.23.(10分)徒骇河大桥是我市第一座特大型桥梁,大桥桥体造型新颖,气势恢宏,两条拱肋如长虹卧波,极具时代气息(如图①).大桥为中承式悬索拱桥,大桥的主拱肋ACB 是抛物线的一部分(如图②),跨径AB 为100m ,拱高OC 为25m ,抛物线顶点C 到桥面的距离为17m .(1)请建立适当的坐标系,求该抛物线所对应的函数关系式;(2)七月份汛期来临,河水水位上涨,假设水位比AB所在直线高出1.96m ,这时位于水面上的拱肋的跨径是多少?在不计桥面厚度的情况,一条高出水面4.6m 的游船是否能够顺利通过大桥?C EB C P D A R Q l24.(10分)如图,⊙O 是△ABC 的内切圆,与AB 、BC 、CA 分别相切于点D 、E 、F ,∠DEF =45º.连接BO 并延长交AC 于点G ,AB =4,AG =(1)求∠A 的度数;(2)求⊙O 的半径.25.(12分)如图,已知正方形ABCD 的边长与Rt △PQR 的直角边PQ 的长均为4cm ,QR=8cm ,AB 与QR 在同一条直线l 上.开始时点Q 与点B 重合,让△PQR 以1cm/s 速度在直线l 上运动,直至点R 与点A 重合为止,t s 时△PQR 与正方形ABCD 重叠部分的面积记为S cm 2.(1)当t =3s 时,求S 的值;(2)求S 与t 之间的函数关系式,并写出自变量t 的取值范围;(3)写出t 为何值时,重叠部分的面积S 有最大值,最大值是多少?。
2009年山东省临沂市中考数学试题及答案(word版)
2009年临沂市中考数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至4页,第Ⅱ卷5至12页,满分120分.考试时间120分钟.第Ⅰ卷(选择题 共42分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考生号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上.3. 考试结束,将本试卷和答题卡一并收回.一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的.1.9-的相反数是( )A .19B .19-C .9-D .9 2.某种流感病毒的直径是0.00000008m ,这个数据用科学记数法表示为( ) A .6810m -⨯B .5810m -⨯C .8810m -⨯D .4810m -⨯3.下列各式计算正确的是( )A .34x x x +=B .2510·x x x =C .428()x x =D .224(0)x x x x +=≠4.下列图形中,由AB CD ∥,能得到12∠=∠的是( )5的结果是( ) A .1 B .1- CD6.化简22422b a a b b a+--的结果是( ) A .2a b -- B .2b a - C .2a b - D .2b a +7.已知1O ⊙和2O ⊙相切,1O ⊙的直径为9C m ,2O ⊙的直径为4cm .则12O O 的长是( ) AC BD 1 2 A C B D 1 2 A . B . 1 2 A C B D C . B D C A D . 1 2A .5cm 或13cmB .2.5cmC .6.5cmD .2.5cm 或6.5cm8.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP9.对于数据:80,88,85,85,83,83,84.下列说法中错误的有( )A .这组数据的平均数是84B .这组数据的众数是85C .这组数据的中位数是84D .这组数据的方差是36A .1个B .2个C .3个D .4个10.若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 11.如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC BD ⊥于点O ,AE BC DF BC ⊥⊥,,垂足分别为E 、F ,设AD =a ,BC =b ,则四边形AEFD 的周长是( )A .3a b +B .2()a b +C .2b a +D .4a b +12.如图是一个包装盒的三视图,则这个包装盒的体积是( )A .3192πcmB .31152πcmC .3D .313.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( )A .13 B .14 C .16 D .11214.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余 DC A B E F O (第11题图) 4cm (第12题图)AD F CH B (第14题图) O (第8题图) B A P部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( )第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目及座号填写清楚.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.分解因式:22x xy xy -+=_________________.16.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,.则这种药品的成本的年平均下降率为______________.17.若一个圆锥的底面积是侧面积的13,则该圆锥侧面展开图的圆心角度数是____ _度. 18.如图,在菱形ABCD 中,72ADC ∠=,AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连接CP ,则CPB ∠=________度.19.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________.三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.(本小题满分6分)解不等式组3(21)2102(1)3(1)x x x ---⎧⎨-+-<-⎩≥,并把解集在数轴上表示出来.(s) A .(s) B .(s) C .(s)D .D C BA EP (第18题图)x21.(本小题满分7分)为了了解全校1800名学生对学校设置的体操、球类、跑步、踢毽子等课外体育活动项目的喜爱情况,在全校范围内随机抽取了若干名学生.对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1) 在这次问卷调查中,一共抽查了多少名学生?(2) 补全频数分布直方图;(3) 估计该校1800名学生中有多少人最喜爱球类活动?22.(本小题满分7分)如图,A ,B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,B 村在A 村的南偏东45方向上.(1)求出A ,B 两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺规在图中作出点P 的位置(保留清晰的作图痕迹,并简要写明作法).东 (第22题图) 体操 球类 踢毽子 跑步 其他四、认真思考,你一定能成功!(本大题共2小题,共19分)23.(本小题满分9分)如图,AC 是O ⊙的直径,P A ,PB 是O ⊙.求(1)O ⊙(2)sin BAC ∠24.(本小题满分10分)在全市中学运动会800m 比赛中,甲乙两名运动员同时起跑,刚跑出200m 后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y (m )与比赛时间x (s )之间的关系,根据图像解答下列问题:(1)甲摔倒前,________的速度快(填甲或乙);(2)甲再次投入比赛后,在距离终点多远处追上乙?五、相信自己,加油啊!(本大题共2小题,共24分)25.(本小题满分11分)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C (第23题图) (第24题图)甲 乙C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.26.(本小题满分13分)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.2009年临沂市中考数学试题参考答案及评分标准说明:第三、四、五大题给出了一种或两种解法,考生若用其它解法,应参照本评分标准给分.二、填空题(每小题3分,共15分)15.2(1)x y - 16.10% 17.120 18.72 19.A D F C G E B 图1 A D F C G E B 图2 A D F G E B 图3 (第25题图)三、开动脑筋,你一定能做对!(共20分)20.解:解不等式()3212x ---≥,得3x ≤. ············································ (2分) 解不等式102(1)3(1)x x -+-<-,得1x >-. ············································· (4分) 所以原不等式组的解集为13x -<≤. ························································· (5分)把解集在数轴上表示出来为··························································· (6分)21.解:(1)1012580.%÷=(人).一共抽查了80人. ··················································································· (2分)(2)802520%⨯=(人),图形补充正确.························································································ (4分)(3)36180081080⨯=(人). 估计全校有810人最喜欢球类活动. ···························································· (7分)22.解:(1)方法一:设AB 与CD 的交点为O ,根据题意可得45A B ∠=∠=°.ACO ∴△和BDO △都是等腰直角三角形. ·················································· (1分) AO ∴=,BO =∴A B ,两村的距离为AB AO BO =+==km ). ··················· (4分)方法二:过点B 作直线l 的平行线交AC 的延长线于E .易证四边形CDBE 是矩形, ······································································· (1分)∴2CE BD ==.在Rt AEB △中,由45A ∠=°,可得3BE EA ==.∴AB ==km )∴A B ,两村的距离为. ································································· (4分)(2)作图正确,痕迹清晰. ································· (5分)作法:①分别以点A B ,为圆心,以大于12AB 的长为 半径作弧,两弧交于两点M N ,, 作直线MN ;②直线MN 交l 于点P ,点P 即为所求. ················ (7分) 四、认真思考,你一定能成功!(共19分) 23.解:(1)连接POOB ,.设PO 交AB PA PB ,是O ⊙的切线. ∴90PAO PBO ∠=∠=°, PA PB =,APO BPO ∠=∠. B A C D lN M O P∴3AD BD==,PO AB⊥. ··························(2分)∴4PD==. ····································(3分)在Rt PAD△和Rt POA△中,tanAD AOAPDPD PA==∠.∴·351544AD PAAOPD⨯===,即O⊙的半径为154.······································(5分)(2)在Rt AOD△中,94DO===. ···················(7分)∴934sin1554ODBACAO∠===. ··································································(9分)24.解:(1)甲.·····················································································(3分)(2)设线段OD的解析式为1y k x=.把(125800),代入1y k x=,得1325k=.∴线段OD的解析式为325y x=(0125x≤≤).·········································(5分)设线段BC的解析式为2y k x b=+.把(40200),,(120800),分别代入2y k x b=+.得2220040800120k bk b=+⎧⎨=+⎩,.解得2152100kb.⎧=⎪⎨⎪=-⎩,∴线段BC的解析式为151002y x=-(40120x≤≤). ································(7分)解方程组325151002y x,y x.⎧=⎪⎪⎨⎪=-⎪⎩得100011640011xy.⎧=⎪⎪⎨⎪=⎪⎩,······················································(9分)640024008001111-=.答:甲再次投入比赛后,在距离终点2400m11处追上了乙. ····························(10分)五、相信自己,加油啊!(共24分)25.解:(1)正确.···············································(1分)证明:在AB上取一点M,使AM EC=,连接ME.(2分)BM BE∴=.45BME∴∠=°,135AME∴∠=°.A DFMCF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分) (2)正确. ···················································· (7分)证明:在BA 的延长线上取一点N .使AN CE =,连接NE . ·································· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形,AD BE ∴∥.DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ································································· (10分) AE EF ∴=. ······················································································· (11分) 26.解:(1)该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-.将(40)A ,,(10)B ,代入, 得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩, ∴此抛物线的解析式为215222y x x =-+-. ················································ (3分) (2)存在. ···························································································· (4分)如图,设P 点的横坐标为m ,则P 点的纵坐标为215222m m -+-, 当14m <<时, 4AM m =-,21522PM m =-+又90COA PMA ∠=∠=°∴①当21AM AO PM OC ==时,APM ACO △∽△, 即21542222m m m ⎛⎫-=-+- ⎪⎝⎭. A D F G E B N解得1224m m ==,(舍去),(21)P ∴,. ···················································· (6分) ②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,. ······································································ (7分) 类似地可求出当4m >时,(52)P -,. ························································ (8分) 当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. ························· (9分) (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215222t t -+-. 过D 作y 轴的平行线交AC 于E .由题意可求得直线AC 的解析式为122y x =-. ··········································· (10分) E ∴点的坐标为122t t ⎛⎫- ⎪⎝⎭,. 2215112222222DE t t t t t ⎛⎫∴=-+---=-+ ⎪⎝⎭. ········································ (11分) 22211244(2)422DAC S t t t t t ⎛⎫∴=⨯-+⨯=-+=--+ ⎪⎝⎭△. ∴当2t =时,DAC △面积最大.(21)D ∴,. ·························································································· (13分)页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
2009年山东省各地市数学中考试卷(代数)2
2009年山东省各地市中考试题(代数)27.二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-,B .(18),C .(12)-,D .(14)-,9.如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b +的值为( ) A .2 B .3C .4D .515.分解因式:2(3)(3)x x +-+=___________.4.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .56.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .98.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B.D.25+12.在同一平面直角坐标系中,反比例函数8y x=-与一次函数2y x =-+交于A B 、两点,O 为坐标原点,则AOB △的面积为( ) A .2 B .6 C .10D .813.分解因式:227183x x ++= .14.方程3123x x =+的解是 . 12. 小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有 A .2个 B .3个 C .4个 D .5个7.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是(A)0020132340x ⋅=(B)0020234013x =⨯(C)0020(1132340x -=(D)0013x ⋅=9.如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -, (3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是)xB CAD l(第12题)(A)M(B)N (C)P(D)Q12.如图,直线y kx b =+经过(2,1)A --和(3,0)B -两点, 利用函数图象判断不等式1kx b x<+的解集为 (A)x x > x <<x <<(D)0x x <<或23. (本题满分8分)已知12,x x 是方程220x x a -+=的两个实数根,且1223x x += (1)求12,x x 及a 的值;(2)求32111232x x x x -++的值.21.(9分)如图,一巡逻艇航行至海面B 处时,得知其正北方向上C 处一渔船发生故障.已知港口A 处在B 处的北偏西37方向上,距B 处20海里;C 处在A 处的北偏东65方向上.求,B C 之间的距离(结果精确到0.1海里).参考数据:sin370.60cos370.80tan370.75≈≈≈,,, sin 650.91cos650.42tan 65 2.14.≈≈≈,,22.(8分)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A 、B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).MM(第6题)(第12题)23.(8分)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式. 24.(11分)如图,在直角坐标系中,点A B C ,,的坐标分别为(10)(30)(03)-,,,,,,过A B C ,,三点的抛物线的对称轴为直线l D ,为对称轴l 上一动点.(1)求抛物线的解析式;(2)求当AD CD +最小时点D 的坐标; (3)以点A 为圆心,以AD 为半径作A .①证明:当AD CD +最小时,直线BD 与A 相切.②写出直线BD 与A 相切时,D 点的另一个坐标:___________. 26.(本小题满分13分)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;x(第23题)(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标. 25.(12分)一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数ky x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点A B ,在反比例函数ky x=的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形; ②AN BM =.(2)若点A B ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论. 24.(本小题满分12分)如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C . (1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF(3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P)25.如图,在平面直角坐标系中,正方形OABC 的边长是2.O 为坐标原点,点A 在x 的正半轴上,点C 在y 的正半轴上.一条抛物线经过A 点,顶点D 是OC 的中点.(1)求抛物线的表达式;(2)正方形OABC 的对角线OB 与抛物线交于E 点,线段FG 过点E 与x 轴垂直,分别交x 轴和线段BC 于F ,G 点,试比较线段OE 与EG 的长度;(3)点H 是抛物线上在正方形内部的任意一点,线段IJ 过点H 与x 轴垂直,分别交x 轴和线段BC 于I 、J 点,点K 在y 轴的正半轴上,且OK =OH ,请证明△OHI ≌△如图,△OAB 是边长为2的等边三角形,过点A 的直线。
