高中数学必修一课件全册课件
2024版完整版高中数学必修一全册课件
完整版高中数学必修一全册课件目录•高中数学必修一概述•集合与函数概念•基本初等函数(Ⅰ)•函数的应用•空间几何体•点、直线、平面之间的位置关系01高中数学必修一概述包括集合的基本概念、集合间的关系与运算、函数的概念与性质等。
集合与函数概念包括指数函数、对数函数、幂函数等基本初等函数的图像与性质。
基本初等函数包括函数与方程、函数模型及其应用等,通过实例探究函数的性质与应用。
函数的应用教材内容与结构过程与方法通过观察、思考、探究、归纳等活动,培养学生的数学思维能力、创新能力和解决问题的能力。
知识与技能掌握集合与函数的基本概念,理解基本初等函数的图像与性质,能够运用函数知识解决一些实际问题。
情感态度与价值观激发学生学习数学的兴趣和热情,培养学生的数学素养和审美情趣。
教学目标与要求总结归纳定期对所学知识进行总结归纳,形成知识网络,便于记忆和提取。
通过大量的练习,熟练掌握解题方法和技巧,提高解题速度和准确性。
课后复习及时复习巩固所学知识,独立完成作业和练习题,加深对知识点的理解和记忆。
课前预习提前阅读教材,了解本节课的知识点和重点难点,为听课做好准备。
课中听讲认真听讲,积极思考,及时记录重要知识点和解题方法。
学习方法与建议02集合与函数概念03元素与集合的关系属于、不属于。
01集合的概念集合是由一个或多个确定的元素所构成的整体。
02集合的表示方法列举法、描述法、图像法。
集合及其表示方法集合之间的关系与运算集合之间的关系子集、真子集、相等。
集合的运算并集、交集、补集。
集合运算的性质交换律、结合律、分配律等。
函数是一种特殊的对应关系,它使得每个自变量对应唯一的因变量。
函数的概念函数的表示方法函数的三要素解析法、列表法、图像法。
定义域、值域、对应法则。
030201函数及其表示方法1 2 3单调性、奇偶性、周期性等。
函数的性质解决实际问题,如最优化问题、数学建模等。
函数的应用通过函数可以研究方程和不等式的解的性质和范围。
人教版高中数学必修一全套PPT课件
直线与平面所成的角及应用 通过求解直线与平面所成的角,可以判断直线与平面的位 置关系,进而解决一些实际问题,如光线照射角度、物体 倾斜角度等。
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
集合的运算
详细介绍交集、并集、补集等集合 运算的定义和性质,并给出相应的 例子和练习题。
Байду номын сангаас数及其表示方法
函数的概念
讲解函数的定义、定义域、 值域等基本概念,并给出 相应的例子。
函数的表示方法
介绍解析法、列表法、图 象法等多种表示函数的方 法,并给出相应的例子。
函数的性质
讲解函数的单调性、奇偶 性、周期性等性质,并通 过实例加以说明。
2023 WORK SUMMARY
人教版高中数学必修 一全套PPT课件
REPORTING
目录
• 高中数学必修一概述 • 集合与函数概念 • 基本初等函数(Ⅰ) • 空间几何体 • 点、直线、平面之间的位置关系
PART 01
高中数学必修一概述
教材内容与结构
集合与函数概念
包括集合的含义与表示、集合间的基 本关系、集合的基本运算、函数及其 表示、函数的单调性与最值、函数的 奇偶性与周期性等内容。
函数的单调性与奇偶性
函数的单调性
01
详细讲解函数单调性的定义和性质,包括增函数和减函数的判
断方法,并给出相应的例子和练习题。
函数的奇偶性
02
介绍函数奇偶性的定义和性质,包括奇函数和偶函数的判断方
法,并给出相应的例子和练习题。
高中数学必修1课件全册
2、描述法
就是用确定的条件表示某些对象是否属于这个集合的方法。其一般形式
为:{ x | p(x) }
例如:book中的字母的集合表示为:A={x|x是 book中的字母} 所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
如何用数学的语言描述这些对象??
