第二章 有理数 检测试卷(六)测试题(含答案)
七年级数学第二章《有理数》测试题(含答案)
七年级数学第二章《有理数》测试题一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A .任何负数都小于它的相反数B .零除以任何数都等于零C .若b a ≠,则22b a ≠ D .两个负数比较大小,大的反而小2.如果一个数的绝对值等于它的相反数,那么这个数( ) A .必为正数 B .必为负数 C .一定不是正数 D .不能确定正负 3.当a 、b 互为相反数时,下列各式一定成立的是( ) A .1-=a b B .1=abC .0=+b aD .0 ab 4.π-14.3的计算结果是( )A .0B .π-14.3C .14.3-πD .π--14.35.a 为有理数,则下列各式成立的是( )A .02>aB .012<-aC .0)(>--aD .012>+a 6.如果一个数的平方与这个数的绝对值相等,那么这个数是( )A .0B .1C .-1D .0,1或-1 7.若3.0860是四舍五入得到的近似数,则下列说法中正确的是( )A .它有四个有效数字3,0,8,6B .它有五个有效数字3,0,8,6,0C .它精确到0.001D .它精确到百分位8.已知0<a ,01<<-b ,则a ,ab ,2ab 按从小到大的顺序排列为( )A .2ab ab a <<B .ab a ab <<2C .a ab ab <<2D .ab ab a <<29. 下列各组运算中,其值最小的是( )A .2)23(--- B .)2()3(-⨯- C .22)2()3(-÷- D .)2()3(2-⨯- 10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A .28 B .33 C .45 D .57 二、填空题(每小题3分,共24分)11.绝对值小于n (n 是正整数)的整数共有___________个。
七上试卷第二章 有理数单元测试题(含答案)
第二章 有理数单元测试题一、选择题:(每小题3分,共30分)1.在-(-8),│-1│,-│0│,(-2)3这4个数中,负数共有( )A.4个B.3个C.2个D.1个2.若a,b 为有理数,下列正确的是( )A. 若a ≠b,则a 2≠b 2B.若│a │=│b │,则a=bC.若a>b,则a 2>b 2D.若a,b 不全为零,则a 2+b 2>03.计算151112462⎛⎫+-⨯ ⎪⎝⎭时,可以使运算简便的运算方法是( ) A.乘法交换律 B.加法结合律 C.分配律 D.乘法结合律4.我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A.63×102千米B.6.3×102千米C.6.3×103千米D.6.3×104千米5.如果a 、b 互为相反数,那么下面结论中不一定正确的是( ) A.a+b=0 B.1a b=- C.ab=-a 2 D.│a │=│b │ 6.近似数3.141592精确到0.00001等于( )A.3.14159B.3.14160C.3.1416D.3.14157.如果一个数的平方等于它的倒数,那么这个数一定是( )A.0B.1C.-1D.1或-18.我国股市交易中每买、卖一次需交7.5‰的各种费用.某投资者以每股10元的价格买入某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为( )A.2000元B.1925元C.1835元D.1910元9.若│x-14│+(4y+1)2=0,则x 2+y 2的值是( ) A.38 B.18 C.-18 D.-38 10.已知│m │=5,│n │=2,│m-n │=n-m,则m+n 的值是( )A.-7B.-3C.-3或-7D.±7或±3二、填空题:(每小题3分,共30分)11.节约600元记为+600元,那么-800元表示_________.12.在数轴上与点-2的距离为5个单位的点有_____个,它们是_________.13.│-9│=_______,-│-4│的相反数是_______,│23-│的倒数是________. 14.绝对值是25的数是______,平方是25的数是_____.15.绝对值不大于10的所有整数的和等于________.绝对值小于8 的所有负整数的和是_______.16.比较大小:(用“>”或“=”或“<”填空) 45-_____23-; -(+0.3)_________ 13--; 1π-__________13.14-- 17.2.03×105精确到_____位,有______个有效数字.18.已知│a-2│=2,a+b=4,则ab=_______.19.我国将从2000年到2010年实施天然林保护工作,全面保护天然林, 遏制生态恶化.目前,我国长江、黄河中上游现有森林面积9,17亿亩,森林覆盖率仅有17.5%, 规划到2010年长江、黄河上游新造森林1.94亿亩, 那时这一地区的森林覆盖率将达到__________.(精确到0.1%)20.通过第五次全国人口普查得知,山西省人口总数约为3297万人, 用科学记数法表示是_____________________万人(保留两个有效数字)三、解答题:(共40分)21.计算下列各题(21分)(1)(-0.125)×(-8)-[1-32×(-2)]; (2) 2003(1)-+(-32)×29--42÷(-2)4;(3) 234121113(1)2342⎡⎤⎛⎫⎛⎫-⨯⨯---+÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦;(4) 239335331(10.6)20(1)4425⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫÷-+-⨯-÷--⨯-⎢⎥⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭;(5) 20031313224(5)(1)2864⎡⎤⎛⎫-+-⨯÷-⨯- ⎪⎢⎥⎝⎭⎣⎦; (6) 23521(2)(1)1320.125813(2)⎛⎫-⨯-+÷- ⎪⎝⎭⎡⎤⨯+-⨯-⎣⎦;(7)11116 325352 34747⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--++-+-+-⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.22. (6分)已知a,b,c,d均为有理数,在数轴上的位置如图所示,且6│a│=6│b│=4│d│=3│c│=6.求│2a-3b│-│3b-2a│+│2b-c│-2│d│的值.23.一张厚度是0.2mm的纸,如果将它连续对折10次后,共有多大的厚高?(6分)24.某电厂规定:本厂家属区每户居民如果一个月的用电量不超过A 度,那么这个月只交10元电费;如果超过A 度,则这个月除了仍要交10元用电费外,超过部分还要按每度100A 元交费,该厂某户居民2月份用电90度,超过了规定的度数(A 度), 求该户居民2月份的电费(用含A 的代数式表示)(7分)第2章 单元测试题答案一、1.D 2.D 3.C 4.C 5.B 6.A 7.B 8.C 9.B 10.C二、11.浪费800元 12.2个,3或-7 13.9,4, 32 14.±25,±5 15.0,-28 16.< ,>,> 17.千,3 18.∵a=0或4 ∴b=4或0 故ab=019.21.2% 20.3.3×103三、21.(1)-18 (2)-4 (3) 116- (4)12.5 (5)1.5 (6)3 (7) 1263-22.由题设及图示知:d<b<0<a<c,a=1,b=-1,c=2,d=32-原式=│2a-3b │-│2a-3b │+│2-2│-2│32-│=123.204.8(mm)(提示:0.2×1010) 24.10+100A(90-A).。
七年级上第二章有理数单元试卷及答案
算 20012-19992 的值.
第二章 有理数单元测试题
参考答案
一.判断题:×√×√√
二.填空题:(1)1,—1,0;(2)±16,±8,—4;(3)0,±1,非负数,0 和±1;
(4) 7 , 3 ;(5)1 或 5;(6)c<a<b. 36 7
三.选择题:(1)B(2)B(3)B(4)D(5)C(6)C
b=
.
5 . 数 轴 上 A 、 B 两 点 离 开 原 点 的 距 离 分 别 为 2 和 3 , 则 AB 两 点 间 的 距 离
为
.
6 . 若 a 2 32 , b (2 3)2 , c (2 3)2 , 用 “ < ” 连 接 a , b , c 三
数:
.
7.绝对值不大于 10 的所有负整数的和等于
1. 14 1 2 (3)2 6
C.0 或 2
D.0,1 或 2
1 2. 0.32
1
(3
5 6
1
1 2
)
0.3
3. (370) ( 1 ) 0.25 24.5 (5 1 ) (25%).
4
2
4.
(1)3
2 9
2 200
二.填空题: 1.最小的正整数是
,最大的负整数是
,绝对值最小的数是
.
2.绝对值等于 (4)2 的数是
,平方等于 43 的数是
,立方等于
82 的数是
.