2009年山东省德州市中考数学试卷
2009年山东省德州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)某市2009年元旦的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃2.(3分)计算﹣(﹣3a2b3)4的结果是()A.81a8b12B.12a6b7C.﹣12a6b7D.﹣81a8b12 3.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°4.(3分)已知点M(﹣2,3)在双曲线y上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)5.(3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④>的解集在数轴上表示正确的是()6.(3分)不等式组A.B.C.D.7.(3分)将直径为16cm的圆形铁皮,做成四个相同圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的高为()A.4cm B.cm C.cm D.cm8.(3分)如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,)C.(,)D.(,)二、填空题(共8小题,每小题4分,满分32分)9.(4分)据报道,全球观看北京奥运会开幕式现场直播的观众达2 300 000 000人,创下全球直播节目收视率的最高记录.该观众人数可用科学记数法表示为人.10.(4分)甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农.11.(4分)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为.12.(4分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为.13.(4分)如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是点.14.(4分)将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC 相似,那么BF的长度是.15.(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B2014的坐标是.16.(4分)如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件:,使得加上这个条件后能够推出AD∥BC且AB=CD.三、解答题(共7小题,满分64分)17.(7分)化简:.18.(9分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围;(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?19.(9分)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.20.(9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?21.(10分)如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.22.(10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.23.(10分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).2009年山东省德州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)某市2009年元旦的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【解答】解:∵2﹣(﹣8)=10,∴这天的最高气温比最低气温高10℃.故选:D.2.(3分)计算﹣(﹣3a2b3)4的结果是()A.81a8b12B.12a6b7C.﹣12a6b7D.﹣81a8b12【解答】解:﹣(﹣3a2b3)4=﹣34a8b12=﹣81a8b12.故选:D.3.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.故选:A.4.(3分)已知点M(﹣2,3)在双曲线y上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)【解答】解:∵点M(﹣2,3)在双曲线y上,∴k=xy=(﹣2)×3=﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上.A、因为3×(﹣2)=﹣6=k,所以该点在双曲线y上.故A选项正确;B、因为(﹣2)×(﹣3)=6≠k,所以该点不在双曲线y上.故B选项错误;C、因为2×3=6≠k,所以该点不在双曲线y上.故C选项错误;D、因为3×2=6≠k,所以该点不在双曲线y上.故D选项错误.故选:A.5.(3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.>的解集在数轴上表示正确的是()6.(3分)不等式组A.B.C.D.【解答】解:由(1)得,x>﹣3,由(2)得,x≤1,故原不等式组的解集为:﹣3<x≤1.在数轴上表示为:故选:A.7.(3分)将直径为16cm的圆形铁皮,做成四个相同圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的高为()A.4cm B.cm C.cm D.cm【解答】解:直径为16cm,则半径为8,圆的周长=16π,则每个扇形的弧长4πcm,所以做成的圆锥的底面半径r2cm,由勾股定理得,圆锥容器的高2cm,故选:D.8.(3分)如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,)C.(,)D.(,)【解答】解:线段AB最短,说明AB此时为点A到y=x的距离.过A点作垂直于直线y=x的垂线AB,∵直线y=x与x轴的夹角∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴,垂足为C,则BC为中垂线,则OC=BC.作图可知B在x轴下方,y轴的左方.∴点B的横坐标为负,纵坐标为负,∴当线段AB最短时,点B的坐标为(,).故选:C.二、填空题(共8小题,每小题4分,满分32分)9.(4分)据报道,全球观看北京奥运会开幕式现场直播的观众达2 300 000 000人,创下全球直播节目收视率的最高记录.该观众人数可用科学记数法表示为 2.3×109人.【解答】解:2 300 000 000=2.3×10910.(4分)甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农乙.【解答】解:甲的平均产量1=(68+70+72+69+71)÷5=70,乙的平均产量2=(69+71+71+69+70)÷5=70,s12[(68﹣70)2+(70﹣70)2+(72﹣70)2+(69﹣70)2+(71﹣702]=2,s22[(69﹣70)2+(71﹣70)2+(71﹣70)2+(69﹣70)2+(70﹣70)2]=0.8.∴甲的方差比乙的大,根据方差的意义,故乙比甲稳定.故答案为:乙.11.(4分)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为﹣2.【解答】解:把n代入方程得到n2+mn+2n=0,将其变形为n(m+n+2)=0,因为n≠0所以解得m+n=﹣2.12.(4分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为.【解答】解:根据题意组,得,x=7k,y=﹣2k,把x,y代入二元一次方程2x+3y=﹣6,得:2×7k+3×(﹣2k)=6,.故答案为:13.(4分)如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是点B.【解答】解:根据旋转的性质,知:旋转中心,一定在对应点所连线段的垂直平分线上.则其旋转中心是NN1和PP1的垂直平分线的交点,即点B.14.(4分)将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC 相似,那么BF的长度是或2.【解答】解:根据△B′FC与△ABC相似时的对应关系,有两种情况:①△B′FC∽△ABC时,,又∵AB=AC=3,BC=4,B′F=BF,∴,解得BF;②△B′CF∽△BCA时,,AB=AC=3,BC=4,B′F=CF,BF=B′F,而BF+FC=4,即2BF=4,解得BF=2.故BF的长度是或2.故答案为:或2.15.(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B2014的坐标是(22014﹣1,22013).【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),…,∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.B n的坐标是(2n﹣1,2n﹣1)∴B2014的坐标是(22014﹣1,22013).故答案为:(22014﹣1,22013).16.(4分)如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件:∠DAC=∠ADB或∠BAD=∠CDA或∠DBC=∠ACB或∠ABC=∠DCB或OB=OC或OA=OD,使得加上这个条件后能够推出AD∥BC且AB=CD.【解答】解:由题意可知,∠ABD=∠ACD,AD是△BAD和△CDA的公共边,则可以再添加一组角∠DAC=∠ADB或∠BAD=∠CDA∴△BAD≌△CDA∴BD=AC,AB=DC,∵∠DAC=∠ADB,∴OA=OD,∴OB=OC,∴∠OBC=∠OCB,∵∠AOD=∠BOC,∴∠DAC=∠ACB=∠ADB=∠DBC,∴AD∥BC同理可添加∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD,从而推出AD∥BC 且AB=CD.本题答案不唯一,如∠DAC=∠ADB,∠BAD=∠CDA,∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD.(任选其一)三、解答题(共7小题,满分64分)17.(7分)化简:.【解答】解:原式1.18.(9分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围;(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?【解答】解:(1)该班60秒跳绳的平均次数至少是:100.8,∵100.8>100,∴一定超过全校平均次数;(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内;(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人),∴0.66,∴从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66.19.(9分)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.【解答】证明:在△AOC中,AC=2,∵AO=OC=2,∴△AOC是等边三角形.∴∠AOC=60°,∴∠AEC=30°;而DC为⊙O的切线,∴OC⊥l,而BD⊥l,∴OC∥BD,∴∠ABD=∠AOC=60°,又∵AB为⊙O的直径,∴∠AEB=90°,∴∠EAB=30°,∴∠EAB=∠AEC.∴AB∥CE.∴四边形OBEC为平行四边形.又∵OB=OC=2.∴四边形OBEC是菱形.20.(9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?【解答】解:(1)设2007年销量为a万台,则a(1+40%)=350,解之得:a=250;答:2007年同期试点产品类家电销售量为250万台(部);(2)设销售彩电x万台,则销售冰箱x万台,销售手机(350x)万台.由题意得:1500x+2000x+800(350x)=500000.解得:x=88.∴x=132,350x=130.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.∴88×1500×13%=17160(万元),132×2000×13%=34320(万元),130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.答:彩电、冰箱、手机三大类产品分别销售88万台、132万台、130万部,获得的政府补贴分别为17160万元、34320万元、13520万元.21.(10分)如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.【解答】解:延长BC交AD于E点,则CE⊥AD.在Rt△AEC中,AC=10,由坡比为1:可知:∠CAE=30°,∴CE=AC•sin30°=105,AE=AC•cos30°=10.在Rt△ABE中,BE11.∵BE=BC+CE,∴BC=BE﹣CE=11﹣5=6(米).答:旗杆的高度为6米.22.(10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.【解答】解:(1)由题意,当MN和AB之间的距离为0.5米时,MN应位于DC下方,且此时△EMN中MN边上的高为0.5米.∴S△EMN2×0.5=0.5(平方米).即△EMN的面积为0.5平方米.(2)①如图1所示,当MN在矩形区域滑动,即0<x≤1时,△EMN的面积S2×x=x;②如图2所示,当MN在三角形区域滑动,即1<x<1时,如图,连接EG,交CD于点F,交MN于点H,∵E为AB中点,∴F为CD中点,GF⊥CD,且FG.又∵MN∥CD,∴△MNG∽△DCG.∴,即.故△EMN的面积S x;综合可得:S ,<.<<(3)①当MN在矩形区域滑动时,S=x,所以有0<S≤1;②当MN在三角形区域滑动时,S x2+(1)x,因而,当(米)时,S得到最大值,最大值S(平方米).∵>1,∴S有最大值,最大值为()平方米.23.(10分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【解答】(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG FD,同理,在Rt△DEF中,EG FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG MC,∴EG=CG.(3)解:(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC ∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.。
2009年青岛中考数学试题及答案
二○○九年山东省青岛市初级中学学业水平考试数学试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1-8题为选择题.请将所选答案的标号填写在第8题后面给出表格的相应位置上;9-14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15-24题请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列四个数中,其相反数是正整数的是()A .3B .13C .2D .122.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()3.在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图形的有()A .1种B .2种C .3种D .4种4.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是()A .12B .13C .14D .165.如图所示,数轴上点P 所表示的可能是()A .6B .10C .15D .316.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A .0.4米B .0.5米C .0.8米D .1米第2题图A .B .C.D .10 1 2 3 4 P第5题图O第6题图7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应()A .不小于 4.8ΩB .不大于 4.8ΩC .不小于14ΩD .不大于14Ω8.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是()A .(3035030),B .(3030350),C .(30330),D .(30303),二、填空题(本题满分18分,共有6道小题,每小题3分)请将9-14各小题的答案填写在第14小题后面给出表格的相应位置上9.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里.10.在第29届奥林匹克运动会上,青岛姑娘张娟娟为中国代表团夺得了历史上首枚奥运会射箭金牌,为祖国争得了荣誉.下表记录了她在备战奥运会期间的一次训练成绩(单位:环):序号 1 2 3 4 5 6 7 8 9 10 11 12 成绩9910981010987109 根据表中的数据可得:张娟娟这次训练成绩的中位数是环,众数是环.11.如图,A B 为O ⊙的直径,C D 为O ⊙的弦,42A C D°,则B A D°.12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为.13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是.14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要cm .6 OR/ΩI /A8 第7题图Oxy第8题图AO DACB第11题图ADCBCDB第13题图EB A6cm3cm 1cm第14题图三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.为美化校园,学校准备在如图所示的三角形(A B C △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.解:结论:四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)化简:2211x xx x(2)解不等式组:3221317.22xxxx ,≤17.(本小题满分6分)某中学为了解该校学生的课余活动情况,采用抽样调查的方式,从运动、娱乐、阅读和其他四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.根据图中提供的信息解答下列问题:(1)补全人数统计图;(2)若该校共有1500名学生,请你估计该校在课余时间喜欢阅读的人数;(3)结合上述信息,谈谈你对该校学生课余活动的意见和建议(字数不超过30字).ABC50 40 30 20 10 0运动娱乐阅读其他项目402515人数统计图人数/人阅读其他娱乐运动40%分布统计图在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.19.(本小题满分6分)在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角21C F E°,然后往塔的方向前进50米到达B处,此时测得仰角37C G E°,已知测倾器高 1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:3sin375°≈,3ta n374°≈,9sin2125°≈,3ta n218°≈)20.(本小题满分8分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%利润成本)CG EDBAF第19题图红黄黄绿绿绿绿黄绿第18题图已知:如图,在A B C D 中,AE 是BC 边上的高,将A B E △沿B C 方向平移,使点E 与点C 重合,得G F C △.(1)求证:B E D G ;(2)若60B°,当AB 与BC 满足什么数量关系时,四边形A B F G 是菱形?证明你的结论.22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368yx,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?23.(本小题满分10分)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n (n ≥9)个小正方形?为解决上面问题,我们先来研究两种简单的“基本分割法”.ADGCBFE 第21题图2524y 2(元)x (月)1 2 3 4 5 6 7 8 910 11 12第22题图2218y xbx cO基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.图①图②图③图④图⑤图⑥问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.(1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成639(个)小正方形.(2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加32个小正方形,从而分割成43210(个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n(n≥9)个小正方形.方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n (n≥9)个小正方形.从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形.(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图).(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图).(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)图a图b图c图d图e(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图).24.(本小题满分12分)如图,在梯形ABCD 中,A D B C ∥,6cm A D,4cm C D,10cm B CB D,点P由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交B D 于Q ,连接PE .若设运动时间为t (s )(05t).解答下列问题:(1)当t 为何值时,P E A B ∥?(2)设P E Q △的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使225P E QB C DS S △△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接P F ,在上述运动过程中,五边形P F C D E 的面积是否发生变化?说明理由.AE DQPBFC第24题图二○○九年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分.