六年级数学求阴影部分的面积练习
小学六年级数学-阴影部分面积例题(含答案)
阴影部分面积专题求如图阴影部分的面积.(单位:厘米)'如图,求阴影部分的面积.(单位:厘米)】3.计算如图阴影部分的面积.(单位:厘米)%4.求出如图阴影部分的面积:单位:厘米.!5.求如图阴影部分的面积.(单位:厘米)!6.求如图阴影部分面积.(单位:厘米)>,7.计算如图中阴影部分的面积.单位:厘米.)8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)…10.求阴影部分的面积.(单位:厘米)@11.求下图阴影部分的面积.(单位:厘米),12.求阴影部分图形的面积.(单位:厘米)):13.计算阴影部分面积(单位:厘米).{14.求阴影部分的面积.(单位:厘米)!15.求下图阴影部分的面积:(单位:厘米)—16.求阴影部分面积(单位:厘米).^!17.(2012•长泰县)求阴影部分的面积.(单位:厘米):☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析`1.求如图阴影部分的面积.(单位:厘米)&考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.·解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);】答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.《2.如图,求阴影部分的面积.(单位:厘米)—考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).:解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,%100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评)解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)(考点组合图形的面积.@分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),%长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,&=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.【4.求出如图阴影部分的面积:单位:厘米.<考点组合图形的面积.专题平面图形的认识与计算.、分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,、=6.88(平方厘米);点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.?5.求如图阴影部分的面积.(单位:厘米)¥考点圆、圆环的面积.)分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2!=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);!点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.'6.求如图阴影部分面积.(单位:厘米)*考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算./解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.—点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.##考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.%解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:]×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);"答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.#8.求阴影部分的面积.单位:厘米."考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.,分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:-3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:>3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米./点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)】考点组合图形的面积;圆、圆环的面积.'专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.;解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);}面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,/=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.…10.求阴影部分的面积.(单位:厘米)~考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,:,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.…11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.[分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评!考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.%分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评!解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).[考点组合图形的面积.专题平面图形的认识与计算.分析}如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。
小学六年级数学-阴影部分面积例题(含标准答案)
阴影部分面积专题求如图阴影部分的面积.(单位:厘M)如图,求阴影部分的面积.(单位:厘M)3.计算如图阴影部分的面积.(单位:厘M)4.求出如图阴影部分的面积:单位:厘M.5.求如图阴影部分的面积.(单位:厘M)6.求如图阴影部分面积.(单位:厘M)7.计算如图中阴影部分的面积.单位:厘M.8.求阴影部分的面积.单位:厘M.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘M)10.求阴影部分的面积.(单位:厘M)11.求下图阴影部分的面积.(单位:厘M)12.求阴影部分图形的面积.(单位:厘M)13.计算阴影部分面积(单位:厘M).14.求阴影部分的面积.(单位:厘M)15.求下图阴影部分的面积:(单位:厘M)16.求阴影部分面积(单位:厘M).17.(2012•长泰县)求阴影部分的面积.(单位:厘M)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试卷解读1.求如图阴影部分的面积.(单位:厘M)考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘M的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘M);答:阴影部分的面积是3.72平方厘M.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘M)考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘M,4个扇形的面积等于半径为(10÷2)5厘M的圆的面积,即:3.14×5×5=78.5(平方厘M).解答解:扇形的半径是:10÷2,=5(厘M);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘M);答:阴影部分的面积为21.5平方厘M.点评解答此题的关键是求4个扇形的面积,即半径为5厘M的圆的面积.3.计算如图阴影部分的面积.(单位:厘M)考点组合图形的面积.分析分析图后可知,10厘M不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘M),长方形的面积=长×宽=10×5=50(平方厘M),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘M),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘M);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘M.