3.相反数等于本身的数是
,倒数等于本身的数是
Байду номын сангаас
浙教版数学七年级上册第二章 有理数的运算单元测试卷(含答案)
浙教版数学七年级上册第二章有理数的运算一、选择题1.下列各对数中,互为相反数的是( )A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.已知数549039用四舍五入法后得到的是5.490×105,则所得近似数精确到( ).A.十位B.百位C.千分位D.万位3.两数相加,如果和小于任何一个加数,那么这两个数( )A.同为正数B.同为负数C.一正数一负数D.一个为0,一个为负数4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.用“▲”定义一种新运算:对于任何有理数a和b,规定a▲b=ab+b2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A.−4B.4C.−8D.86.有理数a,b在数轴上的对应点如图所示,则下列式子中错误的是( )A.ab>0B.a+b<0C.a﹣b<0D.b﹣a<07.一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是( )A.26元B.44元C.56元D.80元8.若x、y二者满足等式x2−3y=3x+y2,且x、y互为倒数,则代数式x2−3(x+y)+5−y2−4xy的值为( )A.1B.4C.5D.99.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .1202110.计算机利用的是二进制数,它共有两个数码0,1,将一个十进制数转化为二进制,只需将该数写为若干个2n 的数字之和,依次写出1或0的系数即可,如十进制数字19可以写为二进制数字10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20,32可以写为二进制数字100000,因为32=32=1×25+0×24+0×23+0×22+0×21+0×20,则十进制数字70是二进制下的( )A .4位数B .5位数C .6位数D .7位数二、填空题11.2022年11月20日晚,卡塔尔世界杯正式开幕,仅两天时间,抖音世界杯总话题播放量高达21480000000次,其中数21480000000用科学记数法表示为 .12.计算(−1)2023÷(−1)2004= .13.一个数的立方等于它本身,这个数是 14.如图所示的程序图,当输入﹣1时,输出的结果是 .15.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .16.如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和a ,即a =9+1+3+5+7+9=34;步骤2:计算前12位数字中奇数位数字的和b ,即b =6+0+2+4+6+8=26;步骤3:计算3a 与b 的和c ,即c =3×34+26=128;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即d =130;步骤5:计算d 与c 的差就是校验码X ,即X =130−128=2.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是 .三、解答题17.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 18.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?19.已知a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,求代数式(−ab)2024−3(c+d)−n+m2的值.20.在一条不完整的数轴上从左到右有A,B,C三点,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以C为原点,写出点A,B所对应的数,计算p的值;(2)若p的值是﹣1,求出点A,B,C所对应的数;(3)在(2)的条件下,在数轴上表示|﹣0.5|、(﹣1)3和A,B,C所对应的数,并把这5个数进行大小比较,用“<”连接.21.现定义一种新运算“*”,对任意有理数a、b,规定a*b=ab+a﹣b,例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值;(2)求(﹣3)*[(﹣2)*5]的值.22.目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.一户居民一个月用电量(单位:度)电价(单位:元/度)第1档不超过180度的部分0.5第2档超过180度的部分0.7(1)若该市某户12月用电量为200度,该户应交电费 元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?23.如图,已知数轴上有A,B两点,分别代表−40,20,两只电子蚂蚁甲,乙分别从A,B两点同时出发,甲沿线段AB以1个单位长度秒的速度向右运动,到达点B处时运动停止;乙沿BA方向以4个单位长度秒的速度向左运动.(1)A,B两点间的距离为 个单位长度;乙到达A点时共运动了 秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】A8.【答案】A9.【答案】B10.【答案】D11.【答案】2.148×101012.【答案】−113.【答案】0或±114.【答案】715.【答案】0或4或﹣416.【答案】417.【答案】(1)解:如图所示(2)50(3)-818.【答案】(1)守门员最后回到了球门线的位置(2)12米(3)54米19.【答案】解:∵a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,∴ab=1,c+d=0,m2=9,n=−1,∴(−ab)2024−3(c+d)−n+m2=(−1)2024−3×0−(−1)+9=1−0+1+9=11.20.【答案】(1)解:若以C为原点,∵AB=2,BC=1,∴B表示﹣1,A表示﹣3,此时,p=(﹣3)+(﹣1)+0=﹣4;(2)解:设B对应的数为x,∵AB=2,BC=1,则A点表示的数为x﹣2,C表示的数为x+1,p=x+x+1+x﹣2=﹣1;x=0,则B点为原点,∴A表示﹣2,C表示1;(3)解:如图所示:故﹣2<(﹣1)3<0<|﹣0.5|<1.21.【答案】(1)解:2*(﹣3)=2×(﹣3)+2﹣(﹣3)=﹣6+2+3=﹣1;(2)解:(﹣3)*[(﹣2)*5]=(﹣3)*[(﹣2)×5+(﹣2)﹣5]=(﹣3)*(﹣17)=(﹣3)×(﹣17)+(﹣3)﹣(﹣17)=51﹣3+17=65.22.【答案】(1)104(2)解:当0≤x≤180时,该户12月应交电费为0.5x元;当x>180时,该户12月应交电费为0.5×180+0.7(x−180),=90+0.7x−126,=(0.7x−36)(元).(3)解:∵104<125,∴x>180,∴0.7x−36=125,∴x=230.答:该户12月用电量为230度.23.【答案】(1)60;15(2)解:60÷(4+1)=12,−40+12=−28.答:甲,乙在数轴上的−28点相遇(3)解:两种情况:相遇前,(60−10)÷(4+1)=10;相遇后,(60+10)÷(4+1)=14,答:10秒或14秒时,甲、乙相距10个单位长度;(4)解:乙到达A点需要15秒,甲位于−40+15=−25,乙追上甲需要25÷(1+4)=5(秒)此时相遇点的数是−25+5=−20,故甲,乙能在数轴上相遇,相遇点表示的数是−20.。
七上数学第二章《有理数》综合测验试题(含答案)
第二章《有理数》测验试题班级 姓名 得分一、 填空题(每空1分,共30分)1.常熟市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
2.绝对值大于1而不大于3的整数有 ,它们的和是 。
3.有理数-3,0,20,-1.25,143, -12- ,-(-5) 中,正整数是 ,负整数是 ,正分数是 ,非负数是 。
4.观察下面一列数,根据规律写出横线上的数:-11;21;-31;41; ; ;……;第2003个数是 。
5.321-的倒数是 ,321-的相反数是 ,321-的绝对值是 ,已知|a|=4,那么a = 。
6.比较大小:(1)-2 +6 ; (2) 0 -1.8 ;(3)23-_____ 45-7.最小的正整数是_____;绝对值最小的有理数是_____。
绝对值等于3的数是______。
绝对值等于本身的数是 .8.直接写出答案:(1)(-2.8)+(+1.9)=,(2)1--=,0.75(3)4(3)0(12.19)--=,(4)---=.3(2)9.A地海拔高度是-30米,B地海拔高度是10米,C地海拔高度是-10米,则地势最高,_____地势最低,地势最高的与地势最低的相差______米。
10.某地一周内每天的最高气温与最低气温记录如下表:则温差最大的一天是星期_____;温差最小的一天是星期_______。
二、选择题(每题2分,共20分)1.下列说法不正确的是( )A .0既不是正数,也不是负数B .1是绝对值最小的数C .一个有理数不是整数就是分数D .0的绝对值是0 2.2-的相反数是( )A .21- B .2- C .21 D .23.下列交换加数的位置的变形中,正确的是()A 、14541445-+-=-+-B 、1311131134644436-+--=+--C 、 12342143-+-=-+-D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-4.下列说法中正确的是( )A.最小的整数是0B. 互为相反数的两个数的绝对值相等C. 有理数分为正数和负数D. 如果两个数的绝对值相等,那么这两个数相等5.绝对值大于2且小于5的所有整数的和是 ( )A.7B.-7C.0D.56.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方 7.计算:46+-的结果是( )A 、2B 、10C 、2-D 、10- 8.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式mba cd m ++-2 的值为 ( )A 、3-B 、3C 、5-D 、3或5- 9.下列式子中,正确的是( )A .∣-5∣ =5B .-∣-5∣ = 5C .∣-0.5∣ =21- D .-∣- 21∣ =21*10.如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子? ( )A.3B.4C.5D.6 三、 判断题(每题1分,共10分)1.-21一定大于-41。
【2024秋】最新鲁教版五四制六年级上册数学第二章《有理数及其运算》测试卷(含答案)
