初二数学下册二次根式教案

合集下载

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)篇1:新人教版八年级数学下册二次根式教案1.二次根式:式子( ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、 (龙岩)已知数a,b,若 =b-a,则 ( )A. a>bB. a2、二次根式的化简与计算例1. 将根号外的a移到根号内,得 ( )A. ;B. - ;C. - ;D.例2. 把(a-b)-1a-b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中a= ,b= .例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。

二次根式教案(优秀8篇)

二次根式教案(优秀8篇)
(二)、探索新知:
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

初中数学初二数学下册《二次根式的运算》教案、教学设计

初中数学初二数学下册《二次根式的运算》教案、教学设计
-应用题:联系生活实际,设计二次根式应用题,让学生在实际问题中运用所学知识。
3.拓展题:针对学有余能力。
-探究题:引导学生自主探究二次根式的性质和运算规律,培养他们的探究精神。
-竞赛题:挑选数学竞赛中与二次根式相关的题目,鼓励学生挑战自我,提升竞争力。
1.基础题:完成课本相关练习题,巩固二次根式的性质、化简方法和运算规律。
-选择题:让学生通过选择题的形式,检验对二次根式概念的理解。
-计算题:设计不同类型的二次根式运算题目,让学生在练习中熟练掌握运算技巧。
2.提高题:根据学生的实际水平,适当增加难度,培养学生的逻辑思维能力和数学素养。
-综合题:将二次根式与其他数学知识相结合,设计综合性的题目,提高学生解决问题的能力。
4.设计丰富的例题和练习,帮助学生巩固所学知识,形成技能。
(三)情感态度与价值观
1.养成良好的学习习惯,严谨的学习态度,对数学产生浓厚的兴趣。
2.增强学生的自信心,让他们在克服困难、解决问题的过程中,体验成功的喜悦。
3.培养学生的团队合作意识,让他们在合作交流中学会倾听、尊重、互助。
4.使学生认识到数学在现实生活中的重要作用,激发他们运用数学知识解决实际问题的热情。
4.精讲精练,巩固知识
精选典型例题,进行详细讲解,帮助学生掌握解题思路和方法。同时,设计不同难度的练习题,让学生在练习中巩固所学知识。
5.及时反馈,调整教学
通过课堂提问、课后作业等方式,了解学生的学习情况,针对问题进行个别辅导,调整教学策略。
6.拓展延伸,提高能力
设计具有一定难度的拓展题,引导学生运用二次根式解决实际问题,提高他们的数学应用能力。
7.关注情感,激发兴趣
在教学过程中,关注学生的情感态度,鼓励他们积极参与课堂活动,体验数学学习的乐趣。

八年级下册二次根式教案

八年级下册二次根式教案

八年级下册二次根式教案目标:1. 理解二次根式的基本概念和性质。

2. 掌握解二次根式的基本方法和技巧。

3. 能够运用二次根式解决实际问题。

教学重点:1. 掌握二次根式的运算规则。

2. 理解二次根式的意义和应用。

3. 能够灵活运用二次根式解决实际问题。

教学难点:1. 理解二次根式与平方根的关系。

2. 能够正确运用二次根式解决复杂的实际问题。

教学准备:1. 教师:教案、黑板、粉笔、教辅材料。

2. 学生:教科书、习题本。

教学过程:一、导入(5分钟)教师通过提问的方式,复习上一节课所学的内容。

例如:平方根的定义和性质。

二、新知呈现(15分钟)1. 教师向学生介绍二次根式的概念,并对其进行解释。

2. 教师通过例题,向学生展示如何将一个数的平方根表示为二次根式的形式。

3. 教师讲解二次根式的运算规则,并通过例题进行演示。

三、巩固练习(20分钟)1. 教师提供一些基础练习题,让学生巩固对二次根式的运算规则的理解。

2. 学生独立完成练习题,并以小组为单位互相讨论和解答问题。

四、拓展应用(15分钟)1. 教师提供一些实际生活中的问题,让学生运用二次根式解决。

2. 学生以小组合作的形式完成问题,并向全班展示解题过程。

五、总结归纳(5分钟)教师对本节课的重点内容进行总结概括,并强调学生需要掌握的要点。

六、课后作业(5分钟)1. 学生完成课后习题,巩固对二次根式的运算规则的掌握。

2. 学生预习下一节课的内容。

扩展活动:教师可引导学生进行更多的应用性训练,如解决三角形面积、体积等问题,以提高学生对二次根式的应用能力。

教学反思:在课堂教学中,教师应注重引导学生思考和解决问题的能力培养,充分发挥学生的主体性和积极性。

同时,教师也要注意对学生进行巩固性的训练和练习,确保学生对二次根式的运算规则的掌握和理解。

初二数学二次根式教案

初二数学二次根式教案

初二数学二次根式教案【篇一:新人教版八年级数学下册第16章二次根式教案】课题:16.1二次根式1 课型:新授一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:a?0(a?0)和(a)?a(a?0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质a?0(a?0)和(a)?a(a?0)。

三、学习过程(一)自学导航(课前预习)(1)已知x?a,那么a是x的______;x是a的______, 记为_____,a一定是____数。

(2)4的算术平方根为2,用式子表示为;正数a的算术平方根为4_______,0的算术平方根为_______;式子a?0(a?0)的意义是。

(二)合作交流(小组互助)(1)的平方根是;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式h?5t。

