拉伸法测量钢丝的杨氏模量(戚)_物理系

合集下载

用拉伸法测钢丝杨氏模量――实验报告

用拉伸法测钢丝杨氏模量――实验报告

用拉伸法测钢丝杨氏模量――实验报告本实验使用拉伸法测定钢丝的杨氏模量。

实验过程包括测量原始尺寸和断裂强度,计算应力和应变,绘制应力-应变曲线,利用斜率计算杨氏模量。

一、实验原理1.杨氏模量:杨氏模量也称弹性模量,是研究力学学科中的一项重要物理量,它描述了物体在受力时,单位应力下的应变程度。

可以表示为弹性模量E,其计算公式为E=σ/ε,其中σ为应力,ε为单位应变。

2.拉伸法:拉伸法是测定材料弹性性质的常用方法之一。

先将试样加在拉伸机上,通过施加相应的拉力,使试样发生拉伸变形,然后测量试样在不同应变下的应力,绘制应力-应变曲线,以求得该材料的杨氏模量。

二、实验步骤1.准备实验设备,将钢丝放在拉伸机上。

2.用卡尺测量钢丝的初始长度、直径和断裂长度,记录数据。

3.用拉伸机分别在不同的拉力下进行拉伸,记录拉力和试样的应变。

4.计算每个密度下的应力,应力=拉力/试样横截面积。

5.计算每个密度下的应变,应变=延长长度/原始长度。

6.根据应力-应变曲线,计算杨氏模量。

三、实验数据试样长度:5m原始直径:2.5mm断裂长度:8m钢丝密度:7.85g/cm³拉伸试验数据如下:|拉力F(N)|延长长度L(mm)|试样直径D(mm)||:-:|:-:|:-:||0|0|2.5||50|2|2.5||100|4|2.6||150|6|2.7||200|8|2.8||250|10|2.9||300|12|3.0||350|14|3.1||400|16|3.2||450|18|3.3||500|20|3.4||550|22|3.5||600|24|3.6||650|26|3.7||700|28|3.8||750|30|3.9||800|32|4.0|四、实验计算1.计算实验数据中的横截面积试样横截面积=π*(D/2)²=π*(2.5/2)²=4.91mm² 2.计算每个密度下的应力应力=F/S=700/4.91=142.6N/mm²应变=L/L0=28/5000=0.00564.绘制应力-应变曲线通过计算得出的应力和应变数据,可以绘制出钢丝在拉伸试验中的应力-应变曲线如下:[示例图:应力-应变曲线]5.计算杨氏模量根据应力-应变曲线可以看出,线性部分的斜率即为杨氏模量,计算可得杨氏模量的值为:E=Δσ/Δε=(320-170)/(0.004-0.003)=69000N/mm²五、实验结论通过本次实验,我们使用拉伸法测定了钢丝的杨氏模量,并且得出了结论:杨氏模量为69.0×10⁹N/mm²。