考点组合图形的面积.专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘M为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘M);答:阴影部分的面积是6.88平方厘M.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘M)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘M的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘M);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘M);答:阴影部分的面积是25.12平方厘M.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘M)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘M);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘M);答:图一中阴影部分的面积是6平方厘M,图二中阴影部分的面积是21平方厘M.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘M.考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘M);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘M);答:阴影部分的面积是113.04平方厘M.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘M.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘M);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘M);答:圆环的面积是25.12平方厘M,阴影部分面积是19.26平方厘M.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘M)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘M的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘M为半径的半圆的面积﹣以3÷2=1.5厘M为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘M);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘M);答:阴影部分的周长是40.82厘M,面积是23.55平方厘M.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘M)考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘M);答:阴影部分的面积是28.26平方厘M.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘M)考点组合图形的面积.分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘M,再求出空白三角形的面积10×(10÷2)÷2=25平方厘M,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘M).答:阴影部分的面积为14.25平方厘M.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘M)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘M);答:阴影部分的面积是15.44平方厘M.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘M).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘M和15厘M,三角形①的底和高分别为10厘M 和(15﹣7)厘M,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘M);答:阴影部分的面积是110平方厘M.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘M)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘M);答:阴影部分的面积是48平方厘M.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘M)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘M).答:阴影部分的面积是3平方厘M.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘M).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘M);答:阴影部分的面积是13.44平方厘M.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘M)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘M);答:阴影部分的面积为6.87平方厘M.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。
最新人教版六年级数学求阴影部分面积专项训练(附答案)
最新人教版六年级数学求阴影部分面积专项训练(附答案)班级: 姓名:1、求右图中阴影图形的面积。
解:6×6÷2÷2=9(平方厘米)2、求阴影部分的面积(单位:厘米)。
解:20÷2=10 cm3.14×10×10÷2+20×10-3.14×10×10÷2=20×10=200(平方厘米)3、求阴影部分的面积(单位:厘米)解:(6+10)×6÷2=48(平方厘米)4、求阴影部分的面积(单位:厘米)解:6÷=3cm 3×3×3.14-6×6÷2=10.26(平方厘米)5、求阴影部分的面积(单位:厘米)解:20÷2=10cm 3.14×10×10 - 20×20÷2=214(平方厘米)6、求阴影部分的面积(单位:厘米)解:10×10+(10+6)×6÷2-(10+6)×6÷2 =148-48=100(平方厘米)AB CD10cm EFG66A B7、求阴影部分的面积(单位:厘米)解:10×10×3.14×1/8=39.25(平方厘米 )(10÷2)×(10÷2)×3.14-39.25=39.25(平方厘米 )8、半圆的面积是12.56平方厘米,求阴影部分的面积。
解:r=12.56×2÷3.14÷2=4cm12.56-4×4÷2 = 4.56 (平方厘米 )9.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米) 解: 设圆的半径为 r ,用正方形的面积减去 圆的面积。
因为正方形的面积为7平方厘米,所以 =7, 所以阴影部分的面积为:7-=7-×7=1.505平方厘米10、求阴影部分的面积。
小学数学六年级求阴影部分面积试题汇编(含答案)
小学六年级求阴影部分面积试题和答案
求阴影部分面积
例1.求阴影部分的面积。
(单位:
厘米)
解:这是最基本的方法:圆面积减去等腰直角三角形的面积,
×
例2.正方形面积是7平方厘米,求阴
影部分的面积。
(单位:厘米)
解:这也是一种最基本的方法用正方
形的面积减去
圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以
=7,
所以阴影部分的面积为:7-
-2×1=1.14(平方厘米)
=7-
×7=1.505平方厘米
例3.求图中阴影部分的面积。
(单
位:厘米)
解:最基本的方法之一。
用四个
圆组成一个圆,用正方形的面积减去圆的面积,
所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单
位:厘米)
解:同上,正方形面积减去
圆面积,
16-π(
)=16-4π
=3.44平方厘米
例 5.求阴影部分的面积。
(单位:
厘米)
解:这是一个用最常用的方法解
最常见的题,为方便起见,
我们把阴影部分的每一个小部
分称为“叶形”,是用两个圆减去一个正方形,
π(
例6.如图:已知小圆半径为2
厘米,大圆半径是小圆的3倍,
问:空白部分甲比乙的面积多
多少厘米?
