第二章有理数及其运算测试题及答案
2023-2024学年七年级数学上册《第二章 有理数及其运算》单元测试题附带答案-北师大版
2023-2024学年七年级数学上册《第二章有理数及其运算》单元测试题附带答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、单选题的倒数是()1.﹣14D.以上都不对A.4 B.﹣4 C.142.下列各数中,是负整数的是())D.(−2)2A.−23B.−|−0.1|C.−(−133.已知|a|=5,b3=﹣27,且a>b,则a﹣b值为()A.2 B.﹣2或8 C.8 D.﹣24.下列计算结果为负数的是()A.B.C.D.5.下列运算中,正确的是()A.(﹣2)2=﹣4 B.(﹣3)3=﹣27C.32=6 D.﹣22=4、−|−4|、−(−100)、−32、(−1)2、−20%、0中正数的个数为()6.在−23A.1个B.2个C.3个D.4个7.在-(-1),(−1)2n+1,−12015,−(−1)2n+3,−|−1|,(−1)2n若n为正整数,则结果等于-1的有()个A.1 B.2 C.3 D.48.某公司员工分别住在A,B,C三个住宅区,A区有25人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应设在()A.A区B.B区C.A区或B区D.C区二、填空题9.绝对值不大于2005的非负整数的积是.10.若a 的相反数是﹣3,b 的绝对值是4,且|b|=﹣b ,则a ﹣b= .11.在数轴上,若点P 表示+1,则距P 点5个单位长度的点表示的数是 .12.在体育课的立定跳远测试中,以2.00m 为标准,若小明跳出了2.35m ,可记作+0.35m ,则小亮跳出了1.75m ,应记作 .13.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第 次后可拉出128根细面条.三、解答题14.计算:(1)|−7|−(−1.2)−|2−312|(2)−18+(−2)2×5+48÷(−4)3(3)−12×(−3)2+|−53|÷(34−13)15.在数轴上表示下列各数,并按照从小到大的顺序用“ < ”连接起来.+3, -1与 −(−412) ,0, -2 12 ,-22,|-0.5| 16.已知a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于5.求x 2+(a+b+cd )x ﹣(cd )2019的值.17.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位: km ): 第1批第2批 第3批 第4批 第5批 5km 2km −4km −3km 10km(1)接送完第5批客人时,该驾驶员在公司什么方向,距离公司多远?(2)若该出租车的收费标准为:行驶路程不超过 3km ,收费10元;超过 3km ,对超过部分另加收每千米1.8元.当送完第5批客人时,该驾驶员共收到车费多少元?18.银行的储蓄员小张在办理业务时,约定存入为正,取出为负,某天上午8:00-9:30,他先后办理了七笔业务:+20000元,-8000元,+4000元,-8000元,+14000元,-16000元,-2000元.(1)若他早上领取备用金40000元,那么9:30还有 元.(2)请判断在这七笔业务中,小张在第 笔业务办理后,手中的现金最多;第 笔业务办理后,手中的现金最少.(3)若每办一笔业务,银行发给业务员业务量的0.1%作为奖励,则办理这七笔业务小张应得奖金多少元?参考答案1.B2.A3.C4.B5.B6.B7.C8.C9.010.711.-4或612.−0.25m13.714.(1)解:|−7|−(−1.2)−|2−312| = 7+1.2−1.5=6.7(2)解:−18+(−2)2×5+48÷(−4)3 = −18+4×5−48÷64= −18+20−34= 114(3)解:−12×(−3)2+|−53|÷(34−13)= −12×9+53÷(912−412)= −12×9+53×125= −92+4= −1215.解:如图:根据数轴可得:−22<−212<−1<0<|−0.5|<+3<−(−412).16.解:根据题意得:a+b=0,cd=1,x=5或﹣5当x=5时,原式=25+5﹣1=29;当x=﹣5时,原式=25﹣5﹣1=19.17.(1)解:5+2+(−4)+(−3)+10=10(km) .答:该驾驶员在公司南边,距离公司10km .(2)解:第1批客人应付费:10+(5−3)×1.8=13.6(元);第2批客人应付费:10元;第3批客人应付费:10+(4−3)×1.8=11.8(元);第4批客人应付费:10元;第5批客人应付费:10+(10−3)×1.8=22.6(元).所以13.6+10+11.8+10+22.6=68(元).答:当送完第5批客人时,该驾驶员共收到车费68元.18.(1)44000(2)五;七(3)解:|+20 000|+|-8 000|+|+4 000|+|-8 000|+|+14 000|+|-16 000|+|-2 000|=72 000,办理这七笔业务小张应得奖金为72 000×0.1%=72(元)。
第二章《有理数及其运算》专项练习共7个专题(含答案)
第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处 6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10、某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示请回答,该生成绩最好和最差的科目分别是什么?专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)
北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。
满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。
A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。
若收入500元记作+500元,则支出237元记作()。
A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。
9A.3B.-7C.0D.194.近似数5.0×102精确到()。
A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。
其中数据29.47万用科学记数法表示为()。
A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。
A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。
则(-2)⊗(-1)的运算结果为()。
A.-5B.-3C.5D.3<0。
则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。
A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。
10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。
有理数及其运算测试题(含答案)
第二章 有理数及其运算测试题一、填空题(每小题3分,共30分)1、 在数轴上,若点A 与表示-2的点相距5个单位, 则点A 表示的数是2、某地某天的最高气温为5℃,最低气温为-3℃,这天的温差是 。
3、最小的正整数是______,最大的负整数是______,绝对值最小的整数是______.4、观察下列数:-2,-1,2,1,-2,-1……,从左边第一个数算起,第99个数是 。
5、若|a-2|+|b+3|=0,则3a+2b= .6、水池中的水位在某天8个时间测得的数据记录如下(规定上升为正,单位:cm ):+3、-6、-1、+5、-4、+2、-3、-2,那么这天中水池水位最终的变化情况是 。
7、已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月 日 点。
8、若a<0,b<0,则a-(-b)一定是 (填负数,0或正数)9、比较大小:7665--,-100 0.01,99a 100a (a<0)10、(-1)2n +(-1)2n+1=______(n 为正整数).二、选择题(每小题3分,共30分)11、如图所示,A 、B 两点所对的数分别为a 、b ,则AB 的距离为( ) A 、a-b B 、a+b C 、b-a D 、-a-b12、在-(-5),-(-5)2,-|-5|,(-5)3中负数有( )A 、0个B 、1个C 、2个D 、3个13、一个数的平方是81,这个数是( ) A 、9 B 、-9 C 、+9 D 、81 14、若b<0,则a+b,a,a-b 的大小关系为( ) A 、a+b>a>a-b B 、a-b>a>a+b C 、a>a-b>a+b D 、a-b>a+b>a 15、如果一个数的平方等于它的倒数,那么这个数一定是( ) A 、0 B 、1 C 、-1 D 、1或-1 16、下列说法正确的是( )A .有理数的绝对值为正数B .只有正数或负数才有相反数C .如果两数之和为0,则这两个数的绝对值相等( )D .如果两个数的绝对值相等,则这两个数之和为017. 学校、小明家、书店依次座落在一条南北走向的大街上,学校在小明家的正南2千米,书店在小明家的正北边10千米。
第二章 有理数及其运算 达标测试卷(含答案)北师大版(2024)数学七年级上册
第二章 有理数及其运算达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 若气温上升2 ℃记作+2 ℃,则气温下降3 ℃应记作( )A. -2 ℃B. +2 ℃C. -3 ℃D. +3 ℃ 2. 23-的绝对值是( ) A. 23 B. 23- C. 32 D. 32- 3. 发展新能源汽车是我国应对气候变化、推动绿色发展的战略举措.据统计,2022年国内新能源汽车销量超过6 800 000辆,数据6 800 000用科学记数法可表示为( )A. 0.68×107B. 6.8×106C. 68×105D. 680×1044. 下列各式中结果为负数的是( ) A. 23- B.(-3)2 C. -(-3) D. 3--5. 在-2□3的“□”中填入一个运算符号,使其运算结果最小,则“□”中填的是( )A. +B. -C. ×D. ÷6. 下列两数比较大小正确的是( )A .−31>−0.3B .−78<−89C .0<-1 .−32<−43 7. 若(x -1)2+2y +=0,则x +y 的值等于( )A. -3B. 3C. -1D.18. 小明家的汽车在阳光下曝晒后车内温度达到了60 ℃,打开车门后经过8 min 降低到与室外同温32 ℃,再启动空调关车门,若每分钟降低4 ℃,降到设定的20 ℃共用时间是( )A. 10 minB. 11 minC. 12 minD. 13 min9. 点A ,B 在数轴上的位置如图1所示,若点A ,B 表示的数分别为a ,b ,且满足a +b >0,则下列一定是正数的为( )A. aB. -aC. bD. -b图110.《庄子》中记载:“一尺之℃,日取其半,万世不竭.”这句话的意思是一尺长的木棍,每天截取它的一半,永远也截不完.若按此方式截一根长为1的木棍,第5天截取后木棍剩余的长度是( )A. 512B. 412C. 5112-D. 4112-二、填空题(本大题共6小题,每小题3分,共18分)11.13-的倒数是.12.13. 数轴上,如果点A表示78-,点B表示67-,那么离原点较近的点是__________.(填A或B)14. 太原市某天中午的温度是5 ℃,下午上升了2 ℃,由于冷空气南下,到夜间又下降了9 ℃,则这天夜间的温度是__________℃.15. 