高中数学必修课件全册(人教A版)
人教A版高中数学必修第一册5.1.1任意角课件
由图可知: ①420°是第一象限角. ②855°是第二象限角. ③-510°是第三象限角.
解题方法(任意角和象限角的表示)
1.判断角的概念问题的关键与技能. (1)关键:正确的理解角的有关概念,如锐角、平角等; (2)技能:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.
2.象限角的判定方法. (1)图示法:在坐标系中画出相应的角,视察终边的位置,确定象限. (2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的情势; 第二步,判断β的终边所在的象限; 第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.
答案:-25° 395°
题型分析 举一反三
题型一 任意角和象限角的概念
【例 1】 (1)给出下列说法: ①锐角都是第一象限角;②第一象限角一定不是负角;③小于 180°的角是钝角、直角或锐角;④始边和终边重合的角是零角. 其中正确说法的序号为________(把正确说法的序号都写上). (2)已知角的顶点与坐标原点重合,始边与 x 轴的非负半轴重合, 作出下列各角,并指出它们是第几象限角. ①420°,②855°,③-510°.
(2)写出与 α=-910°终边相同的角的集合,并把集合中适合不等 式-720°<β<360°的元素 β 写出来.
解析:(1)-885°=-1 080°+195°=(-3)×360°+195°. (2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z}, ∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z, ∴k取1,2,3. 当k=1时,β=360°-910°=-550°; 当k=2时,β=2×360°-910°=-190°; 当k=3时,β=3×360°-910°=170°.
高中数学新人教A版必修第一册 2.1.1 不等关系与比较大小 课件(39张)
所以 a+ 1+ c+ 1a+ c+ 1+ 1, 即当变量a的值增加1会使S的值增加最大.
b de b d e
答案:a
4.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全 票,其余人可享受折优惠.〞乙车队说:“你们属团体票,按原价的8折优惠.〞这 两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪 家更优惠.
b
综上可知,aabb≥abba(当且仅当a=b时取等号).
【补偿训练】
1.实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,那么a,b,c的大小关系
是 ()
A.c≥b>a
>c≥b
>b>a
>c>b
2.假设实数a≠1,比较a+2与 3
的大小.
1- a
课堂素养达标
1.假设m=x2-1,n=2(x+1)2-4(x+1)+1,那么m与n的大小关系是 ( )
【类题通法】用不等式(组)表示不等关系的三个步骤 (1)分析题中有哪些未知量. (2)选择其中起关键作用的未知量设为x或y,再用x或y来表示其他未知量. (3)根据题目中的不等关系列出不等式(组).
【知识延拓】利用不等式(组)表示不等关系的一个关键点及一个注意点 关键点:准确将题目中的文字语言转化为数学符号语言. 注意点:要注意“不超过〞“至少〞“低于〞表示的不等关系,同时还应考虑 变量的实际意义.
本课结束
Hale Waihona Puke 【定向训练】 1.假设m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,那么m,n,p,q的大小关系是_____. 【解析】把p,q看成变量, 那么m<p<n,m<q<n,即得m<p<q<n. 答案:m<p<q<n
第1课时并集与交集-【新教材】人教A版(2019)高中数学必修第一册课件(共39张PPT)
第1课时 并集与交集
必备知识·探新知 关键能力·攻重难 课堂检测·固双基 素养作业·提技能
必备知识·探新知
•知识点1 并集
基础知识
自然语言
所有属于集合A或属于集合B A∪B 一般地,由____________________________的元素组成的集合,称为集合A与B的并集(union
set),记作________(读作“A并B”).
• [解析] M∩N={x|-5<x<3}∩{x|-4<x<5}={x|-4<x<3},故选A.
• 4.(2019·江苏,1)已知集合A={-1,0,1,6},B={x|x>0,x∈R},则A∩B =____________.
• [解析] A∩{B1,=6}{-1,0,1,6}∩{x|x>0,x∈R}={1,6}.
• 5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=_____.
• [解析] 因为A∩B={2,3},所以3∈B.所以m=3.
3
关键能力·攻重难
题型探究
题型一 并集运算
•
例 1 (1)设集合A={1,2,3},B={2,3,4,5},求A∪B;
• (2)设集合A={x|-3<x≤5},B={x|2<x≤6},求A∪B.
set),记作________(读作“A交B”)
A∩B
符号语言
A∩__B__=___{__x_|_x_∈___A__,___且____x_∈___B_ }
(1)A 与 B 相交(有公共元素,相互不包含)
(2)A 与 B 相离(没有公共元素,A∩B=∅) 图形语言
(3)A B,则 A∩B=A
新课标高中数学人教A版必修一全册课件习题讲解 公开课一等奖课件
上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分
物理145分 综合27分 总分585分
“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10: 30休息,感觉很轻松地度过了三年 高中学习。”当得知自己的高考成 绩后,格致中学的武亦文遗憾地说 道,“平时模拟考试时,自己总有 一门满分,这次高考却没有出现, 有些遗憾。”
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
高中数学新人教A版必修第一册 1.2 集合间的基本关系 课件(37张)
判断以下各组中集合之间的关系:
(1)A={x|x是12的约数},B={x|x是36的约数};
(2)A={x|x2-x=0},B={x∈R|x2+1=0};
(3)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x是正方
形};
(4)M= {x|x=n,nZ} ,N= {x|x=1+n,nZ}.