拉伸法测量金属丝的杨氏模量实验原理

拉伸法测量金属丝的杨氏模量实验原理

拉伸法测量金属丝的杨氏模量实验原理拉伸法测量金属丝的杨氏模量是一种常见的金属力学性质实验方法。

杨氏模量是特定物质在弹性变形的情况下表征其刚度的物理量。

该实验方法可以很好地了解金属材料在受到力引起的弹性变形时的性能。

以下是拉伸法测量金属丝的杨氏模量实验原理的详细介绍。

1. 实验材料和设备实验材料:金属丝样品、细密表、软尺、托盘、千分尺、滑轮和负载。

实验设备:万能材料试验机和电子天平。

2. 实验原理在拉伸实验中,断面积相同的样品材料被拉伸或挤压,以得出相对应的应力-应变关系。

应力是单位面积内的应力,通常用帕(Pa)表示,而应变是物体长度的相对变化量,通常用空间无量纲表示。

金属材料的杨氏模量可以通过以下公式计算:E = σ / ε,其中E是杨氏模量,σ是应力,ε是应变。

在金属拉伸试验中,应变可以容易地计算出来,因为拉伸物体时,其长度是由初始长度L进行变化的,并且拉伸的变化量d可以被直接测量。

此外,由于金属丝的横截面积可以被认为是恒定的,所以应力也可以由测量中施加的受力N / A(单位面积的负载)计算得出。

应变可以通过以下公式计算:ε = d / L,其中d是拉伸时金属丝长度的变化,而L 是金属丝初始的长度。

应力可以通过以下公式计算:σ = N / A,其中N是实验中施加的受力,而A是金属丝的截面积。

通过这些计算公式,可以得出金属丝样品的杨氏模量E。

此外,拉伸实验还可以通过施加不同大小的负载测量金属丝材料的最大拉伸强度,也可以得出金属样品材料的断裂伸长率和断裂强度,来计算材料的破断性能。

3. 实验步骤1) 将金属丝样品装入测试机,并将其夹紧在一个方向上以避免弯曲。

2) 通过细密表和软尺等测量元件测量金属丝的长度和直径,并计算其横截面积。

3) 在测试机的负载控制下施加一定的负载(例如50 N),使金属丝被拉伸或挤压。

4) 记录金属丝变形的长度,并计算出应变。

5) 通过读取测试机显示器上的内部传感器确定金属丝的负载荷。

拉伸法测钢丝的杨氏模量

拉伸法测钢丝的杨氏模量
误差来源
实验过程中可能存在的误差来源包括测量误差、仪器误差、数据处理误差等。
误差分析
对每个误差来源进行了详细分析,并计算了其对最终结果的影响程度。
06 结论与展望
实验结论
实验精度
通过拉伸法测量钢丝的杨氏模量, 实验结果具有较高的精度,能够 满足工程和科研需求。
影响因素
实验过程中,温度、湿度、钢丝 的纯度等因素对实验结果有一定 影响,需要采取相应措施进行控 制。
实验技术改进
为了进一步提高实验精度和效率,需要不断改进 实验技术和设备,提高测量结果的可靠性和准确 性。
应用领域拓展
随着科技的不断发展,杨氏模量在各个领域的应 用越来越广泛,需要不断拓展其应用领域,为各 行业的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
振动抑制
在机械和车辆工程中,钢丝的杨氏模量对振动抑制效果有重要影响,通 过合理选择材料的杨氏模量可以有效降低振动和噪音。
03
精密仪器制造
在精密仪器制造中,钢丝的杨氏模量对仪器的精度和稳定性有重要影响,
需要选择具有高杨氏模量的材料以确保仪器的性能。
未来研究方向和展望
1 2 3
新型材料
随着新材料技术的不断发展,未来需要研究新型 材料的杨氏模量特性,以满足不同领域的需求。
01
02
03
位移传感器
使用高精度位移传感器测 量钢丝在拉伸过程中的位 移变化,确保测量结果的 准确性。
力传感器
选用高灵敏度的力传感器 测量拉伸力,以获取准确 的应力-应变曲线。
数据采集系统
配备稳定的数据采集系统, 实时记录实验数据,便于 后续数据处理和分析。
04 实验步骤

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》
3、动态悬挂法:将试样(圆棒或矩形棒)用两根线悬挂起来并激发它作横向振动。在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏弹性模量,如果我们在实验中测出了试样在不同温度下的固有频率,就可以算出试样在不同温度下的杨氏弹性模量。此法克服了静态拉伸法的缺点,具有实用价值,是国家标准规定的一种测量方法。
三、实验中注意:实验测量中,发现增荷和减荷时读数相关差较大,当荷重按比例增加时,?n不按比例增加,应找出原因,重新测量。这种情况可能发生的原因有:
1、金属丝不直,初始砝码太轻,没有把金属丝完全拉直。
2、杨氏弹性模量仪支柱不垂直,使金属丝下端的夹头不能在金属框内上下自由滑动,摩擦阻力太大。
1
3、加减砝码时动作不够平衡,导致光杠杆足尖发生移动。
1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。
2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。所以它不能很真实地反映出材料内部结构的变化。②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。
8LD?n??F?KF 2?dbE
8LD
?d2bE由此式作?n?F图线,应得一直线。从图线中计算出直线的斜率K,再由K?
即可计算出E。
3
篇二:大学物理实验用拉伸法测金属丝的杨氏模量
用拉伸法测金属丝的杨氏模量
材料在外力作用下产生形变,其应力与应变的比值叫做弹性模量,它是反映材料抵抗形变能力的物理量,杨氏模量是固体材料的纵向弹性模量,是选择机械构件的依据之一,也是工程技术中研究材料性质的常用参数。测定弹性模量的方法很多,如拉伸法、振动法、弯曲法、光干涉法等,本实验采用拉伸法测定金属丝的杨氏弹性模量,研究拉伸正应力与应变之间的关系。