但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分24分,共有8道小题,每小题3分)题号 1 2 3 4 5 6 7 8答案 C D B C B D A A 二、填空题(本题满分18分,共有6道小题,每小题3分)题号9 10 11答案83.8109 9 48题号12 13 14答案20% 211022916n(或23664n)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心;···········································································2分确定半径;·····················································································································3分正确画出图并写出结论.······························································································4分四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分)(1)解:原式21(1)(1)x xx x x1xx.········································································································4分(2)322131722x xx x①≤②解:解不等式①得2x,解不等式②得4x≤.所以原不等式组的解集为24x≤.··········································································4分17.(本小题满分6分)解:(1)正确补全统计图; ··································································································2分(2)300人. ························································································································4分(3)合理即可. ···················································································································6分18.(本小题满分6分)解:13580502016.5202020(元),··································································4分∵16.55元元∴选择转转盘对顾客更合算. ······························································································6分19.(本小题满分6分)解:由题意知C D A D ⊥,E F A D ∥,∴90C E F°,设C Ex ,在R t C E F △中,ta nC E C F EE F,则8ta nta n 213C E x E Fx C F E°;在R t C E G △中,ta nC E C G EG E,则4ta nta n 373C E x G Ex C G E °;······················ 4分∵E F F G E G ,∴845033xx .37.5x ,∴37.51.539C DC EE D(米).答:古塔的高度约是39米. ································································································6分20.(本小题满分8分)解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102xx,·········································································································3分解这个方程,得200x.经检验,200x是所列方程的根.22200200600xx.所以商场两次共购进这种运动服600套. ···········································································5分(2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y≥,解这个不等式,得200y ≥,所以每套运动服的售价至少是200元. ···············································································8分21.(本小题满分8分)证明:(1)∵四边形A B C D 是平行四边形,∴A BC D .∵A E 是B C 边上的高,且C G 是由A E 沿B C 方向平移而成.∴C G A D ⊥.CGEDB AF第19题图∴90A E B C G D°.∵A E C G ,∴R t R t A B E C D G △≌△.∴B ED G . ······················································································································4分(2)当32B CA B 时,四边形A B F C 是菱形.∵A B G F ∥,A G B F ∥,∴四边形A B F G 是平行四边形.∵R t A B E △中,60B°,∴30B A E°,∴12B E A B .∵32B E C F B C A B ,,∴12E F A B .∴A BB F .∴四边形A B F G 是菱形. ····································································································8分22.(本小题满分10分)解:(1)由题意:22125338124448b cb c解得7181292b c························································································································4分(2)12yy y 23115136298882x xx 21316822xx ;································································································6分(3)21316822yxx2111(1236)46822xx21(6)118x ADGCBFE 第21题图08a,∴抛物线开口向下.在对称轴6x 左侧y 随x 的增大而增大.由题意5x ,所以在4月份出售这种水产品每千克的利润最大. ···································9分最大利润211(46)111082(元).········································································10分23.(本小满分10分)解:把一个正方形分割成11个小正方形:···················································································2分把一个正三角形分割成4个小正三角形:···················································································3分把一个正三角形分割成6个小正三角形:················································································5分把一个正三角形分割成9个、10个和11个小正三角形:······················································8分把一个正三角形分割成n (9n ≥)个小正三角形的分割方法:通过“基本分割法1”、“基本分割法2”或其组合,把一个正三角形分割成9个、10个和11个小正三角形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正三角形,从而把一个正三角形分割成12个、13个、14个小正三角形,依次类推,即可把一个正三角形分割成n (9n ≥)个小正三角形.····························································································································10分24.(本小题满分12分)解:(1)∵P E A B ∥∴D E D P D AD B.而10D E t D P t ,,∴10610t t,∴154t.图⑥图a图b图c图e图d AE DQPBFCN M(s )4tP E A B ,∥.···························2分(2)∵E F 平行且等于C D ,∴四边形C D E F 是平行四边形.∴D E QC D Q EB DC ,.∵10B C B D,∴D E QCD Q EB DC .∴D E Q B C D △∽△.∴D E E Q B CC D.104t E Q .∴25E Qt .过B 作B M C D ⊥,交C D 于M ,过P 作P N E F ⊥,交E F 于N .2210210049646B M.∵E D D Q B Pt ,∴102P Qt .又P N Q B M D △∽△,P Q P N B D B M,1021046t P N,4615t P N 211246464612255255P E Qt S E Q P Nt tt △.····································6分(3)114468622B C DS C D B M△.若225P E QB C DS S △△,则有2464628625525tt,解得1214t t ,.···············································································································9分(4)在P D E △和F B P △中,10D E B P t P DB Ft P D E F B PP D EF B P ,,△≌△,∴P D EP F C D EP F C DS S S △五边形四边形F B PP F C DS S △四边形86B C DS △.∴在运动过程中,五边形P F C D E 的面积不变.·······························································12分。
2009年山东省济南市中考数学试卷与答案(word整理版)
2009年山东省济南市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分) 1.3-的相反数是( )A .3B .3-C .13D .13-2.图中几何体的主视图是( )3.如图,AB CD ∥,直线EF 与AB 、CD 分别相交于G 、H .60AGE =︒∠,则EHD ∠的度数是( )A .30︒B .60︒C .120︒D .150︒4.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A .535.910⨯平方米 B .53.6010⨯平方米 C .53.5910⨯平方米 D .435.910⨯平方米 6.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )A .1B .5C .5-D .6 7.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( ) A .20、20 B .30、20 C .30、30 D .20、308.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )A B C D9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( )A .230cmB .230cm πC .260cm πD .2120cm10.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.411.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,,()()()()1331;g a b b a g =如②,=,.,,, ()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( ) A .()53--, B .()53, C .()53-,D .()53-,二、填空题(本大题共5个小题,每小题3分,共15分) 13.分解因式:29x -= .14.如图,O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .15.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 . 16.“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮球则该队主力队员身高的方差是 厘米17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.11.73≈) 三、解答题(本大题共7个小题,共57分) 18.(7分)(1)计算:()()2121x x ++- (2)解分式方程:2131x x =--. 19.(7分)(1)已知,如图①,在ABCD 中,E 、F 是对角线BD 上的两点,且BF DE =.求证:AE CF =.(2)已知,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD =︒∠,求EBO ∠和C ∠的度数.20.(8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余.下.的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b . (1)写出k 为负数的概率;(2)求一次函数y kx b =+的图象经过二、三、四象限的概率.(用树状图或列表法求解)1- 2- 3-正面背面21.(8分)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?22.(9分)已知:如图,正比例函数y ax=的图象与反比例函数kyx=的图象交于点()32A,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)()M m n,是反比例函数图象上的一动点,其中03m<<,过点M作直线MN x∥轴,交y轴于点B;过点A作直线AC y∥轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.(第22题图)23.(9分)如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.24.(9分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.CB (第23题图) (第24题图)2009年山东省济南市中考数学试卷答案13. ()()33x x +- 14.3 15.216.2 17.62.1 18.(1)解:()()2121x x ++-=22122x x x +++- ································································································· 2分 =23x + ························································································································ 3分(2)解:去分母得:()213x x -=- ················································································· 1分 解得1x =- ············································································································· 2分检验1x =-是原方程的解 ····················································································· 3分 所以,原方程的解为1x =- ················································································· 4分 19.(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥. ∴ADE FBC =∠∠ ··························································································· 1分 在ADE △和CBF △中,∵AD BC ADE FBC DE BF ===,∠∠, ∴ADE CBF △≌△ ························································································· 2分 ∴AE CF = ········································································································ 3分(2)解:∵DE 是O 的直径∴90DBE =︒∠ ··································································································· 1分 ∵30ABD =︒∠∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ··········································· 2分 ∵AC 是O 的切线∴90CAO =︒∠ ··································································································· 3分 又260AOC ABD ==︒∠∠∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠ ························ 4分20.解:(1)k 为负数的概率是23··························································································· 3分 (2)画树状图············································································ 5分共有6种情况,其中满足一次函数y kx b =+经过第二、三、四象限,即00k b <<,的情况有2种 ······························································································· 6分所以一次函数y kx b =+经过第二、三、四象限的概率为2163= ···································· 8分 21.解:(1)设职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元 ············ 1分由题意得20018001801700x y x y +=⎧⎨+=⎩······························································································ 3分解这个方程组得8005x y =⎧⎨=⎩ ································································································· 4分答:职工月基本保障工资为800元,销售每件产品的奖励金额5元.·································· 5分 (2)设该公司职工丙六月份生产z 件产品·············································································· 6分 由题意得80052000z +≥ ······························································································ 7分解这个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 ··········································································· 8分 22.解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==, ∴263k a ==, ·········································································································· 2分 ∴反比例函数的表达式为:6y x = ············································································ 3分正比例函数的表达式为23y x = ············································································· 4分(2)观察图象,得在第一象限内, 当03x <<时,反比例函数的值大 于正比例函数的值.(3)BM DM = ······················································································································ 7分理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形即12OC OB = ∵3OC = ∴4OB = ····················································································································· 8分 即4n =∴632m n ==∴3333222MB MD ==-=, ∴MB MD = ··············································································································· 9分23.