【2024秋】最新鲁教版五四制六年级上册数学第二章《有理数及其运算》测试卷(含答案)一、选择题(每题3分,共36分)1.[2023·安徽]-5的相反数是()A.-5B.5C.15D.-152.中国是最早采用正负数表示相反意义的量的国家,如果将收入40元记作+40元,那么支出20元记作()A.+40元B.-40元C.+20元D.-20元3.在-125%,23,25,0,-0.3,0.67,-4,-527中,非负数有()A.2个B.3个C.4个D.5个4.[2023·成都]在3,-7,0,19四个数中,最大的数是()A.3B.-7C.0D.19 5.[2023·衢州]手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm),则下列信号最强的是()A.-50dBm B.-60dBm C.-70dBm D.-80dBm 6.[2024·淄博淄川区期末]下列计算不正确的是()A.-12-2×(-3+4)=-3B.-12-2×(-3-4)=-15C.(-1)2-2×(-3-4)=15D.(-1)2-2×(-3+4)=-1 7.[2023·杭州]已知数轴上的点A,B分别表示数a,b,其中-1<a<0,0<b <1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A BC D8.[2024·烟台栖霞市期中情境题·游戏活动型]小新玩“24点”游戏,游戏规则是对卡片上的数进行加、减、乘、除混合运算(每张卡片必须用一次且只能用一次,可以加括号),使得运算结果是24或-24.小新已经抽到前3张卡片上的数分别是-1,5,8,若再从标有下列4个数的4张卡片中抽出1张,则其中不能与前3张算出“24点”的是()A.2 B.3 C.4 D.5 9.[2024·泰安新泰市期中]按括号内的要求用四舍五入法求近似数,下列正确的是()A.2.604≈2.60(精确到十分位)B.0.0534≈0.1(精确到0.1)C.39.37亿≈39亿(精确到千万位)D.0.01366≈0.014(精确到0.000 1)10.[2024·北京朝阳区期末]已知a,b是有理数,它们在数轴上的对应点的位置如图所示,下列各式正确的是()A.-b<-a<a<b B.-a<-b<a<bC.b<-a<a<-b D.b<-b<-a<a11.已知A,B两点在数轴上表示的数分别是-3和-6,若在数轴上找一点C,使得点A,C之间的距离是4;再找一点D,使得点B,D之间的距离是1,则C,D之间的距离不可能是()A.0B.6C.2D.412.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,…,由以上等式可推得3+32+33+34+…+32025的结果的个位数字是()A.0B.9C.3D.2二、填空题(每题3分,共18分)13.[2023·武汉]新时代十年来,我国建成世界上规模最大的社会保障体系,其中基本医疗保险的参保人数由5.4亿增加到13.6亿,参保率稳定在95%.将数据13.6亿用科学记数法表示为1.36×10n的形式,则n的值是(备注:1亿=100000000).14.[2024·烟台福山区期末]按照如图所示的操作步骤,若输入的值为2,则输出的值为.(第14题)15.已知有理数a,b满足(a-2)2+|b+1|=0,则b a=.16.[2024·泰安泰山区期末新考法·分类讨论法]已知m,n互为相反数,a,b互为倒数,|x|=2,则m+n2 022x +2024ab-14x2=.17.“五月天山雪,无花只有寒”反映出地形对气温的影响.海拔每升高100米,气温约下降0.6℃.有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6℃,则此时山顶的气温约为℃.18.[2024·潍坊二模]如图,第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME-14的举办年份,则八进制数2024换算成十进制数是.(注:80=1)(第18题)三、解答题(共66分)19.(8分)[2024·菏泽牡丹区月考]把下列各数填在相应的表示集合的大括号里:-3,2.5,1,-0.58,0,139,0.3·.整数集合:{…};分数集合:{…};正有理数集合:{…};负有理数集合:{…}.20.(8分)[2024·济宁期末]计算:(1)(-20)+(+3)-(-5)-(+7);(2)(-991112)×24;(3)(-1)2024-8÷(-2)3+4×(-12)3.21.(8分)已知a,b,c,d是四个互不相等的有理数,且a是平方等于本身的正数,b是立方等于本身的负数,c是相反数等于本身的数,d是绝对值等于本身的数.求(a÷b)2024-3ab+2(cd)2023的值.22.(10分)[新视角类比探究题](1)填空(在横线上填“=”“>”或“<”):[4×(-5)]242×(-5)2;(2×3)323×33.(2)根据以上计算结果猜想:(mn)p(p是正整数)等于什么?根据所学知识验证.(3)利用上述结论,求22023×(-0.5)2024的值.23.(10分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量的部分记为正,不足计划量的部分记为负.下表是小王第一周销售柚子的情况:(2)小王第一周实际销售柚子多少千克?(3)若小王按9元/千克进行柚子销售,平均运费为4元/千克,则小王第一周销售柚子一共收入多少元?24.(10分)[新考法分类讨论法]我们知道,若有理数x1,x2在数轴上对应的点分别为A1,A2,且x1<x2,则点A1与点A2之间的距离为|x2-x1|=x2-x1.如图,现已知数轴上有三点A,B,C,其中点A表示的数为-3,点B表示的数为3,点C不与点A,B重合,且点C与点A之间的距离为m,点C与点B 之间的距离为n.请解答下列问题:(1)若点C在数轴上表示的数为-6.5,求m+n的值;(2)若m+n=8,则点C表示的数为;(3)若点C在点A,B之间,且m=13n,求点C表示的数.25.(12分)已知|2-xy|+(1-y)2=0.(1)求(x-y)2023+(-y)2023的值;(2)求1xy +1(x+1)(y+1)+1(x+2)(y+2)+…+1(x+2 023)(y+2 023)的值.答案一、1.B2.D【点拨】收入和支出是一组具有相反意义的量,收入40元记作+40元,那么支出20元记作-20元.3.C【点拨】非负数有2,25,0,0.67,共4个.3<3,4.A【点拨】因为-7<0<19所以最大的数是3.5.A【点拨】因为|-50|=50,|-60|=60,|-70|=70,|-80|=80,50<60<70<80,所以信号最强的是-50dBm.6.B【点拨】-12-2×(-3+4)=-1-2×1=-1-2=-3,计算正确;-12-2×(-3-4)=-1-2×(-7)=-1+14=13,计算错误;(-1)2-2×(-3-4)=1-2×(-7)=1+14=15,计算正确;(-1)2-2×(-3+4)=1-2×1=1-2=-1,计算正确.7.B【点拨】因为-1<a<0,0<b<1,所以-1<a×b<0,即-1<c<0,那么点C应在-1和0之间,则A,C,D不符合题意,B符合题意.8.D【点拨】8×(5+(-1)×2)=8×(5-2)=8×3=24;8×[5-(-1)-3]=8×3=24;(8-4)×(-1-5)=4×(-6)=-24;5不能与-1,5,8算出“24点”.9.B【点拨】A.2.604≈2.6(精确到十分位),故不正确;B.0.053 4≈0.1(精确到0.1),故正确;C.39.37亿≈39.4亿(精确到千万位),故不正确;D.0.01366≈0.0137(精确到0.0001),故不正确.10.C11.D【点拨】根据题意得,点C表示的数为1或-7,点D表示的数为-7或-5,所以点C,D之间的距离可能是0或2或6或8,所以点C,D之间的距离不可能是4.12.C【点拨】因为31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,…,所以3的正整数次幂的个位数字按3,9,7,1循环出现.因为3+9+7+1=20,且2025÷4=506……1,所以3+32+33+34+…+32025的结果的个位数字是0×506+3=3.二、13.9【点拨】13.6亿=1360000000=1.36×109.14.3015.1【点拨】因为(a-2)2+|b+1|=0,(a-2)2≥0,|b+1|≥0,所以a-2=0,b+1=0,所以a=2,b=-1,所以b a=(-1)2=1.16.2023【点拨】因为m,n互为相反数,a,b互为倒数,|x|=2.所以m+n=0,ab=1,x=±2.当x=2时,m+n2022x +2024ab-14x2=02022×2+2024×1-14×22=0+2024-14×4=2024-1=2023;当x=-2时,m+n2022x +2024ab-14x2=02022×(-2)+2024×1-14×(-2)2=0+2024-14×4=2024-1=2023.综上所述,m+n2022x +2024ab-14x2=2023.17.-6【点拨】山顶的气温约为6-(2350-350)÷100×0.6=-6(℃).18.1044【点拨】2×83+0×82+2×81+4×80=2×512+0×64+2×8+4×1=1024+0+16+4=1044.三、19.【解】整数集合:{-3,1,0,…};分数集合:{2.5,-0.58,139,0.3·,…};正有理数集合:{2.5,1,139,0.3·,…};负有理数集合:{-3,-0.58,…}.20.【解】(1)原式=-17+5-7=-12-7=-19.(2)原式=(-100+112)×24=-100×24+112×24=-2400+2=-2398.(3)原式=1-8÷(-8)+4×(-18)=1+1+(-12)=2-12=32.21.【解】因为a是平方等于本身的正数,b是立方等于本身的负数,c是相反数等于本身的数,d是绝对值等于本身的数,且a,b,c,d互不相等,所以a=1,b=-1,c=0,d>0且d≠1,所以(a÷b)2024-3ab+2(cd)2023=[1÷(-1)]2024-3×1×(-1)+2×(0×d)2023=(-1)2024+3+0=1+3+0=4.22.【解】(1)=;=【点拨】[4×(-5)]2=(-20)2=400,42×(-5)2=16×25=400,所以[4×(-5)]2=42×(-5)2.(2×3)3=63=216,23×33=8×27=216,所以(2×3)3=23×33.(2)(mn )p =m p n p .验证:(mn )p =mn ×mn ×…×mn ⏟ p 个=m ×m ×…×m ⏟ p 个×n ×n ×…×n ⏟ p 个=m p n p . (3)22 023×(-0.5)2 024=22 023×(-12)2 024=22 023×(12)2 024=22 023×(12)2 023×12=(2×12)2 023×12=12.23.【解】(1)13-(-7)=20(千克).答:小王第一周销售柚子最多的一天比最少的一天多销售20千克. (2)3-6-2+11-7+13+5+100×7=717(千克). 答:小王第一周实际销售柚子717千克. (3)717×(9-4)=3 585(元).答:小王第一周销售柚子一共收入3 585元.24.【解】(1)由题意得m =-3-(-6.5)=-3+6.5=3.5,n =3-(-6.5)=3+6.5=9.5,所以m +n =3.5+9.5=13.(2)-4或4 【点拨】设点C 表示的数为x , 分3种情况:当点C 在点A 的左侧时,m =-3-x ,n =3-x . 因为m +n =8,所以-3-x +(3-x )=8,所以x =-4; 当点C 在点B 的右侧时,m =x +3,n =x -3. 因为m +n =8,所以x +3+(x -3)=8,所以x =4;当点C 在点A ,B 之间时,易得m +n =6≠8,此情况不成立.综上所述,点C 表示的数为-4或4. (3)设点C 表示的数为y , 因为点C 在点A ,B 之间, 所以m =y +3,n =3-y .又因为m =13n ,所以y +3=13(3-y ),所以y =-32,即点C 表示的数是-32.25.【解】(1)因为|2-xy |+(1-y )2=0,且|2-xy |≥0,(1-y )2≥0, 所以2-xy =0,①1-y =0.② 由②得y =1.把y =1代入①得2-x =0,解得x =2. 所以(x -y )2023+(-y )2023=12023+(-1)2023=1+(-1) =0.(2)由(1)知x =2,y =1. 所以1xy +1(x+1)(y+1)+1(x+2)(y+2)+…+1(x +2 023)(y +2 023)=11×2+12×3+13×4+…+12 024×2 025=(1-12)+(12-13)+( 13-14)+…+(12 024-12 025)=1-12+12-13+13-14+…+12 024-12 025=1-12 025=2 0242 025.点技巧 (1)若|A |+B 2=0,则有A =0且B =0; (2)(n ,k 均为正整数).。
苏科版七年级数学上册第二章有理数测试题及答案(6套)