如图2,有一根木棒MN放置在数轴(单位长度是1 cm)上,它的两端M,N分别落在点A,B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为24,当点N移动到点A时,点M所对应的数为6.由此可得木棒MN的长为__________cm.图216. 已知a=3,b=5,且+a b=-a-b,则a-b的值为__________.三、解答题(本大题共6小题,共52分)17. (每小题4分,共8分)计算:18.(每小题4分,共8分)用简便方法计算:19.(6分)有理数x,y在数轴上对应的点如图3所示.(1)在数轴上表示出-x,y;(2)把x,y,0,-x,y这五个数用“<”号连接起来.图320.(8分)七年级小梅同学在学习完第二章《有理数及其运算》后,对运算产生了浓厚的兴趣.她借助有理数的运算,定义了一种新运算“℃”,规则如下:a℃b=a×b+2×a.(1)求(-2)℃(-3)的值;(2)(-5)℃[2℃(-4)].21. (10分)某蛋糕店在某一时段的销售情况如下,请分别完成下列问题:(1)该蛋糕店在一周的销售中,盈亏情况如下表:(盈余为正,亏损为负,单位:元)表中星期四的盈亏被墨水涂污了,请你算出星期四的盈亏数,并说明星期四是盈还是亏?盈亏是多少?(2)该蛋糕店去年1~3月平均每月盈利2万元,4~6月平均每月亏损1万元,7~8月平均每月亏损2万元,9~12月平均每月盈利4万元,则该蛋糕店去年总的盈亏情况如何?22.(12分)阅读:已知在纸面上有一数轴(如图4),折叠纸面,若数轴上表示数1的点与表示数-1的点重合,则数轴上表示数-2的点与表示数2的点重合.图4折叠纸面,使数轴上表示数-4的点与表示数0的点重合,解答下列问题:(1)数轴上表示数3的点与表示数_________ 的点重合;(2)若点A到原点的距离是5个单位长度,并且A,B两点经折叠后重合,求点B表示的数;(3)若数轴上M,N两点之间的距离为100,并且M,N两点经折叠后重合,如果点M表示的数比点N 表示的数大,直接写出点M,N表示的数.附加题(共20分,不计入总分)对于有理数x,y,a,t,若,则称x和y关于a的“美好关联数”为t.例如(1)-3和5关于2的“美好关联数”为_________;(2)若x和2关于3的“美好关联数”为4,求x的值;(3)若x0和x1关于1的“美好关联数”为1,x1和x2关于2的“美好关联数”为1,x2和x3关于3的“美好关联数”为1,…,x40和x41关于41的“美好关联数”为1,….①x0+x1的最小值为___________;②x1+x2+x3+…+x40的最小值为___________.(江西贺振宇)第二章有理数及其运算达标测试卷参考答案答案速览一、1. C 2. A 3. B 4. D 5. C 6. B 7. C 8. B 9. C 10. A二、11. -3 12. 1413. B14. -2 15. 6 16. 8或2三、解答题见“答案详解”答案详解15. 6 解析:由数轴知木棒MN的长为(24-6)÷3=6℃cm℃.16. 8或2 =3,b=5,所以+b=-a-b,所以a+b≤0.所以a=3℃b=-5,或a=-3℃b=-5.℃a=3℃b=-5℃℃a-b=8℃℃a=-3℃b=-5℃℃a-b=2.所以a-b的值为8℃2.三、17.(1)-16;(2)-26.19. 解:(1)在数轴上表示-x,y如图所示:(2)用“<”号连接为-x℃y℃0℃y℃x.20. 解:(1)(-2)⊕(-3)=(-2)×(-3)+2×(-2)=6-4=2;(2)(-5)⊕[2⊕(-4)]=(-5)⊕[2×(-4)+2×2]=(-5)⊕(-8+4)=(-5)⊕(-4)=(-5)×(-4)+2×(-5)=20-10=10℃21. 解:(1)根据表格知,星期四的盈亏数为4580-[(-278)+(-703)+2000+(-80)+380+1880]=4580-319 9=1381(元).因为1381是正数,所以星期四是盈利,盈利1381元.(2)记盈利为正,亏损为负,该蛋糕店去年总的盈亏数为2×3+(-1)×3+(-2)×2+4×4=15(万元).所以该蛋糕店去年总共盈利15万元.22. 解:因为数轴上表示数-4的点与表示数0的点重合,所以折点为-2.(1)-7(2)因为点A到原点的距离是5个单位长度,所以点A表示的数为5或-5.因为A,B两点经折叠后重合,所以当点A表示-5时,-2-(-5)=3,-2+3=1;当点A表示5时,5-(-2)=7,-2-7=-9.所以点B表示的数是1或-9.(3)点M,N表示的数分别为48,-52.附加题解:(1)8(3)①1解析:因为x0和x1关于1的“美好关联数”为1,所以点的距离和为1,所以只有当x0=0,x1=1时,x0+x1有最小值1.……。
数学七年级上册第二章《有理数及其运算》同步训练 及 答案
第二章《有理数及其运算》同步训练答案一、选择题(本大题共有10个小题,每小题3分,共30分)1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】B9.【答案】A10.【答案】A二、填空题(本大题共有6个小题,每小题3分,共18分)11.【答案】>12.【答案】4−−13.【答案】314.【答案】1−15.【答案】-1016.【答案】12− 三、解答题(本大题共有6个小题,共52分)17.解:(1)正数集合:{227,2012,1.99,(6)−−,}; (2)负数集合:{-5,34−,-3.14,|12|−−}; (3)整数集合:{-5,0,2012,(6)−−,|12|−−};(4)分数集合:{ 34− ,-3.14,227,1.99,} 18.解:﹣|412|=﹣412,|﹣3|=3,﹣(﹣5)=5, 用数轴表示为:.故它们的大小关系为﹣6<﹣|412|<﹣122<﹣1<0<|﹣3|<3.5<﹣(﹣5). 19.解:(1)()()()18318315−−−=−+=−;(2)12(18)(7)151218(7)(15)30(22)8−−+−−=++−+−=+−=;20 .(1)解:()()()()111216151810+−+−++−+−30=−,∵300−<,∴仓库里的货品是减少了;(2)解:()27030300−−=(吨),答:6天前仓库里有货品300吨;(3)解:111216151810+−+−++−+−82=(吨),825410⨯=(元);答:要付410元装卸费.21.解:(1)11112 4612⎛⎫−+⨯ ⎪⎝⎭111=121212 4612⨯−⨯+⨯=321−+=2.(2)772(6) 483÷−⨯−78=447⨯+=6.22.解:(1)∵1⊙3=1×4+3=7 3⊙1=3×4+1=13 5⊙4=5×4+4=24 ,a⊙b=4a+b;故答案为4a+b;(2)若a≠b,a⊙b=4a+b,b⊙a=4b+a,∵(4a+b)﹣(4b+a),=3a﹣3b,≠0,∴a ⊙b ≠b ⊙a .故答案为≠;(3)﹣5⊙(4⊙﹣3),=﹣5⊙(4×4﹣3),=﹣5⊙13,=﹣5×4+13,=﹣20+13,=﹣7.23.解:(1)根据题意可得:到终点前,车上有1815312471051129+−+−+−+−=,即29人; 故到终点下车29人.故答案为29;(2)根据图表可知各站之间车上人数分别是: 起点A →站,车上有18人,A 站B →站,车上有1815330+−=人, B 站C →站,车上有3012438+−=人, C 站D →站,车上有3871035+−=人, D 站→终点,车上有3551129+−=人, 易知B 站和C 站之间人数最多.故答案为B ;C ;(3)根据题意可知:起点A →站,车上有18人, A 站B →站,车上有1815330+−=人, B 站C →站,车上有3012438+−=人, C 站D →站,车上有3871035+−=人, D 站→终点,车上有3551129+−=人, 则()18303835291150++++⨯=(元). 答:该车出车一次能收入150元.24.解:(1)点B 向右移动5个单位长度后,点B 表示的数为1; 三个点所表示的数中最小的数是点A ,为1−.(2)点D 到A ,C 两点的距离相等;故点D 为AC 的中点.D 表示的数为:0.5.(3)当点E 在A 、B 之间时,2=EA EB ,从图上可以看出点E 为3−, ∴点E 表示的数为3−;当点E 在点B 的左侧时,根据题意可知点B 是AE 的中点, ∴点E 表示的数是7−.综上:点E 表示的数为3−或7−.。
【2024秋】最新鲁教版五四制六年级上册数学第二章《有理数及其运算》测试卷(含答案)
【2024秋】最新鲁教版五四制六年级上册数学第二章《有理数及其运算》测试卷(含答案)一、选择题(每题3分,共36分)1.[2023·安徽]-5的相反数是()A.-5B.5C.15D.-152.中国是最早采用正负数表示相反意义的量的国家,如果将收入40元记作+40元,那么支出20元记作()A.+40元B.-40元C.+20元D.-20元3.在-125%,23,25,0,-0.3,0.67,-4,-527中,非负数有()A.2个B.3个C.4个D.5个4.[2023·成都]在3,-7,0,19四个数中,最大的数是()A.3B.-7C.0D.19 5.[2023·衢州]手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm),则下列信号最强的是()A.-50dBm B.-60dBm C.-70dBm D.-80dBm 6.[2024·淄博淄川区期末]下列计算不正确的是()A.-12-2×(-3+4)=-3B.-12-2×(-3-4)=-15C.(-1)2-2×(-3-4)=15D.(-1)2-2×(-3+4)=-1 7.[2023·杭州]已知数轴上的点A,B分别表示数a,b,其中-1<a<0,0<b <1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A BC D8.[2024·烟台栖霞市期中情境题·游戏活动型]小新玩“24点”游戏,游戏规则是对卡片上的数进行加、减、乘、除混合运算(每张卡片必须用一次且只能用一次,可以加括号),使得运算结果是24或-24.小新已经抽到前3张卡片上的数分别是-1,5,8,若再从标有下列4个数的4张卡片中抽出1张,则其中不能与前3张算出“24点”的是()A.2 B.3 C.4 D.5 9.[2024·泰安新泰市期中]按括号内的要求用四舍五入法求近似数,下列正确的是()A.2.604≈2.60(精确到十分位)B.0.0534≈0.1(精确到0.1)C.39.37亿≈39亿(精确到千万位)D.0.01366≈0.014(精确到0.000 1)10.[2024·北京朝阳区期末]已知a,b是有理数,它们在数轴上的对应点的位置如图所示,下列各式正确的是()A.-b<-a<a<b B.-a<-b<a<bC.b<-a<a<-b D.b<-b<-a<a11.已知A,B两点在数轴上表示的数分别是-3和-6,若在数轴上找一点C,使得点A,C之间的距离是4;再找一点D,使得点B,D之间的距离是1,则C,D之间的距离不可能是()A.0B.6C.2D.412.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,…,由以上等式可推得3+32+33+34+…+32025的结果的个位数字是()A.0B.9C.3D.2二、填空题(每题3分,共18分)13.[2023·武汉]新时代十年来,我国建成世界上规模最大的社会保障体系,其中基本医疗保险的参保人数由5.4亿增加到13.6亿,参保率稳定在95%.将数据13.6亿用科学记数法表示为1.36×10n的形式,则n的值是(备注:1亿=100000000).14.[2024·烟台福山区期末]按照如图所示的操作步骤,若输入的值为2,则输出的值为.(第14题)15.已知有理数a,b满足(a-2)2+|b+1|=0,则b a=.16.[2024·泰安泰山区期末新考法·分类讨论法]已知m,n互为相反数,a,b互为倒数,|x|=2,则m+n2 022x +2024ab-14x2=.17.