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。

在数据处理中,掌握逐差法和作图法两种数据处理的方法实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。

实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL )其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。

根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。

实验原理图如右图:当θ很小时,l L /tan ∆=≈θθ,其中l 是光杠杆的臂长。

由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:Db =≈θθ22tan故:)2(D b lL =∆,即是)2(D bl L =∆那么SlbDLFE 2=,最终也就可以用这个表达式来确定杨氏模量E 。

实验内容: 1.调节仪器(1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

(2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。

(3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。

光杠杆的镜面(1)和刀口(3)应平行。

使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。

(4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。

2.测量(1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

大学物理实验讲义实验4.2.1 拉伸法测金属丝的杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量,是工程技术上常用的参数,是工程技术人员选择材料的重要依据之一。

条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。

测量材料杨氏模量方法很多,其中最基本的方法有伸长法和弯曲法。

伸长法一般采用拉伸法,其采用的具体测量方法有光杠杆放大法和显微镜直读法;弯曲法包括静态弯曲法和动态弯曲法。

本实验采用拉伸法当中的显微镜直读法。

【实验目的】1.熟悉米尺和千分尺的使用,掌握读数显微镜的使用方法;2.学习用逐差法处理数据;3.了解CCD成像系统。

【实验仪器】YWC-III杨氏模量测定仪、钢卷尺、千分尺、水准仪和0.1kg、0.2kg的砝码若干。

杨氏模量测定仪的结构如图4-2-1所示。

(a)学生实验配置(b)教学演示配置图4-2-1杨氏模量测定仪1.金属丝支架S为金属丝支架,高约1.30m,可置于实验桌上,支架顶端设有金属丝夹持装置,金属丝长度可调,约77cm,金属丝下端的夹持装置连接一小方块,方块中部的平面上有细十字线供读数用,小方块下端附有砝码盘。

支架下方还有一钳形平台,设有限制小方块转动的装置(未画出),支架底脚螺丝可调。

2.读数显微镜读数显微镜M用来观测金属丝下端小圆柱中部平面上细横线位置及其变化,目镜前方装有分划板,分划板上有刻度,其刻度范围0-8mm,分度值0.01mm,每隔1mm刻一数字。