解:两个空白部分面积之差就
是两圆面积之差(全加上阴影部分)
π
-π(。
六年级求阴影部分面积试题及标准答案
例1.求阴影部分的面积。
(单位:厘米)
解:这是最基本的方法:圆面积减去等腰直角三角形的面积,
-2 X 1=1.14平方厘米)
7 平方厘米,求阴影部分的面积。
(单位:厘米)
例 2. 正方形面积是
解:这也是一种最基本的方法用正方形的面积减去 圆的面积。
设圆的半径为 r
因为正方形的面积为 7 平方厘米
=7
,
7-
=7-
X 7=1.50呼方厘米
例3.求图中阴影部分的面积。
(单位:厘米)
解:最基本的方法之
圆组成一个圆,用正方形的
面积减去圆的面积,
所以阴影部分的面积:
2X2- n= 0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:
同上,正方形面积减去圆面积,
16- n()=16-4n=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)。
六年级数学上册《圆求阴影部分面积》练习题及答案
六年级数学上册《圆求阴影部分面积》练习题及答案1.求下面图形阴影部分的面积。
2.求阴影部分的面积及周长各是多少。
3.求阴影部分的面积。
4.计算阴影部分的面积(单位:厘米)。
5.求下面阴影部分的面积。
(单位:厘米)6.如图,已知梯形的面积是51cm2,求阴影部分的面积。
7.计算阴影部分的面积。
(单位:dm)8.求阴影部分面积。
(单位:厘米)9.求阴影部分的面积。
10.求阴影部分的面积(cm)。
11.计算如图所示阴影部分的周长与面积。
(单位:厘米π取3.14)12.求阴影部分的面积。
(单位:厘米)13.求阴影部分的周长和面积。
(单位:厘米)14.求阴影部分的面积(如下图,红色的部分是一个扇形)。
15.计算下面图形阴影部分的面积。
(单位:厘米)16.计算下图阴影部分的面积。
17.求下图阴影部分的面积。
(单位:米)18.求下图中阴影部分的周长和面积。
19.计算下面图形阴影部分的面积。
20.计算图中阴影部分的面积。
(单位:cm)参考答案:1.9.12cm22.面积6.88cm2;周长20.56cm3.1413平方厘米4.343平方厘米5.3.72平方厘米6.36.87cm27.15.25dm28.15.44平方厘米9.7.72m210.3.44cm211.38.84厘米;31.74平方厘米12.2平方厘米13.47.1厘米;78.5平方厘米14.18.24cm215.20.75平方厘米16.25.12cm217.11.44平方米18.33.12厘米;25.12平方厘米19.50.24平方米20.3.14×52+5×5=103.5(cm2)。
小学六年级数学求阴影部份面积
小学六年级(求阴影部份面积练习题)1.求阴影部份面积(单位:cm)。
解:阴影部份的面积=正方形的面积-两个空白的面积;一个空白的面积=正方形的面积-半径为2的14圆面积;S阴=S正-2×S空×3.14×22)=2×2−2×(2×2−14=4−2×(4−3.14)=4−1.72=2.28cm22.求阴影部份面积(单位:cm)。
解:作辅助线如下图所示,空白①与阴影②的面积相等,所以:阴影部份的面积=边长为10的正方形面积。
S阴=S正=10×10=100cm23.求阴影部份面积(单位:cm)。
解:阴影部份的面积=两个阴影三角形的面积之和。
S阴=S左阴影三角形+ S右阴影三角形=1 2×10×6+12×6×6=30+18=48cm24.求阴影部份面积(单位:cm)。
解:阴影部份的面积=边长为10的正方形面积-空白部份的面积,经观察发现:空白部份可组合成一个直径为10的圆。
空白部份的面积=直径为10的圆面积。
S阴=S正方形- S直径为10的圆=10×10−12×3.14×52=100−39.25=60.75cm25. 求阴影部份面积(单位:cm)。
解:作辅助线如下图所示,阴影部份的面积=S甲+S乙+S丙+S丁。
观察发现,S 甲+S丁=直径为6的半圆的面积,恰好与空白半圆的面积一样。
所以阴影部分的面积=长为6、宽为3的长方形的面积。
S阴= 6×3=18cm26. 求阴影部份面积(单位:cm)。
解:作辅助线如下图所示,将阴影部份分成相等的四部分,阴影部份的面积=4×S②。
S②=半径为2的1圆面积-边长为2的直角等腰三4角形的面积S阴=4×S②=4×(14×3.14×22−12×2×2)=4×(3.14−2)=2.28cm27. 求阴影部份面积(单位:cm)。
小学人教版六年级下册数学求几何图形的阴影部分的面积(含参考答案)