二、集合的定义与表示
1、通常,我们把研究的对象称为元素,而某些拥有共同特征的元素所组 成的总体叫做集合。并用花括号{}括起来,用大写字母带表一个集合,其 中的元素用逗号分割。
2、集合有三个特征:确定性、互异性和无序性。就是根据这三个特征来 判断是否为一个集合。
讨论1:下列对象能构成集合吗?为什么? 1、著名的科学家 2、1,2,2,3这四个数字 3、我们班上的高个子男生
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4{}(1,4 )}
6、设集合A {x | x2 4x 0},B {x | x2 2(a 1)x a2 - 1 0,a R}, 若B A,求实数a的值.
讨论2:集合{a,b,c,d}与{b,c,d,a}是同一个集合吗?
三、数集的介绍和集合与元素的关系表示
1、常见数集的表示
高中数学必修一全册课件精校版
三角函数图象与性质
三角函数图象
正弦、余弦、正切函数的图象及其变换。
三角函数的性质
周期性、奇偶性、单调性等性质。
三角函数的值域与最值
了解各三角函数的值域和最值情况。
03
函数应用
函数与方程求解
1 2
一元二次方程求解
通过配方法、公式法和因式分解法求解一元二次 方程。
折线图和散点图
用于展示数据的趋势和相关性。
扇形图和条形图
用于比较不同类别数据的占比和数量。
概率基础概念
概率的定义和性质
理解概率是描述随机事件发生可能性的数值,掌握概 率的基本性质,如非负性、规范性、可加性等。
等可能事件的概率
理解等可能事件的概念,掌握计算等可能事件概率的 方法。
互斥事件和独立事件
理解互斥事件和独立事件的概念,掌握计算互斥事件 和独立事件概率的方法。
古典概型和几何概型求解
01
古典概型
理解古典概型的特点和适用条件 ,掌握计算古典概型中事件概率 的方法。
02
几何概型
理解几何概型的特点和适用条件 ,掌握计算几何概型中事件概率 的方法。
03
两种概型的比较和 联系
比较古典概型和几何概型的异同 点,理解两种概型之间的联系和 转化。
条件概率和独立性检验
条件概率
函数模型的构建
函数模型的应用
通过实例分析,展示函数模型在解决 实际问题中的应用,如经济学中的成 本、收益和利润问题,物理学中的运 动问题等。
根据实际问题背景,构建合适的函数 模型,包括确定函数的定义域、值域 和对应关系等。
函数在实际问题中应用
最值问题
利用导数研究函数的单调性和极 值,解决实际问题中的最值问题
高中数学必修1_PPT演示课件
三、集合的并集、交集、全集、补集
1、A B {x | x A或x B} A
B
2、A B {x | x A且x B}
3、CU A {x | x U且x A}
全集:某集合含有我们所研究的各个集合的全
部元素,用U表示
是R上的增函数
是R上的减函数
比较下列各题中两数值的大小
(1)1.72.5,1.73.
(2) 0.8-0.1 ,0.8-0.2 (3) 2.13.4 ,0.42.8
11
(4) 2 3 ,33
对数函数y=logax (a>0,且a≠1)
a>1
0<a<1
图y
y
0 (1,0)
象
x
0 (1,0)
x
定义域 : ( 0,+∞)
一、集合 二、函数 三、初等函数 四、函数应用 五、函数的零点与二分法
一、集合的概念
1、集合:把研究对象称为元素, 把一些元素组成的总体叫做集合
2、元素与集合的关系: 或
3、元素的特性:确定性、互异性、无序性 4、常用数集: N 、N、Z、Q、R
二、集合的表示
1、列举法:把集合中的元素一一列举出 来,并放在{ }内
例13 已知f x是R上的奇函数, 且当x 0时,f x x(1 x),
(1)求f (x); (2)求x 0时,f (x)表达式 ; (3)求 f (x).