“五月天山雪,无花只有寒”反映出地形对气温的影响.海拔每升高100米,气温约下降0.6℃.有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6℃,则此时山顶的气温约为℃.18.[2024·潍坊二模]如图,第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME-14的举办年份,则八进制数2024换算成十进制数是.(注:80=1)(第18题)三、解答题(共66分)19.(8分)[2024·菏泽牡丹区月考]把下列各数填在相应的表示集合的大括号里:-3,2.5,1,-0.58,0,139,0.3·.整数集合:{…};分数集合:{…};正有理数集合:{…};负有理数集合:{…}.20.(8分)[2024·济宁期末]计算:(1)(-20)+(+3)-(-5)-(+7);(2)(-991112)×24;(3)(-1)2024-8÷(-2)3+4×(-12)3.21.(8分)已知a,b,c,d是四个互不相等的有理数,且a是平方等于本身的正数,b是立方等于本身的负数,c是相反数等于本身的数,d是绝对值等于本身的数.求(a÷b)2024-3ab+2(cd)2023的值.22.(10分)[新视角类比探究题](1)填空(在横线上填“=”“>”或“<”):[4×(-5)]242×(-5)2;(2×3)323×33.(2)根据以上计算结果猜想:(mn)p(p是正整数)等于什么?根据所学知识验证.(3)利用上述结论,求22023×(-0.5)2024的值.23.(10分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量的部分记为正,不足计划量的部分记为负.下表是小王第一周销售柚子的情况:(2)小王第一周实际销售柚子多少千克?(3)若小王按9元/千克进行柚子销售,平均运费为4元/千克,则小王第一周销售柚子一共收入多少元?24.(10分)[新考法分类讨论法]我们知道,若有理数x1,x2在数轴上对应的点分别为A1,A2,且x1<x2,则点A1与点A2之间的距离为|x2-x1|=x2-x1.如图,现已知数轴上有三点A,B,C,其中点A表示的数为-3,点B表示的数为3,点C不与点A,B重合,且点C与点A之间的距离为m,点C与点B 之间的距离为n.请解答下列问题:(1)若点C在数轴上表示的数为-6.5,求m+n的值;(2)若m+n=8,则点C表示的数为;(3)若点C在点A,B之间,且m=13n,求点C表示的数.25.(12分)已知|2-xy|+(1-y)2=0.(1)求(x-y)2023+(-y)2023的值;(2)求1xy +1(x+1)(y+1)+1(x+2)(y+2)+…+1(x+2 023)(y+2 023)的值.答案一、1.B2.D【点拨】收入和支出是一组具有相反意义的量,收入40元记作+40元,那么支出20元记作-20元.3.C【点拨】非负数有2,25,0,0.67,共4个.3<3,4.A【点拨】因为-7<0<19所以最大的数是3.5.A【点拨】因为|-50|=50,|-60|=60,|-70|=70,|-80|=80,50<60<70<80,所以信号最强的是-50dBm.6.B【点拨】-12-2×(-3+4)=-1-2×1=-1-2=-3,计算正确;-12-2×(-3-4)=-1-2×(-7)=-1+14=13,计算错误;(-1)2-2×(-3-4)=1-2×(-7)=1+14=15,计算正确;(-1)2-2×(-3+4)=1-2×1=1-2=-1,计算正确.7.B【点拨】因为-1<a<0,0<b<1,所以-1<a×b<0,即-1<c<0,那么点C应在-1和0之间,则A,C,D不符合题意,B符合题意.8.D【点拨】8×(5+(-1)×2)=8×(5-2)=8×3=24;8×[5-(-1)-3]=8×3=24;(8-4)×(-1-5)=4×(-6)=-24;5不能与-1,5,8算出“24点”.9.B【点拨】A.2.604≈2.6(精确到十分位),故不正确;B.0.053 4≈0.1(精确到0.1),故正确;C.39.37亿≈39.4亿(精确到千万位),故不正确;D.0.01366≈0.0137(精确到0.0001),故不正确.10.C11.D【点拨】根据题意得,点C表示的数为1或-7,点D表示的数为-7或-5,所以点C,D之间的距离可能是0或2或6或8,所以点C,D之间的距离不可能是4.12.C【点拨】因为31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,…,所以3的正整数次幂的个位数字按3,9,7,1循环出现.因为3+9+7+1=20,且2025÷4=506……1,所以3+32+33+34+…+32025的结果的个位数字是0×506+3=3.二、13.9【点拨】13.6亿=1360000000=1.36×109.14.3015.1【点拨】因为(a-2)2+|b+1|=0,(a-2)2≥0,|b+1|≥0,所以a-2=0,b+1=0,所以a=2,b=-1,所以b a=(-1)2=1.16.2023【点拨】因为m,n互为相反数,a,b互为倒数,|x|=2.所以m+n=0,ab=1,x=±2.当x=2时,m+n2022x +2024ab-14x2=02022×2+2024×1-14×22=0+2024-14×4=2024-1=2023;当x=-2时,m+n2022x +2024ab-14x2=02022×(-2)+2024×1-14×(-2)2=0+2024-14×4=2024-1=2023.综上所述,m+n2022x +2024ab-14x2=2023.17.-6【点拨】山顶的气温约为6-(2350-350)÷100×0.6=-6(℃).18.1044【点拨】2×83+0×82+2×81+4×80=2×512+0×64+2×8+4×1=1024+0+16+4=1044.三、19.【解】整数集合:{-3,1,0,…};分数集合:{2.5,-0.58,139,0.3·,…};正有理数集合:{2.5,1,139,0.3·,…};负有理数集合:{-3,-0.58,…}.20.【解】(1)原式=-17+5-7=-12-7=-19.(2)原式=(-100+112)×24=-100×24+112×24=-2400+2=-2398.(3)原式=1-8÷(-8)+4×(-18)=1+1+(-12)=2-12=32.21.【解】因为a是平方等于本身的正数,b是立方等于本身的负数,c是相反数等于本身的数,d是绝对值等于本身的数,且a,b,c,d互不相等,所以a=1,b=-1,c=0,d>0且d≠1,所以(a÷b)2024-3ab+2(cd)2023=[1÷(-1)]2024-3×1×(-1)+2×(0×d)2023=(-1)2024+3+0=1+3+0=4.22.【解】(1)=;=【点拨】[4×(-5)]2=(-20)2=400,42×(-5)2=16×25=400,所以[4×(-5)]2=42×(-5)2.(2×3)3=63=216,23×33=8×27=216,所以(2×3)3=23×33.(2)(mn )p =m p n p .验证:(mn )p =mn ×mn ×…×mn ⏟ p 个=m ×m ×…×m ⏟ p 个×n ×n ×…×n ⏟ p 个=m p n p . (3)22 023×(-0.5)2 024=22 023×(-12)2 024=22 023×(12)2 024=22 023×(12)2 023×12=(2×12)2 023×12=12.23.【解】(1)13-(-7)=20(千克).答:小王第一周销售柚子最多的一天比最少的一天多销售20千克. (2)3-6-2+11-7+13+5+100×7=717(千克). 答:小王第一周实际销售柚子717千克. (3)717×(9-4)=3 585(元).答:小王第一周销售柚子一共收入3 585元.24.【解】(1)由题意得m =-3-(-6.5)=-3+6.5=3.5,n =3-(-6.5)=3+6.5=9.5,所以m +n =3.5+9.5=13.(2)-4或4 【点拨】设点C 表示的数为x , 分3种情况:当点C 在点A 的左侧时,m =-3-x ,n =3-x . 因为m +n =8,所以-3-x +(3-x )=8,所以x =-4; 当点C 在点B 的右侧时,m =x +3,n =x -3. 因为m +n =8,所以x +3+(x -3)=8,所以x =4;当点C 在点A ,B 之间时,易得m +n =6≠8,此情况不成立.综上所述,点C 表示的数为-4或4. (3)设点C 表示的数为y , 因为点C 在点A ,B 之间, 所以m =y +3,n =3-y .又因为m =13n ,所以y +3=13(3-y ),所以y =-32,即点C 表示的数是-32.25.【解】(1)因为|2-xy |+(1-y )2=0,且|2-xy |≥0,(1-y )2≥0, 所以2-xy =0,①1-y =0.② 由②得y =1.把y =1代入①得2-x =0,解得x =2. 所以(x -y )2023+(-y )2023=12023+(-1)2023=1+(-1) =0.(2)由(1)知x =2,y =1. 所以1xy +1(x+1)(y+1)+1(x+2)(y+2)+…+1(x +2 023)(y +2 023)=11×2+12×3+13×4+…+12 024×2 025=(1-12)+(12-13)+( 13-14)+…+(12 024-12 025)=1-12+12-13+13-14+…+12 024-12 025=1-12 025=2 0242 025.点技巧 (1)若|A |+B 2=0,则有A =0且B =0; (2)(n ,k 均为正整数).。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.若海平面以上500米,记作+500米,则海平面以下100米可记作( )A .100米B .-100米C .500米D .-500米2.已知x y ,为有理数,如果规定一种运算“*”,*1x y xy =+则()()2*5*3-的值是( )A .30-B .29-C .33-D .32-3.下列各组数中,互为相反数的是( )A .3与13-B .()2--与2C .25-与()25-D .7与7-4.据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442 × 107B .0.1442 × 107C .1.442 × 108D .1442 × 1045.下列说法:①若a b =﹣1,则a 、b 互为相反数;①若a+b <0,且b a>0,则|a+2b|=﹣a ﹣2b ;①一个数的立方是它本身,则这个数为0或1;①若﹣1<a <0,则a 2>﹣1a;①若a+b+c <0,ab >0,c >0,则|﹣a|=﹣a ,其中正确的个数是( )A .2个B .3个C .4个D .5个 6.平面展开图按虚线折叠成正方体后,相对两个面上的数互为相反数,则x 、y 的值为( )A .2,3B .-2,-3C .-1,-3D .-1,-27.下列各组数中,运算结果相等的是( )A .22()3与223 B .﹣22与(﹣2)2C .﹣(﹣5)3与(﹣5)3D .﹣(﹣1)2015与(﹣1)2016 8.下列说法中正确的是( )A .两个有理数,绝对值大的反而小B .两个有理数的和为正数,则至少有一个加数为正数C .三个负数相乘,积为正数D .1的倒数是1,0的倒数是09.第十四届中国(合肥)国际园林博览会在合肥骆岗中央公园举办,该公园占地面积12.7平方公里,是世界最大的城市中央公园.2023年中秋、国庆八天假期,接待总游客突破225万人,创造了历史记录.其中225万用科学记数法表示为( )A .62.2510⨯B .72.2510⨯C .52.2510⨯D .422510⨯10.下列说法正确的是( )A .如果0x =,那么x 一定是0B .如果3x =,那么x 一定是3C .3和8之间有4个正数D .1-和0之间没有负数了11.