九年级数学与课堂同行答案
冀教版九年级数学下课堂内外同步课时训练29.2直线与圆的位置关系(含答案)

弦A 以 O 为 圆 心, 与 ������ ☉O 的半径为 6 c m, B 的长 为 6 c m, 3 c m 长 为 半 径 作 圆, ( ) 判断直线与圆的位置 6 1 弦A 关系时 , 先要看圆心到直线的 B 有 ㊀0㊀ 个公共交点 .
距离 , 然后 再 与 半 径 比 较 大 小 ( 关系 ; 会用面积相等求斜 2)
x 与 ☉P 的位置关系是 ㊀ 相交 ㊀ .
, 在 әA 以底边 B B C 中, A B=A C=4 c m, øB A C=1 2 0 ʎ C 的中点D 为 7 ������ 如图 , ) ) ( ) 1 r=1; ㊀㊀㊀ ( 2 r= 3; ㊀㊀㊀ ( 3 r=2. ∴A ∴DH = 3. D=2, B D=2 3, 圆心 , 下列以r 为半径的圆与直线 A B 有怎样的位置关系 ?
公共点时 , 则直线与圆 ㊀ 相切 ㊀ , 此时这个公共点叫做 ㊀ 切点 ㊀ , 这条直线叫
( ) 1 r=8 c m; ( ) 2r=4. 8 c m; ( ) 3 r=6 c m.
圆, 与直线 A B 有何位置关 圆心到直线的距离为 d, 则直线与圆相交 ⇔㊀ 3 ������ 设圆的半径为r, d< r㊀ ; 系 ? 为什么 ?
直线 PM 与 ☉O 相 切 于 c m, ☉O 的半径为 6 1 4 ������ 如图 , 点C , 且P C=1 6 c m. ( ) 请你作 出 图 中 线段 P 垂 1 C 的 垂 直 平 分 线E F,
4 ㊀
圆心 O 在 如图 , ☉O 的半径为 1, 1 0 ������ ( 2 0 1 5 年漳州市 ) 当 ☉O 等边 әA B C 的边A B 上 沿 图 示 方 向 移 动, 23 移动到与 A C 边相切时 , O A 的长为 ㊀ ㊀. 3
人教版初中九年级数学上册课堂同步试题及答案 全册

21.1二次根式(1)中学初三数学备课组一、选择题1.下列式子中,一定是二次根式的是()A.BC D.x2.下列式子中,不是二次根式的是()A BC D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对4一定是二次根式的个数是().A.4 B.3 C.2 D.1二、填空题5.形如________的式子叫做二次根式.6.面积为a的正方形的边长为________.三、解答题7.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?8=0,求x y的值.21.1二次根式(2)中学初三数学备课组一、选择题1.下列各式中一定是二次根式的是( )A.10- B.22-aC.327D.132+x2.下列计算正确的是( ) A.()2552=B.()332-=-C.416±=D.749=3.如果a 为任意实数,那么下列各式中正确的是( ) A.a ≥0 B.a -≥0C.2a ≥0D.a -≥0二、填空题4.若a 的算式平方根是21,则a =_______________. 5.计算:(1)()=222-_______;(2)=⎪⎭⎫⎝⎛--221________. 6.已知一个直角三角形的两直角边分别为x 和y ,则斜边用代数式表示为_________________;当x =6,y =8时,斜边长为__________.三、解答题7.当x 是多少时,下列各式在实数范围内有意义? (1)x 2-;(2)121-x .8.当5=a 时,求式子221a a a +-+的值.21.2二次根式的乘除(1)中学 初三数学备课组一、选择题1.已知12)1(2-•=-x x ,则有( )A.x >1 B.x <1C.x ≥1 D.x ≤12.计算xx 2•的结果是( ) A.xB.2C.xD.23.下列计算正确的是( ) A.3163838=⨯ B.652535=⨯C.562234=⨯D.15125236=⨯二、填空题4.=⨯44__________,.__________62=⨯ 5.化简38)2(2⨯⨯-的结果是____________.三、解答题6.化简:(1)16925⨯;(2)429y x .7.若直角三角形两条直角边长分别为15cm 和12cm ,求此直角三角形的面积.21.2二次根式的乘除(2)中学 初三数学备课组一、选择题1.下列各式是最简二次根式的为( )A.12+x B.32y xC.12- D.5.22.化简231+的结果为( )A.23+B.23-C.2 D.13.已知a aa a -=-112,则a 的取值范围是( )A.a ≤0 B.a <0C.0<a ≤1D.a >0二、填空题4.__________2385=÷,___________3=÷a b a .5.___________3625=,___________3611214=⨯.三、解答题6.把下列各式化为最简二次根式(1)326-;(2)328a a.7.已知长方形的面积是48,一边长是12,则另一边长是多少?21.2二次根式的乘除(3)中学 初三数学备课组一、选择题1.下列化简中,正确的是( )A.1535925=⨯=⨯B.632=⨯C.222543=+D.33-12= 2.下列计算正确的是( )A .3232--=-- B .a a 3313=C .a a=33D .a a333= 3.把(a -1)11-a根号外的因式移入根号内,其结果是( ) A .1-a B .-1-a C .a -1 D .-a -1二、填空题4.= . 5.把aa 1-中根号外面的因式移到根号内的结果是三、解答题6.计算:(1)213675÷⨯7.已知x+y=4,xy=2.求;xyy x+的值。
新课堂同步学习与探究数学 北师大版 九年级上册(九年级第一学期用)