指数幂与根式运算
1.指数幂的运算性质 (1)am • an am n
(2)(am )n amn
(3)
am an
方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点
高中数学必修一课件全册课件(2024)
2024/1/28
1
目录
2024/1/28
• 集合与函数概念 • 基本初等函数(Ⅰ) • 函数的应用 • 空间几何体 • 点、直线、平面之间的位置关系
2
01
集合与函数概念
2024/1/28
3
集合的含义与表示
01 集合的概念
集合是由一个或多个确定的元素所构成的整体。
02 集合的表示方法
01 中心投影与平行投影
02 三视图的形成及其投影规律 02 由三视图还原成实物图
2024/1/28
22
空间几何体的表面积与体积
柱体、锥体、台体的表面 积与体积
空间几何体的表面积和体 积的计算方法
2024/1/28
球的表面积和体积
23
点、直线、平面之间的位置
05
关系
2024/1/28
24
空间点、直线、平面的位置关系
平面与平面平行的判定
若一个平面内的两条相交直线分别平行于另一个平面,则 这两个平面平行。
平行直线的性质
平行于同一直线的两条直线互相平行;平行于同一平面的 两个平面互相平行。
26
直线、平面垂直的判定及其性质
01
直线与平面垂直的判定
若直线与平面内任意一条直线都垂直,则该直线与该平面垂直。
02
平面与平面垂直的判定
2024/1/28
5
集合的基本运算
并集
由所有属于集合A或属于 集合B的元素所组成的集 合。
补集
在全集U中,不属于集合 A的所有元素组成的集合 称为集合A的补集。
2024/1/28
交集
由所有既属于集合A又属 于集合B的元素所组成的 集合。
新人教版高中数学必修一全册ppt课件精品
第二章 基本初等函数(Ⅰ)
2.1 指数函数
2.1.1 指数与指数幂的运算2.2.1 对数与对数运算
2.1.2 指数函数及其性质 2.2.2 对数函数及其性质
第1课时 指数函数及其性 第1课时 对数函数及其
质(一)
性质(一)
第2课时 指数函数及其性 第2课时 对数函数及其
质(二)
性质(二)
2.2 对数函数
第一章 集合与函数概念
1.1 集合 1.1.1 集合的含义与表示 1.1.2 集合间的基本关系 1.1.3 集合的基本运算 第1课时 集合的交集、并集 第2课时 集合的全集、补集 1.2 函数及其表示 1.2.1 函数的概念
1.2.2 函数的表示法 1.3 函数的基本性质 1.3.1 单调性与最大(小)值 第1课时 函数的单调性 第2课时 函数的最大(小)值 1.3.2 奇偶性 本章总结提升
预习探究
知识点二 集合的表示法
1.列举法:把集合的元素一一列举出来,并用“___{___}__”括起来表示集合的方法叫作 列举法.(注意元素间要用“,”隔开,如{-1,0,1,2}) 2.描述法:用集合所含元素的_共__同__特__征_表示集合的方法称为描述法.(注意花括号内竖 线前面的部分为集合的元素)
预习探究
[讨论] (1)选择适当的方法表示下列集合:①方程(x-1)(x+2)=0 的实数根组成的集
合;②由直线 y=-x+4 上的横坐标和纵坐标都是自然数的点组成的集合.
(2)讨论下列说法是否正确.
①
集
合
{x
∈
R|
-
1<x<2}
与
集
合
{y
∈
R|
-
1<y<2}
人教版高中数学必修一全册整套教学课件438张
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:0705班的全体同学组成一个集合,调整座位后 这个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?
思考3:集合
与集合
相同吗?
思考4:集合
的几何意义如何? y
x o
理论迁移 例1 用适当的方法表示下列集合:
(1)绝对值小于3的所有整数组成的集合; {-2,-1,0,1,2}或
(2)在平面直角坐标系中以原点为圆心,1为半径的圆 周上的点组成的集合;
(3)所有奇数组成的集合;
(4)由数字1,2,3组成的所有三位数构成的集合. {123,132,213,231,312,321}.
六、对数学学习有什么要求? 1.专注认真; 2.勤思多练; 3.常做笔记; 4.规范作业; 5.加强交流; 6.反思评价.
老师寄语 :
是花就要绽放,是树就要撑出绿荫,是 水手就要博击风浪,是雄鹰就要展翅飞翔。
很难说什么事情是难以办到的,昨天的 梦想就是今天的希望和明天的现实。我们要 以坚定的信心托起昨天的梦想,以顽强的斗 志,耕耘今天的希望,那我们一定能用我们 的智慧和汗水书写明天的辉煌。
知识探究(一)
考察下列集合:
(1)小于5的所有自然数组成的集合;
(2)方程
的所有实数根组成的集合.
思考1:这两个集合分别有哪些元素?
(1)0,1,2,3,4; (2)-1,0,1 思考2:由上述两组数组成的集合可分别怎样表示?