如果用含h的式子表示t,则t;(3)圆的面积为s,则圆的半径是;(4)正方形的面积为b?3,则边长为。

思考:,2222hs ,,?3等式子的实际意义.说一说他们的共同特征. ?5a(a?0)叫做二次根式,a叫做_____________。

定义: 一般地我们把形如1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,?,4a(a?0),x2?1 32、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。

所以,在二次根式a中,字母a必须满足 , 1a才有意义。

3、根据算术平方根意义计算: (1) (4)2 (2)((3)(.5) (4)()2根据计算结果,你能得出结论:(a)2?________,其中a?0,4、由公式(a)?a(a?0),我们可以得到公式a=(a)2 ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

如()=5;也可以把一个非负数写成一个数的平方形式,如5=(). 22212) 32练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解x2?74a2-11(三)展示提升(质疑点拨)例:当x是怎样的实数时,x?2在实数范围内有意义?解:由x?2?0,得x?2当x?2时,x?2在实数范围内有意义。

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。

本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。

(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。

重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。

二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。

因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。

②本节的难点是化简二次根式的方法与技巧。

难点分析化简二次根式,实际上是二次根式性质的综合运用。

化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。

所以对初学者来说,这一过程容易出现符号和计算出错的问题。

熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。

因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。

八年级下册数学二次根式教案

八年级下册数学二次根式教案

16.1.1二次根式一、内容和内容解析1.内容二次根式的概念.2.内容解析在“有理数”一章中,学生感受了数系扩充(数集的扩大、运算的拓展、运算律的保持)的基本思想.在“实数”一章中,学生已经了解了平方根、立方根的概念和求法,,等方法,学生对实数的概念有了初步体会.这些都为本章学习打下了基础.二次根式作为一类特殊实数的一般形式,为学生进一步理解实数概念及运算提供了载体.同时,二次根式作为一类代数式,研究其性质和运算,既是学习代数式的延续,又为理解代数符号体系及其运算提供了素材.因此,如何使学生在本章的学习中进一步体会代数学的基本思想和基本方法,是本章要考虑的一个核心问题.本章是在平方根知识的基础上,学习二次根式的概念、性质和运算.二次根式是表示非负数(包括具体的数和表示数的字母)的算术平方根的一类式子,从平方根的意义出发,得到二次根式有意义的条件是被开方数为非负数,而且二次根式的值是非负数,这就是二次根式的双重非负性.本节课的教学重点:从算术平方根的意义出发理解二次根式的概念.二、目标和目标解析1.目标(1)根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由.(2)能用二次根式表示实际问题中的数量和数量关系.2.目标解析目标(1) 要求学生能从具体数的算术平方根出发,通过字母表示数,把算术平方根的概念推广到被开方数含有字母的情况,并根据算术平方根的概念得到二次根式的概念.能根据算术平方根的意义得出二次根式的被开方数和值都为非负数这个结论.从函数的观点看,前者与定义域有关,后者与值域有关.目标(2)要求学生会根据问题情境,利用开平方运算的意义,列出实际问题中的二次根式.三、教学问题诊断分析由于学生有学习整式、分式的概念和性质的经验,其研究的步骤和方法可以迁移到二次根式的学习中,这不仅有利于本节课的学习,同样有利于本章其他内容的学习.算术平方根主要涉及到具体数的开平方、而二次根式包含了对含字母的式子进行开平方运算,比具体数的开平方运算更抽象.由于被开方数含有字母,在研究这类式子时,就往往需要考虑二次根式有意义的条件,即字母的取值范围,这是本节课的难点.四、教学过程设计1.复习引入在七年级下册我们已经学习过了平方根和算术平方根,知道了平方根和算术平方根有意义的条件、算术平方根的双重非负性以及它俩之间的联系和区别,通过复习平方根和算术平方根从而引导出二次根式.=,那么x称为a的平方根,用①如果2x a②如果2(0)x a x =≥,那么x 称为a 的算术平方根,③负数没有平方根.因此,的被开方数0a ≥设计意图:回顾已学知识,为引出二次根式作铺垫.2.探究新知问题1 用带有根号的式子填空,看看写出的结果有什么特点(1)面积为3的正方形海报的边长为_____;若面积为S ,则边长为_____(2)一个长方形围栏,长是宽的2倍、面积为1302m ,则它的宽为_____m.(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 25h t =,如果用含有h 的式子表示 t ,那么t 为_____.师生活动:学生思考并完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.关键是帮助学生实现从数的算术平方根到用含有字母的式子表示算术平方根的抽象,渗透了从具体到抽象,从特殊到一般的思想方法.追问1 第(1) (2)?它们有什么区别和联系?师生活动:由学生回答.依据是算术平方根的定义.分别表示具体数3,65s 表示的字母的算术平方根;联系是都表示非负数的算术平方根.追问2 第(3)题中,当h 的值分别为10, 15, 25时,得到的结果分别是什么示的数怎样变化?师生活动:学生回答.教师指出:含有字母的算术平方根具有一般性,这是需要研究的新一类式子.设计意图:为概括二次根式的概念提供具体例子,同时发展符号意识.通过追问,让学生回顾算术平方根的概念,再次体会字母表示的数可以进行开平方运算,体会字母表示数的一般性和简约性.3.抽象概括,形成概念问题2 师生活动:教师引导学生概括得出共同特征,并给出二次根式的定义.追问1 4, 0的算术平方根分别是什么? -4有没有算术平方根?。