新课堂同步学习与探究数学北师大版九年级上册(九年
级第一学期用)
《新课堂同步学习与探究数学北师大版九年级上册》是由北京师
范大学出版社出版发行的一套九年级上册中学数学教材,主要针对九
年级初中学生撰写,主要以求解解答问题为核心,运用动态理解数学
知识十分贴切,使学生更能理解、应用数学的原理,它的任务及有效
要求也被转化为学生的学习成果,为促进理论与实践的融合而不断努力。
本书以省级试题为主线,同时参考了各地的试题,注重了学科知
识的学习与教学技能的训练,以及实验活动的组织,以期达到培训学
生独立思考、动态探索数学知识的能力,提高学生的学习效率与成绩。
最新新课程课堂同步练习册(九年级数学下册人教版)答案

最新人教版数学精品教学资料数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)(),6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
九年级课堂内外数学试卷【含答案】

九年级课堂内外数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果一个三角形的两边分别是3cm和4cm,那么第三边的长度可能是多少?A. 1cmB. 6cmC. 7cmD. 10cm3. 下列哪个数是质数?A. 12B. 17C. 20D. 214. 下列哪个数是负数?A. -3B. 0C. 5D. 85. 下列哪个数是立方数?A. 8B. 12C. 15D. 18二、判断题(每题1分,共5分)1. 任何两个奇数相加的结果都是偶数。
()2. 任何两个偶数相乘的结果都是偶数。
()3. 0是最小的自然数。
()4. 所有的质数都是奇数。
()5. 1是既不是质数也不是合数。
()三、填空题(每题1分,共5分)1. 2的平方是______。
2. 3的立方是______。
3. 12的因数有______、______、______、______。
4. 下列数中,______是最大的质数。
5. 下列数中,______是最小的偶数。
四、简答题(每题2分,共10分)1. 请写出前五个正整数。
2. 请写出前五个质数。
3. 请写出前五个偶数。
4. 请写出前五个奇数。
5. 请写出前五个立方数。
五、应用题(每题2分,共10分)1. 小明有5个苹果,他吃掉了2个,还剩下多少个苹果?2. 一个长方形的长是4cm,宽是3cm,求这个长方形的面积。
3. 一个数加上5等于10,这个数是多少?4. 一个数乘以4等于24,这个数是多少?5. 一个数除以5等于3,这个数是多少?六、分析题(每题5分,共10分)1. 请分析下列数中,哪些是质数,哪些是合数:2、3、4、5、6、7、8、9、10、11。
2. 请分析下列数中,哪些是偶数,哪些是奇数:1、2、3、4、5、6、7、8、9、10。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5cm的正方形。
同行学案青岛专版九上数学

同行学案青岛专版九上数学全文共四篇示例,供读者参考第一篇示例:同行学案是一份专门为学生提供数学学习帮助的资料,旨在帮助学生提高数学学习的效果,增强数学学习的兴趣,激发学生对数学学习的热情。
而青岛专版九上数学同行学案,则是专门为青岛地区初中九年级上学期的数学学习而设计的一份教辅资料。
本文将详细介绍【同行学案青岛专版九上数学】的内容和特点,以及如何正确使用同行学案提高数学学习效果。
一、同行学案青岛专版九上数学的内容和特点同行学案青岛专版九上数学的内容主要包括了九年级上学期数学的全部知识点,每个知识点都有专门的练习题和习题讲解,以帮助学生巩固知识、提高能力。
同行学案青岛专版九上数学在内容上覆盖全面、深入浅出,既有基础知识点的讲解,也有提高题的练习,适合不同水平的学生使用。
1. 知识点归纳清晰:同行学案将九年级上学期的数学知识点按照章节进行了清晰的分类和归纳,方便学生查阅和复习。
2. 题型齐全全面:同行学案中包含了各种题型的练习题,涵盖了选择题、填空题、计算题、应用题等,有助于学生全面掌握并灵活运用知识。
3. 详细的习题讲解:每道练习题后都有详细的习题讲解,包括解题思路、关键步骤和注意事项,帮助学生正确理解并掌握解题方法。
4. 实用性强:同行学案不仅提供了大量的练习题,还附有习题答案和详细的解题过程,方便学生自主检查和纠正错误,帮助提高学习效果。
二、如何正确使用同行学案提高数学学习效果1. 定期复习:在课堂学习的基础上,结合同行学案中的练习题进行定期复习,巩固知识,提高记忆力。
2. 制定学习计划:根据自己的学习情况和时间安排,合理安排学习计划,有针对性地选择同行学案中的练习题进行练习。
3. 注重方法:在做题前,先认真阅读同行学案中的习题讲解,掌握解题方法和技巧,提高解题效率。
4. 注重实战:在做题过程中,要注重实战练习,多做一些难度适中和提高题,锻炼解题能力,培养数学思维。
5. 注重总结:在做完练习后,要及时总结做题的经验和不足,思考解题过程中的问题和不确定因素,为下次学习做好准备。
HK沪科版 九级数学 下册第二学期 同步课堂辅导练习题作业 第二十四章 圆 24.4 第1课时 直线与圆的位置关系