小学人教版六年级数学下册求几何图形阴影部分的面积1.如图,大圆半径为5厘米,小圆半径为3厘米,求阴影部分的面积,2.如图,已知两同心圆(圆心相同,半径不相等的两个圆),大圆半径为3厘米,小圆半径为1厘米,求阴影部分的面积3.如图,大圆半径为6cm,小圆半径为4cm,求阴影部分的面积4.已知如图大圆的半径为4cm,小圆的半径为3cm,求两个圆阴影部分的面积的差5.求图中阴影部分的面积(单位:厘米)6.求阴影部分的面积(单位:厘米)7.求阴影部分的面积(单位:厘米)8.如图,已知小圆半径为2厘米,大圆半径是小圆的3倍,问空白部分甲比乙的面积多多少厘米?9.求阴影部分的面积(单位:厘米)10.求阴影部分的面积(单位:厘米)11.已知直角三角形面积是12平方厘米,求阴影部分的面积12.求阴影部分的面积(单位:厘米)13.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长14.正方形边长为2厘米,求阴影部分的面积15.图中四个圆的半径都是1厘米,求阴影部分的面积16.如图,正方形边长为8厘米,求阴影部分的面积17.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?18.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?19.如图,四个扇形的半径相等,求阴影部分的面积(单位:厘米)20.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积21.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积22.求阴影部分的面积(单位:厘米)23.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=500,问阴影部分甲比乙面积小多少?24.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米,求BC的长度25.如图是一个正方形和半圆所组成的图形,P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积26.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。
小学六年级数学-阴影部分面积例题(含答案)
阴影部分面积专题求如图阴影部分的面积.(单位:厘米)如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012?长泰县)求阴影部分的面积.(单位:厘米)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012?长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。
六年级上册数学求阴影部分面积专项练习
六年级上册数学《求阴影部分面积》专项练习1、求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:14圆面积减去等腰直角三角形的面积,π4×2²-2×1=1.14(平方厘米)2、正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去14圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-7- π4r²=7- π4×7=1.505(平方厘米)3、求图中阴影部分的面积。
(单位:厘米)解:用四个14圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86(平方厘米)4、求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π(2²)=16-4π=3.44(平方厘米)5、求阴影部分的面积。
(单位:厘米)解:我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π(2²)×2-16=8π-16=9.12(平方厘米)6、如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π6²-π(2²)=100.48(平方厘米)7、求阴影部分的面积。
(单位:厘米)解:正方形面积=对角线长×对角线长÷2=5×5÷2=12.5 所以阴影面积为:π(5)²÷4-12.5=7.125(平方厘米)8、求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部圆,空白部分面积,割补以后为14π(2²)=3.14(平方厘米)所以阴影部分面积为:149、求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6(平方厘米)10、求下图中阴影部分的面积。
六年级数学求阴影面积典型题
六年级数学求阴影面积典型题一、题目示例1. 已知正方形边长为10厘米,以正方形的四个顶点为圆心,边长为半径画弧,求图中阴影部分的面积。
解析:- 我们可以发现这个阴影部分的面积可以通过正方形的面积减去中间空白部分的面积得到。
- 正方形的面积公式(公式为边长),这里公式厘米,所以正方形面积公式平方厘米。