二次根式全章教案(8课时)

二次根式全章教案(8课时)

初二数学二次根式全章教案授课时间:年月日第周星期课时序号一、课前导学:学生自学课本2-3页内容,并完成下列问题 1. 温故而知新:(1)如果一个数x 的平方等于a ,即2x =a ,那么x 叫做a 的,记为x =,(2)如果一个非负数x 的平方等于a ,即2x =a (0≥x ),那么非负数x 叫做a 的,记为x =, (3)计算下列各式的值:=,=,=,=,=,2)9(=,2.一般地我们把形如()叫做二次根式,a 叫做_____________, 3. 试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3, 16-, 34, )0(3≥a a , 12+x4.根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31(根据计算结果,你能得出结论: (0≥a ), 5.计算:(1)2)23( (2)2)52(- 二、合作、交流、展示: 1.理解二次根式概念(1)二次根式a 中,字母a 必须满足 ; (2)二次根式与算术平方根有何关系呢? (3)当0≥a 时,a 是什么数?教 学 过 程 设 计2)3(________)(2=a【归纳】二次根式的双重非负性: 2.当x 取何值时,下列各二次根式有意义(1); (2)x 322- (3)2)2(-x (4)x--21 3.若,则= ,4.已知,求xy的值.【收获感悟】:, 三、巩固与应用1. 若x -在实数范围内有意义,则x 为(), A.正数 B.负数 C.非负数 D.非正数2.当x 时,二次根式x 35-有意义,3. 在式子xx+-121中,x 的取值范围是____________.4.在实数范围内因式分解:①72-x ② 4a 2-115a 的值为___________. 6.已知42-x +y x +2=0,则=-y x _____________. 7.已知+3,求y x 的值.8.拓展提高:已知a 、b =b +4,求a 、b 的值.四、小结:1.二次根式的概念:; 2.二次根式的性质:(1),(2); 3.巧用非负数解题. 五、作业:《作业本》第1页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 43-x 20a -2a b -一、课前导学:学生自学课本第4页内容,并完成下列问题 1.计算:=24=23.0=2)52(=20观察其结果与根号内幂底数的关系,归纳得到:当=≥2,0a a 时2.计算:=-2)4(=-2)3.0(=-2)52(=-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 3.【归纳】二次根式的性质:=2a = 4.化简下列各式:(1)=22.0(2)=-2)3.0( (3)=-2)4( (4)()22a =(0<a )5.代数式:用基本运算符号把连接起来的式子叫做代数式. 二、合作、交流、展示:1.理解二次根式三条基本性质: (1)双重非负性:a 0() (2)()=2a () (3) =2a2.【讨论】二次根式的性质:)0()(2≥=a a a 与a a =2有什么区别与联系?教 学 过 程 设 计3.化简下列各式(1))0(42≥x x (2) 4x (3))3()3(2≥-a a4.已知2<x <3,化简:3)2(2-+-x x5.已知a 、b 、c 在数轴上的位置如图所示,化简b b c c a a ---++-22)(.三、巩固与应用 1. 课本第4页练习2; 2.2)4(-π= ;3.a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________; 4.你能运用公式a a =2比较53与34的大小吗?5.当x = 6.拓展提高:(1)已知0<x <1,化简:4)1(2+-xx -4)1(2-+xx(2)已知实数a 满足a a a =-+-2014)2013(2,求22013-a 的值.四、小结:1.二次根式的性质:,,;2.灵活运用二次根式的性质解题. 五、作业:《作业本》第2页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号一、课前导学:学生自学课本6-7页内容,并完成下列问题1、探究 ⑴ 计算下列各式,观察计算结果:①×=______ ,=_______ ② × =_______ ,=_______ ③ × =_______ , =_______ ⑵ 仔细观察上题中的规律,猜想b a ∙=()0,0≥≥b a (二次根式乘法法则)再例举两个例子验证你的猜想:; 2、计算× =;×= ;274∙= ;123∙=3、乘法公式反过来得到:=ab ()0,0≥≥b a ,4、填空:⑴=∙=⨯=24248;=∙=⨯=292918;⑵请你用上述方法化简下列二次根式: 12=; 27=; 48=; 72=; 98=; 250x =;二、合作、交流、展示:1.二次根式的乘法法则:b a ∙=,注意:乘法法则成立的条件是: (为什么?)2、积的算术平方根的性质(乘法法则的逆向运用)=ab 注意:⑴性质成立的条件是:(为什么?) ⑵如何化简:()()94-⨯-?4994⨯16252516⨯1003636100⨯23563、例题1 计算:⑴3127⨯ ⑵4510152⨯ ⑶1531372⨯-例题2 化简:⑴()()8116-⨯- ⑵3225b a ⑶4499ab ⑷【收获感悟】:如何进行二次根式的化简,例题3 计算:⑴714⨯ ⑵10253⨯ ⑶ xy x 31122⨯-三、巩固与应用 1、等式成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-12、下列各等式成立的是( ). A.4×2=8B .5×4=20 C.5×2=10 D .y x y x +=+224、不改变式子的值,把根号外的数移到根号里面: ⑴=32 ; ⑵313=;⑶ -=62 5、比较下列两数的大小:⑴227 ⑵347 ⑶23-32-6、已知一个三角形的一条边长为502,这条边上的高为83,求这个三角形的面积.7、计算:(1)6×(-2); (28、(拓展)化简⑴a a 1 ⑵aa 1-四、小结:1.二次根式的乘法法则:; 2.积的算术平方根的性质:, 五、作业:《作业本》第3页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 2212b a 1112-=-∙+x x x 55532532686一、课前导学:学生自学课本第8-9页内容,并完成下列问题 1、写出二次根式的乘法法则和积的算术平方根的性质b a ∙=,=ab2、计算: (1)38×(-46) (2)3612ab ab ⨯3、填空: (1;(2; (3;(4.你能发现什么规律呢?一般地,对二次根式的除法规定:二次根式的除法法则商的算术平方根的性质 4、计算:(1)312(2)16141÷5、化简:(1)257(2)932(3))0,0(42522≥>b a a b 二、合作、交流、展示:仿照课本例题利用二次根式的除法法则和商的算术平方根的性质完成以下题目1、计算:(1(2(3)52154【温馨提示】:当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,教 学 过 程 设 计被开方数之商为被开方数。