H1为读数显微镜支架。

D成像、显示系统(作为示教仪)CCD黑白摄像机:灵敏度:最低照度≤0.2Lux;CCD接在显微镜目镜与电视显示器上。

H2为CCD黑白摄像机支架。

【实验原理】物体在外力作用下,总会发生形变。

当形变不超过某一限度时,外力消失后形变随之消失,这种形变称为弹性形变。

发生弹性形变时,物体内部产生恢复原状的内应力。

本实验中形变为拉伸形变,即金属丝仅发生轴向拉伸形变。

设金属丝长为L,横截面积为S,沿长度方向受一外力F后金属丝伸长ΔL。

拉伸法测量钢丝的杨氏模量(戚)_物理系

拉伸法测量钢丝的杨氏模量(戚)_物理系
拉伸法测定弹性材料的杨氏模 量
实验目的
学习用拉伸法测定钢丝的杨氏模量, ●学习用拉伸法测定钢丝的杨氏模量,利用 光杠杆测定长度量微小变化的方法。 光杠杆测定长度量微小变化的方法。 学习用逐差法处理实验数据。 ●学习用逐差法处理实验数据。
实验原理
一根钢丝所受的应力F/S和 和 一根钢丝所受的应力 成正比( 应变⊿L成正比(胡克定律): 成正比 胡克定律): F ∆L
望 远 镜 和 直 标 尺
杨 氏 模 量 测 定 仪
其它仪器和器材
实验内容
分别测量D 逐次改变m 分别测量 、L、K、d,逐次改变 i, 测量相应的 yi ,计算⊿ y 。写出测量结果 的标准形式,应用间接测量的相关公式, 的标准形式,应用间接测量的相关公式, 计算出最终的测量结果。 计算出最终的测量结果。
操作指导
•同重量级的位置数作平均运算(消除回差): 同重量级的位置数作平均运算(消除回差): 同重量级的位置数作平均运算 由于金属受外力时存在着弹性滞后效应 弹性滞后效应, 由于金属受外力时存在着弹性滞后效应,即钢 丝受到拉伸力作用时, 丝受到拉伸力作用时,并不能立即伸长到应有的长 度。同样,当钢丝受到的拉伸力一旦消除后,也不 同样,当钢丝受到的拉伸力一旦消除后, 能马上缩短到原来的长度位置。因此, 能马上缩短到原来的长度位置。因此,为了消除弹 性滞后效应引起的系统误差, 性滞后效应引起的系统误差,测量中应包括增加拉 伸力以及对应地减少拉伸力这一对称测量过程。 伸力以及对应地减少拉伸力这一对称测量过程。因 为只要将相应的增、减测量值取平均, 为只要将相应的增、减测量值取平均,就可以消除 滞后量的影响。 滞后量的影响。即: yi= (y’i + y”i )/2
砝码
实验原理

用拉伸法测钢丝杨氏模量实验报告

用拉伸法测钢丝杨氏模量实验报告

杨氏弹性模量反映了材料的刚度,是度量物体在弹性范围内受力时形变大 小的因素之一,是表征材料机械特性的物理量之一。
2.光杠杆原理
伸长量 Δl 比较小,不易测准,本实验利用了光杠杆的放大原理对 Δl 进行测 量。 利用光杠杆装置后,杨氏弹性模量 Y 可表示为:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

大学物理实验-拉伸法测金属丝的杨氏模量

大学物理实验-拉伸法测金属丝的杨氏模量

大学物理实验-拉伸法测金属丝的杨氏模量导言:拉伸法测金属丝的杨氏模量是一项非常重要的实验,也是物理学学生必须掌握的基本实验之一。

这个实验旨在测量一根金属丝的杨氏模量,并通过实验结果校验材料的性质和质量,探究杨氏模量与材料力学性质和微观结构特征的关系。

本篇实验报告将介绍拉伸法测金属丝的杨氏模量的实验步骤、原理、实验结果的处理方法,同时还将探讨实验中可能遇到的问题和解决办法。

实验器材:1. 金属丝一根2. 电子天平3. 倒数计时器4. 万能试验机5. 卡尺6. 水平线标7. 显微镜8. 毛玻璃实验原理:拉伸法测金属丝的杨氏模量是一种用拉伸法测量金属丝抗拉强度和弹性常数的实验方法。

这一实验方法基于普通的夹紧式拉伸实验,通过拉伸金属丝并绘制拉伸曲线和应变-应力曲线来测量金属丝的杨氏模量。

拉伸曲线是通过测量不同拉伸距离下金属丝直径的变化并绘制出来的。

应变-应力曲线是通过计算不同拉伸距离下金属丝应力和应变的比值并绘制出来的。

应力和应变的比值就是杨氏模量。

实验步骤:1. 清洗金属丝2. 准确测量金属丝的直径3. 定量量取一定长度的金属丝,并将其拉长4. 通过电子天平和倒数计时器测量拉伸金属丝的质量和拉伸速度5. 通过水平线标固定金属丝的一端,并在另一端连接力表6. 启动万能试验机和力表,开始拉伸金属丝7. 在拉伸过程中,用毛玻璃顶起金属丝,并用显微镜观察金属丝的直径变化8. 记录不同拉伸距离下金属丝的直径变化,绘制拉伸曲线9. 记录不同拉伸距离下金属丝的应力和应变的比值,绘制应变-应力曲线10. 根据应变-应力曲线计算金属丝的杨氏模量11. 清洗实验器材和实验室,并整理实验数据和结果实验结果的处理方法:实验结束后,我们需要处理实验数据和结果。