24.4 直线与圆的位置关系第1课时 直线与圆的位置关系1.填表:2.若直线a 与⊙O 交于A ,B 两点,O 到直线a •的距离为6,•AB=•16,•则⊙O •的半径为_____.3.在△ABC 中,已知∠ACB=90°,BC=AC=10,以C 为圆心,分别以5,8为半径作图,那么直线AB 与圆的位置关系分别是______,_______,_______. 4.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( ) A .相离 B .相切 C .相交 D .内含 5.下列判断正确的是( )①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交. A .①②③ B .①② C .②③ D .③6.OA 平分∠BOC ,P 是OA 上任一点(O 除外),若以P 为圆心的⊙P 与OC 相离,•那么⊙P 与OB 的位置关系是( )A .相离B .相切C .相交D .相交或相切7.如图所示,Rt △ABC 中,∠ACB=90°,CA=6,CB=8,以C 为圆心,r 为半径作⊙C ,当r 为多少时,⊙C 与AB 相切?8.如图,⊙O的半径为3cm,弦,AB=4cm,若以O为圆心,•再作一个圆与AC相切,则这个圆的半径为多少?这个圆与AB的位置关系如何?9.如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,•如果⊙M与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m•的取值范围是_______.10.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是_______.11.如图,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD于F,则以点BAC,EF,CD的位置关系分别是什么?12.已知⊙O的半径为5cm,点O到直线L的距离OP为7cm,如图所示.(1)怎样平移直线L,才能使L与⊙O相切?(2)要使直线L与⊙O相交,应把直线L向上平移多少cm?13.如图,Rt△ABC中,∠C=90°,AC=3,AB=5,若以C为圆心,r为半径作圆,•那么: (1)当直线AB与⊙C相切时,求r的取值范围;(2)当直线AB与⊙C相离时,求r的取值范围;(3)当直线AB与⊙C相交时,求r的取值范围.14.在南部沿海某气象站A测得一热带风暴从A的南偏东30•°的方向迎着气象站袭来,已知该风暴速度为每小时20千米,风暴周围50千米范围内将受到影响,•若该风暴不改变速度与方向,问气象站正南方60千米处的沿海城市B是否会受这次风暴的影响?若不受影响,请说明理由;若受影响,请求出受影响的时间.答案:1.略2.10 3.相离,相切,相交4.C 5.C 6.A 7.r=24 58.r=1cm,•这个圆与AB相离9.±2,-2<m<2 10.相切11.相切,相交,相离12.(1)直线L向上平移2cm或12cm (2)大于2cm且小于12cm13.(1)r=2.4 (2)r<2.4 (3)r>2.4 14.B•市受影响,影响时间为4时15.(1)2 (2)8(3)①0<r<2时,没有;②r=2时,一个;③2<•r<8时,2个;④r=8时,3个;⑤r>8时,4个。
2020年人教版初中数学九年级上册课堂同步练习(含答案)

2020年人教版初中数学九年级上册课堂同步练习《第21章 一元二次方程》同步练习测试1 一元二次方程的有关概念及直接开平方法 学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法. 课堂学习检测 一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______. 4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______.5.若-3=0是关于x 的一元二次方程,则m 的值是______. 6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3) (4) A .1个B .2个C .3个D .4个8.在方程:3x 2-5x =0,7x 2-6xy +y 2=0,=0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ).A .2个B .3个C .4个D .5个9.x 2-16=0的根是( ).x x m -m+-222)(542=-x 2122=+x x ,5312+=+x x 322,052222--=+++xx x x axA .只有4B .只有-4C .±4D .±810.3x 2+27=0的根是( ). A .x 1=3,x 2=-3 B .x =3C .无实数根D .以上均不正确三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13. 14.(2x +1)2=(x -1)2.综合、运用、诊断 一、填空题15.把方程化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______.17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关.25)1(412=+x x x x +=-2232,01=+xx ,5)3(21,42122=+=-+x x xC .与a 的值有关D .与a 的符号有关20.如果是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ).A .B .±1C .±2D .21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ). A .B .C .D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24.25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.21=x 5±2±k k +k k -k k -±.063)4(22=--x测试2 配方法与公式法解一元二次方程 学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程. 