二次根式教案

二次根式教案

二次根式教案
教案一:
教学目标:通过本节课的学习,学生能够理解什么是二次根式,以及如何进行二次根式的简化和运算。

教学重点:二次根式的简化和运算。

教学难点:能够灵活运用二次根式进行简化和运算。

教学准备:教师准备黑板、白板、彩色粉笔/白板笔。

教学过程:
Step 1 导入
教师通过提问的方式,复习上节课学习的有关根式的知识,引出二次根式的概念。

Step 2 理解二次根式
教师讲解二次根式的定义:当一个根式的被开方数含有平方数时,我们称这个根式为二次根式。

Step 3 简化二次根式
教师通过示例演示,两两相乘法则、约分法则以及分配律等方法,引导学生简化二次根式。

Step 4 二次根式的运算
教师引导学生进行二次根式的加法、减法、乘法和除法运算,通过示例演示,帮助学生掌握方法和技巧。

Step 5 综合运用
教师布置一些综合运用的题目,让学生独立完成,提高他们对二次根式的综合应用能力。

Step 6 小结
教师对本节课进行小结,强调二次根式的简化和运算方法,以及需要注意的注意事项。

Step 7 拓展练习
教师布置一些拓展练习题,作为课后作业,巩固学生对二次根式的理解和掌握程度。

教学反思:
本节课通过引入、讲解、示范和练习等环节,帮助学生理解二次根式的概念,掌握二次根式的简化和运算方法。

同时,通过提供综合运用和拓展练习,激发学生的思维,培养他们的解决问题的能力。

整节课教学进程紧凑,学生参与度高,达到了预期的教学效果。

二次根式教案(精选10篇)

二次根式教案(精选10篇)

二次根式教案(精选10篇)二次根式教案 1一、教学目标1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。

2、会进行简单的二次根式的乘法运算。

3、使学生能联系几何课中学习的勾股定理解决实际问题。

二、教学重点和难点1、重点:会利用积的算术平方根的性质化简二次根式。

2、难点:二次根式的乘法与积的算术平方根的关系及应用。

重点难点分析:本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。

积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。

二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。

本节难点是二次根式的乘法与积的算术平方根的关系及应用。

积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。

要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。

综合应用性质或乘法公式时要注意题目中的条件一定要满足。

三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。

1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。

在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

2、积的算术平方根的.性质和__及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。

由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。

四、教学手段利用投影仪。

五、教学过程(一)引入新课观察例子得到结果类似地可以得到:由上一节知道一般地,有=(a,b)通过上面的例子,大家会发现=(a,b)也成立(二)新课积的算术平方根。

数学二次根式教案优秀10篇

数学二次根式教案优秀10篇

数学二次根式教案优秀10篇次根式教案篇一课题:二次根式教学目标1、知识与技能理解a(a≥0)是一个非负数,(a≥0)2、过程与方法(1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想方法(2)问题解决:能够利用性质进行二次根式的化简计算,能够互助交流合作,分析问题,总结反思3、情感、态度与价值观体验成功的乐趣,锻炼克服困难的意志,培养严谨求实的科学态度教学重难点教学重点:二次根式的概念教学难点:二次根式中根号下必须为非负数教学过程一、课前回顾(2分钟)学生与老师共同回顾上节课所学内容,温故而知新。

什么是二次根式?二次根式中字母的取值范围:①被开方数大于等于零;②分母中有字母时,要保证分母不为零。

③多个条件组合时,应用不等式组求解一、情境引入(3分钟)由生活中的'实例引入投影的概念,引起学生的学习兴趣已知下列各正方形的面积,求其边长。

二、探究1(10分钟)练习1:计算下列各式:三、探究2(10分钟)可以发现它们有如下规律:一般的,二次根式有下列性质:练习2:典型例题例1:计算:例2:计算:达标测试(5分钟)课堂测试,检验学习结果1、判断题2、若,则x的取值范围为(A )(A)x≤1 (B)x≥1(C)0≤x≤1 (D)一切有理数3、计算4、化简5、已知a,b,c为△ABC的三边长,化简:这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