- 中间空白部分是由四个相同的部分组成的,每一部分是一个扇形减去一个等腰直角三角形。
- 因为扇形的半径公式厘米,圆心角公式,根据扇形面积公式公式,这里公式,公式厘米,所以一个扇形的面积公式平方厘米。
- 对于等腰直角三角形,它的直角边等于扇形的半径公式厘米,根据等腰直角三角形面积公式公式(这里公式),所以一个等腰直角三角形的面积公式平方厘米。
- 那么一个空白部分的面积公式平方厘米。
- 四个空白部分的面积公式平方厘米。
- 最后阴影部分面积公式平方厘米。
将公式代入,可得公式(这里出现负数是因为计算过程中的近似,实际上阴影部分面积为公式,取绝对值为公式平方厘米)。
2. 如图,圆的半径为公式厘米,三角形为等腰直角三角形,求阴影部分的面积。
解析:- 圆的面积公式为公式,这里公式厘米,所以圆的面积公式平方厘米。
- 因为三角形是等腰直角三角形,它的底和高都等于圆的半径公式厘米,根据三角形面积公式公式(这里公式),所以三角形面积公式平方厘米。
- 阴影部分面积公式平方厘米。
将公式代入,可得公式平方厘米。
3. 长方形的长为公式厘米,宽为公式厘米,在长方形内有一个半圆(直径为长方形的长),求阴影部分的面积。
解析:- 长方形的面积公式(公式为长,公式为宽),这里公式厘米,公式厘米,所以长方形面积公式平方厘米。
- 半圆的半径公式厘米,根据半圆的面积公式公式,所以半圆的面积公式平方厘米。
- 阴影部分面积公式平方厘米。
将公式代入,可得公式平方厘米。
小学六年级数学_阴影部分面积例题(含答案)
影部分面积专题荿阴膀薇求如图阴影部分的面积.(单位:厘米)膂螁虿莇膃如图,求阴影部分的面积.(单位:厘米)袀聿肈芅3.计算如图阴影部分的面积.(单位:厘米)节蒈螈肂4.求出如图阴影部分的面积:单位:厘米.莁羇芄肄5.求如图阴影部分的面积.(单位:厘米)葿莇肅膅6.求如图阴影部分面积.(单位:厘米)袁肀螅羂羀7.计算如图中阴影部分的面积.单位:厘米.葿蒅肄莂衿8.求阴影部分的面积.单位:厘米.芆肅蒀9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)莈羆袂袃螈10.求阴影部分的面积.(单位:厘米)螇羄羁膇蒇11.求下图阴影部分的面积.(单位:厘米)羅肀袀芇螃12.求阴影部分图形的面积.(单位:厘米)蒂芀羈袄薀13.计算阴影部分面积(单位:厘米).蝿蒄袅羃膈14.求阴影部分的面积.(单位:厘米)膄蚃肁薈羅15.求下图阴影部分的面积:(单位:厘米)螄腿羇蚅袅16.求阴影部分面积(单位:厘米).薂蒇蒆蚃蚀膀膆17.( 2012?长泰县)求阴影部分的面积.(单位:厘米)蚄肃蕿羆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆蒁参考答案与试题解析膁1.求如图阴影部分的面积.(单位:厘米)罿蚇薃考艿组合图形的面积;梯形的面积;圆、圆环的面积.点莈分莇阴影部分的面积等于梯形的面积减去直径为 4厘米的半圆的面积,利用梯析形和半圆的面积公式代入数据即可解答.薄解蚂解:( 4+6)× 4÷2÷2﹣3.14 ×÷2,答袇 =10﹣3.14 ×4÷2,膇 =10﹣ 6.28 ,莂=3.72 (平方厘米);螀答:阴影部分的面积是 3.72 平方厘米.芇点袈组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考评查了梯形和圆的面积公式的灵活应用.蒃肃 2.如图,求阴影部分的面积.(单位:厘米)羀莄蒄考点莀分析节解答芁组合图形的面积.肅根据图形可以看出:阴影部分的面积等于正方形的面积减去4 个扇形的面积.正方形的面积等于(10×10)100 平方厘米,4 个扇形的面积等于半径为( 10÷2) 5 厘米的圆的面积,即: 3.14 ×5×5=78.5(平方厘米).荿解:扇形的半径是:蝿10÷2,袅 =5(厘米);莃10×10﹣3.14 ×5×5,蚂100﹣78.5 ,芈=21.5 (平方厘米);薅答:阴影部分的面积为21.5 平方厘米.蒅点螀解答此题的关键是求 4 个扇形的面积,即半径为 5 厘米的圆的面积.评蚈莆3.计算如图阴影部分的面积.(单位:厘米)节膂肇肆考芃组合图形的面积.点芁分螀分析图后可知, 10 厘米不仅是半圆的直径,还是长方形的长,根据半径析等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.袆解莅解:10÷2=5(厘米),答荿长方形的面积 =长×宽 =10×5=50(平方厘米),22(平方厘米),膀半圆的面积 =πr÷2=3.14×5÷2=39.25薇阴影部分的面积 =长方形的面积﹣半圆的面积,膂 =50﹣ 39.25 ,螁=10.75(平方厘米);虿答:阴影部分的面积是10.75 .莇点膃这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼评凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.袀聿4.求出如图阴影部分的面积:单位:厘米.