新高考高中数学必修一全套精品课件
第一章 集合与常用逻辑用语
1.1 集合的概念
1.通过实例,了解集合的含义,理解元素与集合的属于关系. 2.掌握常用的数集及其记法,掌握集合的两种表示方法. 3.通过本节内容的学习,学生能选择不同的语言来描述不同,
的具体问题,培养学生数学抽象和逻辑推理的核心素养.
知识点一 元素与集合
(2) 解 方 程 组
2x-3y=14, 3x+2y=8,
得
x=4, y=-2.
故解集可用描述法表示为
| x=4,
x,y y=-2
,也可用列举法表示为{(4,-2)}.
[ 解] (3)小于 13 的既是奇数又是素数的自然数有 4 个,分别为 3,5,7,11.故可用列举法表示为{3,5,7,11}.
关系
概念
如果 a 是集合 A 的元素,就说 a 属于集合 A a_属__于__集合 A
如果 a 不是集合 A 中的元素, a 不属于集合 A
就说 a_不__属__于_集合 A
记法 a_∈__A_ _a_∉_A_
2.常用数集及符号表示
名称 自然数集 正整数集 整数集
记法
_N__ _N__*或___N_+__ _Z_
题型二 元素与集合的关系 元素与集合的关系解读
唯一性 方向性
a∈A 与 a∉A 取决于 a 是不是集合 A 中的元素, 只有属于和不属于两种关系 符号“∈”“∉”具有方向性,左边是元素,右 边是集合
[ 典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N”,有且只
有 2 个元素的集合 A 的个数是
有理数集 _Q__
实数集 R__
[ 思考] N 与 N*有何区别? 提示:N *是所有正整数组成的集合,而 N 是由 0 和所有的正整数组 成的集合,所以 N 比 N *多一个元素 0.
高中数学必修一必修1全章节ppt课件幻灯片
4.元素与集合的关系
aA aA
2020/12/3
判断:(正确的打“√”,错误的打“×”) (1)在一个集合中可以找到两个相同的元素.( ) (2)漂亮的花组成集合.( ) (3)本班所有的姓氏组成集合.( ) (4)由3个不同的元素进行排序可以构成6个不同的集合.( )
2020/12/3
符号
__N_
__N_*_或__N_+_ _Z_
_Q_
_R_
2020/12/3
思考:N与N+(或N*)有何区别? 提示:N+是所有正整数组成的集合,而N是由0和所有的正整 数组成的集合,所以N比N+(或N*)多一个元素0.
2020/12/3
【知识点拨】 1.对集合相关概念的理解 (1)集合的含义:集合是数学中不加定义的原始概念,我们只 对它进行描述性说明,其本质是某些确定元素组成的总体. (2)元素:集合中的“元素”所指的范围非常广泛,现实生活 中我们看到的、听到的、所触摸到的、所能想到的各种各样 的事物或一些抽象符号等,都可以看作集合的元素.
2020/12/3
类型 二 元素和集合的关系 【典型例题】 1.(2013·临沂高一检测)下列所给关系中正确的个数是( ) ①π∈R;② 3 ∉Q;③0∈N*;④|-4|∉N*. A.1 B.2 C.3 D.4 2.设直线y=2x+3上的点集为P,点(2,7)与点集P的关系为 (2,7)_________P(填“∈”或“∉”).
2020/12/3
【变式训练】1.下列对象能组成集合的是( ) A.充分小的负数全体 B.爱好音乐的一些人 C.某班本学期视力较差的同学 D.某校某班某一天所有课程 【解析】选D.A,B,C的对象不确定,唯有D某校某班某一 天所有课程是确定的,故能形成集合的是D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
3.已知A {x | 2 x 5},B {x | a 1 x 2a 1},B A, 求实数 a的取值范围 .
4、补集与全集
4、设集合A={x|1≤x≤3},B={x|x-a≥0},若A是B的真子集,求实数 a的取值范围。
5、设A={1,2},B={x|xA},问A与B有什么关系?并用列举法写出B?