应用提高(5分钟)能力提升,学有余力的同学可以仔细研究如图,P是直角坐标系中一点。

(1)用二次根式表示点P到原点O的距离;(2)如果求点P到原点O的距离体验收获今天我们学习了哪些知识二次根式的两条性质。

布置作业教材8页习题第3、4题。

数学二次根式教案篇二一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的`基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.次根式教案篇三一、素质教育目标(一)知识教学点1.使学生了解最简二次根式的概念和同类二次根式的概念.2.能判断二次根式中的同类二次根式.3.会用同类二次根式进行二次根式的加减.(二)能力训练点通过本节的学习,培养学生的思维能力并提高学生的运算能力.(三)德育渗透点从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.(四)美育渗透点通过二次根式的加减,渗透二次根式化简合并后的形式简单美.二、学法引导1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的'计算方法.2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.三、重点·难点·疑点及解决办法1.教学重点二次根式的加减法运算.2.教学难点二次根式的化简.3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.四、课时安排2课时五、教具学具准备投影片六、师生互动活动设计1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.七、教学步骤(一)明确目标学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.(二)整体感知同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.次根式教案篇四教案教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的`阅读习惯和规范的解题格式。

人教版数学八年级下册16.1二次根式(教案)

人教版数学八年级下册16.1二次根式(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数的平方根的情况?”(例如,计算一个边长为$\sqrt{5}$的正方形的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
4.培养学生的数学抽象素养:让学生从具体的二次根式实例中抽象出一般规律,提升对数学概念的理解和抽象思维能力。
5.激发学生的数学探究精神:鼓励学生在二次根式学习中积极思考、探索,培养他们的创新意识和探究精神。
三、教学难点与重点
1.教学重点
-二次根式的定义:理解二次根式的概念,明确根号下仅含非负实数的表达式。
-二次根式的性质:掌握二次根式的乘除、平方等运算性质,如$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$。
-二次根式的化简:学会通过因式分解、提取公因数等方法化简二次根式,如$\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}$。
-二次根式的乘除法:熟练运用性质进行二次根式的乘除运算,如$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)。
1.培养学生的逻辑推理能力:通过二次根式的性质与运算法则的学习,使学生能够运用逻辑推理分析问题,提高解题的条理性和逻辑性。
2.提升学生的数学运算能力:让学生掌握二次根式的化简、乘除与加减运算,培养他们在数学运算中的准确性和熟练度。
3.增强学生的数学建模意识:通过解决实际问题,使学生能够运用二次根式知识构建数学模型,提高解决实际问题的能力。

二次根式教案

二次根式教案

二次根式教案通用一、教学内容本节课我们将学习人教版数学八年级下册第14章“二次根式”的内容。

具体包括:二次根式的定义与性质;二次根式的乘除法运算;最简二次根式的概念与化简方法。

重点章节为14.1节和14.2节。

二、教学目标1. 理解并掌握二次根式的定义,能够识别常见的二次根式。

2. 学会二次根式的乘除法运算,并能解决实际问题。

3. 能够化简最简二次根式,提高数学思维能力。

三、教学难点与重点教学难点:二次根式的乘除法运算、最简二次根式的化简。

教学重点:二次根式的定义与性质、二次根式的乘除法运算。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:学生用计算器、草稿纸、笔。

五、教学过程1. 导入新课:通过实际情景引入,如土地面积的测算,让学生感受到二次根式的实际意义。

2. 新知讲解:(1)讲解二次根式的定义,让学生理解根号下为何种类型的式子。

(2)通过例题讲解,让学生掌握二次根式的乘除法运算。

(3)介绍最简二次根式的概念,并进行化简方法的讲解。

3. 随堂练习:布置一些具有代表性的练习题,让学生巩固所学知识。

4. 答疑解惑:针对学生在练习中遇到的问题,进行解答和指导。

六、板书设计1. 二次根式的定义与性质2. 二次根式的乘除法运算3. 最简二次根式的概念与化简方法七、作业设计1. 作业题目:(1)计算:√18 ÷ √2,√27 × √8(2)化简:√(4/9),√(1/24)2. 答案:(1)3,3√6(2)2/3,√6/4八、课后反思及拓展延伸本节课通过实际情景引入、例题讲解、随堂练习等方式,让学生掌握了二次根式的定义与性质、乘除法运算以及最简二次根式的化简方法。

课后,教师应关注学生对知识的掌握情况,并进行针对性的辅导。

拓展延伸部分,可以让学生探索二次根式的加减法运算,为下一节课的学习打下基础。

重点和难点解析1. 教学内容的设置与衔接2. 教学目标的明确与实现3. 教学难点与重点的把握4. 教学过程的实践情景引入5. 例题讲解的深度与广度6. 随堂练习的设计与反馈7. 板书设计的逻辑性与条理性8. 作业设计的针对性与拓展性9. 课后反思及拓展延伸的实际应用一、教学内容的设置与衔接教学内容应紧密联系学生的已有知识,确保学生能够顺利过渡到新的知识点。