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ·········································································································· 1分在Rt ABK △中,sin 4542AK AB =︒==.2 3 1 32 11- 2-3开始第一次 第二次2cos 454242BK AB =︒== ············································································· 2分在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ······································································ 3 (2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ······································································································ 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ·············································································································· 5分 即10257t t -=解得,5017t = ······················································································ 6分 (3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t =······················································································································· 7分 ②当MN NC =时,如图④,过N 作NE MC ⊥于E由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC t c NC t -==又在Rt DHC △中,3cos 5CH c CD == ∴535t t -=解得258t = ······························································································ 8分 132cos 1025tFC C MC t ===-解得6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形····················· 9分24.解:(1)由题意得129302b a a bc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ ···················································································· 2分解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ········································· 3分(2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+ 则302k b b -+=⎧⎨=-⎩,······························································· 4分解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--.··········································································· 5分 把1x =-代入得43y =-∴P 点的坐标为413⎛⎫-- ⎪⎝⎭, ························································································· 6分 (3)S 存在最大值 ····································································································· 7分 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴333322OE m AE OE m =-==,,方法一:连结OPOED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ········································································································· 8分 ∵304-<∴当1m =时,333424S =-+=最大 ······································································ 9分(第23题图⑤)A DC B H N MF (第24题图)。
2009年山东省泰安市中考数学试卷详细解析版
2009年山东省泰安市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列各式,运算结果为负数的是()A.﹣(﹣2)﹣(﹣3)B.(﹣2)×(﹣3)C.(﹣2)﹣2D.(﹣3)﹣32.(3分)光的传播速度约为300 000km/s,太阳光照射到地球上大约需要500s,则太阳到地球的距离用科学记数法可表示为()A.15×107km B.1.5×109km C.1.5×108km D.15×108km3.(3分)抛物线y=﹣2x2+8x﹣1的顶点坐标为()A.(﹣2,7)B.(﹣2,﹣25)C.(2,7) D.(2,﹣9)4.(3分)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为()A.30°B.60°C.30°或150°D.60°或120°5.(3分)若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.(3分)如图,是一个工件的三视图,则此工件的全面积是()A.85πcm2B.90πcm2C.155πcm2D.165πcm27.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE 于点F,若BC=6,则DF的长是()A.2 B.3 C .D.48.(3分)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A .B .C .D .9.(3分)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A 地在C地南偏西30°方向,则A、C两地的距离为()A .kmB .kmC .kmD .km10.(3分)某校为了了解七年级学生的身高情况(单位:cm,精确到1cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在()A.第二组B.第三组C.第四组D.第五组11.(3分)如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD 折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.B.C.4 D.312.(3分)如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB 于点D.若梯形ODBC的面积为3,则双曲线的解析式为()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)13.(3分)化简:的结果为.14.(3分)关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是.15.(3分)已知y是x的一次函数,下表给出了部分对应值,则m的值是.16.(3分)如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为.17.(3分)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.18.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线OC 将△COA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为.19.(3分)如图所示,△A′B′C′是由△ABC向右平移5个单位长度,然后绕B点逆时针旋转90°得到的(其中A′、B′、C′的对应点分别是A、B、C),点A′的坐标是(4,4)点B′的坐标是(1,1),则点A的坐标是.三、解答题(共7小题,满分63分)20.(7分)先化简、再求值:﹣a﹣2),其中a=﹣3.21.(7分)如图1,A、B两个转盘分别被分成三个、四个相同的扇形,分别转动A盘、B盘各一次(若指针恰好指在分割线上,则重转一次,直到指针指向一个数字为止).(1)用列表(或画树状图)的方法,求两个指针所指的区域内的数字之和大于7的概率;(2)如果将图1中的转盘改为图2,其余不变,求两个指针所指区域的数字之和大于7的概率.22.(9分)将一个量角器和一个含30度角的直角三角板如图(1)放置,图(2)是由它抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD.(1)求证:DB∥CF;(2)当OD=2时,若以O、B、F为顶点的三角形与△ABC相似,求OB.23.(10分)某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?24.(10分)如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.25.(10分)如图,△OAB是边长为2的等边三角形,过点A的直线+m 与x轴交于点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.26.(10分)如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E 是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.2009年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列各式,运算结果为负数的是()A.﹣(﹣2)﹣(﹣3)B.(﹣2)×(﹣3)C.(﹣2)﹣2D.(﹣3)﹣3【分析】先计算各选项,再根据负数的定义判断.【解答】解:∵A、原式=5,B、原式=6,C、原式=,D、原式=.故选:D.【点评】注意负数的奇次幂仍是负数.2.(3分)光的传播速度约为300 000km/s,太阳光照射到地球上大约需要500s,则太阳到地球的距离用科学记数法可表示为()A.15×107km B.1.5×109km C.1.5×108km D.15×108km【分析】本题考查学生对科学记数法的掌握和对题意的理解.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动8位,应该为1.5×108.【解答】解:依题意得:太阳到地球的距离=300 000×500=150 000 000=1.5×108km.故选C.【点评】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n表示整数,n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.3.(3分)抛物线y=﹣2x2+8x﹣1的顶点坐标为()A.(﹣2,7)B.(﹣2,﹣25)C.(2,7) D.(2,﹣9)【分析】代入顶点坐标公式,或用配方法将抛物线解析式写成顶点式,确定顶点坐标.【解答】解:∵y=﹣2x2+8x﹣1=﹣2(x﹣2)2+7,∴顶点坐标为(2,7).故选C.【点评】要求学生熟记顶点坐标公式或者配方法的解题思路.4.(3分)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为()A.30°B.60°C.30°或150°D.60°或120°【分析】连接OA、OB,过O作AB的垂线,通过解直角三角形,易得出∠AOB 的度数;由于弦AB所对的弧有两段:一段是优弧,一段是劣弧;所以弦AB所对的圆周角也有两个,因此要分类求解.【解答】解:如图,连接OA、OB,过O作AB的垂线;在Rt△OAC中,OA=1,AC=;∴∠AOC=60°,∠AOB=120°;∴∠D=∠AOB=60°;∵四边形ADBE是⊙O的内接四边形,∴∠AEB=180°﹣∠D=120°;因此弦AB所对的圆周角有两个:60°或120°;故选:D.【点评】本题考查的是圆周角定理、垂径定理以及圆内接四边形的性质;注意:弦AB所对圆周角有两个,不要漏解.5.(3分)若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.【点评】本题主要考查了同底数的幂的除法运算法则,是把运算法则逆用.6.(3分)如图,是一个工件的三视图,则此工件的全面积是()A.85πcm2B.90πcm2C.155πcm2D.165πcm2【分析】如图,首先得知这个几何体为一个圆锥,然后根据题意得出它的半径,高以及母线长,继而球出它的表面积.【解答】解:由图可知这个几何体是个圆锥,且它的底面圆的半径是5cm,高12cm,母线长=13cm,它的表面积=侧面积+底面积=π×5×13+π×5×5=90πcm2.故选:B.【点评】可先根据三视图确定这个几何体的形状,然后根据其表面积计算方法进行计算.7.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE 于点F,若BC=6,则DF的长是()A.2 B.3 C.D.4【分析】利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.【解答】解:在△ABC中,D、E分别是BC、AC的中点∴DE∥AB∴∠EDC=∠ABC∵BF平分∠ABC∴∠EDC=2∠FBD在△BDF中,∠EDC=∠FBD+∠BFD∴∠DBF=∠DFB∴FD=BD=BC=×6=3.故选:B.【点评】三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.(3分)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.9.(3分)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A 地在C地南偏西30°方向,则A、C两地的距离为()A.km B.km C.km D.km【分析】根据已知作图,由已知可得到△ABC是直角三角形,从而根据三角函数即可求得AC的长.【解答】解:如图.由题意可知,AB=5km,∠2=30°,∠EAB=60°,∠3=30°.∵EF∥PQ,∴∠1=∠EAB=60°又∵∠2=30°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣30°=90°.∴△ABC是直角三角形.又∵MN∥PQ,∴∠4=∠2=30°.∴∠ACB=∠4+∠3=30°+30°=60°.∴AC===(km).故选:A.【点评】本题是方向角问题在实际生活中的运用,解答此类题目的关键是根据题意画出图形利用解直角三角形的相关知识解答.10.(3分)某校为了了解七年级学生的身高情况(单位:cm,精确到1cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在()A.第二组B.第三组C.第四组D.第五组【分析】从表格和扇形图上可知第二组的12人占了总数的12%,从而求出第三组人数;第五组为24人,第六组为10人,中位数应该是第50和51个数的平均数,从表格可知第50和51个数落在第四组中.【解答】解:总数为12÷12%=100人,第三组人数为100×18%=18人,中位数应该是第50和51个数的平均数,从表格可知第50和51个数落在第四组中.故选:C.【点评】本题考查的是表格和扇形统计图的综合运用.读懂表格和统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对中位数的认识.11.(3分)如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD 折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.B.C.4 D.3【分析】根据已知条件和图形折叠的性质可得:∠BDC=180°﹣2×30°=120°,BD=DC=DC'=2.解三角形BC′D求解.【解答】解:∵AD是△ABC的中线,∴BD=DC=BC=2,∠ADC=30°,∴∠C′DA=∠ADC=30°∴∠BDC′=120°,BD=DC'=2,∴∠DBC′=∠BC′D=30°,过点D作DE⊥BC′于E,∴DE=BD=1,∴BE==∴BC′=2BE=2.故选:A.【点评】主要考查了图形的翻折变换和直角三角形的有关性质.12.(3分)如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB 于点D.若梯形ODBC的面积为3,则双曲线的解析式为()A.B.C.D.【分析】先根据图形之间的关系可知S=S△OEC=S矩形OABC,则可求得△OCE的△OAD面积,根据反比例函数系数的几何意义即可求解.【解答】解:∵双曲线y=(k>0)经过矩形OABC的边BC的中点E,=S△OEC=S矩形OABC=S梯形ODBC=1,∴S△OAD∴k=2,则双曲线的解析式为.故选:B.【点评】本题主要考查了反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.二、填空题(共7小题,每小题3分,满分21分)13.(3分)化简:的结果为.【分析】运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.【解答】解:原式=﹣20=﹣14.【点评】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.14.(3分)关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是k≥.【分析】由于已知方程有实数根,则△≥0,由此可以建立关于k的不等式,解不等式就可以求出k的取值范围.【解答】解:由题意知△=(2k+1)2+4(2﹣k2)=4k+9≥0,∴k≥.【点评】总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(3分)已知y是x的一次函数,下表给出了部分对应值,则m的值是﹣7.【分析】一次函数的一般形式为y=kx+b,根据待定系数法即可求解.【解答】解:设该一次函数的解析式为y=kx+b.由题意得,解得,故m的值是﹣7.【点评】本题要注意利用一次函数的特点,列出方程组,求出未知数.16.(3分)如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为4:9.【分析】要求图1中的圆与扇环的面积比,就要先根据面积公式先计算出面积.再计算比.【解答】解:设正方形的边长为2,则圆的面积为π,扇环的面积为(4π﹣π)=π,所以图1中的圆与扇环的面积比为4:9.【点评】此题主要考查扇环面积的求法.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.17.(3分)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为y=x2+4x(0<x≤6).【分析】根据勾股定理可得BD=10,因为DM=x,所以BM=10﹣x,过点M作ME⊥BC于点E,可得到△BME∽△BDC,然后根据相似三角形的性质得到=,由此即可用x表示ME,最后根据三角形的面积公式即可确定函数关系式.【解答】解:∵AB=8,BC=6,∴CD=8,∴BD=10,∵DM=x,∴BM=10﹣x,如图,过点M作ME⊥BC于点E,∴ME∥DC,∴△BME∽△BDC,∴=,∴ME=8﹣x,=×BP×ME,而S△MBP∴y=x2+4x,P不与B重合,那么x>0,可与点C重合,那么x≤6.故填空答案:y=x2+4x(0<x≤6).【点评】本题的难点是利用相似得到△MBP中BP边上的高ME的代数式,此题主要考查了利用相似三角形的性质确定函数关系式.18.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线OC将△COA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为.【分析】根据题意有:沿△ABC的中线CM将△CMA折叠,使点A落在点D处,若CD恰好与MB垂直,可得:∠B=2∠A,且∠ACB=90°,故∠A=30°,则tanA的值为.【解答】解:在直角△ABC中,∴∠ACM+∠MCB=90°,CM垂直于斜边AB,∴∠ABC+∠MCB=90°,∴∠B=∠ACM,OC=OA(直角三角形的斜边中线等于斜边一半).∴∠A=∠1.又∵∠1=∠2,∴∠A=30°.∴tanA=tan30°=.【点评】本题考查折叠的性质和特殊角度的三角函数值.19.(3分)如图所示,△A′B′C′是由△ABC向右平移5个单位长度,然后绕B点逆时针旋转90°得到的(其中A′、B′、C′的对应点分别是A、B、C),点A′的坐标是(4,4)点B′的坐标是(1,1),则点A的坐标是(﹣1,﹣2).【分析】△A′B′C′是由△ABC向右平移5个单位长度,然后绕B′点逆时针旋转90°得到的,则△ABC可以看成由△A′B′C′绕点B顺时针旋转90°,然后向左平移5个单位长度而得到点A的坐标.【解答】解:把点(4,4)绕点B顺时针旋转90°,然后向左平移5个单位长度而得到点的坐标是(﹣1,﹣2).【点评】运用逆向思维的方法,解题更方便且易于理解.三、解答题(共7小题,满分63分)20.(7分)先化简、再求值:﹣a﹣2),其中a=﹣3.【分析】这道求代数式值的题目,通常做法是先把代数式化简,然后再代入求值.【解答】解:原式=,=,=,=;(5分)当a=﹣3时,原式=﹣.【点评】本题的关键是化简,然后把给定的值代入求值.21.(7分)如图1,A、B两个转盘分别被分成三个、四个相同的扇形,分别转动A盘、B盘各一次(若指针恰好指在分割线上,则重转一次,直到指针指向一个数字为止).(1)用列表(或画树状图)的方法,求两个指针所指的区域内的数字之和大于7的概率;(2)如果将图1中的转盘改为图2,其余不变,求两个指针所指区域的数字之和大于7的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:(1)树状图如下:两个指针所指的区域的数字之和共有12种情况,其中和大于7的6种,因此两个指针所知区域内的数字之和大于7的概率为;(2)将标有“6”的半圆等分成两个扇形,相当于将(1)中树状图的“7”处改为“6”,则两个指针所指的区域内的数字之和大于7的概率为.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.22.(9分)将一个量角器和一个含30度角的直角三角板如图(1)放置,图(2)是由它抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD.(1)求证:DB∥CF;(2)当OD=2时,若以O、B、F为顶点的三角形与△ABC相似,求OB.【分析】(1)连接OF.判断OBCF是平行四边形;(2)首先分析相似三角形的对应顶点,从而得到角对应相等,再运用解直角三角形的知识求解.【解答】(1)证明:连接OF,如图.