苏科版七年级数学上册第二章有理数测试题及答案(6套)2.1 比零小的数◆知识平台 1.正数、负数的概念:大于0的数叫正数;在正数前面加“-”号的数叫负数. 2.有理数的分类(1)按整数、分数分:有理数(2)按数的正负分:有理数◆思维点击有理数的概念和分类:要求在理解基础上进行记忆.对负数的理解:在现实生活中,为了能表达具有相反意义的量,所以引进了负数,在正数前加上“-”就得负数.对有理数“0”的理解:①0既不是正数,也不是负数;②0 除了表示一个也没有外,还表示正数与负数的分界,在实际问题中有明确意义.◆考点浏览有理数的有关概念和有理数的分类,大多以填空、判断、选择题的形式出现.例1 把下列各数填在相应的集合内. 7,-5,-0.3,,0,- ,8.6,-1 ,151,-32 正数集合{ };负数集合{ };正整数集合{ } 整数集合{ };负整数集合{ };分数集合{ } 【解析】正数包括正整数、正分数,负数包括负整数、负分数.整数包括正整数、负整数以及零.分数包括正分数、负分数,小数属于分数.零既不是正数,也不是负数,零是整数、偶数、有理数.答案是:正数集合{7,,8.6,151…};•负数集合{-5,-0.3,- ,-1 ,-32…};正整数集合{7,151…};整数集合{7,-5,0,151,-32…};负整数集合{-5,-32…};分数集合{-0.3,,- ,8.6,-1 …}.例2 下列说法中正确的是() A.在有理数中,零的意义仅表示没有; B.一个数不是负数就是正数 C.正有理数和负有理数组成全体有理数;D.零是整数【解析】零的一个基本作用表示没有,零又是正负数的界限.答案是D.◆在线检测 1.如果零上8℃记作8℃,那么零下5℃记作__________. 2.如果温度上升2℃记作2℃,那么温度下降3℃记作_________. 3.如果向西走6米记作-6米,那么向东走10米记作_________. 4.如果产量减少5%记作-5%,那么20%表示_________. 5.判断题:(1)一个整数不是正数就是负数.()(2)最小的整数是零.()(3)负数中没有最大的数.()(4)自然数一定是正整数.()(5)有理数包括正有理数、零和负有理数.() 6.下列说法中正确的是() A.有最小的正数; B.有最大的负数;C.有最小的整数; D.有最小的正整数 7.零是() A.最小的正数 B.最大的负数 C.最小的有理数 D.整数 8.下列一组数:-8,2.6,-3 ,2 ,-5.7中负分数有() A.1个 B.2个 C.3个 D.4个 9.把下列各数填在相应的集合内. -3,7,- ,-0.86,0,,0.7523,-2.3536.整数集合{ …};负数集合{ …}. 10.在下表适当的空格里打上“∨”号.整数分数正数负数自然数有理数 1 0 -3.14 -12 11.一零件的长度在图纸上标为10±0.05(单位:毫米),表示这种零件的长度为10毫米,则加工时要求最大不超过多少?最小不少于多少?实际生产时,测得一零件的长为9.9毫米,问此零件合格吗?12.在明尼苏达州的一个城市,1月1日上午6:00的温度是-30华氏度,•在接下来的8小时里,温度上升了38华氏度,在紧接之后的12小时里,温度下降了12•华氏度,最后4小时内,温度上升了15华氏度,那么在1月2日上午6:00的温度是多少?13.在美国有记载的最高温度是56.7℃(约合134F),发生在1913年7月10•日加利福尼亚的死亡之谷.有记载的最低温度是-62.2℃(约合-80F)是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少?(2)以华氏度为单位,有记录的最高温度和最低温度相差多少?答案 1.-5℃ 2.-3℃ 3.10米 4.增产20% 5.(1)× (2)× (3)∨ (4) × (5)∨ 6.D 7.D 8.B 9.略 10.略 11.10.05毫米 9.95毫米 • 12.11华氏度 13.118.9℃ 214F。
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(含答案)
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分) 1.若有理数a ,a+2b ,b 在数轴上对应点如图所示,则下列运算结果是正数的是( ) A .a+b B .a - b C .1.5a+b D .0.5a+1.5b2.下列各式:①-(-5),②-|-2|,③-(-2)2,④-52,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个3.下列说法中正确的选项是( )A .温度由﹣3℃上升 3℃后达到﹣6℃B .零减去一个数得这个数的相反数C .3π既是分数,又是有理数 D .20.12 既不是整数,也不是分数,所以它不是有理数 4.把数3120000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1075.下列各式中一定成立的是( )A .221(1)-=-B .331(1)=-C .221(1)=--D .33(1)(1)-=- 6.数轴上如果点A 表示的数2,将点A 向左移动6个单位长度后表示的数是( ) A .6 B .-4 C .-6 D .-87.如图,数轴的单位长度为1,如果P ,R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T8.下列说法不正确的是( )A .0既不是正数,也不是负数B .一个有理数不是整数就是分数C .1是绝对值是最小的有理数D .0的绝对值是09.下列有理数-2,(-1)2,0,|-5|,其中负数的个数有( )A .1个B .2个C .3个D .4个10.下列说法中,正确的是( )A .一个数的相反数是负数B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点,可以在原点的同一侧二、填空题(每小题4分,共32分) 1.已知a 、b 互为相反数,m 、n 互为倒数,则28a b mn +-+的值是 . 2.你吃过拉面吗?如图把一个面团拉开,然后对折,再拉开再对折,如此往复下去折5次, 会拉出 根面条.3.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“9cm ”分别对应数轴上的5-和x ,那么x 的值为 .4.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a+b+c+d= . 5.“腊味香肠”是居民冬季特别是春节餐桌上必不可少的传统美食,每年入冬以后,便进入灌香肠的好时节.老李、老陈、老杨三人约定每人拿出相同数目的钱共同去灌制香肠.香肠灌制完成后,老李、老陈分别比老杨多分了8、13斤香肠,最后结算时,老李需付给老杨30元,则老陈应付给老杨 元.6.34--的倒数是 ,24-()的相反数是 . 7.纸上画有一条数轴,将纸对折后,表示5的点与表示2-的点恰好重合,则此时与表示 3.5-的重合的点所表示的数是 .8.北京与纽约的时差为-13h (负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间16:00,那么纽约时间是 .三、解答题(每小题8分,共48分)1.如图,周长为2个单位长度的圆片上的一点A 与数轴上的原点O 重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:第1次第2次第3次第4次第5次第6次滚动周数+3 -1 -2 +4 -3 a①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;②当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?2.计算:(1)﹣10﹣(﹣18)+(﹣4)(2)(﹣54)÷(﹣3)+83×(﹣92)(3)(513638-+)×(﹣24)(4)(﹣12)3+[﹣8﹣(﹣3)×2]÷43.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时乙在前,甲在后,出发后8分钟甲、乙第一次相遇,出发后的24分钟时甲、乙第二次相遇.假设两人的速度保持不变,你知道出发时乙在甲前多少米吗?4.计算:(1)﹣7﹣11+4+(﹣2)(2)3×(—4)+(—28)÷7(3)111135 532114⎛⎫⨯-⨯÷⎪⎝⎭参考答案一、单选题(每小题2分,共20分)1.D 2.B 3.B 4.B 5.C6.B 7.D 8.C 9.A 10.C二、填空题(每小题4分,共32分)三、解答题(每小题8分,共48分)- 5 -。
第二章 有理数(2.8~2.9)测试测试(含答案)-
第二章 有理数(2.8~2.9)测试◆基础知识检测与梳理 一、选择题1. 如果ab >0,0<+b a ,那么a 、b 的符号是( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0 2. 一个有理数与它的相反数之积( ).A .符号必为正B .符号必为负C .一定不小于零D .一定不大于零 3.下列计算正确的是( )A .2210+⨯-=() B.236-=-÷-)()( C .27271-=-÷)( D.12211=-⨯-)()( 4. 如果两数之和等于零,且这两个数之积为负数,那么这两个数只能是( )A.两个互为相反数的数B.符号不同的两个数C.不为零的两个互为相反数的数D.不是正数的两个数 5.下列各数互为倒数的是( )A.152-和112 B.0.75和43 C.1和1 D.3和-36.有理数a 等于它的倒数,则a 2002是( ) A.最大的负数 B .最小的非负数 C .绝对值最小的整数 D .最小的正整数7.若四个有理数相乘,积为负数,那么负因数的个数是( ) A.1个 B.2个 C.3个 D.1个或3个 8.|34|-的相反数与-3的和是( ) A .-23 B .-53 C .-133 D .313-9.两个非零有理数相除,如果交换被除数与除数的位置,它们的商不变,那么( )A.两数一定相等 B.两数一定互为相反数 C.两数相等或互为相反数 D.不存在这样的两个数 10.如果0)1()3(=+÷-b a ,那么( )A.0=a B.3=a C.0=a 且 b 1≠ D.3=a 且1-b ≠11.下列各数:-(+2),-32,315231200124------,)(,,)(中,负数的个数是( )A 、2B 、3C 、4D 、512. a ,b 两数在数轴上的位置如图,则下列不正确的是( )A 、 a +b <0;B 、 ab <0;C 、ba<0; D 、a -b <0二、填空题 1.540 2.513⨯-⨯=() ;1739×0= . 2.若2||=x ,5||=y ,则=xy .3.绝对值小于10的所有整数之和为 .4.倒数等于它本身的数是 . 5.已知x 和y 互为倒数则=xy 3.7 . 6.若0ab <,a b >,则a 0,b 0.7.一个数的50%是2.5,则这个数是 .8.若1a a =,则a ;若1a a=-,则a ;若x ,则0||=+x x x . 9.四个各不相等的整数a 、b 、c 、d ,它们的积为9,那么它们的和是 .10. 观察下列各式:3211=332123+= 33221236++=33332123410+++=……猜想:333312310++++= .三、计算题 1.)(169441218-÷⨯÷- 2.0150.215-÷⨯(-)_0_b3.)()(211755.0915.4-÷⨯-⨯- 4. 1213(5)6(5)33⎛⎫⎛⎫-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭5.)(36727199-⨯(用简便方法) 6.11171231132186++÷-()()(用简便方法)◆能力训练与提升 四、解答下列各题1.先填空,再补写一个有同样特点的式子(1)=⨯+-⨯71)7(1 (2)9919⨯--⨯=() 12727⨯-+⨯=() 98929⨯--⨯=() =⨯+-⨯7237123)( =⨯--⨯939987)(并以7237123⨯+-⨯)(为例 并以939987⨯--⨯)(为例 说明你的简便计算方法 说明你的简便计算方法2. 观察下列各等式:2466422=-+-,2433555=-+-,2411477=-+-,242241010=---+-,…….依据以上各等式成立的规律,在括号内填入适当的数,使等式24) ()(42020=-+-成立.3. 规定一种运算:a *b =ba ab+;计算2*(-3)的值.4. 为了节约电力资源,石家庄市电业局对工业、生活用电大户采取了定时限电,今天小名家住的小区早晨8时到下午18时限电,他家的冰箱停电后每两小时上升一度,停电时冷冻室的温度是零下7.6℃,那么到下午18时来电时,冷冻室的温度是多少?5. 小红家春天粉刷房间,雇佣了5个工人,干了10天完成;用了某种涂料150升,费用为4800元;粉刷面积为150平方米.最后结算工钱时,有以下几种方案: 方案一:按工算,每个工30元(一个工人干一天是一个工); 方案二:按涂料费用算,涂料费用的30%作为工钱; 方案三:按粉刷面积算,每平方米付工钱12元.请你帮助小红家出主意,选择方案 付钱最合算(最省).◆创新 实践与探究五、1.右图是某月份的日历:现用一个矩形框在日历中任意框出4个数,请用一个等式表示a 、b 、c 、 d 之间的关系。
第二章《有理数》单元测试(含答案)