八年级数学下册《二次根式》教案

八年级数学下册《二次根式》教案

八年级数学下册《二次根式》教案一、教学目标1. 知识目标(1)能够掌握二次根式的概念和性质。

(2)能够对二次根式进行合并、分解、化简和比较大小。

2. 能力目标(1)能够掌握解二次根式的方法。

(2)能够运用二次根式解决一些实际问题。

3. 情感目标(1)培养学生自信、探究和创新的精神。

(2)培养学生团结、合作和交流的能力。

二、教学重点和难点1. 教学重点:掌握二次根式的概念和性质,能够对二次根式进行合并、分解、化简和比较大小。

2. 教学难点:能够掌握解二次根式的方法,并能够运用二次根式解决一些实际问题。

三、教学过程1. 导入新课(1)导入问题:“如果一支火箭要在太空中行驶,需要吸收多少能量才能达到其最大速度?”请学生回答该问题。

(2)教师解释:火箭在太空中行驶时需要很大的能量,而二次根式在数学中也有着类似的作用。

2. 学习基础(1)导入问题:“学过的开放引式能够化为二次根式吗?为什么?”请学生回答该问题。

(2)教师解释:“开方引式”和“二次根式”是等价的,因为一个开方引式可以化为一个二次根式,而一个二次根式也可以化为一个开方引式。

(3)学生完成用二次根式计算的类比练习。

3. 学习二次根式的概念和性质(1)学习什么是二次根式。

(2)学习二次根式的加减法、乘法、除法和化简。

(3)学习二次根式的比较大小。

4. 学习解二次根式的方法(1)学习平方完全平方公式。

(2)学习用公式解一元二次方程。

(3)学习用二次根式解一些实际问题。

5. 练习巩固(1)要求学生进行写作练习,将所学知识转化为文字,同时要求学生掌握解题思路和解题方法。

(2)要求学生进行随堂练习,检测学生的学习情况,及时纠正错误。

6. 课堂小结本节课主要介绍了二次根式的概念、性质、解题方法和实际应用。

同时,还要求学生进行写作和随堂练习,以检测学生的掌握程度。

在下一节课中,我们将继续学习二次函数和图像的知识。

初二数学下册《二次根式》教案

初二数学下册《二次根式》教案
生针对本节课疑难问题提问
谈话法3
巩固与练习
P69练习1、2、3
1.求下列二次根式中字母 的取值范围:
2.当 分别取下列值时,求二次根式 的值:
; ; .
检测:求二次根式中 的取值范围:
(1) (2) (3) (4)
3、(1)已知y= + +5,求 的值.
(2)若 + =0,求a2004+b2004的值.
例3.当x是多少时, + 在实数范围内有意义?
师:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥- 且x≠-1时, + 在实数范围内有意义.
生辨析并加深理解:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.
课时计划
课题
16.1二次根式
课型
新授课
班别


多媒体
时间




知识与技能
1、掌握二次根式的概念与意义。
2、通过对二次根式的概念与意义的探究提高他们的对数学的探究能力。
过程与方法
经历观察,比较,总结二次根式概念的过程,发展学生的归纳意识
情感态度与价值观
在课堂数学活动中感受数学活动的探索性与创造性并体验发现乐趣
探究法3
2
精讲与点拨
应用拓展
活动3:例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).
例2.当x是多少时, 在实数范围内有意义?
强调:该二次根式的被开方数为3x-1≥0, 才能有意义.

人教版八年级数学下册(教案)16.1二次根式

人教版八年级数学下册(教案)16.1二次根式
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的定义和基本性质。二次根式是指根号下含有变量的表达式,它是解决非完全平方数平方根的有力工具,并在几何图形的计算中有着广泛应用。
2.案例分析:接下来,我们来看一个具体的案例,如计算边长为√5的正方形的面积。这个案例展示了二次根式在实际中的应用,以及它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学Βιβλιοθήκη 将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.二次根式的乘除法:熟练掌握二次根式的乘除法则,并能应用于解决实际问题。
4.二次根式的加减法:了解二次根式加减法的法则,学会合并同类二次根式。
5.二次根式的应用:运用二次根式解决生活中的实际问题,如计算面积、体积等。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑推理能力:通过二次根式的性质与运算法则的学习,使学生能够运用逻辑推理分析、解决问题,形成严密的数学思维。
五、教学反思
今天我们在课堂上探讨了二次根式的相关知识,回顾整个教学过程,我觉得有几个地方值得反思。
首先,关于导入新课的部分,我发现通过提问的方式引导学生思考生活中的二次根式应用,能够激发他们的好奇心和学习兴趣。但在实际操作中,可能需要更加贴近学生生活的例子,让他们更容易理解和接受。
其次,在新课讲授中,我尽量用简洁明了的语言解释二次根式的定义和性质,但发现部分学生在理解上仍有困难。我想在以后的课堂上,可以增加一些具体实例,让学生在实际运算中逐步掌握这些概念。

八年级下册二次根式的教案

八年级下册二次根式的教案

八年级下册二次根式的教案一、教学背景分析本节课是八年级下册数学教学内容的一部分,主要涉及二次根式的概念及相关运算。

二次根式是八年级数学学习中的重要内容,是学生进一步掌握代数运算技巧和解决实际问题的基础。

本节课的目标是使学生能够理解二次根式的概念、进行二次根式的运算,并能运用所学知识解决实际问题。

二、教学目标1. 知识目标:a. 理解二次根式的概念与性质;b. 掌握二次根式的化简和展开运算;c. 能够运用二次根式解决实际问题。

2. 能力目标:a. 培养学生的分析和解决问题的能力;b. 培养学生的逻辑思维和数学推理能力。

3. 情感目标:a. 培养学生对数学的兴趣和探究精神;b. 培养学生的合作意识和团队意识。

三、教学重难点1. 教学重点:a. 理解二次根式的概念;b. 掌握二次根式的化简和展开运算。

2. 教学难点:a. 将二次根式与实际问题联系起来,运用二次根式解决问题。

四、教学过程1. 情境导入(5分钟)将一个红果梨和一个青果梨放在桌子上,问学生两个梨的总重是多少?引导学生思考,是否可以用直接相加的方法得到答案?导出结论:两个梨的重量与它们具体的重量值有关,不能直接相加,需要通过某种运算方法来得到准确的结果。

