第四章:遗传算法
进化计算与遗传算法
进化计算的主要分支
——进化策略
• (l+1)进化策略或二元(two-membered)进 化策略: 种群中只包含一个个体,而且只使用变异作。在 每一进化代,变异后的个体与其父体进行比较再 选择两者之优。它使用的变异算子是基于正态分 布的变异操作 • 进化策略 种群内含有 个个体,随机地选取一个个体进 行变异,然后取代群体中最差的个体
从生物进化到进化计算
• 杂交:通过杂交随机组合来自父代染色体 上的遗传物质,产生不同于它们父代的染 色体。生物进化过程不需要记忆,能很好 地适应自然环境的信息都包含在当前生物 体所携带的染色体的基因库中,并由子代 个体继承下来。
从生物进化到进化计算
• 突变:随机改变父代个体的染色体上的基 因结构,产生具有新染色体的子代个体。 变异是一种不可逆过程,具有突发性、间 断性和不可预测性,对于保证群体的多样 性具有不可替代的作用。
• 另外,生物进化是一个开放的过程,自然 界对进化中的生物群体提供及时的反馈信 息,或称为外界对生物的评价。由此形成 了生物进化的外部动力机制。
从生物进化到进化计算
进化计算的特点: • 进化计算采用简单的编码技术来表示各种 复杂的结构,并通过对一组编码表示进行 简单的遗传操作和优胜劣汰的自然选择来 指导学习和确定搜索的方向。 • 它采用种群(即一组表示)的方式组织搜 索,这使得它可以同时搜索解空间内的多 个区域。而且用种群组织搜索的方式使得 进化算法特别适合大规模并行计算。
从生物进化到进化计算
• 在赋予进化计算自组织、自适应和自学习等特 征的同时,优胜劣汰的自然选择和简单的遗传 操作使进化计算具有不受其搜索空间限制性条 件(如可微、连续、单峰等)的约束及不需要 其它辅助信息(如导数)的特点
• 这些崭新的特点使得进化计算不仅能获得较高 的效率而且具有简单、易于操作和通用的特性, 而这些特性正是进化计算越来越受到人们青睐 的主要原因之一
遗传算法遗传算法
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10
遗传算法的原理
遗传算法的原理遗传算法是一种生物遗传学中的概念,是通过模拟生物进化过程中的基因遗传、交换、变异等现象来进行优化搜索的算法,通常用来解决复杂的优化问题。
遗传算法具有强大的全局搜索能力,能够搜索到全局最优解或近似最优解,因此在许多实际问题中得到了广泛应用。
遗传算法的基本原理是模拟生物进化过程中的基因遗传、交换、变异等过程,通过遗传操作来生成新的解,并通过适应度函数(Fitness Function)来评估每一个解的适应度,并选择适应度较高的解作为下一代的候选解。
具体而言,遗传算法包括以下步骤:1. 初始化:将问题空间中的候选解随机生成,形成一个种群。
2. 适应度函数:定义适应度函数,用于评估每一个解的适应度。
适应度函数通常用来衡量解的质量,例如问题的最优解是否找到,或是代价函数的大小等。
3. 选择:根据适应度函数对当前种群中的解进行评估,按照适应度大小选择一些解作为父代进入下一步操作。
通常,适应度较高的解会被选取的概率大。
4. 交叉:对选出的父代进行交叉操作,即将不同父代的基因片段组合成为新的解。
核心的交叉操作可以基于单点、多点、均匀等方式进行,目的是通过基因重组产生新的更好的解。
5. 变异:在交叉操作后,对产生的新代进行一定的随机变异操作,以增加解的多样性和搜索范围。
通常,变异操作需要在保证种群多样性的基础上,对解的优劣进行进一步评估。
6. 更新:将产生的新代解与上一代解混合,形成一个新的种群,用于下一次迭代计算。
7. 结束条件:当满足特定的终止条件时,算法停止运算,并返回找到的最优解或者近似最优解。
在实际应用中,遗传算法的具体参数取值、种群大小、交叉概率、变异概率等都需要根据不同的问题进行选择,以达到更好的搜索结果。
总体而言,遗传算法具有广泛的应用场景,尤其适用于复杂的非线性问题,例如组合优化问题、机器学习问题、最优控制问题、图像处理问题等。
作为一种强大的优化搜索算法,遗传算法具有极高的适应性和鲁棒性,在实际应用中能够取得非常好的效果。
遗传算法原理
遗传算法原理
遗传算法是一种基于生物进化原理的优化算法,其原理可以简要描述如下:
1. 初始化种群:随机生成一组个体(解决方案),称为种群。
2. 评估适应度:对种群中的每个个体,根据问题的具体情况计算其适应度,即解决方案的优劣程度。
3. 选择操作:根据个体的适应度,按照一定的策略选择一些个体作为父代,这些个体具有较高的适应度。
4. 杂交操作:通过交叉互换父代个体的某些部分,产生子代个体,并加入到新一代种群中。
5. 变异操作:对新一代种群中的个体,以一定的概率进行基因的突变,即改变个体某些部分的值。
6. 替换操作:根据某种规则,将新一代种群中的个体替换掉原来的个体,形成下一代种群。
7. 终止判断:判断算法是否需要终止,可以是达到一定的迭代次数、达到特定的适应度阈值等。
8. 返回结果:返回适应度最高的个体作为求解问题的解。
通过不断迭代上述步骤,遗传算法能够逐渐找到适应度更高的
解决方案,并在搜索空间中寻找全局最优解或近似最优解。
这是因为遗传算法充分利用了种群中较优个体的遗传信息,并通过选择、交叉和变异操作进行优胜劣汰,从而使种群中的解逐渐趋向于更好的解决方案。
遗传算法基本原理
遗传算法基本原理遗传算法是一种优化算法,其基本原理是模仿自然界中的进化过程,通过遗传和进化的操作来问题的解空间,从而找到最优解或近似最优解。
遗传算法的基本原理包括:个体表示、适应度函数、选择、交叉、变异和种群进化。
首先,个体表示是指如何将问题的解表示为遗传算法中的个体。