【解析】由题意得1-2a=3或1-2a=a,解得a=-1或a= 1 .当a=-1时,A={1,3,-1},
3
B={1,3},符合条件.
当a= 1 时,A= { 1 ,3 ,1 } ,B= { 1 , 1 } ,符合条件.所以a的值为-1或 1 .
3
3
3
3
答案:-1或 1
3
本课结束
【知识生成】 1.子集:对于两个集合A,B,如果集合A中_任__意__一__个__元素都是集合B中的元素,那么 称集合A为集合B的子集. 记作:_A_⊆__B_(或_B_⊇__A_). 读作:“A包含于B〞(或“B包含A〞). 2.真子集:如果集合A⊆B,但存在元素__x_∈_B__,_且__x_∉_A,称集合A是集合B的真子集. 记作:A B(或B A).
3.以下四个集合中是空集的是 ( )
A.{∅}
B.{x∈R|x2+1=0}
C.{x|x<4或x>8}
D.{x|x2+2x+1=0}
【解析】选B.A,D选项各有一个元素,C项中有无穷多个元素,x2+1=0无实数解.
4.设集合A={1,3,a},B={1,1-2a},且B⊆A,那么a的值为________.
2
2
探究点二 子集、真子集的个数问题 【典例2】(1)集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},那么满足条件 A C B的集合C的个数为 ( )
高中数学必修1课件全册(人教A版)
否则,称为mA,读作“元素m不属于集合A。
例如:1 N, -5 Z,
Q
∈
∈
2、集合与元素的关系(属于∈或不属于 )
1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
因此,函数就是表达了两个变量之间变化关系的一个表达式。其准确定义如下: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数(function),记作y=f(x),x∈A。 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数的值域。而对应的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20”和“平方后乘以4.9”
观察下面几个例子,你能发现两个集合之间的关系吗?
⑴ A={1,2,3} , B={1,2,3,4,5};
⑵设A为新华中学高一(2)班女生的全体组成的集合, B为这个班学生的全体组成的集合;
⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.
2,3
-2
-1,1
A
B
C
交集的运算性质:
思考题:如何用集合语言描述?
2、并集
一般地,由所有属于集合A或者属于集合B的所构成的集合,称为A与B的并集,记作A∪B,即 A∪B = {x|x∈A,或x∈B} A∪B可用右图中的阴影部分来表示
新课标高中数学人教A版必修一全册课件圆的一般方程 公开课一等奖课件
1.对方程x2+y2-2x+4y+1=0配方,化为 圆的标准方程形式,则圆心、半径 分别是?
2.对方程x2+y2-2x-4y+6=0配方,能化 为圆的标准方程形式吗?
探究:方程x2+y2+Dx+Ey+F=0在什么 条件下表示圆?
x2+y2+Dx+Ey+F=0
①
x
D 2
y
E
2
D2
E2
4F
②
2 2
4
(2) 当D2+E2-4F=0时,方程①表示点 (- D ,- E ). 22
x2+y2+Dx+Ey+F=0
①
x
D 2
y
E
2
D2
E2
4F
②
2 2
小 结: 用待定系数法求圆的方程的步骤:
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
一般式;
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
一般式; 2. 根据条件列出关于a、b、r或D、E、F
的方程;
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分
物理145分 综合27分 总分585分
“一分也不能少”
新版高一数学必修第一册第一章全部课件
把集合的元素 一一列举出来,并用花括号“{ }”括起来表示集合的方
法叫做列举法.
[点睛] 列举法表示集合时的 4 个关注点
(1)元素与元素之间必须用“,”隔开.
(2)集合中的元素必须是明确的.
(3)集合中的元素不能重复.
(4)集合中的元素可以是任何事物.
2.描述法
(1)定义:用集合所含元素的 共同特征 表示集合的方法.
[解]
(1)因为不大于 10 是指小于或等于 10,非负是大于或
等于 0 的意思,所以不大于 10 的非负偶数集是{0,2,4,6,8,10}.