第2章 有理数单元测试一、选择题(本大题共8小题,每小题3分,共24分.在每小题列出的四个选项中,只有一项符合题意)1.-2的绝对值是( )A .-2B .2C .-12 D.122.在3.14159,4,1.1010010001,4.2·1·,π,132中,无理数有( )A .1个B .2个C .3个D .4个3.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000 kg 的煤所产生的能量.把130000000 kg 用科学记数法可表示为( )A .13×107kgB .0.13×108kgC .1.3×107kgD .1.3×108kg 4.下列说法中,正确的是( )A .两个有理数的和一定大于每个加数B .3与-13互为倒数C .0没有倒数也没有相反数D .绝对值最小的数是0 5.在数-3,2,0,3中,大小在-1和2之间的数是( ) A .-3 B .2 C .0 D .36.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多107.在-(-2),(-1)3,-22,(-2)2,-|-2|,(-1)2n (n 为正整数)这六个数中,负数的个数是( )A .1B .2C .3D .48.依次排列4个数:2,11,8,9.对于相邻的两个数,都用右边的数减去左边的数,所得的差排在这两个数之间得到一串新的数:2,9,11,-3,8,1,9.这称为一次操作,做两次操作后得到一串新的数:2,7,9,2,11,-14,-3,11,8,-7,1,8,9.这样下去,第100次操作后得到的一串数的和是( )A .737B .700C .723D .730二、填空题(本大题共9小题,每小题3分,共27分)9.若将顺时针旋转60°记为-60°,则逆时针旋转45°可记为________.10.小明家的冰箱冷冻室的温度是-2 ℃,冷藏室的温度是5 ℃,则小明家的冰箱冷藏室的温度比冷冻室的温度高________ ℃.11.计算:3-22=________. 12.将下列各数:-0.2,-12,-13,按从小到大的顺序排列应为________<________<________.13.若a <0,b >0,且|a|>|b|,则a +b________0.14.已知2,-3,-4,6四个数,取其中的任意三个数求和,和最小是________. 15.若数轴上的点A 所表示的有理数是-223,则与点A 相距5个单位长度的点所表示的有理数是____________.16.在算式1-︱-2□3︱中的“□”里,填入运算符号(在符号+,-,×,÷中选择一个):________,使得算式的值最小.17.已知(a -3)2+|b -2|=0,则a b =________. 三、解答题(本大题共5小题,共49分) 18.(16分)计算下列各题:(1)25.3+(-7.3)+(-13.7)+7.3; (2)(-54)×214÷⎝⎛⎭⎫-412×29;(3)-(-3)2-|(-5)3|×⎝⎛⎭⎫-252-18÷|-32|; (4)(-3)3÷214×⎝⎛⎭⎫-232+4-22×⎝⎛⎭⎫-13.19.(8分)用简便方法计算下列各题:(1)⎝⎛⎭⎫-112-136+34-16×(-48); (2)-201.8×⎝⎛⎭⎫-318-201.8×⎝⎛⎭⎫-678.20.(6分)登山队员攀登珠穆朗玛峰,在海拔3000 m 时,气温为-20 ℃,已知每登高1000 m ,气温降低6 ℃,当海拔为5000 m 和8000 m 时,气温分别是多少?21.(8分)邮递员小王从邮局出发,向东走3 km 到M 家,继续向前走1 km 到N 家,然后折回头向西走6 km 到Z 家,最后回到邮局.图1-Z -1(1)若以邮局为原点,向东为正方向,1个单位长度表示1 km ,画一条数轴(如图1-Z -1),请在数轴上分别表示出M ,N ,Z 的位置;(2)小王一共走了多少千米?22.(11分)某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因,无法按计划进行生产,下表是一周的生产情况(超产为正,减产为负,单位:辆):(1)根据记录可知前4天共生产自行车________辆;(2)这一周自行车产量最多的一天比产量最少的一天多生产________辆;(3)该厂实行计件工资制,每生产一辆自行车厂方付给工人工资60元,超额完成计划任务的每辆奖励15元,没有完成计划任务的每辆车要扣15元,则该厂工人这一周的工资总额是多少?参考答案1.B. 2.A. 3.D. 4.D. 5.C. 6. D 7.C. 8.D.9.[答案] +45° 10.[答案] 7[解析] 5-(-2)=5+2=7(℃). 11.[答案] -112.[答案] -12 -13 -0.213.[答案] < 14.[答案] -5 15.[答案] -723或21316.[答案] × 17.[答案] 9[解析] 由题意得a =3,b =2,则a b =32=9.18.解:(1)原式=11.6. (2)原式=(-54)×94×⎝⎛⎭⎫-29×29=6.(3)原式=-9-20-2=-31.(4)原式=-27×49×49+4+43=-163+4+43=0.19.解:(1)原式=⎝⎛⎭⎫-112×(-48)-136×(-48)+34×(-48)-16×(-48)=4+43-36+8=-2223. (2)原式=-201.8×⎣⎡⎦⎤⎝⎛⎭⎫-318+⎝⎛⎭⎫-678=-201.8×(-10)=2018. 20.解:当海拔为5000 m 时,-20-5000-30001000×6=-32(℃).当海拔为8000 m 时,-20-8000-30001000×6=-50(℃),因此当海拔为5000 m 时,气温为-32 ℃,当海拔为8000 m 时,气温为-50 ℃. 21.解:(1)如图所示:(2)3+1+6+2=12(千米). 答:小王一共走了12千米. 22.解:(1)812 (2)28(3)5-2-6+15-9-13+8=-2(辆), (1400-2)×60-2×15=83850(元).答:该厂工人这一周的工资总额是83850元.。
第二章《有理数》单元检测试题(含答案)
2018-2019学年度第一学期苏科版七年级数学上册第二章有理数单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列四个式子中,计算结果最小的是()A. B.C. D.2.下列结论中正确的是()A.既是正数,又是负数B.是最小的正数C.是最大的负数D.既不是正数,也不是负数3.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水,那么万人每天浪费的水,用科学记数法表示为()A. B.C. D.4.下列关于零的说法中,正确的个数是()①零是正数;②零是负数;③零既不是正数,也不是负数;④零仅表示没有.A.个B.个C.个D.个5数轴上的点到原点的距离是,则点表示的数为()A. B.C.或D.或6.一个数是,另一个数比的相反数小,则这两个数的和为()A. B. C. D.7.现有四种说法:① 表示负数;②若,则;③绝对值最小的有理数是;④若,则;⑤若,则,其中正确的是()A.个B.个C.个D.个8.若新运算“”定义为:,则A. B. C. D.9.下列说法中正确的是()A.是最小的整数B.最大的负有理数是C.两个负数绝对值大的负数小D.有理数的倒数是10.下列说法中,正确的是()A.正有理数和负有理数统称有理数B.一个有理数不是整数就是分数C.零不是自然数,但它是有理数D.正分数、零、负分数统称分数二、填空题(共 10 小题,每小题 3 分,共 30 分)11.已知:,则________.12.在,,,,,中,整数有________个.13.写出一个关于有理数加法的算式,使得和比每一个加数都小,这个算式可以为________.14.若的相反数是,,则的值为________.15.的相反数是________,的相反数是________.16.有理数、在数轴上的位置如图所示,则下列各式成立的是________(只填序号)① ;② ;③ ;④ .17.若,则________.18.有一颗高出地面米的树,一只蜗牛想从树底下爬上去晒晒太阳,他爬行的路径是每向上爬行米又向下滑行米,它想爬到树顶至少爬行________米.19.绝对值不大于的整数有________,它们的和是________.20.若是最小的正整数,是绝对值最小的整数,的绝对值是,则的值是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.计算:;;.22.,互为相反数,,互为倒数,且的绝对值是,求的值.23.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):,,,,,,,.最后一名老师送到目的地时,小王距出车地点的距离是多少?若汽车耗油量为升/千米,这天下午汽车共耗油多少升?24.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足.________,________,________.若将数轴折叠,使得点与点重合,则点与数________表示的点重合;点、、开始在数轴上运动,若点以每秒个单位长度的速度向左运动,同时,点和点分别以每秒个单位长度和个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为,则________,________.(用含的代数式表示)请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.25.某检修小组乘汽车检修公路道路.向东记为正.某天自地出发.所走路程(单位:千米)为:,,,,,,;问:①最后他们是否回到出发点?若没有,则在地的什么地方?距离地多远?②若每千米耗油升,则今天共耗油多少升?26.如图是一个“有理数转换器”(箭头是指有理数进入转换器后的路径,方框是对进入的数进行转换的转换器)当小明输入;;这三个数时,这三次输入的结果分别是多少?你认为当输入什么数时,其输出的结果是?你认为这的“有理数转换器”不可能输出什么数?参考答案1.B2.D3.C4.A5.A6.B7.A8.C9.C10.B11.12.13..14.或15.①②④17.18.19.,,,,20.21.解:原式,,;原式;原式.22.解:∵ ,互为相反数,,互为倒数,且的绝对值是,∴ ,,,当时,原式;当时,原式;所以的值为或.23.解:根据题意:规定向东为正,向西为负:则千米,故小王在出车地点的西方,距离是千米;这天下午汽车走的路程为,若汽车耗油量为升/千米,则升,故这天下午汽车共耗油升.24. ∵ ,,∴ .∴ 的值为定值.25.他们不能回到出发点,在地东边,距离地千米远;②(千米),(升).答:今天共耗油升26.解: ∵ ,∴输入时的程序为:,∴ 的相反数是,的倒数是,∴当输入时,输出;∵.∴输入时的程序为:,∴的相反数是,,∴当输入时,输出;∵ ,∴输入时的程序为:,的相反数为,的绝对值是∴当输入时,输出. ∵输出数为,的相反数及绝对值均为,当输入的倍数时也输出.∴应输入或(为自然数);由图表知,不管输入正数、或者负数,输出的结果都是非负数.所以输出的数应为非负数.。
华师大版七年级上第2章《有理数》检测题(含答案)
第2章 有理数检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.如果表示增加,那么表示( ) A.增加 B.增加 C.减少 D.减少2.下列说法中错误的是( ) A.既不是正数,也不是负数 B.是自然数,也是整数,也是有理数 C.若仓库运进货物记作,那么运出货物记作D.一个有理数不是正数,那它一定是负数3.如图,数轴上点表示的数减去点表示的数,结果是( ) A. B. C. D.4.一个数加上12-等于5-,则这个数是( )A.17B.7C.17-D.7-5.下列说法正确的个数是( ) ①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数; ③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的.A.1B. 2C. 3D. 4 6.有理数、在数轴上对应的位置如图所示,则( ) A. B. C. D. 7.如图,数轴上两点所表示的两数的( )A.和为正数B.和为负数C.积为正数D.积为负数8.如图,数轴上的点所表示的是有理数,则点到原点的距离是( ) A. B. C. D. 9.年我国发现第一个世界级大气田,储量达亿,6 000亿用科学记数法表示为( )A .6×102亿B .6×103亿C .6×104亿D .0.6×104亿 10.计算的值是( )A. B. C. D.二、填空题(每小题3分,共24分)11.计算:______. 12.若的相反数是,,则的值为_________.13.甲、乙两同学进行数字猜谜游戏:甲说:一个数的相反数就是它本身,乙说:一个数的倒数也等于它本身,请你猜一猜_______. 14.的倒数是________.15.计算______.16.计算:_________. 17.计算:_______.18.观察下列各式:,,,,,,…,你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:的个位数字是________.三、解答题(共46分)19.(4分)把下列各数填在相应的大括号内:.