课堂学习检测 一、填空题1._________=(x -__________)2. 2.+_________=(x -_________)2. 3._________=(x -_________)2. 4.+_________=(x -_________)2.5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______.二、选择题7.用配方法解方程应该先变形为( ).A .B .C .D .8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=29.用公式法解一元二次方程,正确的应是( ). A . B . C .D . 10.方程mx 2-4x +1=0(m <0)的根是( ). A .B .+-x x 82x x 232-+-px x 2x ab x -201322=--x x 98)31(2=-x 98)31(2-=-x 910)31(2=-x 0)32(2=-x x x 2412=-252±-=x 252±=x 251±=x 231±=x 41mm-±42C .D .三、解答题(用配方法解一元二次方程) 11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0. 14.五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3. 16.5x 2+4x =1.综合、运用、诊断 一、填空题17.将方程化为标准形式是______________________,其中a =______,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或620.4x 2+49y 2配成完全平方式应加上( ). A .14xyB .-14xymm-±422mmm -±42.03232=--x x x x x 32332-=++C .±28xyD .021.关于x 的一元二次方程的两根应为( ). A . B ., C .D .三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程) 24.2x -1=-2x 2. 25.26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?ax a x 32222=+22a±-a 2a 22422a±a 2±x x 32132=+测试3 一元二次方程根的判别式 学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测 一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为=b 2-4ac ,(1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7B .25C .±5D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数B .负数C .非负数D .零7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0B .9x 2=4(3x -1)C .x 2+7x +15=0D .8.方程有( ). A .有两个不等实根 B .有两个相等的有理根 C .无实根D .有两个相等的无理根三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.02322=--x x 03322=++x x10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程都有两个不相等的实根.综合、运用、诊断 一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .B .C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ). A .k <1B .k <-1C .k ≥1D .k >114.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .或15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .B .且m ≠1C .且m ≠1D . 16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c 为边长的三角形是( ).A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形02)1(2=++-mx m x 242ac b b -±-ac b 42-2132-23<m 23<m 23≤m 23>m二、解答题17.已知方程mx2+mx+5=m有相等的两实根,求方程的解.18.求证:不论k取任何值,方程(k2+1)x2-2kx+(k2+4)=0都没有实根.19.如果关于x的一元二次方程2x(ax-4)-x2+6=0没有实数根,求a的最小整数值.20.已知方程x2+2x-m+1=0没有实根,求证:方程x2+mx=1-2m一定有两个不相等的实根.拓广、探究、思考21.若a,b,c,d都是实数,且ab=2(c+d),求证:关于x的方程x2+ax +c=0,x2+bx+d=0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______2.