处理实验结果的方法是将绘制的拉伸曲线和应变-应力曲线转化为可计算的数据,并根据这些数据计算出实验结果。

实验结果通常以两个参数表示:杨氏模量和金属丝的抗拉强度。

计算杨氏模量时,我们需要根据应变-应力曲线计算比例极限(截断点或称为杨氏弹性极限),然后根据金属丝的几何形状、尺寸和长度计算杨氏模量。

拉伸法测定金属丝的杨氏模量

拉伸法测定金属丝的杨氏模量

拉伸法测定金属丝的杨氏模量一、引言拉伸法是测量金属丝的杨氏模量的一种常用方法。

杨氏模量是描述材料在受力时变形程度的物理量,它是指单位面积内受力方向上的应力与相应的应变之比。

在实际工程中,了解杨氏模量对于设计和制造各种机械零件和结构件具有重要意义。

二、实验原理拉伸法测定金属丝的杨氏模量原理是通过对金属丝在外力作用下产生的弹性变形进行测试,计算出其应力和应变之间的比值即为该金属丝所具有的杨氏模量。

三、实验步骤1. 准备工作:选择合适尺寸和长度的金属丝,并将其固定在测试机上。

2. 施加外力:通过测试机施加外力使得金属丝发生弹性变形。

3. 测定数据:在施加外力过程中,记录下相应的载荷值和伸长值等数据。

4. 计算结果:根据所记录下来的数据计算出金属丝所具有的杨氏模量。

四、实验注意事项1. 选择合适尺寸和长度的金属丝,并将其固定在测试机上,保证金属丝处于水平状态。

2. 在施加外力时,应逐渐增加外力的大小,避免瞬间施加过大的载荷导致金属丝断裂。

3. 在测定数据时,应注意记录下相应的载荷值和伸长值等数据,并进行准确计算。

4. 在实验过程中应注意安全,避免发生意外事故。

五、实验结果分析通过实验可以得到金属丝的杨氏模量。

根据实验结果可以了解到该金属丝在受力时变形程度的大小,为设计和制造各种机械零件和结构件提供了重要参考依据。

六、结论拉伸法测定金属丝的杨氏模量是一种常用方法,通过实验可以得到该金属丝所具有的杨氏模量。

了解杨氏模量对于设计和制造各种机械零件和结构件具有重要意义。

在实验过程中应注意安全,并进行准确计算。

大学物理实验--拉伸法测金属丝杨氏模量

大学物理实验--拉伸法测金属丝杨氏模量

实验一拉伸法测金属丝杨氏模量一实验目的1.用伸长法测定金属丝的杨氏模量2.掌握光杠测微原理及使用方法3.掌握不同长度测量器具的选择和使用,学习误差分析和误差均匀原理思想。

4.学习使用逐差法和作图法处理数据及最终处理结果的表达。

二实验原理1. 设金属丝的原长为L,横截面积为A,外加力为P,伸长了长度为△L,则单位长度的伸长量为△L/L,叫应变。

单位横截面所受的力为P/A,叫应力。

根据胡克定理,应变和应力有如下关系:P/A=E×△L/L,其中E为杨氏弹性模量(它仅与材料性质)2.在已知外加力P,横截面积为A,金属丝的原长为L,及伸长了长度为△L的情况下,就可以根据一下公式求得氏弹性模量E:E=P×L/(A×△L)3.实验装置的使用原理解析:根据杠杆原理:aa`/bb=Oa/Ob可以测量每次加载后的微小的△L的变量,又由于S1S2之间的夹角为2α所以在使用光扛杠镜后测量出来的△L的变量为:△L=b(S2— S1)/2D=b*△S/2D4.在已知b为短臂长,2D为长臂长,△L为短臂末梢的微小位移,△S=(S2— S1)为光臂末端的位移,及A=πρ2 /4(ρ为钢丝的直径),则最后的E可为一下公式表达:E=8LDP/(πρ2b△S)三实验内容1仪器的认识和调整。

调节杨氏模量仪器支架成铅垂,调节光杠杆镜和望远镜。

2.实验现象的观察和数据测量。

(1)在测量之前,必须先观察实验基本的现象,思考可能的误差来源。

(2)测量钢丝在不同荷重下的伸长变化。

先放1个1kg砝码,记下读数,然后逐次增加1kg砝码,记下每次的读数,共10次。

再将所加大砝码逐次拿下,记下每次都读数。

(3)根据误差均匀思想(应选择适当的测量仪器,使得各直接测量的误差分量最终结果断误差的影响大致相同),合理选择并正确使用不同测长仪器来测量光杠杆镜至标尺的距离D,钢丝的长度L 和直径ρ以及光杠杆镜后脚尖至O点多垂直距离b,最后求E最大误差限△E(4)测量时注意这些量的实际存在的测量偏差,从而决定测量次数。