2. 概念解释(10分钟)a. 引入二次根式的概念:通过介绍正方形面积问题,引导学生总结出根号的含义。

b. 通过一些具体的例子,解释二次根式与实际问题之间的关系,并引导学生体会并总结二次根式的一般形式。

3. 基本运算(20分钟)a. 化简二次根式:通过多个具体的例子,让学生了解化简二次根式的基本方法,培养学生对二次根式化简的灵活运用能力。

b. 展开二次根式:通过多个具体的例子,让学生了解展开二次根式的基本方法,培养学生对二次根式展开的灵活运用能力。

4. 实际问题应用(15分钟)通过一些实际问题的讨论和解答,让学生在解决问题的过程中巩固和运用所学的二次根式知识。

a. 设置一些与长度、面积相关的实际问题,引导学生用二次根式解决问题。

二次根式教案八年级下册数学

二次根式教案八年级下册数学

16.1二次根式(第1课时)16.1 二次根式(第2课时)补偿提高22(35)(53)-2.若数轴上表示数x的点在原点的左边,则化简23x+x的结果是()A、-4xB、4xC、-2xD、2x3.已知实数x,y满足x y-++=540,求代数式的值.请学生板练.师生共同评析.存在的共性问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.小结本节课你学到了什么知识?你有什么认识?学生自己说出本节课的收获作业设计作业:教材P5习题21.1复习巩固2题 (3)、(4)3题 (1)、(2).教师布置作业,并提出要求.学生课下独立完成,延续课堂.附赠材料优秀的教学是练出来的在上一堂课里,你已经学会了区分高效教学法和低效教学法之间的区别。