正数:{ ,…};非负整数:{ ,…}; 整数:{ ,…}; 负分数:{ , …}.20.(6分)计算下列各题: (1)(2); (3)21.(4分)已知:,,且,求的值.22.(5分)在数轴上标出下列各数:并把它们用“>”连接起来.23.(6分)比较下列各对数的大小. (1)54+-与54+-;(2)25与52;(3)232⨯与2)32(⨯.24.(5分)袋小麦以每袋为标准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克? 25.(5分)已知的相反数等于,,求的值.26.(5分)已知的相反数为,的倒数为,的绝对值为,求的值.27.(6分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:)如下:(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4/,这天上午老王耗油多少升?第2章 有理数检测题参考答案1.C 解析:在一对具有相反意义的量中,把其中的一种量规定为“正”的,那么与它意义相反的量就是“负”的.“正”和“负”相对,所以如果表示增加,那么表示减少.2.D 解析:有理数包括正有理数、负有理数和0,故D 不正确.3.B 解析:由数轴可知点表示的数是,点表示的数是,所以.故选B .4.B 解析:因为一个数加上12-等于5-,所以-5减去-12等于这个数,所以这个数为,故选B.5.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正有理数、负有理数和零,所以②不正确;整数包括正整数、负整数和零,所以③不正确;分数包括正分数和负分数,所以④正确.故选B.6.A 解析:由题图,知是负数,是正数,离原点的距离比离原点的距离大,所以,故选A.7.D 解析:从图中可以看出两点表示的数分别为,它们的和为,积为是负数,故选D .8.B 解析:依题意,得点到原点的距离为,又因为,所以,所以点到原点的距离为,故选B .9.B 解析:乘号前面的数的绝对值必须大于或等于且小于. 10.B 解析:. 11. 解析:. 12. 解析:因为的相反数是,所以;因为,所以.所以的值为. 13.1 解析:因为相反数等于它本身的数是,倒数等于它本身的数是,所以,所以 14. 解析: 的倒数为.15. 解析: .16.解析:.17. 解析:.18. 解析:因为,所以的个位数字是.19.解:正数:非负整数:;整数:;负分数:.20.解:(1)(2)(3)21.解:因为,所以.因为,所以. 又因为,所以. 所以或.22.解:如图:把它们用“>”连接起来为:.23.解:(1)因为=1,,所以.(2)因为所以(3)因为所以24.解:因为所以与标准质量相比较,这10袋小麦总计少了.10袋小麦的总质量是.每袋小麦的平均质量是25.解:因为的相反数等于,所以.因为,所以.当,时,;当,时,.26.解:因为的相反数为,的倒数为,的绝对值为,所以,,,所以.27.解:(1)因为,所以将第6名乘客送到目的地时,老王刚好回到上午出发点.(2)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)+(-2)+(-7)+(+4)+(+6)+(-9)+(-11)=-19,所以将最后一名乘客送到目的地时,老王距上午出发点.(3)因为|+8|+|+4|+|-10|+|-3|+|+6|+|-5|+|-2|+|-7|+|+4|+|+6|+|-9|+|-11|=75(km),75×0.4=30(L),所以这天上午老王耗油.。
(完整)第二章《有理数及其运算》专项练习共7个专题(含答案),推荐文档
第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-1小于1的负数是()2 22 A.-31 1B.-C.3 3D.02、负数是指()A.把某个数的前边加上“-”号B.不大于0 的数C.除去正数的其他数D.小于0 的数3、关于零的叙述错误的是()A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数4、非负数是()A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20 米处,玩具店位于书店东边100 米处,小明从书店沿街向东走了40 米,接着又向东走了-60 米,此时小明的位置在()A.文具店B.玩具店C.文具店西40 米处D.玩具店西60 米处6、大于-5.1 的所有负整数为.7、珠穆朗玛峰高出海平面8848 米,表示为+8848 米.吐鲁番盆地低于海平面155 米,表示为.8、请写出3 个大于-1 的负分数.9、某旅游景点一天门票收入5000 元,记作+5000 元,则同一天支出水、电、维修等各种费用600元,应记作.10请回答,该生成绩最好和最差的科目分别是什么?1、下面正确的是()专题二:数轴与相反数A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间2、关于相反数的叙述错误的是()A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A、B 两点所对应的有理数分别为a、b,且B 在A 的右边,则a-b 一定()A.大于零B.小于零C.等于零D.无法确定4、在数轴上 A 点表示- 1 ,B 点表示 1,则离原点较近的点是.3 25、两个负数较大的数所对应的点离原点较 .6、在数轴上距离原点为 2 的点所对应的数为,它们互为 .7、数轴上 A 、B 、C 三点所对应的实数为- 2 ,- 3 , 4,则此三点距原点由近及远的顺序为34 5.8、数轴上-1 所对应的点为 A ,将 A 点右移 4 个单位再向左平移 6 个单位,则此时 A 点距原点的距离为 .9、在等式3⨯- 2 ⨯ = 15 的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
第二章《有理数及其运算》单元测试卷(含答案)
第二章有理数及其运算单元测试卷一、选择题(每小题3分,共30分) 1.-13的倒数的绝对值是( )A .-3B .13C .-13 D .32.检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是( )A .-2B .-3C .3D .5 3.在-12,0,-2,13,1这五个数中,最小的数为( )A .0B .-12C .-2D .134.下列说法中,正确的个数有( ) ①-3.14既是负数,又是小数,也是有理数; ②-25既是负数,又是整数,但不是自然数; ③0既不是正数也不是负数,但是整数; ④0是非负数.A .1个B .2个C .3个D .4个 5.下列运算结果正确的是( )A .-87×(-83)=7 221B .-2.68-7.42=-10C .3.77-7.11=-4.66D .-101102<-1021036.据中国电子商务研究中心监测数据显示,2018年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元.将27 800 000 000用科学记数法表示为( )A .2.78×1010B .2.78×1011C .27.8×1010D .0.278×1011 7.一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是( )A .150元B .120元C .100元D .80元 8.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB =B C .如果|a |>|c |>|b |,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 9.式子⎝⎛⎭⎫12-310+25×4×25=⎝⎛⎭⎫12-310+25×100=50-30+40中运用的运算律是( ) A .乘法交换律及乘法结合律; B .乘法交换律及乘法对加法的分配律; C .加法结合律及乘法对加法的分配律; D .乘法结合律及乘法对加法的分配律 10.有理数a ,b 在数轴上的位置如图所示,下面结论正确的是( )A .b -a <0B .ab >0C .a +b >0D .|a |>|b | 二、填空题(每小题4分,共16分)11.-23的相反数是________,绝对值是________,倒数是________.12.在-1,0,-2这三个数中,最小的数是________.13.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价________万元.14.某程序如图所示,当输入x =5时,输出的值为 ________.输入x →平方→减去x →除以2→取相反数→输出三、解答题(本大题共6小题,共54分)15.(8分)画数轴,在数轴上表示下列各数,并用“<”把这些数的相反数连接起来:3,0,-|-2|,-52,1.5,-22.16.(8分)(1)13的相反数加上-27的绝对值,再加上-31的和是多少?(2)从-3中减去-712与-16的和,所得的差是多少?17.(10分)计算:(1)(-121.3)+(-78.5)-⎝⎛⎭⎫-812-(-121.3); (2)-12-[2-(-3)2]×⎪⎪⎪⎪15-13÷⎝⎛⎭⎫-110.18.(8分)一辆货车从超市出发送货,先向南行驶30 km 到达A 单位,继续向南行驶20 km 到达B 单位.回到超市后,又给向北15 km 处的C 单位送了3次货,然后回到超市休息.(1)C 单位离A 单位有多远? (2)该货车一共行驶了多少千米?19.(10分)已知a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为3,试求(a +b )÷108-e 2÷[(-cd )2 017-2]的值.20.(10分)2017年“十一”国庆假期间,万彬和温权听到各自的父母都将带他们去黄山旅游,他们听到后立即上网查资料,资料显示:高山气温一般每上升100 m,气温就下降0.8 ℃.10月2日上午10点,万彬在黄山顶,温权在黄山脚下.他们用手机通话,同时测出他们所在位置气温,分别是13.2 ℃和28.2 ℃,因而,他们就推算出这时候彼此所在地的海拔差.你知道他们是怎么算出的吗?他们的海拔差是多少?B卷(共50分)四、填空题(本大题共5个小题,每小题4分,共20分)21.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1 011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5,(1 011)2=1×23+0×22+1×21+1×20=11.按此方式,将二进制(1 001)2换算成十进制数的结果是_______.22.绝对值小于3的整数为__________,绝对值大于 3.2且小于7.5的负整数为________________.23.若|x|=4,|y|=5,则x-y的值为____________.24.将从1开始的连续自然数按以下规律排列:…则2 018在第_______行.25.若|m-2|+(n-2)2=0,则m n的值是______.五、解答题(本大题共3个小题,共30分)26.(10分)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如: |6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7; 根据上面的规律,把下列各式写成去掉绝对值符号的形式: (1)|7-21|=_________; (2)⎪⎪⎪⎪-12+0.8=____________; (3)⎪⎪⎪⎪717-718=__________;(4)用合理的方法计算:⎪⎪⎪⎪15-12 018+|12 018-12|-12×⎪⎪⎪⎪-12+11 009.27.(10分)现定义两种运算:“⊕”“⊗”,对于任意两个整数a ,b ,a ⊕b =a +b -1,a ⊗b =a ×b -1,求4⊗[(6⊕8)⊕(3⊗5)]的值.28.(10分)下面是按一定规律排列的一列数: 第1个数:1-⎝⎛⎭⎫1+-12;第2个数:2-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34;第3个数:3-⎝⎛⎭⎫1+-12⎝⎛⎭⎫1+(-1)23⎝⎛⎭⎫1+(-1)34⎝⎛⎭⎫1+(-1)45⎣⎡⎦⎤1+(-1)56. …(1)分别计算这三个数的结果(直接写答案);(2)写出第2 017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案1. D2. A3. C4. D5. A6. A7. B8. C9. D 10. A 11.2323-3212. -2 13.9.9 14. -10 15. 