常用的表示方法有二进制编码、实数编码和排列编码等。
个体表示方式的选择应根据问题的特点来确定,以便能够准确、高效地描述问题解空间。
其次,适应度函数用于衡量个体的适应程度,即它们在解决问题中的优劣程度。
适应度函数需要根据问题的具体要求进行设计,常用的度量指标有目标函数值、约束函数违反程度等。
然后,选择操作根据个体的适应度对种群中的个体进行筛选,以选择出适应度较高的个体作为下一代的父代。
选择操作的目的是保留优秀个体,使其有更大的机会产生后代,从而使种群整体的适应度改进。
接着,交叉操作模拟生物界中的基因交换过程,将两个或多个个体的染色体片段进行组合,产生新的个体。
交叉操作的目的是通过交换和重组有价值的信息,以期望产生更好的后代。
变异操作模拟自然界中的基因突变过程,对个体的一些位进行随机改变,引入一定的随机性。
变异操作的目的是引入新的基因组合,以避免种群收敛到局部最优解。
最后,种群进化是指通过重复进行选择、交叉和变异操作来更新和演化种群,直到达到停止条件为止。
重复进行这些操作可以模拟自然界中的进化过程,逐步使种群逼近最优解。
种群进化过程中需要综合考虑选择压力、交叉概率、变异概率等参数的调整,以平衡探索和利用的关系。
总之,遗传算法通过模拟自然界中的进化过程,利用遗传、交叉和变异操作来问题的解空间,从而找到最优解或近似最优解。
其基本原理包括个体表示、适应度函数、选择、交叉、变异和种群进化。
遗传算法在优化、机器学习等领域具有广泛应用。
遗传算法基本概念
遗传算法基本概念一、引言遗传算法(Genetic Algorithm,GA)是一种基于生物进化原理的搜索和优化方法,它是模拟自然界生物进化过程的一种计算机算法。
遗传算法最初由美国科学家Holland于1975年提出,自此以来,已经成为了解决复杂问题的一种有效工具。
二、基本原理遗传算法通过模拟自然界生物进化过程来求解最优解。
其基本原理是将问题转换为染色体编码,并通过交叉、变异等操作对染色体进行操作,从而得到更优的解。
1. 染色体编码在遗传算法中,问题需要被转换成染色体编码形式。
常用的编码方式有二进制编码、实数编码和排列编码等。
2. 适应度函数适应度函数是遗传算法中非常重要的一个概念,它用来评价染色体的适应性。
适应度函数越高,则该染色体越有可能被选中作为下一代群体的父代。
3. 选择操作选择操作是指从当前群体中选择出适应度较高的个体作为下一代群体的父代。
常用的选择方法有轮盘赌选择、竞赛选择和随机选择等。
4. 交叉操作交叉操作是指将两个父代染色体的一部分基因进行交换,产生新的子代染色体。
常用的交叉方法有单点交叉、多点交叉和均匀交叉等。
5. 变异操作变异操作是指在染色体中随机改变一个或多个基因的值,以增加种群的多样性。
常用的变异方法有随机变异、非一致性变异和自适应变异等。
三、算法流程遗传算法的流程可以概括为:初始化种群,计算适应度函数,选择父代,进行交叉和变异操作,得到新一代种群,并更新最优解。
具体流程如下:1. 初始化种群首先需要随机生成一组初始解作为种群,并对每个解进行编码。
2. 计算适应度函数对于每个染色体,需要计算其适应度函数值,并将其与其他染色体进行比较。
3. 选择父代根据适应度函数值大小,从当前种群中选择出若干个较优秀的染色体作为下一代群体的父代。
4. 进行交叉和变异操作通过交叉和变异操作,在选出来的父代之间产生新的子代染色体。
5. 更新最优解对于每一代种群,需要记录下最优解,并将其与其他染色体进行比较,以便在下一代中继续优化。
遗传算法 算法原理
遗传算法算法原理(原创实用版)目录1.遗传算法的概述2.遗传算法的原理3.遗传算法的应用正文一、遗传算法的概述遗传算法(Genetic Algorithm,简称 GA)是一种模拟自然界生物进化过程的优化算法。
其核心思想是基于自然选择、遗传和突变等生物学原理,通过群体中的个体在不断迭代中进行优胜劣汰,达到解决问题和优化目标的效果。
遗传算法在解决复杂问题、非线性问题和全局最优解问题等方面具有较强的优势,广泛应用于各个领域。
二、遗传算法的原理1.遗传操作遗传算法的基本操作包括选择、交叉和变异。
选择操作是根据适应度函数对当前群体中的个体进行评估,选择优秀个体进行繁殖。
交叉操作是将选中的优秀个体进行染色体互换,产生新的后代。
变异操作是在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
2.适应度函数适应度函数是遗传算法中的重要概念,用于评估每个个体的优劣程度。
适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。
在遗传算法中,适应度函数的取值会直接影响到个体的选择和淘汰。
3.遗传算法的基本流程遗传算法的基本流程如下:(1)初始化种群:创建一个初始种群,包括多个随机生成的个体,每个个体表示一个解。
(2)评估适应度:计算种群中每个个体的适应度值。
(3)选择操作:根据适应度值对种群进行选择,选择一定数量的优秀个体进行繁殖。
(4)交叉操作:对选中的优秀个体进行染色体互换,生成新的后代。
(5)变异操作:在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
(6)更新种群:将新产生的后代替换掉原种群中一些适应度较低的个体,形成新的种群。
(7)重复步骤 2-6,直至满足停止条件。
三、遗传算法的应用遗传算法在许多领域都取得了显著的应用成果,如机器学习、控制系统、信号处理、图像处理、运筹学等。
智能控制-遗传算法
例4.2 用遗传算法求 max f (x) 1 x2, x [0,1].