现在,我们还要继续巩固这一概念。

在高效教学法和低效教学法之间,是否存在一个灰色的中间地带呢?是的,这个灰色地带确实存在。

如果能带领那些还不够高效的教师们进人这一中间地带,那也是很大的进步。

当然,本课的主要目的是发掘出教师的最大潜力,以最终实现高效教学。

如果能成功做到这一点,那么你最终会发现学生的表现有了显著的提高。

显而易见,教师能力的优劣会直接影响到学生的表现。

教师越优秀,学生的表现就越好。

课程:首先,我们回顾一下上一节课所学的如何区分高效和低效教学上一节课,我已经要求你总结出自身存在的弱项,并且在课后进行针对性的练习。

今天,请你仔细思考,在下面列举的教学情景中高效和低效的教师将如何做出不同的应对措施。

高效教学与低效教学实践一个学生在课堂上一直和其他学生聊天。

他这个举动非常明显,必须及时制止。

面对这个情形时,低效的教师会如何应对?高效的教师又会如何应对?一个学生在课堂上不断发出声响,这个声音越来越吵,并且影响到了班级里的其他学生。

低效的教师会如何应对?高效的教师又会如何应对一个学生总是没有完成课后布置的家庭作业。

对这个学生低效的教师会如何应对?高效的教师又会如何应对?一个学生总是随便讲话。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 二次根式教案(人教版)教学目标:1、理解二次根式的概念.2、理解a (a ≥0)是一个非负数,(a )2=a (a ≥0),2a =a (a ≥0). 3、掌握a ·b =ab (a ≥0,b ≥0),ab =a ·b ;b aba =(a ≥0,b >0),bab a =(a ≥0,b >0).4、了解最简二次根式的概念并灵活运用它们对二次根式进行加减.教学重点:1.二次根式a (a ≥0)的内涵.a (a ≥0)是一个非负数;(a )2=a (a ≥0);2a =a (a ≥0)•及其运用.2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点: 1.对a (a ≥0)是一个非负数的理解;对等式(a )2=a (a ≥0)及2a =a (a ≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.21.1 二次根式 第一课时教学内容:二次根式的概念及其运用 教学目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键: 1.重点:形如a (a ≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a (a ≥0)”解决具体问题. 教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数xy3=,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________. 问题2:如图,在直角三角形ABC 中,AC=3,BC=1,∠C=90°,那么AB 边的长是__________.问题1:横、纵坐标相等,即x=y ,所以x2=3.因为点在第一象限,所以x=3,所以所求点的坐标(3,3). 问题2:由勾股定理得AB=10二、探索新知 很明显3、10,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如a (a ≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.—1有算术平方根吗? 2.0的算术平方根是多少? 3.当a <0,a 有意义吗?例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、x1、x (x>0)、0、42、2-、yx +1、y x +(x ≥0,y •≥0).例2.当x 是多少时,13-x 在实数范围内有意义?三、应用拓展B AC例3.当x 是多少时,1132+++x x 在实数范围内有意义? 例4(1)已知y=522+-+-x x ,求yx 的值.(2)若011=-++b a ,求20142014b a+的值. 四、归纳小结(学生活动,老师点评) 本节课要掌握: 1.形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.第一课时作业设计 一、选择题1.下列式子中,是二次根式的是( ) A .7-B .37C .xD .x2.下列式子中,不是二次根式的是( ) A .4 B .16 C .8 D .x1 3.已知一个正方形的面积是5,那么它的边长是( ) A .5 B .5 C .51D .以上皆不对 二、填空题1.形如 的式子叫做二次根式. 2.面积为a 的正方形的边长为 . 3.负数 平方根. 三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x 是多少时232x xx ++,在实数范围内有意义? 3.若3x -+3x -有意义,则2x -=_______. 4.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数5.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.21.1 二次根式 第二课时教学内容: 1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0). 教学目标:理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它们进行计算和化简. 通过复习二次根式的概念,用逻辑推理的方法推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论严谨解题. 教学重难点关键: 1.重点:a (a ≥0)是一个非负数;(a )2=a (a ≥0)及其运用. 2.难点、关键:用分类思想的方法导出a (a ≥0)是一个非负数;用探究的方法导出(a )2=a (a ≥0). 教学过程:一、复习引入1.什么叫二次根式? 2.当a ≥0时,a 叫什么?当a <0时,a 有意义吗?二、探究新知a (a ≥0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出a (a ≥0)是一个非负数.做一做:根据算术平方根的意义填空:()24=_______; ()22=_______; ()29=______; ()23=_______;231⎪⎪⎭⎫⎝⎛=______; 227⎪⎪⎭⎫⎝⎛=_______;()20_______.通过上述习题,可得:(a )2=a (a ≥0)例1 计算 1.223⎪⎪⎭⎫⎝⎛ 2.()253 3.256⎪⎪⎭⎫⎝⎛ 4.227⎪⎪⎭⎫⎝⎛分析:我们可以直接利用(a )2=a (a ≥0)的结论解题.三、巩固练习计算下列各式的值:()218、 232⎪⎪⎭⎫⎝⎛、 249⎪⎪⎭⎫⎝⎛、()20、 2874⎪⎪⎭⎫⎝⎛、()253—()235四、应用拓展 例2 计算:1.())0(12≥+x x 2.()22a 3.()2212++a a 4.()229124+-x x例3、在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3 五、归纳小结本节课应掌握: 1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0);反之:a =(a )2(a ≥0). 第二课时作业设计一、选择题1.下列各式中15、3a 、21b -、22a b +、220m +、144-,二次根式的个数是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题 1.()23-=________.2.已知1+x 有意义,那么它是一个_______数.三、综合提高题 1.计算 (1)()29 (2)()23- (3)2621⎪⎭⎫⎝⎛ (4)2323⎪⎪⎭⎫ ⎝⎛- (5) (2332)(2332)+-2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)61(4)x (x ≥0) 3.已知1x y -++3x -=0,求xy 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-521.1 二次根式 第三课时教学内容:a a =2 (a ≥0)教学目标:理解a a =2(a ≥0)并利用它进行计算和化简.通过具体数据的解答,探究a a =2(a ≥0),并利用这个结论解决具体问题. 教学重难点关键: 1.重点:a a =2(a ≥0);2.难点:探究结论;3.关键:讲清a ≥0时,a a =2才成立. 教学过程:一、复习引入老师口述上两节课的重要内容; 1.形如a (a ≥0)的式子叫做二次根式;2.a (a ≥0)是一个非负数;3.()2a =a (a ≥0).那么,我们猜想当a ≥0时,a a =2是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:22=______;20.01=______;21()10=_____; 22()3=_______;20=_______;23()7=______.(老师点评):根据算术平方根的意义,我们可以得到:22=2;20.01=0.01;21()10=110;22()3=23;20=0;23()7=37.因此,一般地:a a =2 (a ≥0)例1 化简(1)9 (2)2(4)- (3)25 (4)2(3)-三、应用拓展例2 填空:当a ≥0时,2a =_____;当a <0时,2a =_______,•并根据这一性质回答下列问题.(1)若a a =2,则a 可以是什么数? (2)若a a -=2,则a 可以是什么数? (3)a a >2,则a 可以是什么数?分析:∵a a =2(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0时,()22a a -=,那么—a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知2a =│a │,而│a │要大于a ,只有什么时候才能保证呢?a <0.例3、当x>2,化简2(2)x -—2(12)x -.四、归纳小结 本节课应掌握:a a =2(a ≥0)及其运用,同时理解当a <0时,a a -=2的应用拓展.第三课时作业设计一、选择题1.2211(2)(2)33+-的值是( ).A .0B .23C .423 D .以上都不对2.a ≥0时,2a 、2()a -、—2a ,比较它们的结果,下面四个选项中正确的是( ). A .2a =2()a -≥-2a B .2a >2()a ->-2a C .2a <2()a -<-2a D .-2a >2a =2()a -二、填空题1.—0.0004=________.2.若20m 是一个正整数,则正整数m 的最小值是________. 三、综合提高题1.先化简再求值:当a =9时,求a +212a a -+的值,甲乙两人的解答如下: 甲的解答为:原式=a +2(1)a -=a +(1—a )=1;乙的解答为:原式=a +2(1)a -=a +(a —1)=2a —1=17.两种解答中,_______的解答是错误的,错误的原因是__________. 2.若│1995—a │+2000a -=a ,求a —19952的值.(提示:先由a —2000≥0,判断1995—a •的值是正数还是负数,去掉绝对值)3. 若-3≤x ≤2时,试化简│x —2│+2(3)x ++21025x x -+。

21.2 二次根式的乘除 第一课时教学内容:a ·b =ab (a ≥0,b ≥0),反之ab =a ·b (a ≥0,b ≥0)及其运用. 教学目标:理解a ·b =ab (a ≥0,b ≥0),ab =a ·b (a ≥0,b ≥0),并利用它们进行计算和化简。

相关文档
最新文档