用四舍五入法按要求把2.05446取近似值,其中错误的是 ( )A .2.1(精确到0.1)B .2.05(精确到百分位)C .2.05(保留2个有效数字)D .2.054(精确到0.001)12.比1小2的数是( )A .2B .﹣2C .﹣1D .﹣2二、填空题13.2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为 . 14.79-的绝对值是 .15.已知|x+2|=1,则x=16.在247⎛⎫- ⎪⎝⎭中,底数是 ,指数是 ,乘方的结果为 . 17.下列7个数:47-,1.01001001与4333,0,-π,-6.9,0.12,其中分数有 个.三、解答题18.已知算式“()1825--⨯-”.(1)聪聪将数字“5”抄错了,所得结果为24-,则聪聪把“5”错写成了______;(2)慧慧不小心把运算符号“×”错看成了“+”,求慧慧的计算结果比原题的正确结果大多少?19.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣22,2,﹣1.5,0,|﹣3|和132.20.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周苹果的销售情况: 星期一 二 三 四 五 六 日 苹果销售超过或不足计划量情况(单位:千克) 4+ 6- 4- 10+ 8- 12+ 6+(1)小王第一周实际销售苹果超过或不足多少千克?实际销售苹果的总量是多少千克?(2)若小王按7元/千克进行苹果销售,成本为3元/千克,且平均运费为1元/千克,则小王第一周销售苹果的利润一共多少元?21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米)+15,-3,+14,-11,+10,-18,+14(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为0.06升/千米,油价为7.5元/升,这天下午共需支付多少油钱?22.小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,+-+-+--++-+他这天下午行车里程(单位:千米)如下:14,3,7,3,11,4,3,11,6,7,9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?23.如图,在平面直角坐标系中,点A 、B 的坐标分别为(),0A a ,(),0B b 且a 、b 满足240a b +-=,现同时将点A 、B 分别向右平移2个单位,再向上平移3个单位,得到点A 、B 的对应点C 、D ,连接AC 、BD 、CD .(1)请直接写出以下各点的坐标:A (____,____);B (____,____);C (____,____);D (____,____);(2)若点M 在x 轴上,且三角形ACM 的面积是平行四边形ABDC 面积的13,求M 点的坐标; (3)点Q 在线段CD 上,点P 是线段BD 上的一个动点,连接PQ 、PQ ,当点P 在线段BD 上移动时(不与点D 、B 重合),请找出AOP ∠、OPQ ∠和PQC ∠的数量关系,并证明你的结论.24.两百年前,德国数学家哥德巴赫发现:任何一个不小于6的偶数都可以写成两个奇素数(既是奇数又是素数)之和,简称:“1+1 ”.如633=+,1257=+等等.众多数学家用很多偶数进行检验,都说明是正确的,但至今仍无法从理论上加以证明,也没找到一个反例.这就是世界上著名的哥德巴赫猜想.你能检验一下这个伟大的猜想吗?请把偶数42写成两个奇素数之和.42= + ,或者42= + . 你是否有更大的发现:把42写成4个奇素数之和?42= + + + .参考答案1.B2.D3.C4.A5.B6.C7.D8.B9.A10.A11.C12.C13.71.15810⨯14.7915.-1或-316. - 472 1649 17.5/五18.(1)6(2)慧慧的计算结果比原题的正确结果大1119.212 1.502332-<-<<<-< 20.(1)超过14千克,实际销售苹果的总量为714千克;(2)利润一共为2142元.21.(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费38.25元22.(1)在下午出车点的东边38千米(2)78千米;(3)7.8升23.(1)2- ;0 ;4;0;0;3;6;3(2)()6,0-或()2,0(3)360PQC AOP OPQ +∠+∠=︒∠24.5,37;11,31;5,5,13,19。
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(含答案)
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分) 1.若有理数a ,a+2b ,b 在数轴上对应点如图所示,则下列运算结果是正数的是( ) A .a+b B .a - b C .1.5a+b D .0.5a+1.5b2.下列各式:①-(-5),②-|-2|,③-(-2)2,④-52,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个3.下列说法中正确的选项是( )A .温度由﹣3℃上升 3℃后达到﹣6℃B .零减去一个数得这个数的相反数C .3π既是分数,又是有理数 D .20.12 既不是整数,也不是分数,所以它不是有理数 4.把数3120000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1075.下列各式中一定成立的是( )A .221(1)-=-B .331(1)=-C .221(1)=--D .33(1)(1)-=- 6.数轴上如果点A 表示的数2,将点A 向左移动6个单位长度后表示的数是( ) A .6 B .-4 C .-6 D .-87.如图,数轴的单位长度为1,如果P ,R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T8.下列说法不正确的是( )A .0既不是正数,也不是负数B .一个有理数不是整数就是分数C .1是绝对值是最小的有理数D .0的绝对值是09.下列有理数-2,(-1)2,0,|-5|,其中负数的个数有( )A .1个B .2个C .3个D .4个10.下列说法中,正确的是( )A .一个数的相反数是负数B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点,可以在原点的同一侧二、填空题(每小题4分,共32分) 1.已知a 、b 互为相反数,m 、n 互为倒数,则28a b mn +-+的值是 . 2.你吃过拉面吗?如图把一个面团拉开,然后对折,再拉开再对折,如此往复下去折5次, 会拉出 根面条.3.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“9cm ”分别对应数轴上的5-和x ,那么x 的值为 .4.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a+b+c+d= . 5.“腊味香肠”是居民冬季特别是春节餐桌上必不可少的传统美食,每年入冬以后,便进入灌香肠的好时节.老李、老陈、老杨三人约定每人拿出相同数目的钱共同去灌制香肠.香肠灌制完成后,老李、老陈分别比老杨多分了8、13斤香肠,最后结算时,老李需付给老杨30元,则老陈应付给老杨 元.6.34--的倒数是 ,24-()的相反数是 . 7.纸上画有一条数轴,将纸对折后,表示5的点与表示2-的点恰好重合,则此时与表示 3.5-的重合的点所表示的数是 .8.北京与纽约的时差为-13h (负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间16:00,那么纽约时间是 .三、解答题(每小题8分,共48分)1.如图,周长为2个单位长度的圆片上的一点A 与数轴上的原点O 重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:第1次第2次第3次第4次第5次第6次滚动周数+3 -1 -2 +4 -3 a①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;②当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?2.计算:(1)﹣10﹣(﹣18)+(﹣4)(2)(﹣54)÷(﹣3)+83×(﹣92)(3)(513638-+)×(﹣24)(4)(﹣12)3+[﹣8﹣(﹣3)×2]÷43.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时乙在前,甲在后,出发后8分钟甲、乙第一次相遇,出发后的24分钟时甲、乙第二次相遇.假设两人的速度保持不变,你知道出发时乙在甲前多少米吗?4.计算:(1)﹣7﹣11+4+(﹣2)(2)3×(—4)+(—28)÷7(3)111135 532114⎛⎫⨯-⨯÷⎪⎝⎭参考答案一、单选题(每小题2分,共20分)1.D 2.B 3.B 4.B 5.C6.B 7.D 8.C 9.A 10.C二、填空题(每小题4分,共32分)三、解答题(每小题8分,共48分)- 5 -。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)一、选择题1.−3的绝对值是()A.3B.13C.−13D.−32.2022年春季开学后,济南市的天气突然降温,2月16日的最高气温是2℃,最低气温是−4℃,那么这天的温差是()A.6℃B.−6℃C.2℃D.−2℃3.−|−2021|的相反数为()A.−2021B.2021C.−12021D.1 20214.党的十八大以来,以习近平同志为核心的党中央重视技能人才的培育与发展.据报道,截至2021年底,我国高技能人才超过65000000人,将数据65000000用科学记数法表示为()A.6.5×106B.65×106C.0.65×108D.6.5×1075.下列说法中,错误的是()A.数轴上表示−3的点距离原点3个单位长度B.规定了原点、正方向和单位长度的直线叫做数轴C.有理数0在数轴上表示的点是原点D.表示十万分之一的点在数轴上不存在6.下列各式:①−(−2);②−|−2|;③−22;④(−2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个7.小明在写作业时不慎将两滴墨水滴在数轴上,如图所示,此时墨迹盖住的整数共有()个.A.3B.4C.5D.68.计算:1−(+2)+3−(+4)+5−(+6)+⋯−(+2022)=()A.2022B.−2022C.−1011D.10119.若|x|=7,|y|=9,则x−y为()A.±2和±16B.±16C.−2和−16D.±210.有理数a,b在数轴上对应的位置如图所示,则()A.|a|<|b|B.ab>0C.a+b<0D.a−b>0 11.如图,a,b,c,d,e,f均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a−b+c−d+e−f的值为()A.1B.−3C.7D.812.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2022,则这只小球的初始位置点P0所表示的数是()A.−1971B.1971C.−1972D.197213.已知|x|=6,y2=4,且xy<0.则x+y的值为()A.4B.−4C.4或−4D.2或−214.某路公交车从起点经过A,B,C,D站到达终点,各站上、下乘客人数如下表所示(用正数表示上车的人数,负数表示下车的人数)站点起点A B C D终点上车人数x1512750下车人数0−3−4−10−11−29若此公交车采用一票制,即每位上车乘客无论哪站下车,车票都是2元,问该车这次出车共收入()A.114元B.228元C.78元D.56元二、填空题15.A、B为同一数轴上两点,且A、B两点间的距离为3个单位长度,若点A所表示的数是-1,则点B所表示的数是.16.