(2x -7)(x +2)=0.______3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5.______6.______ 7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=bD .x 1=-a ,x 2=-b10.下列解方程的过程,正确的是( ). A .x 2=x .两边同除以x ,得x =1. B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2). 12.*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0..03222=-x x .)21()21(2x x -=+.1,3221==∴x x .32x x =四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18..______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ). A .-2B .2C .±2D .2,221.方程(x -1)2=1-x 的根为( ). A .0B .-1和0C .1D .1和022.方程的较小的根为( ). A .B .C .D .三、用因式分解法解下列关于x 的方程 23. 24.4(x +3)2-(x -2)2=0.25.26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0. (1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.0222=-x x 0)43)(21()43(2=--+-x x x 43-218543.2152x x =-.04222=-+-b a ax x测试5 一元二次方程解法综合训练 学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力. 课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________ 2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2B .x 1=x 2=2C .x =4D .x 1=x 2=46.的根是( ). A .x =3B .x =±3C .x =±9D .7.的根是( ). A .B .C .x 1=0,D .8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1D .x =1或x =2三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0.12.2a 2x 2-5ax +2=0.(a ≠0)5.27.0512=+x 3±=x 072=-x x 77=x 77,021==x x 72=x 7=x四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断 一、填空题20.若分式的值是0,则x =______.1872+--x x x21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ). A .都是x =0 B .有一个相同,x =0 C .都不相同D .以上都不正确23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ). A . B . C .D .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26. 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)bax a b x 2,221==ba x a bx ==21,0,2221=+=x abb a x .02322=+-x x yx yx +-拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________. 32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______. (2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______. (4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值:①② ③|x 1-x 2|;④ ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程 学习要求会灵活地应用一元二次方程处理各类实际问题. 课堂学习检测 一、填空题1.实际问题中常见的基本等量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学与课堂同行答案
一、选择题(每小题3分,共30分)
1. 椐上海世博会官方网站统计,截止2010年9月21日,上海世博会累计参观人数达到53917700人,将这个数用科学记数法表示为()
A.53.9177×106 B. 5.39177×106 C. 5.39177×107 D. 0. 539177×108
2. 下列函数中是反比例函数的是()
A. y=-2x
B. y = +1
C. y=x-3. D y=
3. 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( )