解:如答图.它们的相反数分别为-3,0,2,52,-1.5,4,2分答图16. 解:(1)根据题意,得-13+||-27+(-31)=-17.(2)根据题意,得-3-⎣⎡⎦⎤-712+⎝⎛⎭⎫-16=-214. 17. 解:(1)原式=-121.3-78.5+8.5+121.3=(-121.3+121.3)+(-78.5+8.5) =-70(2)原式=-12-(2-9)×⎪⎪⎪⎪315-515÷⎝⎛⎭⎫-110 =-1-(-7)×215÷⎝⎛⎭⎫-110 =-1-1415×10=-1-283=-31318. 解:(1)规定超市为原点,向南为正,向北为负,1分依题意,得C 单位离A 单位有30+||-15=45(km),3分 ∴C 单位离A 单位45 km.4分(2)该货车一共行驶了(30+20)×2+||-15×6=190(km).7分答:该货车一共行驶了190 km.8分19. 解:因为a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为3,所以a +b =0,cd =1,e =±3.4分所以原式=0÷108-(±3)2÷[(-1)2 017-2] =(-9)÷(-1-2)=(-9)÷(-3)=3. 20. 解:根据题意,得(28.2-13.2)÷0.8×100 =15×1.25×100 =1 875(m).答:他们的海拔差是1 875 m . 21.922. 0,±1,±2 -4,-5,-6,-7 23. ±1,±9【解析】∵|x |=4,∴x =±4.∵|y |=5,∴y =±5.当x =4,y =5时,x -y =-1; 当x =4,y =-5时,x -y =9; 当x =-4,y =5时,x -y =-9; 当x =-4,y =-5时,x -y =1.24.45【解析】∵442=1 936,452=2 025,∴2 018在第45行. 25.426.(1) 21-7 (2) 0.8-12 (3)717-718 (4) 920解:(4)原式=15-12 018+12-12 018-14+11 009=920.27. 解:根据新运算的定义,(6⊕8)=6+8-1=13,(3⊗5)=3×5-1=14,则(6⊕8)⊕(3⊗5)=13⊕14=13+14-1=26, 则4⊗[(6⊕8)⊕(3⊗5)]=4⊗26=4×26-1=103.28. 解:(1)第1个数:12;第2个数:32;第3个数:52.(2)第2 017个数:2 017-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤(1+(-1)34…⎣⎡⎦⎤1+(-1)4 0334 034=4 0332.。
人教版七年级数学上册《第二章有理数的运算》单元检测卷(带答案)
人教版七年级数学上册《第二章有理数的运算》单元检测卷(带答案)一、单选题(本大题共10小题)1.第五届世界智能大会采取“云上”办会的全新模式呈现,48家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为67400000,将67400000科学记数法表示应为( )A .0.674×105B .6.74×106C .6.74×107D .67.4×1062.26.4亿用科学记数法表示为( )A .826.410⨯B .82.6410⨯C .926.410⨯D .92.6410⨯3.2的倒数是( )A .2B .12 C .12- D .-24.期中考试小明用计算器计算六科平均成绩为93.25614分,用四舍五入法按要求取近似值,其中错误的是( )A .93.3(精确到0.1)B .93.256(精确到千分位)C .93.25(小数点后两位)D .93.26(小数点后两位)5.月球离地球的距离约为38万千米,数38万用科学记数法可表示为( ) A .53.810⨯ B .43.810⨯ C .53810⨯ D .43810⨯6.将算式5(3)(4)---+-写成省略加号的和的形式,正确的是( )A .-53-4+B .-5-3-4C .534+-D .-5-34+7.北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1 560 000 000用科学记数法表示为( )A .1.56×109B .1.56×108C .15.6×108D .0.156×10108.如图是一个运算程序,若x 的值为1-,则运算结果为( )A .4-B .2-C .2D .49.某景区同步设置的“我为祖国点赞”装置共收集约6390000个“赞”,这个数字用科学记数法可表示为( )A .6.39×106B .0.639×106C .0.639×105D .6.39×10510.已知||2,||5x y ==,且3x y +=-,则x y -等于( )A .7B .3-C .3D .7-二、填空题(本大题共6小题)11.大山包位于昭通市西部,距昭通城区65公里,平均海拔3100米,是国家一级保护动物黑颈鹤的越冬栖息地.请将数字3100用科学记数法表示为 .12.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000人,将数据450000000科学记数法表示为 .13.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高 m . 14.用四舍五入法将数3.14159精确到千分位的结果是 .15.根据第七次全国人口普查结果公布,全国人口已达14.11亿人.其中14.11亿用科学记数法表示为: .16.若▲表示最小的正整数,■表示最大的负整数,•表示绝对值最小的有理数,则=+•⨯(▲)■ .三、解答题(本大题共8小题)17.某钢材仓库9天内进出钢材的吨数如下:(“+”表示进库,“﹣”表示出库)+20,﹣25,﹣13,+18,﹣16,+16,﹣15,+22,﹣21(1)经过这9天,仓库里的钢材吨数是增加了还是减少了?增加或减少了多少吨? (2)如果进出仓库的钢材装卸费都是每顿15元,那么这9天要付多少元装卸费?18.计算:(1)()()()()23711---++-+;(2)137246812⎛⎫-⨯+- ⎪⎝⎭; (3)()32024116231-+÷-⨯--.19.先化简,再求值:(2xy 2﹣3x 3﹣1)﹣2(x 3﹣3xy 2+1),其中x =﹣2,y =﹣1.20.已知1cm 3的氢气质量约为0.00009g ,请用科学记数法表示下列计算结果. (1)求一个容积为8000000cm 3的氢气球所充氢气的质量;(2)一块橡皮重45g ,这块橡皮的质量是1cm 3的氢气质量的多少倍.21.计算:()()22021432412⎡⎤⎛⎫-+-⨯-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦22.计算:(1)()()2324+-⨯--;(2)()()432121130.5233⎡⎤⎛⎫---÷--- ⎪⎢⎥⎝⎭⎣⎦.23.已知a b 、互为相反数,、c d 互为倒数,x 的绝对值是3,y 是最大的负整数,求()26x cd a b y -++-的值.24.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下(单位:km ):15,2,5,1,10,3,2,12,4,5,6+-+-+--++-+(1)收工时,检修小组在A 地的哪一边,距A 地多远?(2)若汽车每千米耗油2升,每升汽油6元,不计汽车的损耗,检修小组这天下午耗了多少钱的汽油?参考答案1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】A7.【答案】A8.【答案】A9.【答案】A10.【答案】A11.【答案】33.110⨯12.【答案】84.510⨯13.【答案】350;14.【答案】3.14215.【答案】91.41110⨯16.【答案】-117.【答案】(1)仓库里钢材减少了14吨;(2)2490元18.【答案】(1)3-(2)1(3)9-19.【答案】32583x xy -+-,2120.【答案】(1)7.2×102g ;(2)5×105倍.21.【答案】21-22.(1)解:原式264=-+0=;(2) 解:原式111127643⎡⎤⎛⎫=+÷--- ⎪⎢⎥⎝⎭⎣⎦ 11127612⎡⎤⎛⎫=+÷-- ⎪⎢⎥⎝⎭⎣⎦ 11274⎛⎫=+÷- ⎪⎝⎭1108=-107=-.23.【答案】4或8-24.【答案】(1)收工时,检修小组在A 地东边,距A 地39千米;(2)一共耗油780元。
七年级数学第二章 有理数 检测卷(附答案)
第二章有理数检测卷总分100分时间60分钟成绩评定_______一、选择题(每小题3分,共30分)1.如果收入200元记作+200元,那么支出150元记作( ) A.+150元B.-150元C.+50元D.-50元2.—2的倒数是( )A.-2 B.2 C.12D.-123.下列四个数中,在-2到0之间的数是( )A.-1 B.1 C.-3 D.3 4.下列计算结果为1的是( )A.(+1)+(-2) B.(-1)-(-2)C.(+1)×(-1) D.(-2)÷(+2)5.下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③393342⎛⎫⨯-=-⎪⎝⎭;④(-36)÷(-9)=-4.其中正确的个数是( )A.1个B.2个C.3个D.4个6.今年我市约有202000名应届初中毕业生参加学业水平考试,202000用科学记数法表示为( )A.0.202×106B.202×103C.20.2×104D.2.02×1057.下列各式计算正确的是( )A.-2-1×6=(-2-1)×6 B.2÷4×34=2÷(4×34)C.(-1)98+(-1)99=1-1 D.(-4×32)=(-4×3)28.如图,数轴上A、B两点所表示的两数的( )A.和为正数B.和为负数C.积为正数D.积为负数9.用计算器计算530,按键顺序正确的是( )10.吋是电视机常用规格之一,1吋约为拇指上面一节的长,则8吋长相当于( ) A.课本的宽度B.课桌的宽度C.黑板的高度D.粉笔的长度二、填空题(每小题3分,共24分)11.某地一天中午的气温由早晨的零下3℃上升了4℃,傍晚又下降了2℃,该地傍晚的气温为_______℃,12.计算:12233535⎛⎫⎛⎫⎛⎫---+-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭_______.13.大于-2而小于3的整数分别是_______.14.在数轴上,-4与-6之间的距离是_______个单位长度.15.如果x <0,且x 2=36,那么x =_______.16.按下面程序计算,输入x =-3,则输出的答案是_______.17.观察下列各式:152=1×(1+1)×100+52=225; 252=2×(2+1)×100+52=625; 352=3×(3+1)×100+52=1225;……依此规律,第n 个等式(n 为正整数)为_______.18.若a =l ,b =4,且ab <0,则a +b =_______.三、解答题(共46分)19.(12分)计算下列各题:(1)1-1÷14×4; (2)12124234⎛⎫-+-+- ⎪⎝⎭; (3);1992020⨯;(4)()()()()52221142 1.250.4339⎧⎡⎤⎛⎫-⨯-÷-+-⨯-÷--⎨ ⎪⎢⎥⎣⎦⎝⎭⎩.20.(6分)把下列各数在数轴上表示出来,并用“<”把各数连接起来:3,-12,2.5,0,2--.21.(6分)小王和小张在玩“24”点游戏,他们互相抽出对方四张牌,要求根据牌上的数字凑成“24”(每张牌只能用一次,可以用加、减、乘、除等运算).他们互抽对方的牌如下:①黑桃1,方块2,红桃3,黑桃3;②方块1,草花3,草花7和红桃12.请你帮他们各写出两个算式,使运算结果为24.①算式一:算式二:②算式一:算式二:22.(6分)某城市用水标准为:居民每户用水未超过7立方米时,每立方米收费1.00元,并加收每立方米0.2元的城市污水处理费;超过7立方米的部分每立方米收水费1. 50元,并加收每立方米0.4元的城市污水处理费.居住在惠源小区的小明家1月份用水10立方米,2月份用水6立方米,请你帮助小明算算,他家这两个月应缴水费多少元?23.(8分)如图,(1)以30为一个单位长度建立数轴,则图中点A 、B 、C 分别表示数______________;(2)在一段笔直的东西大道上从西往东依次有A 、B 、C 、D 、E 五个站点,它们相邻两站之间的距离依次为34千米、49千米、40千米和27千米.又知在A 、E 两站的中点处,路边建有一个加油站.请你以加油站为原点,以正东为正方向,以20千米为一个单位长度建立数轴,并分别标出这A 、B 、C 、D 、E 五个站点的位置.24.(8分)读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了方便起见,我们可将“1+2+3+4+…+100”表示为1001n n =∑,这里“∑”是求和符号,例如“1+3+5+…+99”(即从1开始的100以内的连续奇数的和)可表示为()50121n n =-∑,又如“13 +23 +33+…+103”可表示为1031n n =∑,同学们,通过对以上材料的阅读,请解答以下问题:(1)2+4+6+8+…+100用求和符号可表示为_______;(2)计算()5211n n =-∑的值.参考答案1.B 2.D 3.A 4.B 5.B 6.D 7.C 8.D 9.D 10.A11.-1 12.0 13.-1,0,1,2 14.2 15.-6 16.317.(10n +5)2=n(n +1)×100+5218.±319.(1)-15 (2)-2 (3)199 (4)320.2--<-12<0<2.5<321.答案不唯一22.21.3(元)23. (1)A :0 B :60 C :-45(2)图略 A :-75 B :-41C :8D :48E :75 24.(1)5012n n =∑ (2)50.。