由于对连续变量求解,要解决的一个问题是如何编码。假设对解的误 差要求是1/16,则可以采用4位二进制编码。对应关系为
❖ 进化发生在解的编码上。这些编码按生物学的术语称为染色体。由于对 解进行了编码,优化问题的一切性质都通过编码来研究。编码和解码是 遗传算法的一个主题。
❖ 自然选择规律决定哪些染色体产生超过平均数的后代。遗传算法中,通 过优化问题的目标而人为地构造适应函数以达到好的染色体产生超过平 均数的后代。
❖ 当染色体结合时,双亲的遗传基因的结合使得子女保持父母的特征。 ❖ 当染色体结合后,随机的变异会造成子代同父代的不同。
遗传算法
STEP1 选择问题的一个编码;给出一个有N个染色体的初始群体pop(1),t:=1
STEP2 对群体pop(t)中的每一个染色体popi(t)计算它的适应函数 fi fitness( popi (t))
STEP3 若停止规则满足,则算法停止;否则,计算概率
pi
fi
N
,
fi
j 1
i 1, 2 ,, N
若他们结合,采用如下的交配方式称为简单交配
x2 (11| 001)
y1 (11|111)
x3 (01|111)
y2 (01| 001)
x2 (11| 001)
y3 (11| 000)
x4 (01| 000)
y4 (01| 001)
即交换第二个位置以后的基因,得到 y1, y2, y3 和 y4 。若 y4 的第一个基因发生变异,则变成 y4 (11001 ) 。
遗传算法-教案
遗传算法【教学目标】1.了解遗传算法的背景2.理解基本思想3.理解遗传算法的计算过程4.了解特点5.【教学重点】1.理解基本思想2.理解遗传算法的计算过程【教学难点】1.理解基本思想2.理解遗传算法的计算过程【教学准备】多媒体课件【教学过程】一、创设问题,引入课题【提问】二者有何联系呢?6.11 遗传算法简述一、背景依据生物进化论的“适者生存”规律而提出主要生物进化特征体现(1)进化发生在解的编码(染色体)上。
(2)自然选择规律决定优秀的染色体产生超过平均数的后代。
遗传算法通过优化目标构造适应函数以达到好的染色体超过平均数的后代。
(3)染色体结合时,双亲的遗传基因结合使得子女保持父母的特征。
(4)当染色体结合后,随机变异会造成子代与父代不同。
二. 基本思想1.对求解空间的各个解进行编码。
2.在寻优过程中,通过对染色体进行结合(选择、交配和变异),不断产生新的解3.根据适应函数在新解中选择部分染色体继续进行结合,4.直至最终找到最好的解。
切削用量:切削深度 ap 、切削宽度 aw、切削速度 v 、铣刀每齿进给量 az,v 和az二项作为优化物种v的工作范围是1~250 m /min,az的范围是0. 015~0. 20 m mv= 150 m /min, 二进制数表达10010110。
az= 0. 10 mm , 二进制数表达01100100适合度是反映物种对优化目标的适应能力。
基因重组• 以生产率为目标的适合度函数 F 1 F 1= 1 / T w = f 1 (a z , v ) , (a z , v )∈ D .式中 T w 为单个工序生产时间, D 为切削参数范围。
• 以生产成本为目标的适合度函数 • F 2 = 1 /C w = f 2 (a z , v ) , (a z , v )∈ D . 式中: C w 为单个工序的生产成本。
• 默认目标函数 F M 在实际生产中, 追求的是低成本下的较高生产率, F M = M RR /T = f ( f z v ) , (f z v )∈ D . 式中, M RR 为金属与除量,单位为 mm 3/min, 反映生产率; T为刀具耐用度理论计算值,反映成本。
遗传算法的基本原理和求解步骤
遗传算法的基本原理和求解步骤遗传算法呀,就像是一场生物进化的模拟游戏呢。
它的基本原理其实是从生物遗传学那里得到灵感的哦。
我们把要解决的问题看作是一个生物种群生存的环境。
在这个算法里,每个可能的解就像是种群里的一个个体。
这些个体都有自己独特的“基因”,这个“基因”就代表了解的一些特征或者参数啦。
比如说,如果我们要找一个函数的最大值,那这个函数的输入值可能就是个体的“基因”。
然后呢,遗传算法会根据一定的规则来判断这些个体的“好坏”,就像大自然里判断生物适不适合生存一样。
这个“好坏”是通过一个适应度函数来衡量的,适应度高的个体就像是强壮的生物,更有机会生存和繁衍后代呢。
那它的求解步骤可有趣啦。
第一步是初始化种群。
就像是在一个新的星球上创造出一群各种各样的小生物。
我们随机生成一些个体,这些个体的“基因”都是随机设定的。
接下来就是计算适应度啦。
这就像是给每个小生物做个健康检查,看看它们有多适合这个环境。
然后是选择操作。
这就好比是大自然的优胜劣汰,适应度高的个体就有更大的机会被选中,就像强壮的动物更有可能找到伴侣繁衍后代一样。
再之后就是交叉操作啦。
选中的个体之间会交换一部分“基因”,就像生物繁殖的时候基因的混合,这样就可能产生出更优秀的后代呢。
最后还有变异操作。
偶尔呢,某个个体的“基因”会发生一点小变化,就像生物突然发生了基因突变。
这个变异可能会产生出一个超级厉害的个体,也可能是个不咋地的个体,不过这也给整个种群带来了新的可能性。
通过这样一轮一轮的操作,种群里的个体就会越来越适应环境,也就是我们要找的解会越来越接近最优解啦。
遗传算法就像是一个充满惊喜和探索的旅程,在这个旅程里,我们让这些“数字生物”不断进化,直到找到我们满意的答案呢。
群智能优化算法——遗传算法
第三章 算法流程
开始 初始种群
开始迭代,Nc=1
no Nc<=MaxNc yes 计算个体适应度值 结束 输出最优结果
选择、交叉、变异
产生新种群
记录产生的最好解
Nc=Nc+1
第四章 算法实例分析
实例: 这里以大连市甘井子区诊所层的选址为案例讲解。
Company
LOGO
Company
LOGO
群智能优化算法 遗传算法
目录