肈芅考节组合图形的面积.点蒈专螈平面图形的认识与计算.题肂分莁由题意可知:阴影部分的面积 =长方形的面积﹣以 4 厘米为半径的半圆的析面积,代入数据即可求解.羇解芄解:8×4﹣3.14×42÷2,答肄 =32﹣ 25.12 ,葿=6.88 (平方厘米);莇答:阴影部分的面积是 6.88 平方厘米.肅点膅解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差评求出.袁肀螅5.求如图阴影部分的面积.(单位:厘米)羂羀葿考蒅圆、圆环的面积.点肄分莂由图可知,正方形的边长也就是半圆的直径,阴影部分由 4 个直径为 4 厘析米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算 1 个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.2衿解芆解:S=πr答肅=3.14 ×( 4÷2)2蒀=12.56(平方厘米);莈阴影部分的面积 =2 个圆的面积,羆 =2×12.56 ,袂=25.12(平方厘米);袃答:阴影部分的面积是25.12 平方厘米.螈点螇解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知评条件去计算.羄羁6.求如图阴影部分面积.(单位:厘米)膇蒇羅肀考点芇分析袀长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.螃图一中阴影部分的面积 =大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积 =梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.蒂解芀解:图一中阴影部分的面积 =6×6÷2﹣4×6÷2=6(平方厘米);答羈图二中阴影部分的面积 =( 8+15)×( 48÷8)÷ 2﹣ 48=21(平方厘米);袄答:图一中阴影部分的面积是 6 平方厘米,图二中阴影部分的面积是 21 平方厘米.薀点蝿此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面评积公式,再将题目中的数据代入相应的公式进行计算.蒄袅7.计算如图中阴影部分的面积.单位:厘米.羃膈膄蚃考肁组合图形的面积.点分薈羅由图意可知:阴影部分的面积 = 圆的面积,又因圆的半径为斜边上的高,析利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.螄解腿解:圆的半径:15×20÷2×2÷25,答羇 =300÷25,蚅 =12(厘米);袅阴影部分的面积:薂×3.14 ×122,蒇 = ×3.14 ×144,蒆=0.785×144,蚃=113.04(平方厘米);蚀答:阴影部分的面积是113.04 平方厘米.膀点膆此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.评蚄肃蕿8.求阴影部分的面积.单位:厘米.羆蒁膁罿考蚇组合图形的面积;三角形的周长和面积;圆、圆环的面积.点薃分艿( 1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,析代入圆的面积公式,从而可以求出阴影部分的面积;莈( 2)阴影部分的面积 =圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.莇解薄解:(1)阴影部分面积:答蚂 3.14 ×﹣3.14×,袇=28.26﹣ 3.14 ,膇=25.12(平方厘米);莂(2)阴影部分的面积:2螀 3.14 ×3﹣×( 3+3)× 3,芇=28.26﹣ 9,袈=19.26(平方厘米);蒃答:圆环的面积是25.12 平方厘米,阴影部分面积是19.26 平方厘米.肃点羀此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.评莄蒄9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)芁莀肅考节组合图形的面积;圆、圆环的面积.点荿专蝿平面图形的认识与计算.题袅分莃观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长析相等,所以图中阴影部分的周长,就是直径为 10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积 =大半圆的面积﹣以10÷2=5 厘米为半径的半圆的面积﹣以 3÷2=1.5 厘米为半径的半圆的面积,利用半圆的面积公式即可求解.蚂解芈解:周长:3.14×(10+3),答薅=3.14 ×13,蒅=40.82(厘米);螀22×(3÷2)蚈面积:×3.14 ×[( 10+3)÷2] ﹣×3.14×(10÷2)﹣×3.142,莆 = ×3.14 ×( 42.25 ﹣25﹣ 2.25 ),节= ×3.14 ×15,膂=23.55(平方厘米);肇答:阴影部分的周长是40.82 厘米,面积是 23.55 平方厘米.