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a−b+c的值为 .17.体育课上规定时间内仰卧起坐的满分标准为46个,高于标准的个数记为正数.如某同学做了50个记作“+4”,那么“-5”表示这位同学作了 个.18.有理数 a 、 b 在数轴上的位置如图所示,则下列各式:①a +b >0 ;②a −b >0 ;③b >a ;④ab <0 ;⑤|b −a|=a −b 正确的有 .(填式子前面的序号即可)19.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2m 记作 +2 m ,则下降1m 记作 m .三、计算题20.计算题(1)−20+(−14)−(−18);(2)(−38−16+34)×(−24);(3)−8÷2×(−12)×0.25;(4)−14−8÷(−4)×|−6+4|.21.计算:(1)9+5×(−3)−(−2)2÷4; (2)(−5)3×[2−(−6)]−300÷5(3)(−13)×3÷3×(−13);(4)(−14−56+89)÷(−16)2+(−2)2×(−14)22.(1)12+(−5)−7−(−24)(2)(−36)×(13−12)+16÷(−2)3四、解答题23.阅读下面文字:对于(−556)+(−923)+1734+(−312)可以按如下方法进行计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−5 4)=−54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(−202156)+(−202023)+404223+(−112)24.在数轴上表示下列各数:5,3.5,−212,−1,并把它们用“<”连接起来.25.如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当t=2时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.26.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+3,-8,+4,+7,-6,+8,-7,+10.(1)问收工时,检修队在A地哪边?据A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.2升,则汽车共耗油多少升?27.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?五、综合题28.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“−”表示出库)+21,−32,−16,+35,−38(1)经过这6天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?29.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,求t 的值30.李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)周一周二三四五六日+15+100+20+15+10+14-8-12-19-10-9-11-8(1)到这个周末,李强有多少节余?(2)照这样,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?31.已知a 是最大的负整数,b 是15的倒数,c 比a 小1,且a 、b 、c 分别是A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴负方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)在数轴上标出点A 、B 、C 的位置;(2)运动前P 、Q 两点间的距离为 ;运动t 秒后,点P ,点Q 运动的路程分别为 和 ;(3)求运动几秒后,点P 与点Q 相遇?(4)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于11,直接写出所有点M 对应的数.32.有理数a ,b ,c 在数轴上的位置如图所示(1)a 0;b 0;c 0. (2)化简|a|+|a +b|−|c −b|.33.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期 一 二 三 四 五 六 日 增减+100−200+400−100−100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?34.出租车司机小主某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米) ﹣2,+5,﹣8,﹣3,+6,﹣2(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】D13.【答案】C14.【答案】A15.【答案】2或-416.【答案】217.【答案】4118.【答案】②④⑤19.【答案】-120.【答案】(1)解:原式=−20−14+18=−34+18 =−16;(2)解:原式=−38×(−24)−16×(−24)+34×(−24)=9+4−18=−5;(3)解:原式=−4×(−12)×14=4×12×14=12;(4)解:原式=−1−(−2)×2=−1−(−4) =−1+4=3.21.【答案】(1)解:9+5×(−3)−(−2)2÷4=9−15−4÷4 =9−15−1=−7(2)解:(−5)3×[2−(−6)]−300÷5=−125×8−60 =−1000−60 =−1060(3)解:(−13)×3÷3×(−13)=−1×13×(−13) =19(4)解:(−14−56+89)÷(−16)2+(−2)2×(−14)=(−14−56+89)×36+4×(−14) =−14×36−56×36+89×36−56=−9−30+32−56=−6322.【答案】(1)解:12+(−5)−7−(−24)=12−5−7+24 =12−12+24=24;(2)解:(−36)×(13−12)+16÷(−2)3=(−36)×13−(−36)×12+16÷(−8)=−12+18+(−2) =4.23.【答案】解:原式=[(−2021)+(−56)]+[(−2020)+(−23)]+(4042+23)+[−1+(−12)]=(−2021−2020+4042−1)+(−56−23+23−12)=0+(−4 3)=−43.24.【答案】解:数轴如图所示:用“<”连接起来:−212<−1<3.5<5.25.【答案】(1)0(2)5(3)2t;2t﹣4(4)1,3,7,926.【答案】(1)解:+3-8+4+7-6+8-7+10=11(千米).故收工时,检修队在A地南边,距A地11千米远.(2)解:|+3|+|-8|+|+4|+|+7|+|-6|+|+8|+|-7|+|+10|=53(千米).故汽车共行驶53千米.(3)解:53+11=64(千米),64×0.2=12.8(升).故汽车共耗油12.8升.27.【答案】(1)解:+17-9+7-15-3+11-6-8+5+16=+15(千米)答:养护小组最后到达的地方在出发点的东边,距出发点15千米远;(2)解:(17+|-9|+7+|-15|+|-3|+11+|-6|+|-8|+5+16)×0.5=48.5(升)答:这次养护共耗油48.5升.28.【答案】(1)减少了(2)解:460+50=510(吨)答:6天前仓库里有货品510吨.(3)解:21+32+16+35+38+20=162(吨)则装卸费为:162×5=810(元).答:这6天要付810元装卸费.29.【答案】(1)4(2)1(3)解:①当点P 在点M 的左侧时根据题意得:−1−x +3−x =8解得:x =−3②P 在点M 和点N 之间时,则x −(−1)+3−x =8,方程无解,即点P 不可能在点M 和点N 之间③点P 在点N 的右侧时解得:x =5∴x 的值是−3或5;(4)解:设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN点P 对应的数是−t ,点M 对应的数是−1−2t ,点N 对应的数是3−3t①当点M 和点N 在点P 同侧时,点M 和点N 重合所以−1−2t =3−3t ,解得t =4,符合题意②当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧)故PM =−t −(−1−2t )=t +1,PN =(3−3t )−(−t )=3−2t所以t +1=3−2t ,解得t =23,符合题意综上所述,t 的值为23或430.【答案】(1)解:根据题意列得:(+15)+(-8)+(+10)+(-12)+0+(-19)+(+20)+(-10)+(+15)+(-9)+(+10)+(-11)+(+14)+(-8)=7则李强有7元的节余;(2)解:30×(7÷7)=30则李强一个月能有30元的节余;(3)解:根据题意列得:(-8)+(-12)+(-19)+(-10)+(-9)+(-11)+(-8)=-77 ∴至少支出77元,即每天至少支出11元则一个月至少有330元的收入才能维持正常开支.31.【答案】(1)解:∵a 是最大的负整数∴a=-1∵b 是15的倒数∴b=5∵c 比a 小1∴c=-2如图所示:(2)6;3t ;t(3)解:依题意有3t+t=6解得t=1.5.故运动1.5秒后,点P 与点Q 相遇;(4)解:设点M 表示的数为x ,使P 到A 、B 、C 的距离和等于11①当M 在C 点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M 对应的数是-3.②当M 在线段AC 上,x-(-2)-1-x+5-x=11解得:x=-5(舍);③当M 在线段AB 上(不含点A ),x-(-1)+5-x+x-(-2)=11解得x=3,即M 对应的数是3.④当M 在点B 的右侧,x-(-1)+x-5+x-(-2)=11解得:x=133(舍)综上所述,点M 表示的数是3或-3.32.【答案】(1)<;<;>(2)解:由题意得,a<b<0<c∴a<0,a+b<0,c−b>0∴|a|+|a+b|−|c−b|=−a−a−b−c+b=−2a−c.33.【答案】(1)解:(+100−200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)解:+400−(−200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)解:5000×7+(100−200+400−100−100+350+150)=35600(个)0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.34.【答案】(1)解:-2+5-8-3+6-2=-4(千米)∴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的北方,距下午出车的出发地4千米.(2)解:|-2|+|5|+|-8|+|-3|+|6|+|-2|=26(千米)26×0.3=7.8(升)∴小王回到出发地共耗油7.8升.(3)解:根据出租车收费标准,可知小王今天是收入是10+[10+(5-3)×4]+[10+(8-3)×4]+10+[10+(6-3)×4]+10=100(元)∴小王今天是收入是100元.。
第二章-有理数及其运算典型题(带答案)