∵AB切半圆O于F,∴OF⊥AB.∵CB⊥AB,∴BC∥OF.∵BC=OD,OD=OF,∴BC=OF.∴四边形OBCF是平行四边形,∴DB∥CF.(2)解:以O、B、F为顶点的三角形与△ABC相似,∠OFB=∠ABC=90°.∵∠OBF=∠BFC,∠BFC>∠A,∴∠OBF>∠A,∵△OFB与△ABC相似,∴∠A与∠BOF是对应角.∴∠BOF=30°.∴OB==;故OB的长为.【点评】此题综合运用了平行四边形的性质和判定.能够正确分析相似三角形的对应顶点,从而得到有关的角对应相等.23.(10分)某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?【分析】(1)设A和B的进价分别为x和y,件数×进价=付款,可得到一个二元一次方程组,解即可.(2)获利=利润×件数,设购买A商品a件,则购买B商品(40﹣a)件,由题意可得到两个不等式,解不等式组即可.【解答】解:(1)设A、B两种纪念品的进价分别为x元、y元.由题意,得(2分)解之,得(4分)答:A、B两种纪念品的进价分别为20元、30元.(5分)(2)设商店准备购进A种纪念品a件,则购进B种纪念品(40﹣a)件.由题意,得,(7分)解之,得:30≤a≤32.(8分)设总利润为w,∵总获利w=5a+7(40﹣a)=﹣2a+280是a的一次函数,且w随a的增大而减小,∴当a=30时,w最大,最大值w=﹣2×30+280=220.∴40﹣a=10.∴当购进A种纪念品30件,B种纪念品10件时,总获利不低于216元,且获得利润最大,最大值是220元.(10分)【点评】利用了总获利=A利润×A件数+B利润×B件数,件数×进价=付款,还用到了解二元一次方程组以及二元一次不等式组的知识.24.(10分)如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.【分析】(1)要求证:FD2=FB•FC,只要证明△FBD∽△FDC,从而转化为证明∠FDC=∠FBD;(2)GD与EF垂直,要证DG⊥EF,只要证明∠5+∠1=90°,即转化为证明∠3=∠4即可.【解答】证明:(1)∵E是Rt△ACD斜边中点.∴DE=EA.∴∠A=∠2.∵∠1=∠2.∴∠1=∠A.∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A.∴∠FDC=∠FBD.∵∠F是公共角.∴△FBD∽△FDC.∴.∴FD2=FB•FC;(2)GD⊥EF,理由如下:∵DG是Rt△CDB斜边上的中线,∴DG=GC,∴∠3=∠4,由(1)得∠4=∠1,∴∠3=∠1,∵∠3+∠5=90°,∴∠5+∠1=90°,∴DG⊥EF.【点评】本题考查了相似三角形的判定和性质以及直角三角形斜边上中线的性质,解题的根据是掌握在证明线段的积相等可以转化为证明三角形相似,证明两直线垂直转化为证明形成的角是直角.25.(10分)如图,△OAB是边长为2的等边三角形,过点A的直线+m 与x轴交于点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.【分析】(1)(2)由图可作AF⊥x轴于F,根据直角三角形性质,用待定系数求E点坐标和的抛物线解析式;(3)再作作PG⊥x轴于G,将四边形OAPE的面积S用x0来表示,将问题转化为求函数最值问题.【解答】解:(1)作AF⊥x轴于F,∴OF=OAcos60°=1,AF=OFtan60°=∴点A(1,)代入直线解析式,得,∴m=∴当y=0时,得x=4,∴点E(4,0)(2)设过A、O、E三点抛物线的解析式为y=ax2+bx+c∵抛物线过原点∴c=0,∴∴抛物线的解析式为(3)作PG⊥x轴于G,设P(x0,y0)S四边形OAPE=S△AOF+S梯形AFGP+S△PGE===.当时,S最大【点评】此题考查知识点多,但题难度不大,需作辅多条辅助线,在直角三角形中解题,将问题转化为求函数最值问题.26.(10分)如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E 是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.【分析】(1)把要证明的线段AD和BE放到两个三角形ABD和BCE中即可证明;(2)根据等腰三角形的三线合一即可证明;(3)根据(2)中的结论,即可证明CD=BC.【解答】(1)证明:∵∠ABC=90°,BD⊥EC,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,在△BAD和△CBE中,,∴△BAD≌△CBE(ASA),∴AD=BE.(2)证明:∵E是AB中点,∴EB=EA,∵AD=BE,∴AE=AD,∵AD∥BC,∴∠7=∠ACB=45°,∵∠6=45°,∴∠6=∠7,又∵AD=AE,∴AM⊥DE,且EM=DM,即AC是线段ED的垂直平分线;(3)解:△DBC是等腰三角形(CD=BD).理由如下:∵由(2)得:CD=CE,由(1)得:CE=BD,∴CD=BD.∴△DBC是等腰三角形.【点评】综合运用了全等三角形的性质和判定以及等腰三角形的性质.此类题注意已证明的结论的充分运用.。
2009年山东省潍坊市中考数学试卷
2009年山东省潍坊市中考数学试卷、选择题(共12小题,每小题3分,满分36分) 1. ( 3分)下列运算正确的是()236- 1__A . a?a = aB .(-) =- 2C . ± 4D . | - 6|= 62. ( 3分)一个自然数的算术平方根为 a ,则和这个自然数相邻的下一个自然数是()2 --------------------------------------------------- --------------------------------------A. a+1 B . a +1 C .D .233.( 3分)太阳内部高温核聚变反应释放的辐射能功率为3.8 X 10千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学记数法表示,保留 2个有效数字) 14A . 1.9X 10 B. 142.0X 1015C . 7.6 X 1015D . 1.9 X 104. ( 3分)已知关于x 的-元- 2 一次方程x -6x+k+1 = 0的两个实数根是 n 2 2 X 1 , X 2,且 X 1 +X 2 =24,则k 的值是()A . 8B .-7 C . 6D . 55. ( 3分)某班50名同学分别站在公路的 A , B 两点处,A , B 两点相距1000米,A 处有 30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那 么集合地点应选在()A B —« ---------- • -----A . A 点处B .线段AB 的中点处C .线段AB 上,距A 点 ------ 米处D .线段AB 上,距 A 点400米处2(3分)关于x 的方程(a - 6) x - 8x+6 = 0有实数根,则整数 a 的最大值是(1 , 2, 3, 4的形状相同的4个小球,从甲盒中任的概率最大.(3分)甲、乙两盒中分别放入编号为意摸出一球,再从乙盒中任意摸出一球, 将两球编号数相加得到一个数,则得到数( )(3分)如图,小明要测量河内小岛B到河边公路I的距离,在A点测得/ BAD = 30°,在C 点测得/ BCD = 60°,又测得AC = 50米,则小岛B 到公路I 的距离为(的切线,C 是切点,连接 AC ,若/ CAB = 30°,贝U BD 的长为()C . RD . — R10. (3 分)如图,已知 Rt △ ABC 中,/ ABC = 90°,/ BAC = 30°, AB = 2 _cm ,将△ ABC 绕顶点C 顺时针旋转至△ A ' B ' C '的位置,且 A 、C 、B '三点在同一条直线上,则点A 经过的最短路线的长度是( )cm .A . 8B . 4C . —nD . ~n11. (3 分)如图,在 Rt △ ABC 中,/ ABC = 90°, AB = 8cm , BC = 6cm ,分别以 A , C 为圆 心,以一的长为半径作圆,将Rt △ ABC 截去两个扇形,则剩余(阴影)部分的面积为()2cm .)米.B . 25C .D . 25+259. ( 3分)已知圆 O 的半径为R , AB 是圆O 的直径,D 是AB 延长线上一点, DC 是圆OA . 2R 0CD 上运动(C , D 两点除外),EP 与AB 相交于点F ,若CP = x ,为y ,则y 关于x 的函数关系式是A FD PC16. (3分)已知边长为a 的正三角形ABC ,两顶点A 、B 分别在平面直角坐标系的 x 轴、yc .24 — nD . 24 — n12. (3分)在同 平面直角坐标系中,反比例函数 y一与一次函数 y =- x+2 交于 A , B两点,0为坐标原点,则△ AOB 的面积为(C .10二、填空题 (共 5小题,每小题3分,满分15 分)13.(3 分) 2分解因式:27x +18x+3 = 14. (3 分) 方程一 的解是x =15.(3 分)如图,正方形 ABCD 的边长为10,点E 在CB 的延长线上,EB = 10,点P 在边四边形FBCP 的面积 象限,连接 OC ,则OC 的长的最大值是 冗17. ( 3分)在如图所示的方格纸中,每个小方格都是边长为 三个顶点都在格点上(每个小方格的顶点叫格点) .画出△ ABC 绕点O 逆时针旋转90 °后的△ A ' B ' C三、解答题(共7小题,满分69 分)18. (8分)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸 箱•供应这种纸箱有两种方案可供选择: 方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收 取•工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1 )若需要这种规格的纸箱 x 个,请分别写出从纸箱厂购买纸箱的费用 y i (元)和蔬菜加工厂自己加工制作纸箱的费用y 2 (元)关于x (个)的函数关系式;(2 )假设你是决策者,你认为应该选择哪种方案?并说明理由.19. (9分)新星公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语 水平、参加社会实践与社团活动等三项进行测试或成果认定,三项的得分满分都为 100分,三项的分数分别按 5: 3: 2的比例记入每人的最后总分,有 4位应聘者的得分如下表所示.(1)写出4位应聘者的总分;1个单位的正方形,△ ABC 的(2 )就表中专业知识、英语水平、参加社会实践与社团活动等三项的得分,分别求出4人中三项所得分数的方差;(3)由(1 )和(2),你对应聘者有何建议?20. (9分)已知△ ABC,延长BC到D,使CD = BC.取AB的中点F,连接FD交AC于点E.(1 )求——的值;(2) 若AB = a, FB = EC,求AC 的长.21. (10分)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地ABCD面积的-,求P、Q两块周围的硬化路面宽都相等,并使两块绿地面积的和为矩形绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为01和02,且01到AB、BC、AD的距离与02到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.22. (10分)如图所示,圆O是厶ABC的外接圆,/ BAC与/ ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC .(1)求证:BD = DC = DI ;(2)若圆O的半径为10cm,/ BAC = 120。
2009年山东省德州市中考数学试题及答案
绝密★启用前 试卷类型:A 德州市二○○九年中等学校招生考试 数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,24分;第Ⅱ卷8页为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题卷(选择题 共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高温比最低气温高(A)(A)--10℃ (B)(B)--6℃ (C)6℃ (D)10℃2.计算()4323ba --的结果是的结果是(A)12881b a ((B )7612b a (C )7612b a - (D )12881b a -3.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于等于 (A ) 70° (B ) 65°(C ) 50° (D ) 25°E D B C′F C D ′A (第3题图)题图)2222yxOBA题号 二 三总分 17 18 19 20 21 22 23 得分棉农甲棉农甲 68 70 72 69 71 棉农乙棉农乙69 71 71 69 70 得 分评 卷 人加一个条件:加一个条件: ,使得加上这个条件后能够推出,使得加上这个条件后能够推出的长度是的长度是 .,…分别y xOC 1 B 2A 2 C 3 B 1 A 3B 3 A 1C 2 DAOEAB ′AB CD P P 1 222x y x y y--得 分评 卷 人得 分评 卷 人4 2 5 7 13 19 频数频数得分评卷人A CDEBO(第19题图)题图)l得分评卷人3得分评卷人3BC得分评卷人GNM得分评卷人AGEAGFAFE题:本大题共小题,每小题分,共分题号1 2 3 4 5 6 7 8 答案D D C A B A A C ()+x y3335ACDEBO(第20题图)题图)l333522AE AB -()223514-3 E GM C32[31]3x +-2[31]3x +-´33333332312+=-a (米)时(米)时,=ab ac 44-=)()33433-´+=3321+(平方米)(平方米). 3321>+有最大值,最大值为3321+平方米平方米. =12FD =12FD GN MH FADF B CEG证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.点. 在△DAG与△DCG中,中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴AG=CG.………………………………………………55分在△DMG与△FNG中,中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴MG=NG在矩形AENM中,AM=EN.……………6分在Rt△AMG与Rt△ENG中,中,∵AM=EN,MG=NG,∴△AMG≌△ENG.∴AG=EG.∴EG=CG.……………………………8分证法二:延长CG至M,使MG=CG,连接MF,ME,EC,……………………4分在△DCG 与△FMG中,中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG ≌△FMG.∴MF=CD,∠FMG=∠DCG.∴MF∥CD∥AB.………………………5分∴EF MF^.在Rt△MFE与Rt△CBE中,中,∵MF=CB,EF=BE,∴△MFE≌△CBE.∴MEF CEBÐ=Ð.…………………………………………………6分∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.…………7分∴△MEC为直角三角形.为直角三角形.∵MG = C GCG,∴EG=21MC.∴EG CG=.………………………………8分(3)(1)中的结论仍然成立,)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.……10分FBA DC E图③GFBA DC EGMNN图②(一)②(一)FBA DC EGM图②(二)②(二)。
【专业文档】2009山东烟台中考数学试题与答案.doc
2009年烟台市初中学生学业考试数 学 试 题说明:1.本试题分为Ⅰ卷和Ⅱ卷两部分.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.考试时间为120分钟,满分150分.2.答题前将密封线内的项目填写清楚.3.考试过程中允许考生进行剪、拼、折叠等实验.第Ⅰ卷注意事项:请考生将自己的姓名、准考证号、考试科目涂写在答题卡上.选择题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑,不能答在本试题上.如要改动,必须先用橡皮擦干净,再选涂另一个答案.一、选择题(本题共12个小题,每小题4分,满分48分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( ) A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006 B .2007C .2008D .2009标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第2题图)5.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .24 6.如图,数轴上A B ,两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A.2- B.1--C.2-D.1+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,, 直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <-B .21x -<<-C .20x -<<D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,左视图俯视图(第5题图)(第6题图)A DCPB(第10题图)60°x x x x x按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.D.76cm第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分)13.若523m x y+与3nx y的和是单项式,则m n=.14.设0a b>>,2260a b ab+-=,则a bb a+-的值等于.15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是.16.如果不等式组2223xax b⎧+⎪⎨⎪-<⎩≥的解集是01x<≤,那么a b+的值为.17.观察下表,回答问题:第个图形中“△”的个数是“○”的个数的5倍.18.如图,ABC△与AEF△中,AB AE BC EF B E AB==∠=∠,,,交EF于D.给出下列结论:①AFC C∠=∠;②DF CF=;③ADE FDB△∽△;④BFD CAF∠=∠.其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题共8个小题,满分78分)19.(本题满分6分)2)+①②(第12题图)AEDB F C(第18题图)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.21.(本题满分8分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中a 的值,并求出该校初一学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?(第20题图)27(第21题图)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1173. ).23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?DCB A②①(第22题图)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠.25.(本题满分14分) 如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2t a n 2C D A D A B C =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE . (1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG.. 求证:CD 垂直平分EG .(3)延长BE 交CD 于点P . 求证:P 是CD 的中点.(第24题图) A D GE C B (第25题图)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).2009年烟台市初中学生学业考试数学试题参考答案及评分意见本试题答案及评分意见,供阅卷评分使用.考生若写出其它正确答案,可参照评分意见相应评分.二、填空题(本题共6个小题,每小题4分,满分24分)13.1414.15.1716.1 17.20 18.①,③,④三、解答题(本题共8个小题,满分78分)19.(本题满分6分)2)+(11|1=++. ····························································2分111 =.·································································4分1 =····································································································6分20.(本题满分8分)解:(1)12···································································································1分(2)13········································································································3分(3)根据题意,画树状图: ·············································································6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)41164==.·····································································8分1 2 3 41第一次第二次 1 2 3 421 2 3 431 2 3 44开始或根据题意,画表格: ···················································································· 6分由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P (4的倍数)41164==. ·············································································· 8分 21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ···································· 1分 初一学生总数:2010%200÷=(人). ····························································· 2分 (2)活动时间为5天的学生数:20025%50⨯=(人). 活动时间为7天的学生数:2005%10⨯=(人). ················································ 3分 频数分布直方图(如图)···················· 4分 (3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ··························· 5分 (4)众数是4天,中位数是4天. ···································································· 7分 (5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ················································· 8分 22.