1 2 3 4 绪论 算法基本概念 算法流程 算法实例分析
第一章 绪论
遗传算法是一类借鉴生物界的进化规律(适者生存, 优胜劣汰的遗传机制)演化而来的自适应概率性随机化迭 代搜索算法,它是群优化算法的一种,其中模式定理和隐 性并行性是遗传算法的两大基本原理。 类似于生物的进化过程,遗传算法处理的是变量集合 的编码而非变量本身。它直接对结构对象进行操作,不存 在求导和函数连续性的界定;具有内在的隐并行性和更好 的全局寻优能力;采用概率化的寻优方法,能自动获取和 指导优化的搜索空间,自适应的调整搜索方向,不需要确 定规则。遗传算法的这些特点已被人们广泛的应用于组合 优化、机器学习、信号处理、自适应控制和人工生命领域。 它是现代有关智能计算中的关键技术之一。
第二章 算法基本概念
6)选择(Selection):指决定以一定概率从种群中选择若干 个体的操作。一般而言,选择过程是一种基于适应度的优胜 劣汰的过程。 7)交叉(Crossover):有性生物在繁殖下一代时两个同源 染色体之间通过交叉而重组,亦即在两个染色体的某一个相 同的位置处NDA被切断,其前后两串分别交叉组合形成两个 新的染色体。这个过程又称为基因重组,俗称“杂交”。 8)变异(Mutation):在细胞进行复制时可能以很小的概率 产生某些复制差错,从而使DNA发生某种变异,产生新的染 色体,这些新的染色体表现出新的性状。 9)编码(Coding):DNA中遗传信息在一个长链上按照一定 的模式排列,也即进行了遗传编码。遗传编码可以看做从表 现型到遗传子型的映射。 10)解码(Decoding):从遗传子型到表现型的映射。
《遗传算法》课件
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
遗传算法公式范文
遗传算法公式范文遗传算法(Genetic Algorithm)是一种通过模拟自然选择和遗传机制进行和优化的算法。
它模拟了生物进化过程中的遗传机制,并通过随机化、选择性和适应性来产生新的解决方案。
遗传算法的核心思想是通过演化过程中的选择、交叉和变异等操作,逐步改进并优化候选解,从而找到问题的最优解或近似最优解。
在遗传算法中,候选解以染色体的形式表示,并通过基因的排列组合来表示解空间中的每一个解。
染色体中每个基因对应解空间的一个参数或变量。
每个染色体都有一个适应度函数,用来衡量该染色体所代表的解的优劣程度。
遗传算法的具体步骤如下:1.初始化种群:随机生成初始种群,每个染色体代表一个候选解。
2.评估适应度:根据适应度函数评估每个染色体的适应度,确定每个染色体的适应度值。
3.选择操作:基于适应度值,以一定的概率选择一些个体作为下一代父代。
适应度较高的个体被选择的概率较大。
4.交叉操作:通过染色体之间的随机交叉,产生新的染色体。
交叉操作模拟了基因的组合和基因交换。
5.变异操作:对一部分染色体进行基因的突变操作,随机改变其一些基因的值。
变异操作引入了问题空间的多样性,防止算法陷入局部最优解。
6.更新种群:将新生成的染色体加入到种群中,替换掉适应度较低的染色体,更新种群。
7.终止条件判断:根据设定的终止条件(例如达到一定代数或找到满意的个体适应度)判断是否停止演化过程。
8.返回最优解:最终输出找到的最优解或近似最优解。
遗传算法是一种通用的优化算法,可以用来解决很多问题,如函数优化、组合优化、任务调度、旅行商问题等。
其优点是能够在大规模、复杂的问题中找到较好的近似最优解,但也存在一些问题,如易陷入局部最优解、收敛速度较慢等。
总之,遗传算法通过模拟生物进化过程中的遗传机制,通过选择、交叉和变异等操作,不断改进和优化候选解,最终找到问题的最优解或近似最优解。
通过合适的染色体表示和适应度函数定义,遗传算法可以解决各种不同的优化问题,提供了一种强大的工具和方法。
遗传算法——精选推荐
遗传算法1、遗传算法的概念遗传算法是借鉴⽣物进化过程⽽提出的⼀种算法,这是⼀种随机化算法,是建⽴在不确定性基础上的。
算法模拟了种群⼀代⼀代进化的过程:通过评估函数进⾏优胜劣汰的选择,通过交叉和变异来模拟⽣物的进化。
优胜劣汰是遗传算法的核⼼,根据优胜劣汰的策略的不同,算法最终的效果也是不同的。
遗传算法将实际问题的解定义为进化对象的个体,对若⼲个体组成的种群进⾏选择、交叉(杂交)和变异处理,就这样每次对种群进⾏⼀次这样的处理,种群就视为进化了⼀代,循环往复,只要选择的评估和选择策略合适,若⼲次进化后种群中就会出现优秀的个体(即问题的近似最优解)。
需要注意的是,遗传算法并不是⼀个具体的算法,它只是⼀种思想,针对不同的问题,遗传算法的设计都是各不相同的。
2、遗传算法的原理遗传算法依据是物竞天择,适者⽣存,说到进化论,就先复习⼀下初中的⽣物学知识。
基因指的是⼀个单独的遗传因⼦,包含⼀组不能再拆分的⽣物学特征,⽽染⾊体指的是⼀组基因的组合;接下来是种群和个体,⽣物的进化以群体的形式进⾏,该群体就叫做种群,种群中的每个⽣物就是个体,种群内部的个体之间是相互联系相互影响的,最终影响着整个种群的进化;遗传指的是下⼀代个体会遗传继承上⼀代个体的部分基因,这使得个体的⽣物学特征能遗传到下⼀代,但是遗传是不稳定的,会有⼀定的概率发⽣基因突变,基因突变产⽣的新的⽣物学特征可能会提⾼个体的环境适应能⼒,也可能反之。
在遗传算法中,⽣物繁殖就是基因交叉算法的过程,将种群中的个体进⾏两两部分基因编码⽚段的互换,得到下⼀代个体。
遗传算法中的基因突变算法是通过直接替换掉个体基因中的某⼏个基因编码实现的(或者其他⽅式)。
在编写遗传算法时,往往都需要定义两个变量,来控制基因交叉和基因突变发⽣的概率,最终使得算法收敛到近似最优解。
选择也是遗传算法中很重要的⼀部分,选择就是根据个体的适应度,按照⼀定规则从上⼀代种群中选择⼀些优秀的个体遗传到下⼀代种群中,适应度指的是个体对环境的适应程度,适应度差的个体会被淘汰,最终适应度⾼的个体会越来越多,遗传算法⼀般会根据实际情况选择⼀个适应度评估函数,来评估种群中个体的适应度。