肆点芃此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长 =πr ,得出评图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.芁螀袆10.求阴影部分的面积.(单位:厘米)莅考点圆、圆环的面积.分析先用“ 3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积 =阴影部分的面积”解答即可.解答解: r=3 , R=3+3=6, n=120,,=,=37.68 ﹣9.42 ,=28.26 (平方厘米);答:阴影部分的面积是28.26 平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积 3.14 ×( 10÷2)2÷2=39.25 平方厘米,再求出空白三角形的面积 10×( 10÷2)÷ 2=25 平方厘米,相减即可求解.2=39.25 ﹣25=14.25 (平方厘米).答:阴影部分的面积为14.25 平方厘米.点评考查了组合图形的面积,本题阴影部分的面积 =半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.2解答解:( 4+10)× 4÷2﹣3.14 ×4 ÷4,=15.44 (平方厘米);答:阴影部分的面积是15.44 平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积 =平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10 厘米和15 厘米,三角形①的底和高分别为10 厘米和( 15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解: 10×15﹣10×( 15﹣7)÷ 2,=150﹣ 40,=110(平方厘米);答:阴影部分的面积是110 平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:( 6+10)× 6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48 平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解: 2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是 3 平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答2=13×4÷2﹣3.14 ×4,=26﹣12.56 ,=13.44 (平方厘米);答:阴影部分的面积是13.44 平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积 =梯形的面积﹣圆的面积.17.( 2012?长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积 =梯形的面积﹣半圆的面积.梯形的面积 = (a+b)2h,半圆的面积 = πr,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2= ×14×3﹣×3.14×9,=21﹣14.13 ,=6.87 (平方厘米);答:阴影部分的面积为 6.87 平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。
小学人教版六年级下册数学求几何图形的阴影部分的面积(含参考答案)
小学人教版六年级数学下册求几何图形阴影部分的面积1.如图,大圆半径为5厘米,小圆半径为3厘米,求阴影部分的面积,2.如图,已知两同心圆(圆心相同,半径不相等的两个圆),大圆半径为3厘米,小圆半径为1厘米,求阴影部分的面积3.如图,大圆半径为6cm,小圆半径为4cm,求阴影部分的面积4.已知如图大圆的半径为4cm,小圆的半径为3cm,求两个圆阴影部分的面积的差5.求图中阴影部分的面积(单位:厘米)6.求阴影部分的面积(单位:厘米)7.求阴影部分的面积(单位:厘米)8.如图,已知小圆半径为2厘米,大圆半径是小圆的3倍,问空白部分甲比乙的面积多多少厘米?9.求阴影部分的面积(单位:厘米)10.求阴影部分的面积(单位:厘米)11.已知直角三角形面积是12平方厘米,求阴影部分的面积12.求阴影部分的面积(单位:厘米)13.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长14.正方形边长为2厘米,求阴影部分的面积15.图中四个圆的半径都是1厘米,求阴影部分的面积16.如图,正方形边长为8厘米,求阴影部分的面积17.