(本题满分8分)解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=°°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴==,. ························· 3分在Rt ACE △中, 5sin 5sin 302AE AC ACE =∠==°, ··············· 4分5cos 5cos3032CE AC ACE =∠==° ·············5分在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==°,°, ···················································· 6分DB BA(第22题图)C(第21题图)551) 6.822AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ··································································· 8分23.(本题满分10分) 解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ·········································································· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=.····································································· 4分 解这个方程,得12100200x x ==,. ································································ 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ···························· 6分 (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ·········································································· 8分150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.········· 10分24.(本题满分10分)(1)证明:连接OC ,HC HG HCG HGC =∴∠=∠,. ························· 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°, ··········· 2分 12OB OC =∴∠=∠,, ······································ 3分 3HGC ∠=∠,2390∴∠+∠=°.······················· 4分 90BFG ∴∠=°,即DE AB ⊥. ···························· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径, ∴BD BE =. ······························································································· 6分BED BME ∴∠=∠. ····················································································· 7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ··········································· 8分 HMD BME ∴∠=∠.BME ∠是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ······························ 9分 HMD MHE MEH ∴∠=∠+∠. ···································································· 10分 25.(本题满分14分)证明:(1)延长DE 交BC 于F .(第24题图)AD BC ∥,AB DF ∥, AD BF ABC DFC ∴=∠=∠,. ···························· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠=, 2CD CF∴=,即2CD CF =. 22CD AD BF ==,BF CF ∴=. ······················ 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ······························································································· 4分(2)CE 平分BCD ∠,∴BCE DCE ∠=∠.由(1)知BC CD CE CE ==,,BCE DCE ∴△≌△,BE DE ∴=. ················· 6分 由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ····································· 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ····································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠. ······················································· 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ···························· 12分 又BD BD =,BAD BPD ∴△≌△,DP AD ∴=. ······································· 13分 12AD CD =,12DP CD ∴=.P ∴是CD 的中点. ········································ 14分 28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a -=+-⎧⎪⎨-=⎪⎩, ··············2分 解得12.a b =⎧⎨=-⎩, ∴抛物线对应的函数表达式为223y x x =--. ········3分(2)存在.在223y x x =--中,令0x =,得3y =-.令0y =,得2230x x --=,1213x x ∴=-=,. (10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ······························································ 5分容易求得直线CM 的表达式是3y x =--.在3y x =--中,令0y =,得3x =-. (30)N ∴-,,2AN ∴=. ··············································································· 6分 A D G E C B (第25题图) FP (第26题图)在223y x x =--中,令3y =-,得1202x x ==,. 2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ····························· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,.OD OB ∴=,45OBD ∴∠=°. ······································································ 9分 又点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ··········································· 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ··································· 11分90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ···························· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ······················· 14分情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。
山东省枣庄市2009年中考数学试题(含答案)
绝密☆启用前试卷类型:A 枣庄市二○○九年全市高中段招生统一考试数学注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共12页,满分120分.考试时间为120分钟.2.答Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并在本页正上方空白处写上姓名和准考证号.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.-12的相反数是()A.2B.−2C.12D.−122.若m+n=3,则2m2+4mn+2n2−6的值为()A.12B.6C.3D.0 3.下列函数中,自变量x的取值范围是x>2的函数是()A.y=x−2B.y=1 x−2C.y=2x−1D.y=12x−14.请你观察下面的四个图形,它们体现了中华民族的传统文化.第4题图对称现象无处不在,其中可以看作是轴对称图形的有()-1-A .4 个B .3 个C .2 个D .1 个 5.如图,直线 a ,b 被直线 c 所截,下列说法正确的是()c A .当∠1= ∠2 时,a ∥ b 1 B .当 a ∥ b 时, ∠1= ∠2a2C .当 a ∥b 时, ∠1+ ∠2 = 90� b�D .当a ∥b 时,∠1+ ∠2 =180第 5 题图6.某住宅小区六月 1 日至 6 日每天用水量变化情况如折线用水量/吨37 34图所示,那么这 6 天的平均用水量是( )3231 30A .30 吨B .31 吨28C .32 吨D .33 吨0 1 2 3 4 5 6 日期/日第6题图7.如图,骰子是一个质量均匀的小正方体,它的六个面上分别刻有 1~6 个点.小明仔细观察骰子,发现任意相对两面的点数和都相等.这枚骰 子向上的一面的点数是 5,它的对面的点数是( )A .1B .2C .3D .6第 7 题图 8.实数 a ,b 在数轴上的对应点如图所示,则下列不等式中错. 误. 的是( )A .ab > 0B . a + b < 0 ab 0 aC .<1b第 8 题图D .a −b < 09.如图,△DEF 是由△ABC 经过位似变换得到的, 点 O 是位似中心,D ,E ,F 分别是 OA ,OB ,OC A D的中点,则△DEF 与△ABC 的面积比是( )A .1: 2B .1: 4C .1:5BO EF第 9 题图CD .1: 6D10.如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()B O AA.25°B.30°C.35°D.50°C第10题图-2-11.二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错.误.的是()y A.a<0B.c>0C.b2−4ac>0-1O 1 D.a+b+c>0x第11题图12.如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB的解析式是()yA.y=−2x−3Ay=−2xB.y=−2x−6BxOC.y=−2x+3D.y=−2x+6第12题图-3-绝 密☆启 用前 试 卷类 型 : A二 ○○九 年 中等 学 校 招生 考 试数学第Ⅱ卷 (非选择题 共 84 分)注意事项:1.第Ⅱ卷共 8 页,用钢笔或圆珠笔(蓝色或黑色)直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.得分 评卷人二、填空题:本大题共 6 小题,共 24 分.只要求填写最后结果, 每小题填对得 4 分.O13.布袋中装有 1 个红球,2 个白球,3 个黑球,它们除颜色外完全相A 同,从袋中任意摸出一个球,摸出的球是白. 球. 的概率DC是 .B14.如图,将一副三角板叠放在一起,使直角顶点重合于 O 点,则第 14 题图 ∠AOC + ∠DOB =.15.a 、b 为实数,且 ab=1,设 P=ab+,Q=a +1b +111+,则 P Q (填“>”、a +1b +1“<”或“=”). y4 16.如图,直线y = − x + 4 xyA B与轴、 轴分别交于 、 两点,3把△ AOB A 90° △ AO ′B ′ B ′绕点 顺时针旋转 后得到 ,则点 的BO ′ B ′坐标是.OxA 第 16 题图17.如图 ,在菱形 ABCD 中,DE ⊥AB 于 E ,DE=6cm ,sin 3 A = , 5 D C则菱形 ABCD 的面积是__________2cm .1 18.a是不为1的有理数,我们把1−a称为a的差.倒.数..如:2的差A BE第17题图-4-1倒数是1−2,−1的差倒数是11=−1=1−(−1)21.已知a=−,a是a的差倒数,a是12133a的差倒数,2a是4a的差倒数,…,依此类推,则a=.32009三、解答题:本大题共7小题,共60分.解答时,要写出必要的文字说明、证明过程或演算步骤.得分评卷人19.(本题满分8分)如图,方格纸中的每个小正方形的边长均为1.(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;(第19题图①)(第19题图②)(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)答:①中的图形,②中的图形.-5-得分评卷人20.(本题满分8分)某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份开展促销活动,男、女服装的销售收入分别比二月份增长了40%,64%,已知第一季度男女服装的销售总收入为20万元.(1)一月份销售收入为万元,二月份销售收入为万元,三月份销售收入为万元;(2)二月份男、女服装的销售收入分别是多少万元?一月份三月份45%25%二月份30%第20题图得分评卷人21.(本题满分8分)宽与长的比是5−1的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它2给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.M D FA请你根据以上作法,证明矩形DCEF为黄金矩形.B N CE第21题图-6-得分评卷人22.(本题满分8分)为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为8mg.根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6mg时,对人体无毒害作用.那么从消毒开始,经多长时间学生才可以返回教室?y(mg)8O10x(分钟)第22题得分评卷人23.(本题满分8分)如图,线段AB与⊙O相切于点C,连结OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=63.(1)求⊙O的半径;(2)求图中阴影部分的面积.ODA BC第23题图-7-得分评卷人24.(本题满分10分)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.yAOBx第24题图得分评卷人25.(本题满分10分)如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴、y轴的正半轴上,且满足OB2−3+OA−1=0.(1)求点A、点B的坐标;(2)若点P从C点出发,以每秒1个单位的速度沿线段CB由C向B运动,连结AP,设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式;(3)在(2)的条件下,是否存在点P,使以点A,B,P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.yBC O A x第25题图-8-绝密☆启用前二○○九年全市高中段招生统一考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计.算.错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)题号123456789101112答案C A B A D C B C B A D D二、填空题:(本大题共6小题,每小题4分,共24分)13.13�15.=16.(7,3)17.6018.3 14.1804三、解答题:(本大题共7小题,共60分)19.(本题满分8分)(1)如图(画对一个得3分)或(图①-1)(图①-2)(图②)(2)图①—1(不是)或图①—2(是),图②(是)……………………………8分20.(本题满分8分)(1)5,6,9.………………………………………………………………………3分(2)设二月份男、女服装的销售收入分别为x万元、y万元,根据题意,得x+y=6,⎧⎨⎩(1+40%)x+(1+64%)y=9.………………………………………5分-9-⎧⎨⎩xy 解之,得==3.5,2.5.……………………………………………………………7分答:二月份男、女服装的销售收入分别为3.5万元、2.5万元.……………8分21.(本题满分8分)证明:在正方形ABCD中,取AB=2a,∵N为BC的中点,1∴NC=BC=a.…………………………………………………………………2分2 在Rt△DNC中,ND=NC2+CD2=a2+(2a)2=5a.………………………………4分又∵NE=ND,∴CE=NE−NC=(5−1)a.……………………………………………………6分∴5151CE(−)a−==CD2a2.故矩形DCEF为黄金矩形.…………………………………………………………8分22.(本题满分8分)(1)设药物燃烧阶段函数解析式为y=k x k≠,由题意,得1(10)48=10k,k=.1154∴此阶段函数解析式为y=x(0≤x<10).………………………………2分5k(2)设药物燃烧结束后函数解析式为y=2(k≠0),由题意,得2xk8=,2k2=80.1080∴此阶段函数解析式为y=(x≥10).……………………………………5分x(3)当y<1.6时,得∵x>0,80x<1.6.……………………………………………………6分∴1.6x>80,x>50.∴从消毒开始经过50分钟学生才返可回教室.………………………………8分23.(本题满分8分)(1)连结OC,则OC⊥AB.……………………………………………………1分∵OA=O B,∴116333AC=BC=AB=×=.………………………………………2分22-10-在Rt△AOC中,OC=OA2−AC2=62−(33)2=3.∴⊙O的半径为3.…………………………………………………………4分(2)∵OC=12OB,∴∠B=30o,∠COD=60o.……………………………………5分∴扇形OCD的面积为S扇形=OCD 60×π×32360=32π.…………………………………7分阴影部分的面积为S=S−S阴影RtΔOBC扇形OCD=12OC⋅CB-32π=932-32π. (8)分24.(本题满分10分)(1)由题意,可设抛物线的解析式为y=a(x−2)2+1,∵抛物线过原点,1∴a(0−2)2+1=0,a=−.411∴抛物线的解析式为y=−(x−2)2+1=−x2+x.………………………3分44(2)△AOB和所求△MOB同底不等高,且S=3S,△MOB△AOB∴△MOB的高是△AOB高的3倍,即M点的纵坐标是−3.……………5分1∴−3=−x2+x,即x2−4x−12=0.4解之,得x1=6,x=−.22∴满足条件的点有两个:M1(6,−3),M−,−.………………………7分2(23)(3)不存在.…………………………………………………………………………8分由抛物线的对称性,知AO=AB,∠AOB=∠ABO.若△OBN与△OAB相似,必有∠BON=∠BOA=∠BNO.设ON交抛物线的对称轴于A′点,显然A′(2,−1).y1∴直线ON的解析式为y=−x.211由2−x=−x+x,得26x1=0,x=.24OA′A′AB ENx∴N(6,−3).-11-过N作NE⊥x轴,垂足为E.在Rt△BEN中,BE=2,NE=3,∴NB=22+32=13.又OB=4,∴NB≠OB,∠BON≠∠BNO,△OBN与△OAB不相似.同理,在对称轴左边的抛物线上也不存在符合条件的N点.所以在该抛物线上不存在点N,使△OBN与△OAB相似.…………10分25.(本题满分10分)2310(1)∵yOB−+OA−=,B ∴OB2−3=0,OA−1=0.P∴OB=3,OA=1.…………………1分C O AQ x 点A,点B分别在x轴,y轴的正半轴上,∴A(1,0),B(0,3).……………2分(2)由(1),得AC=4,AB=12+(3)2=2,BC=32+(3)2=23.∴AB2+BC2=22+(23)2=16=AC2.∴△ABC为直角三角形,∠ABC=90�.…………………………………………4分设CP=t,过P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ=t2.∴S=S−S△ABC△APC=11t×4×3−×4×=23-t(0≤t<23).…………………………7分222(说明:不写t的范围不扣分)(3)存在,满足条件的的有两个.P−,,………………………………………………………………………8分1(30)P 2⎛2⎞−1,3.…………………………………………………………………10分⎜⎟⎝⎠3-12-。
2009年山东省滨州市中考数学试题及答案