(2)方程 x3=x 的解是 x=0 或 x=1 或 x=-1,所以方程的
解组成的集合为{0,1,-1}.
(3)将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),
所以 17∈A.
7
令 3k+2=-5 得,k=- ∉Z.
3
所以-5∉A.
答案:∈ ∉
题型三 集合中元素的特性及应用
[ 例 3]
已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的
值为________.
[ 解析]
若 1∈A,则 a=1 或 a2=1,即 a=±1.
当 a=1 时,集合 A 有重复元素,不符合元素的互异性,
(
A.0
B.1
C.-1
)
D.0 或 1
答案:A
4.方程 x2 -1=0 与方程 x+1=0 所有解组成的集合中共有
________个元素.
答案:2
题型分析
举一反三
题型一 集合的含义
[ 例 1]
考查下列每组对象,能构成一个集合的是( B
人教版A版高中数学必修二全册课件【完整版】
人教版A版高中数学必修二全册课件【完整版】一、直线与方程1. 直线的斜率定义:直线斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。
计算公式:k = (y2 y1) / (x2 x1)性质:斜率k与直线倾斜角度的关系为k = tan(θ),其中θ为直线与x轴正方向的夹角。
2. 直线的截距定义:直线截距是指直线与y轴的交点的纵坐标。
计算公式:b = y kx,其中k为直线斜率,x为直线与x轴的交点的横坐标,y为直线与y轴的交点的纵坐标。
3. 直线方程点斜式:y y1 = k(x x1),其中k为直线斜率,(x1, y1)为直线上的一点。
斜截式:y = kx + b,其中k为直线斜率,b为直线截距。
一般式:Ax + By + C = 0,其中A、B、C为常数,且A、B 不同时为0。
4. 两条直线的位置关系平行:两条直线的斜率相等。
垂直:两条直线的斜率互为负倒数。
相交:两条直线的斜率不相等。
二、圆与方程1. 圆的定义定义:圆是平面上所有与一个固定点(圆心)距离相等的点的集合。
2. 圆的标准方程方程:(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r 为半径。
3. 圆的一般方程方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
4. 圆与直线的位置关系相离:直线与圆没有交点。
相切:直线与圆有且仅有一个交点。
相交:直线与圆有两个交点。
三、椭圆与方程1. 椭圆的定义定义:椭圆是平面上所有与两个固定点(焦点)距离之和等于常数的点的集合。
2. 椭圆的标准方程方程:(x h)²/a² + (y k)²/b² = 1,其中(h, k)为椭圆中心坐标,a为椭圆长轴的一半,b为椭圆短轴的一半。
3. 椭圆的一般方程方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E 为常数,且A、B不同时为0。
高中数学人教A版必修1第一章指数函数及其性质公开课PPT全文课件
(1)有些看起来是指数函数,而实际上不是指 数函数;
如: y a x k(a 0 且 a 1 ,k N )
(2)有些看起来不是指数函数,而实际上是指 数函数.
如: yax(a0且 a1)
(1)x(a0且a1) a
高中数学【人教A版必修】1第一章指 数函数 及其性 质公开 课PPT全 文课件 【完美 课件】
问题2:已知函数的解析式,得到函数 的图象一般用什么方法?
列表 描点 连线成图
高中数学【人教A版必修】1第一章指 数函数 及其性 质公开 课PPT全 文课件 【完美 课件】
高中数学【人教A版必修】1第一章指 数函数 及其性 质公开 课PPT全 文课件 【完美 课件】
2.函数的图像
y = 2x x -1 0 1 2 y 0.5 1 2 4
指数函数及其性质
一、情景引入
引例1:某种细胞分裂时,由1个分裂成2个,2 个分裂成4个…… 1个这样的细胞分裂x次后, 得到的细胞个数与x的关系式是什么?
分裂
次数 1次 2次 3次 4次
x次
……
y 2x xN*
细胞
总数
21
22
23
24
2x
引例2: “一尺之锤,日取其半,万世不竭”出自《庄子》 长度为1的尺子第一次截去它的一半,第二次截 去剩余部分的一半,第三次截去第二次剩余部分 的一半,依次截下去,问截的次数与剩下的尺子 长度之间的关系.
随堂练习:下列函数中,哪些是指数函数?
(1) y 3x (2) y 3x
你答对了吗?
(3) y x 3 (4) y 3x1
我也不是
总结:指数函数严格限定 y a x (a 0, 且a1) 这一结构,稍微有点出入,就会导致非指数函数的出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z:
整数集
Q: 有理数集
R:
实数集
2、集合与元素的关系(属于∈或不属于 )
若一个元素m在集合A中,则说 m∈A,读作“元素m属于集合A” 否则,称为mA,读作“元素m不属于集合A。
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
{ 例题、不等式组
2 3
x x
-1 -6
>
0 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
Hale Waihona Puke 思考:1、CUA在U中的补集是什么?