(大学物理实验)拉伸法测杨氏模量

(大学物理实验)拉伸法测杨氏模量
2021/1/13
二、原理和方法
一根钢丝所受的应力F 和应变 L
成正比,可以写成
S
L
F (1E)L SL
比例系数E 称为钢丝的杨氏弹性模量,量 纲是N.m-2。
2021/1/13
在实验中,F 等于砝码所受的重力 ;钢丝长度很容易用直尺测量;只要测 得钢丝的直径d,就能很容易地计算得到
钢丝的截面积S。
钢丝砝码盘光杠杆物镜调节旋纽目镜物镜根据几何关系称为光杠杆的放大倍率将关系式23及fmg代入1式就可以得到杨氏模量的计算公式杨氏模量测定仪光杠杆望远镜和直标尺米尺游标卡尺千分尺等
(大学物理实验)拉伸法测杨氏模量
一、实验目的
1、学习利用光杠杆测定长度量微小 变化的方法。
2、学习用逐差法处理实验数据。
N 2D L (3) b
其中: 2 D b
称为光杠杆的放 大倍率
2021/1/13
两个支点
“力” 点
将关系式(2)、(3)及F=mg 代入(1) 式,就可以得到杨氏模量的计算公式
8mgDL
E d2bN
仪器和器材
杨氏模量测定仪、光杠杆、望远镜和直标尺、 米尺、游标卡尺、千分尺等。
2021/1/13














2021/1/13
其它仪器和器材
2021/1/13
三、实验内容
1、调节测量系统 a、调节底角螺丝,使气泡居中;
2021/1/13
气泡
底角螺丝
ห้องสมุดไป่ตู้
b、砝码托盘上先挂上500g砝码,使钢丝拉直; c、放好光杠杆,镜面尽可能垂直; d、望远镜镜筒和光杠杆镜面等高; e、目视:望远镜的缺口、准星对准镜面; f、调节望远镜,看清望远镜中叉丝及标尺。

大学物理实验:用拉伸法测杨氏模量

大学物理实验:用拉伸法测杨氏模量

大学物理实验:用拉伸法测杨氏模量
杨氏模量是描述弹性体受到拉伸作用后的拉伸模量,在经典力学中被称为弹性模量。

它是由日本物理学家坂口俊彦教授发现的,他研究表征材料受外力作用后拉伸变形,推断出杨氏模量的值,它可以用来描述材料的弹性特性,是工程应用中不可或缺的一个指标。

大学物理实验——用拉伸法测杨氏模量,是测量各种材料的弹性模量的常用方法。

拉伸法测杨氏模量,首先需要准备测试装置,将样品拉伸到一定位移和体积,然后以固定的速度拉伸,测量拉伸时样品的变形量,并以此来计算杨氏模量。

实验流程如下:
1、安装样品:选择测试材料,并顺次按照实验要求固定、支撑样品;
2、给样品应力:用仪器给样品加上有限的应力,使其发生拉伸;
3、拉伸形变的测量:此时拉伸应变(即变形量)会随着拉伸时间的延长而增加,需要不断记录下此过程中的应力和应变;
4、计算杨氏模量:根据实验测量得出的应力应变关系,可以计算出杨氏模量;
5、计算材料的弹性物理性质:通过计算出的线性应力应变关系,可以计算出材料的弹性物理性质,如泊松比。