滨州市二○○九年初级中学学业水平考试数 学 试 题温馨提示:1. 本试题共8页,满分120分,考试时间为120分钟.2. 答题前,考生务必将密封线内的各个项目填写清楚,并将座号填在右下角的座号栏内.3. 抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.一、选择题:(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来并将其字母标号填在答题栏内,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,满分30分.)1.截止目前,滨州市总人口数约373万,此人口数用科学记数法可表示为( ) A .43.7310⨯B .53.7310⨯C .63.7310⨯D .73.7310⨯2.对于式子(8)--,下列理解:(1)可表示8-的相反数;(2)可表示1-与8-的乘积;(3)可表示8-的绝对值;(4)运算结果等于8.其中理解错误的个数是( ) A .0 B .1 C .2 D .33.从编号为1到10的10张卡片中任取1张,所得编号是3的倍数的概率为( ) A .110B .210C .310D .154.从上面看如右图所示的几何体,得到的图形是( )5.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A .矩形 B .直角梯形 C .菱形 D .正方形 6.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( ) A .01d << B .5d > C .01d <<或5d > D .01d <≤或5d > 7.小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图象能表示小明离家距离与时间关系的是( )8.已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是( )A . B. C . D . (第4题图)A ./B .C .D .A .0x <B .11x -<<或2x >C .1x >-D .1x <-或12x << 9.如图所示,给出下列条件:①B ACD ∠=∠; ②ADC ACB ∠=∠;③AC AB CD BC=; ④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为( )A .1B .2C .3D .410.已知ABC △中,17AB =,10AC =,BC 边上的高8AD =, 则边BC 的长为( )A .21B .15C .6D .以上答案都不对二、填空题:本大题共8小题,每小题填对得4分,满分32分.只要求填写最后结果.11.化简:2222444m mn n m n-+-= . 12.数据1、5、6、5、6、5、6、6的众数是 ,中位数是 ,方差是 . 13.已知点A 是反比例函数3y x=-图象上的一点.若AB 垂直于y 轴,垂足为B ,则AO B △的面积= .14.解方程2223321x x x x--=-时,若设21x y x =-,则方程可化为 .15.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|5|a +在数轴上的意义是 .16.某楼梯的侧面视图如图所示,其中4AB =米,30BAC ∠=°,90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .17.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 .18.在平面直角坐标系中,ABC △顶点A 的坐标为(23),,若以原点O 为位似中心,画AEC △的位似图形A B C '''△,使ABC △与A B C '''△的相似比等于12,则点A '的坐标为 .三、解答题:本大题共7小题,满分58分.解答时请写出必要的文字说明与推演过程. 19.(本题满分5分)计算:12011|2|5(2009π)2-⎛⎫-++-⨯- ⎪⎝⎭.ACDB (第9题图)(第16题图) BCA 30°为推进阳光体育活动的开展,某校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下: (1)求该班学生人数;(2)请你补上条形图的空缺部分;(3)求跳绳人数所占扇形圆心角的大小.21.(本题满分7分)如图,PA 为O ⊙的切线,A 为切点.直线PO 与O ⊙交于B C 、两点,30P ∠=°,连接AO AB AC 、、.求证:ACB APO △≌△.22.(本题满分8分)观察下列方程及其解的特征:(1)12x x +=的解为121x x ==; (2)152x x +=的解为12122x x ==,;(3)1103x x +=的解为12133x x ==,;…… ……解答下列问题:(1)请猜想:方程1265x x +=的解为 ; (2)请猜想:关于x 的方程1x x += 的解为121(0)x a x a a==≠,;(3)下面以解方程1265x x +=为例,验证(1)中猜想结论的正确性.解:原方程可化为25265x x -=-.(下面请大家用配方法写出解此方程的详细过程) A(第21题图)O BP C 篮球 足球 25% 跳绳 乒乓球90°根据题意,解答下列问题:(1)如图①,已知直线24y x =+与x 轴、y 轴分别交于A B 、两点,求线段AB 的长; (2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点(34)M ,,(21)N --,之间的距离;(3)如图③,111()P x y ,,212()P x y ,是平面直角坐标系内的两点.求证:12PP =24.(本题满分10分)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题: (1)若设每件降价x 元、每星期售出商品的利润为y 元,请写出y 与x 的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少? (3)请画出上述函数的大致图象.25.(本题满分12分) 如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD 中,AB DC ∥,20cm 30cm 45AB DC ADC ==∠=,,°.对于抛物线部分,其顶点为CD 的中点O ,且过A B 、两点,开口终端的连线MN 平行且等于DC .(1)如图①所示,在以点O 为原点,直线OC 为x 轴的坐标系内,点C 的坐标为(150),, 试求A B 、两点的坐标;(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm 的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.(第23题图①)(第23题图②)(第23题图③) 11(P x(第25题图①)A BCD(第25题图②)滨州市二○○九年初级中学学业水平考试数学试题(A )解答参考及评分标准评卷说明:1.选择题的每小题和填空题中的每个空,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分标准进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但后续部分最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.二、填空题(本大题共8小题,每小题4分,满分32分) 11.22m n m n -+ 12.6,5.5,52(分值分配:1分、1分、2分)13.32 14.322y y-= 15.表示数a 的点与表示5-的点之间的距离16.(2米(或5.464米) 17.552x << 18.(46),或(46)--, 三、解答题(本大题共7小题,满分58分)19.(本题满分5分)解:原式1225=-+- ························· 4分(四个考查点,做对1个就得1分)2=- ································································································· 5分 20.(本题满分6分)解:(1)由扇形图可知,乒乓球小组人数占全班人数的14. 由条形图可知,乒乓球小组人数为12. ······························································· 1分 故全班人数为112484÷=. ············································································· 2分 (注:只有最后一步做对也得满分,但只有结果不得分.) (2)由扇形图可知,篮球小组人数为482512⨯=%. 由条形图可知,足球小组人数为16.故跳绳小组人数为48(161212)8-++=. ························································· 3分所以各小组人数分布情况的条形图为···························································· 4分(注:本小题只画对图也得满分2分.)(3)因为跳绳小组人数占全班人数的81486=, ··················································· 5分 所以,它所占扇形圆心角的大小为1360606⨯=°°. ·············································· 6分21.(本题满分7分)证明:PA 为O 的切线,90PAO ∴∠=°. ···················································· 1分又30P ∠=°,60AOP ∴∠=°, ···································································· 2分1302C AOP ∴∠=∠=°, ··············································································· 3分C P ∴∠=∠, ······························································································ 4分 AC AP ∴=. ······························································································· 5分 又BC 为O 直径,90CAB PAO ∴∠=∠=°, ··················································· 6分 ACB APO ∴△≌△(ASA ). ········································································ 7分(注:其它方法按步骤得分.) 22.(本题满分8分) 解:(1)15x =,215x =; ············································································· 1分 (2)21a a+(或1a a +);·············································································· 3分(3)二次项系数化为1,得22615x x -=-. ······················································ 4分 配方,得2222613131555x x ⎛⎫⎛⎫-+-=-+- ⎪ ⎪⎝⎭⎝⎭, ···················································· 5分 213144525x ⎛⎫-=⎪⎝⎭. ························································································· 6分 开方,得131255x -=±. ················································································· 7分 解得15x =,215x =. ···················································································· 8分跳绳 项目经检验,15x =,215x =都是原方程的解(此环节有无暂不得分与扣分) 23.(本题满分10分)解:(1)由0y =,得2x =-,所以点A 的坐标为(20)-,,故2OA =. ················· 1分同理可得4OB =. ························································································· 2分所以在Rt AOB △中,AB = ··················································· 3分 (2)作MP x ⊥轴,NP y ⊥轴,MP 交NP 于点P . ········································· 4分则MP NP ⊥,P 点坐标为(31)-,. ·································································· 5分故4(1)5PM =--=,3(2)5PN =--=. ······················································· 6分所以在Rt MPN △中,MN ==. ·················································· 7分 (注:若直接运用了(3)的结论不得分.)(3)作2P P x ⊥轴,1PP y ⊥轴,2P P 交1PP 于点P . 则21P P PP ⊥,点P 的坐标为21()x y ,. ···························································· 8分 故221P P y y =-,121PP x x =-(不加绝对值符号此处不扣分). ··························· 9分所以在21Rt P PP △中,12PP = ······································ 10分24.(本题满分10分)解:(1)(60)(30020)40(30020)y x x x =-+-+, ··········································· 3分 即2201006000y x x =-++. ·········································································· 4分 因为降价要确保盈利,所以406060x <-≤(或406060x <-<也可).解得020x <≤(或020x <<). ··································································· 6分 (注:若出现了20x =扣1分;若直接写对结果,不扣分即得满足2分.) (2)当1002.52(20)x =-=⨯-时, ····································································· 7分y 有最大值24(20)600010061254(20)⨯-⨯-=⨯-,即当降价2.5元时,利润最大且为6125元. ························································· 8分 (3)函数的大致图象为(注:右侧终点应为圆圈,若画成实点扣1分;左侧终点两种情况均可.) ····································································································· 10分25.(本题满分12分)解:(1)作AE DC ⊥,BF DC ⊥,垂足分别为E F ,.AB DC ∥,∴四边形AEFB 为矩形,AE BF ∴=,20AB EF ==. ················· 1分 又AD BC =,∴Rt Rt ADE BCF △≌△(HL ),1(3020)52DE FC ∴==-=. ······················ 2分 又45ADE BCF ∠=∠=°, 5AE BF DE FC ∴====. ········································································· 3分 又15OD OC ==,10OE OF ∴==.∴点A B ,的坐标分别为(105)-,,(105),. ························································ 4分 (2)设抛物线的函数解析式为2y ax =. ···························································· 5分由点(105)B ,在其图象上得5100a =,解得120a =. ∴抛物线的函数解析式为2120y x =. ································································ 6分 又MN DC∥,∴点M N ,关于y 轴对称, ∴点N 的横坐标为15,代入2120y x =得454y =. 故标志的高度为454cm . ·················································································· 8分 (3)镀膜示意图如下:················································································································· 10分 由示意图可知,镀膜外围周长l 由四条线段长和四条半径为3cm 的弧长构成, 故135π345π32203022506πl ⨯⨯⨯⨯=+++⨯+⨯=+.20cm30cm3cm 45°两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
14数学练习试卷-2009山东省烟台市中考数学试题(含答案)
2009年烟台市初中学生学业考试数 学 试 题说明:1.本试题分为Ⅰ卷和Ⅱ卷两部分.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.考试时间为120分钟,满分150分.2.答题前将密封线内的项目填写清楚.3.考试过程中允许考生进行剪、拼、折叠等实验.第Ⅰ卷注意事项:请考生将自己的姓名、准考证号、考试科目涂写在答题卡上.选择题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑,不能答在本试题上.如要改动,必须先用橡皮擦干净,再选涂另一个答案.一、选择题(本题共12个小题,每小题4分,满分48分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( ) A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006 B .2007 C .2008 D .2009 5.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .2432左视图4俯视图标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第2题图)6.如图,数轴上A B ,两点表示的数分别为1-3, 点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23- B .13--C .23-D .13+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,, 直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <-B .21x -<<-C .20x -<<D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )放置.测量的数据如图,则桌子的高度是( ) A .73cm B .74cm C .75cm D .76cmCA OB (第6题图)y OB AA DCPB(第10题图)60°1- 1 O x y yxOy x O y x O y x O第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分) 13.若523m xy +与3n x y 的和是单项式,则m n = .14.设0a b >>,2260a b ab +-=,则a bb a+-的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .16.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17.观察右表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.18.如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共8个小题,满分78分) 19.(本题满分6分) 0293618(32)(12)23++-序号1 2 3 …图形… 80cm①70cm②(第12题AED BFC(第18题图)22.(本题满分8分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173. ).23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?D CB A② ①(第22题图)24.(本题满分10分)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠.H MO F G C AD(第24题图)25.(本题满分14分)如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE . (1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG ..求证:CD 垂直平分EG .(3)延长BE 交CD 于点P . 求证:P 是CD 的中点.ADGECB(第25题图)26.(本题满分14分)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).O BxyA MC13-2009年烟台市初中学生学业考试数学试题参考答案及评分意见本试题答案及评分意见,供阅卷评分使用.考生若写出其它正确答案,可参照评分意见相应评分. 一、选择题(本题共12个小题,每小题4分,满分48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D C C B A A B B B D C 二、填空题(本题共6个小题,每小题4分,满分24分) 13.1414.2- 15.17 16.1 17.20 18.①,③,④ 三、解答题(本题共8个小题,满分78分) 19.(本题满分6分) 0293618(32)(12)23+-3322(12)1|122=++. ···························································· 2分 3322121212=. ································································ 4分 3212= ··································································································· 6分 20.(本题满分8分) 解:(1)12·································································································· 1分 (2)13······································································································· 3分 (3)根据题意,画树状图: ············································································ 6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44. 