第二章 有理数及其运算典型题1. 若A 、①②③B 、①②④C 、④D 、①②2. a 是任意有理数,下列说法正确的是:( )A .2)1(+a 的值总为正 B .12+a 的值总为正C .2)1(+-a 的值总为负D .12+a 的值有最大值3. 使等式|-5-x|=|-5|+|x|成立的x 的值是 ( )A .任意一个数B .任意一个非正数C .任意一个负数D .任意一个非负数4. 用四舍五入法得到数a 的近似数3.80,则原数a 的范围是( )A. 85.375.3<<aB. 85.375.3<≤aC. 855.3795.3<<aD. 805.3795.3<≤a5.如果0,0,0<>>+ab a b a 那么 ( )A. b a .异号,而||||b a >B. b a .同号,而b a >C. b a .异号,而||||b a <D. b a .异号,而b a <6.如果|a|=7,|b|=5,试求a-b 的值为( D )A .2 B.12 C. 2和12 D. 2;12;-12;-2 a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么 a +b +m 2-cd 的值为( A )A.3B.±3 ±21 ±21 8. 若0<a<1,则a ,) (,12从小到大排列正确的是a a A 2<a<a 1 B.a < a 1< a2 C.a 1<a< a 2 D.a < a 2 <a1 9.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米元收费;如果超过60立方米, 超过部分按每立方米元收费.已知甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费( C )元 元 元元10.小华和小丽最近测了自己的身高,小华量得自己约m ,小丽测得自己的身高约为m ,下列关于她俩身高的说法正确的是( D )A.小华和小丽一样高B.小华比小丽高C.小华比小丽低D.无法确定谁高11.(2013·山东烟台中考)“厉行勤俭节约,反对铺张浪费”势在必行.最新统计数据显示,中国每年浪费食物总量折合为粮食大约是210 000 000人一年的口粮,将210 000 000用科学记数法表示为( ) A.2.1×109 B.0.21×109C.2.1×108D.21×107 12.一口深井,井底有一只青蛙,这只青蛙白天沿着井壁向上爬3米,夜间又落下2米,到了第十天的下午,这只青蛙恰好爬到井口,则这口井的深度是 12 米。
2023-2024学年北师大版七年级数学上册《第二章-有理数及其运算》单元检测卷及答案
2023-2024学年北师大版七年级数学上册《第二章有理数及其运算》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 大润发超市有三种袋装大米质量分别为10±0.1kg,10±0.2kg,10±0.3kg各十袋,从中抽取两袋,则它们质量相差最大为( )A. 0.3kgB. 0.4kgC. 0.5kgD. 0.6kg2. 舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A. 4.995×1011B. 49.95×1010C. 0.4995×1011D. 4.995×10103. 符号“!”表示一种运算,并且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1计算:2024!的2023!结果是( )A. 4094552B. 4092529C. 2023D. 20244. 计算(−2)2024+(−2)2023的结果是( )A. 2B. −2C. −22023D. 220235. 点O,A,B,C在数轴上的位置如图所示,O为原点AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A. −(a+1)B. −(a−1)C. a+1D. a−16. 若|x|=−x,则x一定是( )A. 负数B. 正数C. 非负数D. 非正数7. 把−(−3)−4+(−5)写成省略括号的代数和的形式,正确的是( )A. 3−4−5B. −3−4−5C. 3−4+5D. −3−4+58. 下列说法正确的是( )A. 有理数分为正有理数和负有理数B. 符号相反的两个数叫做互为相反数C. 0没有倒数,也没有相反数D. 绝对值等于本身的数是正数和零9. 对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是A. a<0,b<0B. a>0,b<0且|b|<aC. a<0,b>0且|a|<bD. a>0,b<0且|b|>a10. 有理数a ,b 在数轴上对应的点的位置如图所示,对于下列四个结论:①b −a >0 ②|a|<|b| ③a +b >0 ④ab>0其中正确的是( )A. ①②③④B. ①②③C. ①③④D. ②③④11. 如图,乐乐将−3,−2,−1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,若a ,b ,c 分别表示其中的一个数,则a −b +c 的值为( )A. −1B. 0C. 1D. 312. 运用加法运算律计算(+613)+(−18)+(+423)+(−6.8)+18+(−3.2),最简便的是( ) A. [(+613)+(+423)+18]+[(−18)+(−6.8)+(−3.2)] B. [(+613)+(−6.8)+(+423)]+[(−18)+18+(−3.2)] C. [(+613)+(−18)]+[(+423)+(−6.8)]+[18+(−3.2)] D. [(+613)+(+423)]+[(−18)+18]+[(−3.2)+(−6.8)]二、填空题(本大题共8小题,共24.0分)13. 草莓开始采摘啦!每筐草莓以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐草莓的总质量是______ 千克.14. 我们把股票上涨记为“+”,下跌记为“−”,现在知道某种股票周一收盘价为11.20元,从周二到周五的涨跌情况为:+3.20,+0.75,−2.15,+1.39这周该股票的最高收盘价是______ 元.15. 点A 表示数轴上的一个点,将点A 向右移动7个单位长度,再向左移动4个单位长度,终点恰好是原点,则点A 表示的数是 .16. 绝对值小于2023的所有整数和为______ .17. 如果|m|=4,|n|=2且|m +n|=−m −n ,则m −n 的值是______ .18. 伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为______.19. 若a、b互为相反数,c、d互为倒数,m+1的绝对值为5,则|m|−cd+(a+b)m的值为______ .20. 小明与小刚规定了一种新运算“∗”:若a,b是有理数,则a∗b=3a−2b.小明计算出2∗5=−4,请帮小刚计算2∗(−5)=.三、解答题(本大题共5小题,共60.0分。
第2章 有理数及其运算单元测试卷(解析卷)
中小学教育资源及组卷应用平台○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________第2章 有理数及其运算单元测试卷参考答案与试题解析一、选择题(共12小题,每小题3分,计36分)1.下列四个数中,是正整数的是( )A. ﹣ 1B. 0C.D. 1 解:A 、﹣1是负整数,不符合题意; B 、0是非正整数,不符合题意;C 、 是分数,不是整数,不符合题意;D 、1是正整数,符合题意. 故答案为:D .2.比-1小2的数是( )A. 3B. 1C. -2D. -3 解:比-1小2的数是:-1-2=-3. 故答案为:D.3.某地一天早晨的气温是-5℃,中午上升了10℃,午夜又下降了8℃,则午夜的气温是( ) A. -3℃ B. -5℃ C. 5℃ D. -9℃ 解:(-5)+10-8=5-8=-3(℃).答:午夜的气温是-3℃. 故答案为:A .4.的倒数是( )A.B. C. 5 D.解:∵(-5)×(- )=1,∴-5的倒数是- .故答案为:A .5.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将这个数用科学记数法表示为( ) A.B.C.D.解: 用科学记数法表示为故答案为:C.6.2018的相反数是( )A. 2018B. ﹣2018C.D.解:因为2018与-2018只有符号不同,2018的相反数是-2018 故答案为:B.7.若数轴上点A 、B 分别表示数2、﹣2,则A 、B 两点之间的距离可表示为( ) A. 2+(﹣2) B. 2﹣(﹣2) C. (﹣2)+2 D. (﹣2)﹣2 解:A 、B 两点之间的距离可表示为:2﹣(﹣2). 故答案为:B .8.实数 , , 在数轴上的对应点的位置如图所示,则正确的结论是( )A. B.C. D.解:∵,∴,故A 不符合题意;数轴上表示 的点在表示 的点的左侧,故B 符合题意; ∵ , ,∴ ,故C 不符合题意; ∵,,,∴,故D 不符合题意.故答案为:B.9.计算-1 ÷(-3)×(-)的值为( )A. -1B. 1C. -D.解:-1÷(-3)×(-)=,故答案为:C10.如图,数轴上有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A. ﹣2B. 0C. 1D. 4解:∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3, 又∵BC=2,点C 在点B 的左边,…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………∴点C 对应的数是1, 故答案为:C .11.下列各组数中,运算结果相等的是( )A. 34和43B. -32和(-3)2C. -53和(-5)3D.和解:A. 34=81,43 =64,不相等,故不符合题意; B. -32=-9,(-3)2 =9,不相等,故不符合题意; C. -53=-125,(-5)3 =-125,相等,符合题意; D.=,=,不相等,故不符合题意,故答案为:C.12.下列命题是真命题的是( )A. 如果一个数的相反数等于这个数本身,那么这个数一定是0B. 如果一个数的倒数等于这个数本身,那么这个数一定是1C. 如果一个数的平方等于这个数本身,那么这个数一定是0D. 如果一个数的算术平方根等于这个数本身,那么这个数一定是0解:A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题; B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题; C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题; D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故答案为:A .二.填空题(共4小题,每小题3分,计12分)13.从数轴上表示的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是________。
第二章 有理数及其运算单元测试卷(解析版)