遗传算法
遗传算法一、遗传算法的简介及来源1、遗传算法简介遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《自然系统和人工系统的自适应》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法模仿了生物的遗传、进化原理, 并引用了随机统计理论。
在求解过程中, 遗传算法从一个初始变量群体开始, 一代一代地寻找问题的最优解, 直至满足收敛判据或预先设定的迭代次数为止。
它是一种迭代式算法。
2、遗传算法的基本原理遗传算法是一种基于自然选择和群体遗传机理的搜索算法, 它模拟了自然选择和自然遗传过程中发生的繁殖、杂交和突变现象。
在利用遗传算法求解问题时, 问题的每个可能的解都被编码成一个“染色体”,即个体, 若干个个体构成了群体( 所有可能解) 。
在遗传算法开始时, 总是随机地产生一些个体( 即初始解) , 根据预定的目标函数对每个个体进行评价, 给出了一个适应度值。
基于此适应度值, 选择个体用来繁殖下一代。
选择操作体现了“适者生存”原理, “好”的个体被选择用来繁殖, 而“坏”的个体则被淘汰。
然后选择出来的个体经过交叉和变异算子进行再组合生成新的一代。
这一群新个体由于继承了上一代的一些优良性状,因而在性能上要优于上一代, 这样逐步朝着更优解的方向进化。
因此, 遗传算法可以看作是一个由可行解组成的群体逐代进化的过程。
3、遗传算法的一般算法(1)创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
(2)评估适应度对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。
遗传算法原理 pdf
遗传算法原理 pdf
遗传算法(Genetic Algorithm, GA)是一种受到达尔文进化论
启发而产生的一类计算模型,用于解决优化问题。
其基本原理是通过模拟生物进化过程中的自然选择、交叉和变异等基本操作,来搜索问题的最优解。
遗传算法的主要步骤包括:
1. 初始化种群:从问题的解空间中随机生成一组个体,称为种群。
2. 选择操作:根据个体的适应度(即问题目标函数值的评价),按照一定的策略选择一些个体作为父代。
3. 交叉操作:通过交叉两个父代个体的某个特定位置,生成若干个子代。
4. 变异操作:对某些子代个体的某个位置进行随机变异。
5. 评估操作:评估新生成的个体的适应度。
6. 更新种群:根据一定策略,如选择优先的原则,更新种群。
7. 迭代:重复执行第2至第6步,直到满足停止准则(如达到最大迭代次数或找到满足必要条件的最优解)。
通过选择、交叉和变异等操作,遗传算法模拟了自然界的进化过程,可以在解空间中进行搜索,并找到潜在的最优解。
由于遗传算法不依赖于问题的具体数学描述,因此可以广泛应用于多种优化问题的求解。
除了原始的遗传算法,还有一些变种的遗传算法,如改进策略的遗传算法、粒子群优化算法等,在实际应用中根据具体问题和需求选择适合的算法。
总之,遗传算法是一种模拟生物进化过程的计算模型,通过选择、交叉和变异等操作来进行搜索和优化问题解的求解。
该算法不仅具有广泛的适用性和灵活性,还可以在大规模和复杂优化问题中表现出较好的效果。
遗传算法的性能分析与优化
遗传算法的性能分析与优化第一章:引言遗传算法是一种基于自然选择和遗传遗传机制的优化算法。
它可用于解决各种优化问题,例如逆问题,组合优化问题,非线性规划问题和参数优化问题。
遗传算法已成为优化问题的研究重点,它在许多领域中得到了成功的应用,例如电力系统、机械制造、图像处理、金融分析等等。
尽管遗传算法似乎在大多数优化问题中都能表现出色,但是,如果没有仔细地设计和精细地调整遗传算法的参数,其性能将会大大降低。
本文旨在分析遗传算法的性能,并介绍一些优化算法来提高其性能。
第二章:遗传算法的基本原理遗传算法是模拟自然选择和遗传的优化算法。
其工作原理基于自然选择和遗传遗传机制。
通常,遗传算法的工作流程包括初始化,选择,交叉和变异。
在初始化阶段,一组随机生成的解作为初始种群。
然后,通过对这个种群进行选择、交叉和变异操作,来产生下一个代的种群。
最后,从种群中选择出最适合的解作为最终的优化结果。
以下介绍这四个步骤:1. 初始化:初始化是指在种群中随机生成若干个个体,并确定每个个体的适应度值。
适应度是指个体解的好坏程度,通常可以通过目标函数的值来计算。
在初始化阶段中,一般会使用随机的方式生成种群的个体,这也就是说,每个个体上的值都是随机的。
例如,在一个目标函数为$f(x)=x^2$的问题中,一个个体就是一个自变量$x$的具体值。
通常,初始种群大小会设定为某个固定值,例如30或50。
2. 选择:选择是指从一个种群中选择出一部分个体,用于产生下一个代的种群。
常见的选择方法有轮盘赌选择方法和竞赛选择方法。
轮盘赌选择方法:基于随机数的方法,根据适应度函数计算每个个体的生存概率,对某个生存概率产生随机数,根据随机数大小选出个体。
竞赛选择方法:将所有个体按照适应度从小到大排序,然后选择前N个个体,这些个体就是下一代的父代。
3. 交叉:交叉是指用两个父代产生一个子代。
这个过程包括选择父代的某一部分基因,并将其拼接到另一部分父代的基因上,以产生新的个体。
遗传算法详解
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
1. 复制
复制(又称繁殖),是从一个旧种群(old population) 中选择生命力强的字符串(individual string)产生新种群 的过程。或者说,复制是个体位串根据其目标函数f(即 适值函数)拷贝自己的过程。直观地讲,可以把目标函数 f看作是期望的最大效益的某种量度。根据位串的适值所 进行的拷贝,意味着具有较高适值的位串更有可能在下一 代中产生一个或多个子孙。显然,在复制操作过程中,目 标函数(适值)是该位串被复制或被淘汰的决定因素。