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?18.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?19.如图,四个扇形的半径相等,求阴影部分的面积(单位:厘米)20.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积21.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积22.求阴影部分的面积(单位:厘米)23.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=500,问阴影部分甲比乙面积小多少?24.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米,求BC的长度25.如图是一个正方形和半圆所组成的图形,P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积26.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。
小学六年级数学求阴影面积与周长专项练习
小学六年级数学求阴影面积与周长专项练习例1.求阴影部分的面积。
(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米)例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米)例9.求阴影部分的面积。
(单位:厘米)例10.求阴影部分的面积。
(单位:厘米)例11.求阴影部分的面积。
(单位:厘米)例12.求阴影部分的面积。
(单位:厘米)例13.求阴影部分的面积。
(单位:厘米)例14.求阴影部分的面积。
(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。
\例16.求阴影部分的面积。
(单位:厘米)例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
例19.正方形边长为2厘米,求阴影部分的面积。
20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例21.图中四个圆的半径都是1厘米,求阴影部分的面积。
例22.如图,正方形边长为8厘米,求阴影部分的面积。
例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取,那么花瓣图形的的面积是多少平方厘米?例25.如图,四个扇形的半径相等,求阴影部分的面积。
(单位:厘米)例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。
例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。
小学六年级数学求阴影部分面积练习题及答案详解
一、如图,两个圆的圆心重合,小圆半径是5厘米,求阴影部分面积。
5二、如图,三个相同的半圆组合在一起,半圆直径8厘米,求阴影部分面积。
三、如图,已知圆内有一个最大的正方形,圆的直径是6分米,求阴影部分的面积。
四、如图,已知大圆的直径是10厘米,求阴影部分的面积。
五、如图,已知正方形的面积是9平方厘米,求阴影部分面六、如图,已知正方形的边长是8厘米,正方形内有四个相同的半圆相交于正方形中心,求阴影部分面积。
七、如图,两个直径为10厘米的半圆,求阴影部分面积。
八、如图,半圆直径是8厘米,求阴影部分面积。
九、如图,已知正方形的边长为6分米,AB长10分米,求阴影部分的面积。
十、如图,两个完全一样的梯形重叠放置,求阴影部分的面十一、如图,在梯形内有四个以梯形顶点为圆心3厘米为半径的扇形,求阴影部分的面积。
十二、如图,求阴影部分的面积。
十三、如图,由三个相同的圆组成的图形,圆的半径是2厘米,求阴影部分的面积。
参考答案一、πr2是圆的面积公式,图中阴影部分是圆环,所以不能直接用公式计算。
图中阴影部分面积等于大圆的面积减去小圆的面积,3.14×(5+5)2-3.14×52=235.5(平方厘米)。
二、画辅助线,如图,用割补法将2区域补到1位置,则右边半圆内的阴影面积就变成了一个三角形的面积;左边同理。
所以,阴影面积相当于两个三角形的面积,即:8×(8÷2)÷2×2=32(平方厘米)。
三、阴影面积等于圆的面积减去正方形的面积,正方形面积公式是边长乘边长,而这个正方形的边长未知;正方形的面积还可以用对角线的乘积除以2,所以,阴影部分的面积是:3.14×(6÷2)2-6×6÷2=10.26(平方分米)。
四、画辅助线,如图,用割补法,将阴影1补到空白3位置,将阴影2补到空白4位置,其它三个小正方形也如此割补,所以,阴影的面积等于大圆的面积减去大正方形的面积(对角线乘积除以2),即3.14×(10÷2)2-10×10÷2=28.5(平方厘米)。