第二章 有理数及其运算单元测试卷一.选择题(共10小题)1.(2023•路桥区二模)2023年第一季度,浙江省全省创造了约1900000000000元的生产总值,排名哲时排名全国第四位.数据1900000000000用科学记数法表示为( )A .111.910´B .121.910´C .111910´D .130.1910´【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:数据1900000000000用科学记数法可以表示为121.910´.故选:B .2.(2023•抚松县模拟)下列各数中,最小的数是( )A .3-B .1-C .0D .3【分析】根据正数大于0,0大于负数,以及两个负数比较大小方法判断即可.【解答】解:3103-<-<<Q ,\最小的数为3-.故选:A .3.(2023•滨城区二模)2(2)3--的结果是( )A .7-B .1C .2-D .6【分析】先算乘方,再算减法.【解答】解:2(2)3--43=-1=.故选:B .4.(2023•新昌县模拟)|2023|(-= )A .2023B .2023-C .12023-D .12023【分析】根据负数的绝对值等于它的相反数,即可求解.【解答】解:|2023|(2023)2023-=--=.故选:A.5.(2023•乾县三模)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A.6B.6-C.0D.1 6【分析】根据数轴表示和相反数的定义进行求解.【解答】解:6-Q的相反数是6,\点B表示的数为6,故选:A.6.(2023•兰溪市模拟)一条数轴上有点A、B,点C在线段AB上,其中点A、B表示的数分别是8-,6,现以点C为折点,将数轴向右对折,若点A¢落在射线CB上,并且4A B¢=,则C点表示的数是( )A.1B.1-C.1或2-D.1或3-【分析】设点C表示的数为x,分两种情况:A¢在线段CB的延长线上或线段CB上分别计算即可.【解答】解:设点C表示的数为x,当A¢在线段CB的延长线上时,4A B¢=Q,\点A¢表示的数为6410+=,AC A C=¢Q,(8)10x x\--=-,解得:1x=;当A¢在线段CB上时,4A B¢=Q,\点A¢表示的数为642-=,AC A C=¢Q,(8)2x x\--=-,解得:3x=-;故选:D.7.(2023•河北模拟)将122135222555´´´´´´´{{L L 个个的计算结果用科学记数法可表示为( )A .12510´B .13110´C .12210´D .13210´【分析】先计算出结果,再根据科学记数法的表示形式进行解答即可.【解答】解:Q 1212213512251522255525255510´´´´´´´´=´´¼´´´=´{{{{L L 个个个个,故选:A .8.(2023•南关区校级四模)中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作“50+元”,那么亏损30元,记作( )A .30+元B .20-元C .30-元D .20+元【分析】根据正负数来表示相反意义,盈利50元,记作“50+元”,亏损30元,则记作“30-元”即可求解.【解答】解:Q 盈利50元,记作“50+元”,\亏损30元,记作“30-元”.故选:C .9.(2023•河东区二模)如图,数轴上A ,C 位于B 的两侧,且2AB BC =,若点B 表示的数是1,点C 表示的数是3,则点A 表示的数是( )A .0B .2-C .3-D .1-【分析】求出AB 线段的长度,因为点A 表示的数小于点B ,点B 表示1,推理出点A 表示的数.【解答】解:Q 点B 表示的数是1,点C 表示的数是3,2BC \=,2AB BC =Q ,4AB \=,有数轴可知:点A 表示的数小于点B 表示的数,143\-=-,即点A 表示的数为3-,故选:C .10.(2023春•武昌区期末)将1,2,3,4,5,6,7,8,9,10这个10个自然数填到图中的10个格子里,每个格子中只填一个数,使得田字形的4个格子中所填数字之和都等于m .则m 的最大值是( )A .23B .24C .25D .26【分析】图形中有3个“田”字形,其中重叠的有两个小格,设对应的数为a ,b ,则与a 与b 均被加了两次,根据“田“字形的4个格子中所填数字之和都等于m ,其总和为3m 根据3个“田”字形所填数的总和为1234567891055a h a b +++++++++++=++,列出不等式,求整数解即可.【解答】解:设每个“田”字格四个数的和为m ,共12个数的和为3m ,有两数重复,设这两数分别为a ,b ,所以3个“田”字形所填数的总和为:1234567891055a b a b +++++++++++=++.则有355m a b =++,要m 最大,必须a 、b 最大,而a b +最大值为91019+=,则355910m ++…,则2243m <,则m 最大整数值为24,故选:B .二.填空题(共6小题)11.(2023春•芝罘区期中)如图,数轴上有A 、B 、C 三点,A 、B 两点表示的有理数是分别是2-和8,若将该数轴从点C 处折叠后,点A 和点B 恰好重合,那么点C 表示的有理数是 3 .??【分析】由题意得点C 是线段AB 的中点,再进行求解.【解答】解:由题意得点C 是线段AB 的中点,\点C 表示的有理数是:(28)2-+¸62=¸3=,故答案为:3.12.(2023春•秦淮区期中)若44222a +=,5553333b ++=,则a b -的值为 1- .【分析】根据乘方的定义(求几个相同因数或因式的积的一种运算)解决此题.【解答】解:44222a +=Q ,5553333b ++=,452222a \=´=,563333b =´=.5a \=,6b =.561a b \-=-=-.故答案为:1-.13.(2023春•平谷区期末)某校要举办秋季运动会,初一(2)班有四名同学分别想参与100m ,200m ,400m ,和800m 的比赛,其中甲同学擅长跑100m 和200m ,乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,丁同学最擅长跑100m .为了让班级取得好成绩,也让他们每个人都可以参加比赛,并且每人只能参加一项比赛,那么只能派 丙 参加400m 比赛.【分析】根据四名同学最擅长的项目分析即可得出答案.【解答】解:Q 甲同学擅长跑100m 和200m ,丁同学最擅长跑100m ,\让丁同学跑100m ,甲同学跑200m ,Q 乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,\让乙同学跑800m ,丙同学跑400m ,故答案为:丙.14.(2023•甘州区校级模拟)ABC D 的三边长a ,b ,c 满足2|4|(2)0a b c +-+-=,则ABC D 的周长为 6 .【分析】直接利用非负数的性质得出a b +,c 的值,进而得出答案.【解答】解:2|4|(2)0a b c +-+-=Q ,40a b \+-=,20c -=,解得:4a b +=,2c =,ABC \D 的周长为:426a b c ++=+=.故答案为:6.15.(2023春•浦东新区期末)若|1|1a a -=-,则a 的取值范围是 1a … .【分析】根据||a a =-时,0a …,因此|3|3a a -=-,则30a -…,即可求得a 的取值范围.【解答】解:|1|1a a -=-Q ,10a \-…,解得:1a ….故答案为:1a ….16.(2023•随州)计算:2(2)(2)2-+-´= 0 .【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘法,后计算加法即可.【解答】解:2(2)(2)2-+-´4(4)=+-0=.故答案为:0.三.解答题(共8小题)17.(2022秋•宝山区校级期末)计算:212.75136++.【分析】首先把小数化为分数,然后再通分,计算即可.【解答】解:原式32121436=++,98221121212=++,7412=.18.(2022秋•和平区校级期末)计算①111()24386-+´;②42211(2)(25(0.25326-¸-+´--.【分析】①根据乘法分配律计算即可;②先算乘方,再算乘除法,最后算加减法即可.【解答】解:①111(24386-+´111242424386=´-´+´834=-+9=;②42211(2)(25(0.25326-¸-+´--64111116()9264=¸+´--911116(64124=´+--27113()121212=+--1312=.19.(2023春•明水县期末)计算下面各题,能简便运算的要用简便方法算(1);(2);(3).【分析】(1)先算括号里的除法,然后括号外的乘法即可;(2)先变形,然后根据乘法分配律计算即可;(3)根据乘法分配律计算即可.【解答】解:(1)=×()=×=1×=;(2)=×88+×88=()×88=1×88=88;(3)=(27×+27×)×39=(+5)×39=×39+5×39=54+195=249.20.(2023春•海沧区期末)对有序数对(,)x y 定义“f 运算”: 11(,)(,)22f x y x a y b =-+,其中a ,b 为常数.(1)若(2f ,4)(1-=-,3),求a ,b 的值;(2)当4a =,3b =-时,有序数对(,)m n 经过“f 运算”后结果是(,)n c .若4m n …,求c 的最大值.【分析】(1)根据新定义“f 运算”,将(2f ,4)(1-=-,3)代入,解一元一次方程即可;(2)当4a =,3b =-,序数对(,)m n 代入“f 运算”得28m n =+,4m n …得c 的取值范围,进而作答.【解答】解:(1)Q 11(,)(,)22f x y x a y b =-+,(2f ,4)(1-=-,3),(2f \,14)(22a -=´-,14)2b -´+,11a \-=-,23b -+=,解得:2a =,5b =;(2)当4a =,3b =-时,(,)1(42x y f x =-,11)2y -,(,)1(42m n f m \=-,11)2n -,\142132m n n c ì-=ïïíï-=ïî①②,由①得:28m n =+,4m n Q …,284n n \+…,解得:4n …,\1312n --…,1c \-…,c \的最大值为1-.21.(2022秋•寻乌县期末)卓越中学为提高中学生身体素质,积极倡导“阳光体育”运动,开展一分钟跳绳比赛.七年级某班10名参赛代表成绩以160次为标准,超过的次数记为正数,不足的次数记为负数,成绩记录如下(单位:次):18+,1-,22+,2-,5-,12+,8-,1,8+,15+.(1)求该班参赛代表最好成绩与最差成绩相差多少?(2)求该班参赛代表一分钟平均每人跳绳多少次?(3)规定:每分钟跳绳次数为标准数量,不加分;超过标准数量,每多跳1个加1分;未达到标准数量,每少跳1个,扣0.5分,若班级跳绳总积分超过60分,便可得到学校的奖励,请通过计算说明该班能否得到学校奖励?【分析】(1)用记录中的最大数减去最小数即可;(2)根据平均数的意义,可得答案;(3)根据题意列式计算求出该班的总积分,再与60比较即可.【解答】解:(1)22(8)22830+--=+=(次),答:该班参赛代表最好成绩与最差成绩相差30次;(2)160(18122251281815)10+-+--+-+++¸1606010=+¸1606=+166=(次),答:该班参赛代表一分钟平均每人跳绳166次;(3)(1822121815)1(1258)0.5+++++´-+++´768=-68=(分),6860>,答:该班能得到学校奖励.22.(2022秋•徐闻县期末)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):5+,4-,3+,10-,3+,9-.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少千米;(2)若汽车耗油量为0.4升/千米,则这天上午小王的汽车共耗油多少升?【分析】(1)把记录的数字相加得到结果,即可做出判断;(2)求出各数绝对值之和,乘以0.4即可得到结果.【解答】解:(1)根据题意得:543103912+-+-+-=-(千米),则后一名老师送到目的时,小王距出租车出发点的距离是12千米;(2)根据题意得:0.4(5431039)13.6´+++++=(升),则这天上午小王的汽车共耗油13.6升.23.(2023春•长宁区期末)小明表演魔术,从一副除去大小王的扑克中请观众随机选择了4张牌,并让观众每次取其中三张牌,将牌面数字相加,牌面数字之和分别为18,24,25,26.小明立刻说出了观众随机选择的4张扑克牌面的数字.这4张牌牌面的数字都是几呢?你能尝试用数学原理去揭秘这个魔术吗?