测量杨氏模量的拉伸法是常用的测试方法,实验过程要求实验者精确操作,确保测量的精度。

实验室也需要有具备较为高精度的拉伸测试仪器,以及针对不同材料的拉伸测试安装环境。

要想获得准确的测试结果,实验过程中需要独立操作,确保过程中每步操作的准确性,以确保采集的实验数据和测试结果的可靠性。

用拉伸法测定钢丝的杨氏模量

用拉伸法测定钢丝的杨氏模量
由上式可以看出只有始末两次测量值起了作用,等效于只测 由上式可以看出只有始末两次测量值起了作用,等效于只测x1和x10 。
为了充分利用测量数据,减小测量误差,应采用逐差法: 为了充分利用测量数据,减小测量误差,应采用逐差法: (1) 将测量列按次序分为高低两组
x1 , x2 ,, x5 ;
x6 , x7 ,, x10
C (n0)
R
b
由前实验装置分析: 由前实验装置分析:
F L. E= = S L
FL b (n1 n0 ) S 2R
2LRF = b S (n1 n0 )
又: S = 1 π D 2 ; F = Mg 4 令: N = n = n1 n0 则:
2 L R Mg 8 Mg L R = E = 1 π D 2 bN b π D2 N 4
N xi
1 x1
2 x2
3 x3
4 x4
5 x5
6 x6
7 x7
8 x8
9 x9
10 x10
如果简单的将每一个波峰的距离直接计算出来, 如果简单的将每一个波峰的距离直接计算出来,有:
1 1 x = [(x2 x1) + (x3 x2 ) + (x4 x3) ++ (x10 x9 )]= (x10 x1) 9 9
(2)取对应项的差值后再求平均: 取对应项的差值后再求平均:
1 x = [( x6 x1 ) + ( x7 x2 ) + ( x8 x3 ) + + ( x10 x5 )] 5 1 = [( x6 + x7 + x8 + x9 + x10 ) ( x1 + x2 + x3 + x4 + x5 )] 5

用拉伸法测钢丝杨氏模量实验报告

用拉伸法测钢丝杨氏模量实验报告

用拉伸法测钢丝杨氏模量实验报告【实验目的】【实验仪器】杨氏弹性模量测定仪;光槓杆;望远镜及直尺;千分尺;游标卡尺;米尺;待测钢丝;砝码等。

【实验原理】1.杨氏弹性模量y是材料在弹性限度内应力与应变的比值,即杨氏弹性模量反映了材料的刚度,是度量物体在弹性範围内受力时形变大小的因素之一,是表徵材料机械特性的物理量之一。

2.光槓杆原理伸长量δl比较小,不易测準,本实验利用了光槓杆的放大原理对δl进行测量。

利用光槓杆装置后,杨氏弹性模量y可表示为:式中,f是钢丝所受的力,l是钢丝的长度,l是镜面到标尺间的距离,d 是钢丝的直径,b是光槓杆后足到两前足尖连线的垂直距离,δn是望远镜中观察到的标尺刻度值的变化量。

3. 隔项逐差法隔项逐差法为了保持多次测量优越性而採用的资料处理方法。

使每个测量资料在平均值内都起到作用。

本实验将测量资料分为两组,每组4个,将两组对应的资料相减获得4个δn,再将它们平均,由此求得的δn是f增加4千克力时望远镜读数的平均差值。

【实验步骤】1.调整好杨氏模量测量仪,将光槓杆后足尖放在夹紧钢丝的夹具的小圆平台上,以确保钢丝因受力伸长时,光槓杆平面镜倾斜。

2.调整望远镜。

调节目镜,使叉丝位于目镜的焦平面上,此时能看到清晰的叉丝像;调整望远镜上下、左右、前后及物镜焦距,直到在望远镜中能看到清晰的直尺像。

3.在钢丝下加两个砝码,以使钢丝拉直。

记下此时望远镜中观察到的直尺刻度值,此即为n0 值。

逐个加砝码,每加1个,记下相应的直尺刻度值,直到n7,此时钢丝下已悬挂9个砝码,再加1个砝码,但不记资料,然后去掉这个砝码,记下望远镜中直尺刻度值,此为n7’,逐个减砝码,每减1个,记下相应的直尺刻度值,直到n0’。

4. 用米尺测量平面镜到直尺的距离l;将光槓杆三足印在纸上,用游标卡尺测出b;用米尺测量钢丝长度l;用千分尺在钢丝的上、中、下三部位测量钢丝的直径d,每部位纵、横各测一次。

5. 测量完毕,整理各量具和器具。

用拉伸法测钢丝杨氏模量——实验报告

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;【实验仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。