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=___, CUB=____。
练习题
1、下列命题:重点考察对空集的理解!
高中数学必修课件全册(人教A版)
高中数学课件
人教版必修一精品ppt
永一切隔数形数焉数
,
,
——
远体莫离形少无能与
联 忘分结数形分形
华系 几家合时时作本
罗莫 庚分
离
何万百难少两是 代事般入直边相 数休好微觉飞倚
统
依
第一章:集合与函数 第二章:基本初等函数 第三章:函数的应用
第一章:集合与函数
第一节:集合
x-y=1
3、若{1,a}和{a,a2}表示同一个集合, 则a的值不能为多少?
集合间的基本关系
实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系, 你会想到集合之间的什么关系? 观察下面几个例子,你能发现两个集合之间的关系吗?
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一(2)班女生的全体组成的集合,
集合的含义与表示
一、请关注我们的生活,会发现………
1、高一(9)班的全体学生:A={高一(9)班的学生} 2、中国的直辖市:B={中国的直辖市} 3、2,4,6,8,10,12,14:C={ 2,4,6,8,10,12,14} 4、我国古代的四大发明:D={火药,印刷术,指南针,造纸术} 5、2004年雅典奥运会的比赛项目:E={2008年奥运会的球类项目}
B为这个班学生的全体组成的集合; ⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是 集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子 集.
读作:A包含于B,或者B包含A 可以联系数与数之间的“≤”
x x xa x a 3 . 已 A { 知 | 2 5 } B , { | 1 2 1 } B , A, a 求 的 实 取 . 数 值范围
4、补集与全集
4、设集合A={x|1≤x≤3},B={x|x-a≥0},若A是B的真子集,求实数 a的取值范围。
5、设A={1,2},B={x|xA},问A与B有什么关系?并用列举法写出B?
例题:求由方程x2-1=0的实数解构成的集合。 解:(1)列举法:{-1,1}或{1,-1}。 (2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
2、两个集合相等
如果两个集合的元素完全相同,则它们相等。
例:集合A={x|x为小于5的素数},集合A={x ∈ R|(x-1)(x-3)=0},这两 个集合相等吗。
如何用数学的语言描述这些对象??
二、集合的定义与表示
1、通常,我们把研究的对象称为元素,而某些拥有共同特征的元素所组 成的总体叫做集合。并用花括号{}括起来,用大写字母带表一个集合,其 中的元素用逗号分割。
2、集合有三个特征:确定性、互异性和无序性。就是根据这三个特征来 判断是否为一个集合。
大家学习辛苦了,还是要坚持
五、集合的分类
根据集合中元素个数的多少,我们将集合分为以下两大类: 1、有限集:含有有限个元素的集合称为有限集特别,不含任何元素的集 合称为空集,记为 ,注意:不能表示为{}。 2.无限集:若一个集合不是有限集,则该集合称为无限集
练习题
1、直线y=x上的点集如何表示?
x+y=2
2、方程组
的解集如何表示?
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
2、描述法
就是用确定的条件表示某些对象是否属于这个集合的方法。其一般形式
为:{ x | p(x) }
继续保持安静
讨论1:下列对象能构成集合吗?为什么? 1、著名的科学家 2、1,2,2,3这四个数字 3、我们班上的高个子男生
讨论2:集合{a,b,c,d}与{b,c,d,a}是同一个集合吗?
三、数集的介绍和集合与元素的关系表示
1、常见数集的表示
N:自然数集(含0)即非负整数集
N+或N*:正整数集(不含0)
例如:book中的字母的集合表示为:A={x|x是 book中的字母} 所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
思考:1、比较这三个集合: A={x ∈Z|x<10},B={x ∈R|x<10} , C={x |x<10} ;
BA
2、真子集:
3、空集:
我们把不含任何元素的集合叫做空集,记作Φ,并规定:空集是任何集合 的子集,空集是任何非空集合的真子集。
4、补集与全集
设AS,由S中不属于集合A的所有元素组成的集合称为S的子集A的补集, 记作CSA ,即CSA ={x|x∈S,且xA}
如图,阴影部分即CSA.
S A
如果集合S包含我们所要研究的各个集合,这时集合S看作一个全集,通 常记作U。
(1)空集没有子集;
(2)任何集合至少有两集 个; 子
(3)空集是任何集合的集 真; 子
(4)若 A,则A .其中正确的(有
)
A.0个
B.1个 C.2个
D.3个
2 . 设 x,y R , A{( y| x ) y, -3x-2B } , {( y| x ) x y, - -3 21},
则 A , B 的关 __系 __是 __.