复制操作的初始种群(旧种群)的生成往往是随机产生 的。例如,通过掷硬币20次产生维数n=4的初始种群如下 (正面=1,背面=0):
01101
11000
01000
10011
显然,该初始种群可以看成是一个长度为五位的无符 号二进制数,将其编成四个位串,并解码为十进制的数:
位串1:
01101
13
位串2:
5.1.1 基本遗传学基础
遗传算法是根据生物进化的模型提出的一种优化算法。 自然选择学说是进化论的中心内容,根据进化论,生物的 发展进化主要由三个原因,即遗传、变异和选择。
遗传是指子代总是和亲代相似。遗传性是一切生物所 共有的特性,它使得生物能够把其特性、性状传给后代。 遗传是生物进化的基础。
变异是指子代和亲代有某些不相似的现象,即子代永 远不会和亲代完全一样。它是一切生物所具有的共有特性, 是生物个体之间相互区别的基础。引起变异的原因主要是 生活环境的影响及杂交等。生物的变异性为生物的进化和 发展创造了条件。
遗传算法第四章交叉代码
遗传算法为了增加实用性,直接使用代码进行讲解;通过前面两章,我们知道交叉的方式有:单点交叉、多点交叉、均匀交叉、算术交叉、部分映射交叉【private List<Integer> singlePointCrossover(List<Integer> parent1, List<Integer> parent2) {// 单点交叉int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = 0; i < parent2.size(); i++) {int gene = parent2.get(i);if (!child.contains(gene)) {for (int j = 0; j < child.size(); j++) {if (child.get(j) == -1) {child.set(j, gene);break;}}}}return child;}// 交叉操作(多点交叉)private List<Integer> multiPointCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(parent1.subList(startPos, endPos));for (Integer gene : parent2) {if (!child.contains(gene)) {int insertionIndex = random.nextInt(child.size() + 1);child.add(insertionIndex, gene);}}return child;}// 交叉操作(均匀交叉)private List<Integer> uniformCrossover(List<Integer> parent1, List<Integer> parent2) { List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {if (random.nextBoolean()) {child.add(parent1.get(i));} else {child.add(parent2.get(i));}}return child;}// 交叉操作(算术交叉)private List<Integer> arithmeticCrossover(List<Integer> parent1, List<Integer> parent2) {List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {int gene1 = parent1.get(i);int gene2 = parent2.get(i);child.add((gene1 + gene2) / 2);}return child;}// 交叉操作(部分映射交叉)private List<Integer> partiallyMappedCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = startPos; i <= endPos; i++) {int gene = parent2.get(i);int index = parent2.indexOf(gene);while (child.get(index) != -1) {gene = parent2.get(index);index = parent2.indexOf(gene);}child.set(index, parent2.get(i));}for (int i = 0; i < parent1.size(); i++) {if (child.get(i) == -1) {child.set(i, parent2.get(i));}}return child;}】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 引言
GA与其它优化方法相比,具有如下特点: GA与其它优化方法相比,具有如下特点: 与其它优化方法相比
GA不是直接作用在参变量集上, GA不是直接作用在参变量集上, 而是利用参变 不是直接作用在参变量集上 量集的某种编码; 量集的某种编码; GA不是从单个点 不是从单个点, GA不是从单个点, 而是在群体中从多个点开始 搜索; 搜索; GA利用适应值信息 无需导数或其它辅助信息; 利用适应值信息, GA利用适应值信息, 无需导数或其它辅助信息;
4.1 引言
生物的进化是一个奇妙的优化过程,它通过选择淘 生物的进化是一个奇妙的优化过程, 突然变异, 汰,突然变异,基因遗传等规律产生适应环境变化的 优良物种. 优良物种.