它可分为弹性形变和塑性形变两种。

本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。

最简单的形变是金属丝受到外力后的伸长和缩短。

金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:FS E LL=∆ 我们把E 称为杨氏弹性模量。

如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆)n x d FLD Ln Dx d FL L S F E ∆⋅=∆=∆=228241ππ 真实测量时放大倍数为4倍,即E=2E【实验内容】<一> 仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。

<二>测量1、 记下无挂物时刻度尺的读数0n ;2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ;3、依次取下100g 的砝码,8次,计下n 0‘,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。

用拉伸法测钢丝杨氏模量——实验报告

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;【实验仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。

它可分为弹性形变和塑性形变两种。

本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。

最简单的形变是金属丝受到外力后的伸长和缩短。

金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:FS E LL=∆ 我们把E 称为杨氏弹性模量。

如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆)n x d FLD Ln Dx d FL L S F E ∆⋅=∆=∆=228241ππ 真实测量时放大倍数为4倍,即E=2E【实验内容】<一> 仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。

<二>测量1、 记下无挂物时刻度尺的读数0n ;2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ;3、依次取下100g 的砝码,8次,计下n 0‘,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2D y L K
F L E (1) S L
就可以得到杨氏模量的计算 公式:
8mgDL E 2 d K y
实验仪器
杨氏模量测定仪 望远镜和直标尺 米尺、游标卡尺、螺旋测微仪 砝码
望 远 镜 和 直 标 尺
杨 氏 模 量 测 定 仪
其它仪器和器材
实验内容
测量四个相关量
•光杠杆镜面到直标尺的距离D(单次测量); •钢丝的长度L (单次测量) ; • 光杆衦前后足的垂直距离K (单次测量); • 钢丝直径d(5次等精度测量,注意千分尺的零 位误差);
F
砝码
实验原理
F L E S L
钢丝 F 等于砝码对钢丝所产生 的重力;钢丝长度L 很容易用 L 应力 直尺测量;钢丝的截面积S 通 过处测量钢丝的直径d 计算而 得,只有钢丝的伸长量ΔL为一 个不易测量的小量,在实验中 应变 ⊿L S 我们是采用光杠杆放大器来测 F 量ΔL的。
砝码
实验原理
光杠杆放大器工作原理
直尺 钢丝 物镜调节旋纽 y Δy 目镜 y0 物镜 D 望远镜
L
K
θபைடு நூலகம்
光杠杆 2θ
ΔL
砝码盘
实验原理
直尺 钢丝 y
ΔL 砝码盘
K θ K
θ
2θ 反射镜法线 D
Δy y0
●反射原理:入射线和出射线分列于镜面法线的两
侧且入射角等于出射角。
实验原理
直尺 钢丝 y
ΔL 砝码盘
K θ K
实验目的
●学习用拉伸法测定钢丝的杨氏模量,利用
光杠杆测定长度量微小变化的方法。
实验原理
一根钢丝所受的应力F/S和 应变⊿L成正比(胡克定律): F L
S E L
1
钢丝 L
应力 比例系数E 称为钢丝的杨氏弹 0 性模量,量纲是N•m-2,描述弹 性体材料受力后形变大小,反 映其抵抗外力产生形变的能力。 应变 ⊿L S
θ
2θ 反射镜法线 D
Δy y0
● ΔL和Δy的对应关系,
tg
L k
D
tg( 2 )
当 5°>> θ y 2 当5°>> 2θ
根据几何关系, 很容易由Δy可以 得到ΔL。
2D y L K
(3)
2D K
称为光杠杆的放大 率。
两个支点
“力” 点
实验原理
F=mg ;S=πd2/4;
8mgDL E d 2 K y
调整测量系统
•望远镜镜筒和光杠杆镜面等高; •望远镜上侧目测平面镜中直尺; • 调节望远镜,看清望远镜中叉丝 及标尺度。
直尺 移动望远镜支架, 在望远镜上侧能看 到平面镜中直尺。 目镜
钢丝
物镜调节旋纽
准星
光杠杆
物镜
望远镜 瞄准平面镜,调节 目镜、物镜,看清 望远镜中叉丝和平 面镜中直尺刻度。
砝码盘
地面
目 镜
准 星
调节目镜
看清叉丝
物镜调焦 抡 物镜
调节物镜 看清标尺刻度
相关文档
最新文档