所以,P (4的倍数)41164==. ···································································· 8分或根据题意,画表格: ···················································································· 6分1 2 3 4 1 第一次 第二次 1 2 3 4 2 1 2 3 4 3 1 2 3 4 4 开始第一次 第二次12341 11 12 13 14 2 21 22 23 24 3 31 32 33 34 4 41 42 43 44由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P (4的倍数)41164==. ············································································· 8分 21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ··································· 1分 初一学生总数:2010%200÷=(人). ···························································· 2分 (2)活动时间为5天的学生数:20025%50⨯=(人). 活动时间为7天的学生数:2005%10⨯=(人). ··············································· 3分 频数分布直方图(如图)··················· 4分 (3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ·························· 5分 (4)众数是4天,中位数是4天. ··································································· 7分 (5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ················································ 8分 22.(本题满分8分)解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=°°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴==,. ·························· 3分 在Rt ACE △中, 5sin 5sin 302AE AC ACE =∠==°, ················ 4分5cos 5cos3032CE AC ACE =∠==°············· 5分在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==°,°, ···················································· 6分 DB BA(第22题图)C60 5040302010 (第21题图)5553(31) 6.8222AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ··································································· 8分23.(本题满分10分) 解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ········································································· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. ···································································· 4分 解这个方程,得12100200x x ==,. ······························································· 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ··························· 6分 (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ········································································· 8分150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. ········· 10分24.(本题满分10分)(1)证明:连接OC ,HC HG HCG HGC =∴∠=∠,. ························· 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°,··········· 2分 12OB OC =∴∠=∠,, ····································· 3分 3HGC ∠=∠,2390∴∠+∠=°. ······················ 4分 90BFG ∴∠=°,即DE AB ⊥. ···························· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径, ∴BD BE =. ······························································································ 6分BED BME ∴∠=∠.····················································································· 7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ·········································· 8分 HMD BME ∴∠=∠.BME ∠是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ····························· 9分 HMD MHE MEH ∴∠=∠+∠. ···································································· 10分 25.(本题满分14分)HM O FGC AD(第24题图)证明:(1)延长DE 交BC 于F . AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ··························· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠=,2CD CF∴=,即2CD CF =. 22CD AD BF ==,BF CF ∴=. ······················ 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ······························································································ 4分 (2)CE 平分BCD ∠,∴BCE DCE ∠=∠. 由(1)知BC CD CE CE ==,,BCE DCE ∴△≌△,BE DE ∴=. ················ 6分 由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ···································· 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ···································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠. ························································ 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ····························· 12分 又BD BD =,BAD BPD ∴△≌△,DP AD ∴=. ········································ 13分 12AD CD =,12DP CD ∴=.P ∴是CD 的中点. ········································· 14分 28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,·············· 2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ········ 3分(2)存在.在223y x x =--中,令0x =,得3y =-.令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ····························································· 5分容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.ADG E C B (第25题图)FPy EDNOA CPN1F (第26题图)(30)N ∴-,,2AN ∴=. ··············································································· 6分 在223y x x =--中,令3y =-,得1202x x ==,.2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ···························· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,.OD OB ∴=,45OBD ∴∠=°. ····································································· 9分 又点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ··········································· 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ···································· 11分90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ···························· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ························ 14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 试卷类型:A山东省日照市二○○九年中等学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共12页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高(A)-10℃ (B)-6℃ (C)6℃(D)10℃2.计算()4323b a --的结果是(A)12881b a (B )7612b a(C )7612b a -(D )12881b a -3.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 (A ) 70°(B ) 65° (C ) 50°EDBC′FCD ′A(第3题图)(D ) 25° 4.已知点M (-2,3 )在双曲线xk y =上,则下列各点一定在该双曲线上的是 (A )(3,-2 ) (B )(-2,-3 ) (C )(2,3 )(D )(3,2)5.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE等于( ) (A )2cm (B )4cm(C )6cm(D )8cm6.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是(A )①② (B )②③ (C ) ②④ (D ) ③④7.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是8.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是 (A )点A(B )点B(A )(B )-1 3(C )10 (D )30 11①正方体②圆柱③圆锥④球(第5题图)ABCD(第5题图)E(C )点C (D )点D9.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 (A )43- (B )43(C )34(D )34-10.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 (A )10cm (B )30cm (C )40cm(D )300cm11.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为(A )1 (B )2(C )-1 (D )-212.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为(A )(0,0) (B )(22,22-) (C )(-21,-21)(D )(-22,-22)(第12题图)绝密★启用前 试卷类型:A山东省日照市二○○九年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.2009年4月16日,国家统计局发布:一季度,城镇居民人均可支配收入为4834元,与去年同时期相比增长10.2%.4838元用科学记数法表示为 .14.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农_________________.15.如图,在四边形ABCD 中,已知AB 与CD 不平行,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD .得 分评 卷 人DAOEAB ′16.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF 的长度是.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y kx b=+(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分7分)化简:22222369x y x y yx y x xy y x y--÷-++++.19.(本题满分9分)得分评卷人得分评卷人某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?(第19题图)得分评卷人20.(本题满分9分)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1) 求∠AEC的度数;(2)求证:四边形OBEC是菱形.(第20题图)得分评卷人21.(本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部8003倍,求彩电、冰箱、手机三大类产品分别销元,已知销售的冰箱(含冰柜)数量是彩电数量的2售多少万台(部),并计算获得的政府补贴分别为多少万元?22. (本题满分10分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.得 分评 卷 人ABC (第22题图)D23. (本题满分10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中AB =2米,BC =1米;上部CDG 是等边三角形,固定点E 为AB 的中点.△EMN 是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆.(1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积;(2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数;(3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.得 分评 卷 人C得分评卷人24.(本题满分10分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G 为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)D第24题图① DD 第24题图②B 第24题图③山东省日照市二○○九年中等学校招生考试数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:(本大题共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D C A A B A B B A D C二、填空题:(本大题共5小题,每小题4分,共20分)13.4.834×103;14.乙;15.∠DAC=∠ADB,∠BAD=∠CDA,∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD;(任选其一)16.或2; 17..三、解答题:(本大题共7小题, 共64分)18.(本小题满分6分)解:原式= o ………………………1分= o ………………………4分= …………………………………………6分= =1. ……………………………………………7分19.(本小题满分9分)解:(1)该班60秒跳绳的平均次数至少是:=100.8.因为100.8>100,所以一定超过全校平均次数.…………………3分(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内.…………………………………………6分(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人),……………………………………………………………………………8分.所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66.…………………………………………………………9分20.(本题满分9分)(1)解:在△AOC中,AC=2,∵AO=OC=2,∴△AOC是等边三角形.………2分∴∠AOC=60°,∴∠AEC=30°.…………………4分(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.……………………5分∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴△AEB为直角三角形,∠EAB=30°.…………………………7分∴∠EAB=∠AEC.∴四边形OBEC 为平行四边形.…………………………………8分又∵OB=OC=2.∴四边形OBEC是菱形.…………………………………………9分21.(本题满分9分)解:(1)2007年销量为a万台,则a(1+40%)=350,a =250(万台).…………………………………………………………………………3分(2)设销售彩电x万台,则销售冰箱x万台,销售手机(350- x)万台.由题意得:1500x+2000×+800(350 x)=500000.……………6分解得x=88.………………………………………………………7分∴,.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分∴88×1500×13%=17160(万元),132×2000×13%=34320(万元),130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.……9分22.(本题满分10分)解:延长BC交AD于E点,则CE⊥AD.……1分在Rt△AEC中,AC=10,由坡比为1: 可知:∠CAE=30°,………2分∴CE=AC·sin30°=10×=5,………3分AE=AC·cos30°=10×=.……5分在Rt△ABE中,BE===11.……………………………8分∵BE=BC+CE,∴BC=BE-CE=11-5=6(米).答:旗杆的高度为6米.…………………………………………10分23.(本题满分10分)解:(1)由题意,当MN和AB之间的距离为0.5米时,MN应位于DC下方,且此时△EMN中MN边上的高为0.5米.所以,S△EMN= =0.5(平方米).即△EMN的面积为0.5平方米. …………2分(2)①如图1所示,当MN在矩形区域滑动,即0<x≤1时,△EMN的面积S= = ;……3分②如图2所示,当MN在三角形区域滑动,即1<x<时,如图,连接EG,交CD于点F,交MN于点H,∵E为AB中点,∴F为CD中点,GF⊥CD,且FG=.又∵MN∥CD,∴△MNG∽△DCG.∴,即.……4分故△EMN的面积S==;…………………5分综合可得:……………………………6分(3)①当MN在矩形区域滑动时,,所以有;………7分②当MN在三角形区域滑动时,S= .因而,当(米)时,S得到最大值,最大值S= = = (平方米). ……………9分∵,∴S有最大值,最大值为平方米. ……………………………10分24.(本题满分10分)解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG= FD.………………1分同理,在Rt△DEF中,EG= FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=CG.…………………………4分证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴AG=CG.………………………5分在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴MG=NG在矩形AENM中,AM=EN.……………6分在Rt△AMG 与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG.∴AG=EG.∴EG=CG.……………………………8分证法二:延长CG至M,使MG=CG,连接MF,ME,EC,……………………4分在△DCG 与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG ≌△FMG.∴MF=CD,∠FMG=∠DCG.∴MF∥CD∥AB.………………………5分∴.在Rt△MFE 与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE ≌△CBE.∴.…………………………………………………6分∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.…………7分∴△MEC为直角三角形.∵MG = CG,∴EG= MC.∴.………………………………8分(3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.……10分。