例如,在人类的进化过程中,通过“物竞天择、适者生存” 例如,在人类的进化过程中,通过“物竞天择、适者生存” 自然的选择和淘汰,人类的身、心不断得到进化, 自然的选择和淘汰,人类的身、心不断得到进化,逐渐进 化成为这地球上的具有最高等智慧的主宰者. 化成为这地球上的具有最高等智慧的主宰者. 在这个进化过程中,不仅人的身体得到进化, 在这个进化过程中,不仅人的身体得到进化,而且人的智 智能也在得到进化. 慧、智能也在得到进化. 因此,生物的进化过程其实也是一种智能的进化、 因此,生物的进化过程其实也是一种智能的进化、优化 过程,也是一种智能行为. 物竞天择 适者生存” 物竞天择、 过程,也是一种智能行为.“物竞天择、适者生存”中蕴 涵了智能的光辉、蕴涵了优化的思想. 涵了智能的光辉、蕴涵了优化的思想.
Darwin进化论及进化系统模型 4.2.1 Darwin进化论及进化系统模型
生物进化过程(循环图): 生物进化过程(循环图):
初始群体 新的群体
竞争 淘汰体
初始种群
繁殖
变异
Darwin进化论及进化系统模型 4.2.1 Darwin进化论及进化系统模型
自Darwin以来的新进化学说强调: Darwin以来的新进化学说强调: 以来的新进化学说强调
优化 NP完全 NP完全 高度复杂的非线性问题
4.1 引言
近年,GA在各应用领域中得到极大重视,并广泛应用 近年,GA在各应用领域中得到极大重视, ,GA在各应用领域中得到极大重视 于各领域的优化、搜索、问题求解中, 于各领域的优化、搜索、问题求解中,并在
模式识别、 模式识别、 NN、 NN、 图像处理、 图像处理、 机器学习、 机器学习、 工业优化控制、 工业优化控制、 自适应控制、 自适应控制、 生物科学、 生物科学、 社会科学
这一年是GA研究的历史上十分重要的一年. 这一年是GA研究的历史上十分重要的一年. GA研究的历史上十分重要的一年 Holland在他的著名专著 在他的著名专著《 Holland在他的著名专著《Adaptation in Natural Systems》中系统地阐述了GA GA的基 and Artificial Systems》中系统地阐述了GA的基 本理论和方法,并提出了对GA GA的理论研究和发展极为 本理论和方法,并提出了对GA的理论研究和发展极为 重要的模式理论(schemata 重要的模式理论(schemata theory). 该理论首次确认了结构重组遗传操作对于获得隐并 行性的重要性. 行性的重要性.
Charles Darwin
Darwin进化论及进化系统模型 4.2.1 Darwin进化论及进化系统模型
物种每个个体的基本特征由后代所继承, 物种每个个体的基本特征由后代所继承 ,但后代 又会产生一些异于父代的新变化. 又会产生一些异于父代的新变化. 在环境变化时,只有那些能适应环境的个体特征 在环境变化时, 方能保留下来. 方能保留下来.
4.1 引言
GA的优点: GA的优点: 的优点
较容易的和其它方法结合 避免陷入局部最优解
即使在较短的有限时间内,也能获得较好的次优解、 即使在较短的有限时间内,也能获得较好的次优解、 满意解. 满意解.
鲁棒性佳
对优化问题的初始条件(状态)依赖性小。 对优化问题的初始条件(状态)依赖性小。 抗干扰性强。 抗干扰性强。
4.1 引言
同年,DeJong完成了他的重要论文《遗传自适应 同年,DeJong完成了他的重要论文《 ,DeJong完成了他的重要论文 系统的行为分析》 系统的行为分析》.
他在该论文中所做的研究工作可看作是GA发展过程 他在该论文中所做的研究工作可看作是GA发展过程 GA 中的一个里程碑,这是因为他把Holland Holland的模式理论 中的一个里程碑,这是因为他把Holland的模式理论 与他的计算使用结合起来. 与他的计算使用结合起来.