第二章 有理数 综合测试卷(含答案解析)
第二章有理数综合测试卷一、填空题1.-215的绝对值为_______,相反数为_______,倒数为_______.2.已知水星的半径约为2440000米,用科学记数法表示为_______米.3.绝对值不小于3但小于6的负整数有_______个,它们分别是_______.4.数轴上离表示-2的点的距离等于3个单位长度的点表示的数是_______.5.绝对值等于本身的数是_______;相反数等于本身的数是_______;绝对值最小的有理数是_______.6.若3x-+(y+3)2=0,则y x=_______.7.如图是一个程序运算,若输入的x为-5,则输出y的结果为_______.8.如果a=3,b2=16.当a、b同号时,a+b=_______;当a、b异号时,a×b=_______.9.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):+4,-8,-5,6,则车上还有_______人.10.把下列各数填在相应的集合内:-3,7,-25,-0.86,0,227,0.7523,-2.3536.整数集合:{ …};分数集合:{ …};非负数集合:{ …}.11.把32,(-2)3,0,12-,-(2-3),+(-1)这几个式子的计算结果用“<”号连接_______.12.计算:111111 1019910099100101-----=_______.二、选择题13.若a=-a,则有理数a为( )A.正数B.负数C.非负数D.负数和零14.有下列各数:0.01,10,-6.67,-13,0,-90,-(-3),-2-,-(-42),其中属于非负整数的共有( )A.1个B.2个C.3个D.4个15.有一种记分方法:以80分为准,88分记为+8分,某同学得分为74分,则应记为( ) A .+74分 B .-74分 C .+6分 D .-6分 16.下列说法中,正确的是 ( )A .有理数就是正数和负数的统称B .零不是自然数,但是正数C .一个有理数不是整数就是分数D .正分数、零、负分数统称分数 17.下列运算正确的是 ( ) A .-a 一定是负数B .a 一定为正数C .a 一定不是负数D .-a 一定是负数18.下列运算正确的是 ( ) A .(-4)-(+2)+(-6)-(-4)=-4 B .(-4)-(+2)+(-6)-(-4)=-12 C .(-4)-(+2)+(-6)-(-4)=-8 D .(-4)-(+2)+(-6)-(-4)=-1019.已知a>0,b<0,且a +b>0,下列说法错误的是 ( ) A .a -b>0B .a <bC .a b a b +<-D .a>-b20.已知a 、b 在数轴上的位置如图,把a 、b 、-a 、-b 从小到大排列正确的是 ( )A .-a<-b<a<bB .a<-b<b<-aC .-b<a<-a<bD .a<b<-b<-a21.下列叙述正确的是 ( ) A .若a =b ,则a =b B .若a >b ,则a>b C .若a<b ,则a <bD .若a =b ,则a =±b22.在数轴上把表示一个数的点向右移动6个单位后表示这个数的相反数,这个数为( ) A .3 B .-3 C .6 D .-6 三、解答题 23.计算:(1)-20+(-14)-(-18)-13 (2)()21112 2.75524⎛⎫---+-- ⎪⎝⎭(3)()()21025+-⨯-(3)3571491236⎛⎫--+÷ ⎪⎝⎭(5)()23221.6323⎡⎤⎛⎫-÷-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(6)-14+[1-(1-0.5×2)]÷()223--24.把绝对值小于5的整数分别填入下表的各个小空格内(每个数只能填一次),使每行的三个数、每列的三个数,斜对角的三个数相加,结果均为0.25.填空:1+3=_______2 1+3+5=_______2 1+3+5+7=_______2 ……从而猜想:1+3+5+…+2005=_______2 26.如图,是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)当小明输入3、-4、95、-201这四个数时,这四次输出的结果分别是_______;(2)你认为当输入什么数时,其输出结果是0?(3)你认为这个“有理数转换器”不可能输出什么数?27.某出租车沿公路左右行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走的路线如下:(单位:千米)+8,-9,+4,+7,-2,-10,+18,-3,+7,+5 (1)问收工时离出发点A 多少千米?(2)若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?28.已知A 、B 在数轴上分别表示a 、b . (1)对照数轴填写下表:(2)若A 、B 两点间的距离记为d ,试问d 和a 、b 有何数量关系?(3)在数轴上标出所有符合条件的整数点P ,使它到10和-10的距离之和为20,并求所有这些整数的和.(4)找出(3)中满足到10和-10的距离之差大于1而小于5的整数的点P .(5)若点C 表示的数为x ,当点c 在什么位置时,12x x ++-取得的值最小?参考答案1.215 215 511- 2.2.44×106 3.3 -3 -4 -5 4.-5或1 5.非负数 0 0 6.-27 7.-10 8.±7 -12 9.19 10.整数集合:{-3,7,0,…)分数集合:{-25,-0.86, 227,0.7523,-2.3536,…} 非负数集合:{7,0,227,0.7523,…}11.(-2)3<+(-1)0<12-<-(2-3)<32 12.0 13.D 14.D 15.D 16.C 17.C 18.C 19.B 20.B 21.D 22.B23.(1)-29 (2)-35 (3)-10 (4)-26 (5)0.1 (6)-6724.25.2 3 4 1003 26.(1)12 14 95 1201(2)5或0 (3)负数 27.(1)收工时离出发点A 为25千米(2)从A 地出发到收工共耗油21.9升28.(1) 2 6 10 2 12 0 (2)d a b =- (3)点P 表示的整数:±10,±9,±8,±7,±6,±5,±4,±3,±2,±1,0,和为0 (4)点P 表示的整数有±2,±1 (5)点C 在-1和2之间,最小值是3.专业学习资料平台 网资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 有理数 检测试卷(六)测试题(含答案)
一、选择题(每小题3分,共30分) 1.下列说法正确的是( )
2.如果一个数的绝对值等于它的相反数,那么这个数( ) A .必为正数 B .必为负数 C .一定不是正数 D .不能确定正负 3.当a 、b 互为相反数时,下列各式一定成立的是( ) A .
1-=a b B .1=a
b
C .0=+b a
D .0πab 4.π-14.3的计算结果是( )
A .0
B .π-14.3
C .14.3-π
D .π--14.3
5.a 为有理数,则下列各式成立的是( )
A .02>a
B .012<-a
C .0)(>--a
D .012
>+a 6.如果一个数的平方与这个数的绝对值相等,那么这个数是( )
A .0
B .1
C .-1
D .0,1或-1 7.若3.0860是四舍五入得到的近似数,则下列说法中正确的是( )
A .它有四个有效数字3,0,8,6
B .它有五个有效数字3,0,8,6,0
C .它精确到0.001
D .它精确到百分位
8.已知0<a ,01<<-b ,则a ,ab ,2
ab 按从小到大的顺序排列为( ) A .2ab ab a << B .ab a ab <<2 C .a ab ab <<2 D .ab ab a <<2
9. 下列各组运算中,其值最小的是( )
A .2
)23(--- B .)2()3(-⨯- C .2
2
)2()3(-÷- D .)2()3(2
-⨯- 10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A .28 B .33 C .45 D .57 二、填空题(每小题3分,共24分)
11.绝对值小于n (n 是正整数)的整数共有___________个。
12.当0>>b a 时,a 1_______b
1
(填“>”“=”或“<”)。
13.如果a 与2
1
1
互为相反数,那么a 的倒数是____________。
14.在数轴上表示-5的点到原点的距离等于_____________。
15.如果由四舍五入得到的近似数是35,那么34.49,34.51,34.99,35.01这四个数中不
可能是真值的为________________。
16.=x ____________时,代数式43+x 的值是-2。
17.如果0<ab ,且b a <,那么a ______0,b _______0。
18.若2=a ,则=2
a __________,=3
a __________。
三、解答题(共46分) 19.(3分)有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C ,其位置如下图所示,试化简:c b a c b a +--++
-2
-1
2
1
A C B
20.(3分)把下列各数化简后在数轴上表示出来,并把它们按从小到大的顺序用“<”号连接起来。
4- 2)2(- 3)1(- )3(--
21.(4分)已知a 、b 互为相反数且0≠a ,c 、d 互为倒数,m =2.
求()20112012
a b a m cd b ++
+-的值.
22.计算:(每小题3分,共12分)
(1)215.2)21(21121212
23
--⨯⎥⎥⎦
⎤⎢⎢⎣⎡-+⎪⎭⎫ ⎝⎛-÷+-
(2)⎭
⎬⎫⎩⎨⎧--÷⎥⎦⎤
⎢⎣⎡-⨯-+-÷⨯-2)31()4.0()411()4(324)1(5
(3))115(215)211()811()321(31132-⨯+-⨯⎥⎥⎦⎤⎢⎢⎣
⎡-÷--⎪⎭⎫ ⎝⎛-
(4)()[
]{}()⎥⎦
⎤
⎢⎣
⎡⨯+-⨯-⨯-⨯-33222009.010009
.0109.013
2
2
2
23.解下列方程(每小题4分,共8分) (1)137
3
4=-
x (2)9.037.0-=--x 24.(16分)观察下列数表
第四列
第三列
第二列
第一列
•••••••••••••••
•••••••••第四行
第三行第二行第一行57-4-65-4-65-43-2-43-231
根据数表反映的规律,
(1) 猜想第6行与第6列的交叉点上的数应为____________。
(2) 第n 行与第n 列的交叉点上的数应为____________。
(用含正整数n 的式子表示) (3) 计算左上角2×2的正方形里所有数字之和,即:
1-23
-2
在数表中任取几个2×2的正方形,计算其中所有数字之和,归纳你得出的结论。
参考答案
一、选择题(每小题3分,共24分)
11.12-n 12.< 13.3
2
- 14.5 15.34.49 16.-2 17.<、> 18.4、±8 三、解答题(共52分)
19.0 20.23)2()3()1(4-<--<-<- 21.0或-4
20.(1)-2 (2)0 (3)1 (4)0 23.(1)21=x (2)3-=x 24.(1)11 (2)12-n
(3)在数表中,任取一个2×2的正方形中的4个数字之和为0。