读作:A包含于B,或者B包含A 可以联系数与数之间的“≤”
BA
2、真子集:
3、空集:
我们把不含任何元素的集合叫做空集,记作Φ,并规定:空集是任何集合 的子集,空集是任何非空集合的真子集。
4、补集与全集
设AS,由S中不属于集合A的所有元素组成的集合称为S的子集A的补集, 记作CSA ,即CSA ={x|x∈S,且xA}
1、高一(9)班的全体学生:A={高一(9)班的学生} 2、中国的直辖市:B={中国的直辖市} 3、2,4,6,8,10,12,14:C={ 2,4,6,8,10,12,14} 4、我国古代的四大发明:D={火药,印刷术,指南针,造纸术} 5、2004年雅典奥运会的比赛项目:E={2008年奥运会的球类项目}
高中数学课件
人教版必修一
永一切隔数形数焉数
,
,
——
远体莫离形少无能与
联 忘分结数形分形
华系 几家合时时作本
罗莫 庚分
离
何万百难少两是 代事般入直边相 数休好微觉飞倚
统依Biblioteka 第一章:集合与函数 第二章:基本初等函数 第三章:函数的应用
第一章:集合与函数
第一节:集合
集合的含义与表示
一、请关注我们的生活,会发现………
思考:1、比较这三个集合: A={x ∈Z|x<10},B={x ∈R|x<10} , C={x |x<10} ;
例题:求由方程x2-1=0的实数解构成的集合。 解:(1)列举法:{-1,1}或{1,-1}。 (2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
2、两个集合相等
如何用数学的语言描述这些对象??
二、集合的定义与表示
1、通常,我们把研究的对象称为元素,而某些拥有共同特征的元素所组 成的总体叫做集合。并用花括号{}括起来,用大写字母带表一个集合,其 中的元素用逗号分割。
2、集合有三个特征:确定性、互异性和无序性。就是根据这三个特征来 判断是否为一个集合。
讨论1:下列对象能构成集合吗?为什么? 1、著名的科学家 2、1,2,2,3这四个数字 3、我们班上的高个子男生
如果两个集合的元素完全相同,则它们相等。
例:集合A={x|x为小于5的素数},集合A={x ∈ R|(x-1)(x-3)=0},这两 个集合相等吗。
五、集合的分类
根据集合中元素个数的多少,我们将集合分为以下两大类: 1、有限集:含有有限个元素的集合称为有限集特别,不含任何元素的集 合称为空集,记为 ,注意:不能表示为{}。 2.无限集:若一个集合不是有限集,则该集合称为无限集
2、描述法
就是用确定的条件表示某些对象是否属于这个集合的方法。其一般形式
为:{ x | p(x) }
例如:book中的字母的集合表示为:A={x|x是 book中的字母} 所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
练习题
1、直线y=x上的点集如何表示?
x+y=2
2、方程组
的解集如何表示?
x-y=1
3、若{1,a}和{a,a2}表示同一个集合, 则a的值不能为多少?
集合间的基本关系
实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系, 你会想到集合之间的什么关系? 观察下面几个例子,你能发现两个集合之间的关系吗?
如图,阴影部分即CSA.
S A
如果集合S包含我们所要研究的各个集合,这时集合S看作一个全集,通 常记作U。
{ 例题、不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
思考:
1、CUA在U中的补集是什么?
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=___, CUB=____。
6、设集合A {x | x2 4x 0},B {x | x2 2(a 1)x a2 - 1 0,a R}, 若B A,求实数a的值.
讨论2:集合{a,b,c,d}与{b,c,d,a}是同一个集合吗?
三、数集的介绍和集合与元素的关系表示
1、常见数集的表示
N:自然数集(含0)即非负整数集
N+或N*:正整数集(不含0)
Z:
整数集
Q: 有理数集
R:
实数集
2、集合与元素的关系(属于∈或不属于 )
若一个元素m在集合A中,则说 m∈A,读作“元素m属于集合A” 否则,称为mA,读作“元素m不属于集合A。
练习题
1、下列命题: 重点考察对空集的理解!
(1)空集没有子集;
(2)任何集合至少有两个子集;
(3)空集是任何集合的真子集;
(4)若 A,则A .其中正确的有(
)
A.0个
B.1个 C.2个
D.3个
2.设x ,y
R,A
{(x,y)| y
-
3
x
-
2},B
{(x,y)|
y x
-3 -2
1},
则A,B的关系是 ______.
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一(2)班女生的全体组成的集合,
B为这个班学生的全体组成的集合; ⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是 集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子 集.