个体是基本的选择目标; 个体是基本的选择目标; 随机过程在进化中起重大作用, 随机过程在进化中起重大作用 ,遗传变异大部分 是偶然现象; 是偶然现象; 进化是在适应中变化的, 形式多样, 进化是在适应中变化的 , 形式多样 , 不仅是基因 的变化; 的变化; 选择是概率型的,而不是决定型的. 选择是概率型的,而不是决定型的.
4.1 引言
遗传算法(Genetic Algorithm,GA)就是根据生物进 遗传算法(Genetic Algorithm,GA)就是根据生物进 化思想而启发得出的一种智能理论和方法. 化思想而启发得出的一种智能理论和方法.
它是基于进化过程中的信息遗传机制和优胜劣汰的自然 选择原则的搜索算法, 选择原则的搜索算法,是通过对生物进化的归纳和模拟 得到的一种仿生算法. 得到的一种仿生算法. GA在本质上是一种不依赖具体问题的直接搜索方法 在本质上是一种不依赖具体问题的直接搜索方法, GA在本质上是一种不依赖具体问题的直接搜索方法,是 一种具有普适性的优化方法. 一种具有普适性的优化方法.
GA的发展历程为: GA的发展历程为: 的发展历程为
1965年,Michigan大学的Holland首次提出了人工遗传操 1965年,Michigan大学的Holland首次提出了人工遗传操 大学的Holland 作的重要性,并把这些应用于自然系统和人工系统中. 作的重要性,并把这些应用于自然系统和人工系统中. 1967年,J.D.Bagley在他的论文中首次提出了GA这一术 在他的论文中首次提出了GA 1967年,J.D.Bagley在他的论文中首次提出了GA这一术 语与概念,并讨论了GA在自动博弈中的应用. GA在自动博弈中的应用 语与概念,并讨论了GA在自动博弈中的应用.
4.1 引言
1970年,Cavicchio把GA应用于模式识别中 应用于模式识别中. 1970年,Cavicchio把GA应用于模式识别中. 第一个把GA应用于函数优化的是Hollstien. GA应用于函数优化的是 第一个把GA应用于函数优化的是Hollstien. GA的理论和方法的系统性研究开始于1975年 的理论和方法的系统性研究开始于1975 而GA的理论和方法的系统性研究开始于1975年, 这一开创性工作是由J.H.Holland所实行. J.H.Holland所实行 这一开创性工作是由J.H.Holland所实行.
Mendel遗传学说 4.2.2 Mendel遗传学说
Mendel(1822-1884, Mendel(1822-1884, Father 1822 genetics)遗传学说最重 of genetics)遗传学说最重 要的是基因遗传原理. 要的是基因遗传原理. 它认为遗传以密码方式 存在细胞中, 存在细胞中,并以基因形 式包含在染色体内. 式包含在染色体内. 每个基因有特殊的位置 并控制某种特殊性质; 并控制某种特殊性质;所 以,每个基因产生的个体 对环境具有某种适应性. 对环境具有某种适应性.
GA的基本思想是基于达尔文 (Darwin) GA 的基本思想是基于达尔文(Darwin) 进化论 的基本思想是基于达尔文 (Darwin)进化论 和门德尔(Mendel)的遗传学说的, (Mendel)的遗传学说的 和门德尔(Mendel)的遗传学说的,下面将分别 介绍: 介绍:
Darwin进化论及进化系统模型 Darwin进化论及进化系统模型 Mendel的遗传学说 Mendel的遗传学说 GA的基本概念与术语 GA的基本概念与术语
第四章 遗传算法
目 录
引言 GA的基本概念 GA的基本概念
Darwin进化论及进化系统模型 Darwin进化论及进化系统模型 Mendel的遗传学说 Mendel的遗传学说 GA的基本概念与术语 GA的基本概念与术语
GA的原理 GA的原理
GA的目的 GA的目的 GA的基本原理 GA的基本原理 GA的算法过程 GA的算法过程
目 录
GA的应用 GA的应用
GA的特点 GA的特点 GA应用的关键 GA应用的关键 GA在函数优化中的应用 GA在函数优化中的应用 GA在组合优化中的应用 GA在组合优化中的应用
GA的理论分析 GA的理论分析 GA在智能控制中的应用 GA在智能控制中的应用 GA的发展展望 GA的发展展望 参考文献
因此对优化问题(函数)的限制较弱,灵活,通用性( 因此对优化问题(函数)的限制较弱,灵活,通用性(普 适性) 有着较广泛的应用领域. 适性)强,有着较广泛的应用领域.
GA利用概率转移规则, 而非确定性规则. GA利用概率转移规则, 而非确定性规则. 利用概率转移规则 GA在解空间内不是盲目的穷举或完全随机测试 在解空间内不是盲目的穷举或完全随机测试, GA在解空间内不是盲目的穷举或完全随机测试, 而是一种启发式搜索,效率优于其它算法。 而是一种启发式搜索,效率优于其它算法。
1989年Goldberg对GA从理论上,方法上和应用上 从理论上, 1989年Goldberg对GA从理论上 作了系统的总结. 作了系统的总结. 1990年代以来,以GA为代表的进化类算法及计算 1990年代以来, GA为代表的进化类算法及计算 年代以来 智能理论和算法得到极大重视.1994 .1994年在美国召 智能理论和算法得到极大重视.1994年在美国召 开了第一届世界计算智能大会, 开了第一届世界计算智能大会,欣起了进化类算 法研究和应用的热潮. 法研究和应用的热潮.