(A 表示1,J表示11,Q表示12,K表示13)【分析】设这4张牌牌面的数字分别为a,b,c,d,根据题意可得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,从而可得333318242526a b c d+++=+++,进而可得31a b c d+++=,然后分别进行计算,即可解答.【解答】解:设这4张牌牌面的数字分别为a,b,c,d,由题意得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,333318242526a b c d\+++=+++,31a b c d\+++=,31()311813d a b c\=-++=-=,31()31247c a b d=-++=-=,31()31256b ac d=-++=-=,31()31265a b c d=-++=-=,\这4张牌牌面的数字分别为5,6,7,13.24.(2023春•南岗区期中)阅读下面材料,然后回答问题.计算12112 ()() 3031065 -¸-+-解法一:原式12111112 ()()()(3033010306305 =-¸--¸+-¸--¸1111203512 =-+-+16=.解法二:原式12112 ()[()()]3036105 =-¸-+-113()()30210 =-¸-1530=-´16=-.解法三:原式的倒数为21121 ()() 3106530-+-¸-2112()(30)31065=-+-´-2112(30)(30(30)(30) 31065=´--´-+´--´-203512=-+-+10=-故原式110=-.(1)上述得出的结果各不同,肯定有错误的解法,但是三种解法中有一种解法是正确的,请问:正确的解法是解法 解法三 ;(2)根据材料所给的正确方法,计算:11322 ((4261437-¸-+-.【分析】(1)上述得出的结果不同,肯定有错误的解法,我认为解法一和解法二是错误的.在正确的解法中,我认为解法三最简捷;(2)利用乘法分配律求出原式倒数的值,即可求出原式的值.【解答】解:(1)根据除法没有分配律可知解法一错误;根据加法的交换律可知,交换加数的位置时应连同符号一起交换,故解法二也错误;(2)Q13221 (() 6143742-+-¸-1322()(42)61437=-+-´-1322(42)(42)(42)(42) 61437=´--´-+´--´-792812 =-+-+14=-,\113221 ((426143714-¸-+-=-.。
2024年七年级数学上册《有理数及其运算》单元测试及答案解析
第2章 有理数及其运算(单元培优卷 北师大版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.有理数2−的相反数是( ) A .2B .12C .2−D .12−2.13与14的和的倒数是( )A .7B .517C .17D .1433.32−的绝对值是( )A .23−B .32−C .23D .324.下列说法正确的个数为( ) ①有理数与无理数的差都是有理数; ②无限小数都是无理数; ③无理数都是无限小数;④两个无理数的和不一定是无理数; ⑤无理数分为正无理数、零、负无理数. A .2个B .3个C .4个D .5个5.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲 亚洲欧洲 非洲南美洲最低海拔/m415− 28−156− 40−其中最低海拔最小的大洲是( ) A .亚洲B .欧洲C .非洲D .南美洲6.数轴上的点M 和点N 分别表示3−与4,如果把点N 向左移动6个单位长度,那么点N 现在表示的数比点M 表示的数( ) A .大2B .大1C .小2D .小17.如果把一个人先向东走5m 记作5m +,那么接下来这个人又走了6m −,此时他距离出发点有多远?下面选项中正确的是( ) A .6m −B .1m −C .1mD .6m8.在0.65,58,35,916这四个数中,最大的是()A .0.65B .58C .35D .9169.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ). A .822.9310×B .922.9310×C .82.29310×D .92.29310×10.一个天平配有重量分别为1,5,25,125,625克的砝码各5个,则为了准确称出重量为2024克的某物品(砝码只能放一侧),所需砝码数量的值为( )A .11B .12C .13D .14二、填空题:共6题,每题3分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章有理数及其运算测试题及答案一、选一选(每小题3分,共30分)
1.下表是我国几个都市某年一月份的平均气温,其中气温最低的都市是()
A.哈尔滨 B.广州 C.武汉 D.北京
2.下列各数中互为相反数的是()
A.
1
2
与0.2 B.
1
3
与-0.33 C.-2.25与
1
2
4
D.5与-(-5)
3.关于(-2)4与-24,下列说法正确的是()A.它们的意义相同
B.它的结果相等
C.它的意义不同,结果相等
D.它的意义不同,结果不等
4.下列四个数中,在-2到0之间的数是()A.-1 B. 1 C.-3 D.3 5.下列运算错误的是()
A.0.14=0.0001
B.3÷9×(-1
9
)=-3
C.8÷(-1
4
)=-32
D.3×23=24
6.若x是有理数,则x2+1一定是()A.等于1 B.大于1
C.不小于1
D.不大于1
7.在数轴上与-3的距离等于4的点表示的数是 ( ) A .1
B .-7
C .1或-7
D .许多个
8.两个有理数的积是负数,和也是负数,那么这两个数( ) A. 差不多上负数
B. 其中绝对值大的数是正数,另一个是负数
C. 互为相反数
D. 其中绝对值大的数是负数,另一个是正数
9.一个有理数的绝对值等于其本身,那个数是( )
A 、正数
B 、非负数
C 、零
D 、负数 10.四个互不相等整数的积为9,则和为( ) A .9 B .6 C .0 D .3- 二、填一填(每小题3分,共30分)
1.一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________.
2.用“<”“=”或“>”号填空:
-2_____0
98- _____10
9
- -(+5) _____-(-|-5|) 3.运算:7
37()()848
-÷-= ;23
2(1)---= .
4.若a 与-5互为相反数,则a =_________;若b 的绝对值是2
1
-
,则b =_________. 5.假如n >0,那么
n
n = ,假如
n
n =-1,则n 0。
6.若a ,b 互为相反数,c ,d 互为倒数,m =2,则(a +b )·
d
c
+3cd -m 2= .
7.从数-6,1,-3,5,-2中任取二个数相乘,其积最小的是___________. 8.若有理数a 、b 满足()2
3120a b -+-=,则b
a 的值为 .
9.假如定义新运算“※”,满足a ※b =a ×b -a ÷b ,那么1※2= . 10.任取四个1至13之间的自然数,将这四个数(且每个数只能用一次)进行“+、-、×、÷”四则运算,使其结果为24.现有四个有理数:3,4,-6,10,运用上述规则,写出一个运算: . 三、做一做(本大题共38分) 1.(8分)运算:
(1)(
12-13)÷(-1
6
)+(-2)2×(-14) (2)—14—〔1—(1—0.5×
3
1
)〕×6 (3)
)75.2()4
1
2(21152--+--- (4)(-73)×(12-0.5)÷(-8
29
)
2. (6分)郭阿姨搬入新楼,为了估量一下该月的用水量(按30天运算).对该月的头6
天水表的显示数进行了记录,如下表:
而在搬家之前由于搞房屋装修等差不多用了15吨水.问: (1)这6在每天的用水量; (2)这6天的平均日用水量; (3)那个月大约需要用多少吨水.
3.(8分)小明的家、学校、书店同在一条马路上,如图,请你用学过的数学知识标明它们三者间的距离。
小明步行速度是5千米/小时,小明中午11:30放学,下午1:30上课,吃饭要用30分钟,中午他要到书店买完书再到校上课,选书时刻是5分钟,请你帮他设计一下什么时刻动身,上课才能不迟到?
4.(8分)某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭动身,晚上停留在A 处,规定向北方向为正,当天行驶纪录如下(单位:千米) +10,-9,+7,-15,+6,-14,+4,-2 (1)A 在岗亭何方?距岗亭多远?
(2)若摩托车行驶1千米耗油0.05升,这一天共耗油多少升?
5.(8分)观看下列解题过程: 运算:1+5+52+53+…+524+525的值.
解:设S =1+5+52+53+…+524+525, (1) 则5S =5+52+53+…+525+526 (2) (2)-(1),得4S =526-1
S =4
1
526
通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法运算: (1)1+3+32+33+…+39+310 (2)1+x +x 2+x 3+…+x 99+x 100
书店 ·
· · 学校 小明家
四、拓广探究!(本大题共22分)
1.(10分)王叔叔家的装修工程接近尾声,油漆工程终止了,经统计,油漆工共做50工时,用了150升油漆,已知油漆每升128元,共粉刷120平方米,在结算工钱时,有以下几种结算方案:
(1)按工时算,每6工时300元。
(2)按油漆费用来算,油漆费用的15%为工钱;(3)按粉刷面积来算,每6平方米132元。
请你帮王叔叔算一下,用哪种方案最省钱?
2.(12分)探究规律:将连续的偶2,4,6,8,…,排成如下表:
2 4 6 8 10
12 14 16 18 20
22 24 26 28 30
32 34 36 38 40
……
(1)十字框中的五个数的和与中间的数和16有什么关系?
(2)设中间的数为x ,用代数式表示十字框中的五个数的和;
(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
北师大版七上第二章《有理数及其运算》综合测试
一、1~10 A CDAB CCDBC
二、1.-3℃; 2.<,>,<; 3.17-
,-3; 4.5,2
1
; 5.1,<; 6.-1; 7.-30; 8.
91; 9.2
3
; 10.答案不惟一,如3×[4+10+(-6)]等. 三、1.(1)-57; (2)-2; (3)5
3
-
; (4)=0 2.(1)0.16吨、0.14吨、0.20吨、0.12吨、0.17吨0.17吨(2)0.16吨(3)4.8吨 3.只要设计符合实际情形就能够,如小明家到学校为0.5千米,学校到书店0.25千米,按要求他用的时刻应为:(0.5+0.25×2)÷5×60+5=17(分钟),小明应在一点十三分前动身就可不能迟到.
4.(1)-13,故A 在岗亭的南方,距离岗亭13千米; (2)67千米,故这一天共耗油67×0.05=3.35升.
5.(1)41311-;(2)1
1101--x x .
四、1. 按工时算为:300÷6×50=2500元,
按油漆费用算为:128×150×15%=2880元, 按粉刷面积算为:132÷6×120=2640元 因此,按工时算最省钱.
2. (1)十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍; (2)设中间的数为x ,则十字框中的五个数的和为: (x-10)+(x+10)+(x-2)+(x+2)+x=5x ,因此五个数的和为 5 x ; (3) 假设能够框出满足条件的五个数,设中间的数为x ,由(2)得
5 x =2010 ,因此x=402,但402位于第41行的第一个数,在那个数的左边没有数,因此不能框住五个数,使它们的和等于2010.。