A. B. C. D.
4. 如图,在半径为5的⊙O中,如果弦AB的长为8,那么它的弦心距OC等于()
A. 2
B. 3
C. 4
D. 6
5. 下列函数:①;②;③;④.当时,y随x的增大而减小的函数有()
A.1 个B.2 个C.3 个D.4 个
6. 已知函数的图象与x轴有交点,则k的取值范围是()
A. B. C. 且 D. 且
7. 已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是()
A B C D
8. 烟花厂为热烈庆祝“十一国庆”,特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间的关系式是,礼炮点火升空后会在最高点处引爆,则这种礼炮能上升的最大高度为()
A.91米B.90米C.81米D.80米
9. 如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是……()
A. cm
B. cm
C. cm
D. cm
10. 如图为抛物线的图像,A、B、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()
A.a+b=-1 B.a-b=-1 C.b<2a D.ac<0
第10题图
二、填空题(每小题4分,共24分)
11. 要使式子有意义,则a的取值范围为____________.
12. 抛物线y=x2-2x-3的顶点坐标是
13. 如图, 如果函数y=-x与y= 的图像交于A、B两点, 过点A作AC垂直于y轴, 垂足为点C, 则△BOC的面积为_________.
14. 已知⊙O中,弦AB的长等于半径,P为弦AB所对的弧上一动点,则∠APB的度数为。
15. 根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有个点.
16. (1) 如图,将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2= ;
(2) P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=3x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=.
三、解答题(共8小题,66分)
17. (本题满分6分)
解不等式组:,并将它的解集在数轴上表示出来。
18. (本题满分6分)已知,与成正比例,与成反比例,并且当时,;当时,,求关于的函数关系式.
19. (本题满分6分)一个反比例函数在第二象限的图象如图所示,点A是图象上任意一点,AM ⊥x轴,垂足为M,O是原点.如果△AOM的面积为3,求出这个反比例函数的解析式.
20. (本题满分8分)如图,已知E、F是□ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC.
(1)求证:△ABE≌△CDF;
(2)请写出图中除△ABE≌△CDF外其余两对全等三角形(不再添加辅助线).
21. (本题满分8分) 如图所示,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.
22. (本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
23. (本题满分10分) 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
24. (本题满分12分) 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC= ,直线y= 经过点C,交y轴于点G,且∠AG O=30°。
(1)点C、D的坐标
(2)求顶点在直线y= 上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y= 平移,平移后的抛物线交y轴于点F,顶点为点E。
平移后是
否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。
九年级数学参考答案
1~10:CDBBB BDABB
11. a≥-2 12. 91,-4) 13. 2 14. 30°或150°(写一个得2分)
15. n-n+1(或n(n-1)+1) 16. ①2x2-8x+8(或2(x-2)2)②5,1,5+132,5-132
17. -4≤x<-1(4分) 数轴上表示得2分18. y=x+6x 19. y=-6x
20. (1)证明过程略(2)△AFD≌△CEB,△ACD≌△CAB(每空2分)
21. 证明:∵∠ACB=12 ∠AOB ∠BAC=12 ∠BOC
又∵∠AOB=2∠BOC ∴∠ACB=2∠BAC
22. (1) (3分)
(2) 解得(2分)又因为要使百姓得实惠,所以应舍去,所以每台冰箱应降价200元(1分)
(3)当x=150时(2分) 最高利润ymax=5000元(2分)
23. (1) (2分) M(2,2)(2分)
(2) (2分) N(4,1)(2分) 点N在函数的图像上(2分)
24. (1)C(4,23 )(2分) D(1,23 )(2分)
(2)顶点(52 ,32 )(2分) 解析式(2分)
(3)EF=EG
GF=EG
GF=EF (一个得2分,二个得3分,三个得4分)。