北师大版九年级数学上册期末检测数学试卷及答案

合集下载

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列函数中不是反比例函数的是()A .3y x=B .13y x -=C .1xy =D .3x y =-2.下列立体图形中,主视图是圆的是()A .B .C .D .3.如图,在菱形ABCD 中,60B ∠=︒,4AB =,则正方形ACEF 的面积为()A .8B .12C .16D .204.用如图所示的两个转盘(分别进行四等分和三等分)设计一个“配紫色”的游戏,其中一个转出红色,另一个转出蓝色即可配成紫色,分别转动两个转盘(指针指向区域分界线时,忽略不计),那么可配成紫色的概率为()A .712B .12C .512D .135.如图,在平面直角坐标系中,OAB 与OCD 位似,点O 是它们的位似中心,已知()4,2A -,()2,1C -,则OAB 与OCD 的面积之比为()A .1:1B .2:1C .3:1D .4:16.若双曲线ay x=在第二、四象限,那么关于x 的方程2210ax x ++=的根的情况为()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .无实根7.如图,四边形OABC 是平行四边形,对角线OB 在y 轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x=和2ky x =的一支上,过点A ,点C 分别作x 轴的垂线,垂足分别为M 和N ,有以下结论:①ON OM =;②12k AM CN k =;③阴影部分面积是()121k k 2+;④若四边形OABC 是菱形,则图中曲线关于y 轴对称.其中正确的结论是()A .①④B .②③C .①②④D .①③④8.如图,矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点,AE 交对角线BD 于点G ,BF 交AE 于点H .则GHHE的值是()A .12B .23C.2D9.如图,已知△A′B′C′与△ABC 是位似图形,点O 是位似中心,若A′是OA 的中点,则△A′B'C′与△ABC 的面积比是()A .1:4B .1:2C .2:1D .4:110.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BECE的值为()A .512B .725C .718D .524二、填空题11.如果四条线段a ,b ,c ,d 是成比例线段,且4a =,12b =,8c =,那么d 为______.12.已知1x =是一元二次方程220x ax +-=的一个根,则此方程的另一个根为______.13.如图,在ABC 中,∥DE BC ,若:3:2AD DB =,6cm AE =,则EC 的长为______cm .14.已知近视眼镜的度数D (度)与镜片焦距f (米)成反比例关系,且400度近视眼镜镜片的焦距为0.25米.小慧原来戴400度的近视眼镜,经过一段时间的矫正治疗后,现在只需戴镜片焦距为0.4米的眼镜了,则小慧所戴眼镜的度数降低了___度.15.如图,函数()0y kx k =-≠的图象与2y x=-的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,连接BC ,则BOC 的面积为______.16.如图,这是一个几何体的三视图,根据图中所标的数据,这个几何体的体积为______.17.如图,在正方形ABCD 中,顶点A ,B ,C ,D 在坐标轴上,且()2,0B ,以AB 为边构造菱形ABEF (点E 在x 轴正半轴上),将菱形ABEF 与正方形ABCD 组成的图形绕点O 逆时针旋转,每次旋转45°,则第2022次旋转结束时,点2022F 的坐标为______.18.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题19.关于x 的一元二次方程2240x x k --=有两个不相等的实数根.(1)求k 的取值范围;(2)若1k =,请用配方法求该方程的根.20.如图,矩形ABCD 的对角线AC ,BD 交于点O ,且//DE AC ,//AE BD ,连接OE .求证:OE AD ⊥.21.如图,正比例函数与反比例函数的图象交于A、B两点,点A的坐标为(1,2).(1)求反比例函数的解析式;(2)根据图像直接写出使正比例函数的值大于反比例函数的值的x取值范围.22.如图:一次函数的图象与反比例函数kyx=的图象交于()2,6A-和点()4,B n.(1)求点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值.23.如图,BD、CE是ABC的两条高,M、N分别是BC、DE的中点.(1)求证:ADE ABC △△∽.(2)试说明MN 与DE 的关系.24.如图,在ABC 中,2BC AB =,AD 是BC 边上的中线,O 是AD 的中点,过点A 作AE BC ∥,交BO 的延长线于点E ,BE 交AC 于点F ,连接DE 交AC 于点G .(1)判断四边形ABDE 的形状,并说明理由;(2)若34AB =:3:5OA OB =,求四边形ABDE 的面积;(3)连接DF ,求证:2DF FG FC =⋅.25.如图,点E 是矩形ABCD 的边BA 延长线上一点,连接ED ,EC ,EC 交AD 于点G ,作CF ∥ED 交AB 于点F ,DC =DE .(1)求证:四边形CDEF 是菱形;(2)若BC =3,CD =5,求AG 的长.26.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.27.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)求ABBC的值.参考答案1.D2.D3.C4.A5.D6.A 7.C 8.B 9.A 10.C 11.2412.2x =-13.414.15015.116.18π17.(2,-18.60.19.(1)2k >-(2)1x =2x =20.证明://,//A C D E E D A B ,∴四边形AODE 是平行四边形,四边形ABCD 是矩形,1122OA OD AC BD ∴===,∴平行四边形AODE 是菱形,OE AD ∴⊥.21.(1)2y x=;(2)10x -<<或1x >.【详解】解:(1)设反比例函数表达式为k y x=,∵正比例函数与反比例函数的图象交于A 、B 两点,∴将A 的坐标(1,2)代入k y x =得:21k=,解得:k=2,∴2y x=;(2)设正比例函数表达式为y=ax ,将A 的坐标(1,2)代入y=ax 得:2=a ,∴y=2x ,联立正比例函数表达式和反比例函数表达式,得:22y x y x⎧=⎪⎨⎪=⎩,整理得:222x =,解得:1211x x ==-,,∴B 点横坐标为-1,将x=-1代入y=2x 得:y=-2.∴B(-1,-2),由图像可得,正比例函数的值大于反比例函数的值的x 取值范围是10x -<<或1x >.22.(1)()4,3B -;(2)2x <-或04x <<.【详解】解:(1)将点()2,6A -代入ky x=得:2612k =-⨯=-,则反比例函数的解析式为12y x=-,将点()4,B n 代入12y x=-得:1234n =-=-,则点B 的坐标为()4,3B -;(2) 一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方,2x ∴<-或04x <<.23.(1)见解析(2)MN 垂直平分DE ,理由见解析【分析】(1)根据三角形高、相似三角形的性质,通过证明ABD ACE ∽△△,得AB ACAD AE=,再根据相似三角形的性质分析,即可完成证明;(2)根据直角三角形斜边中线的性质,得12EM BC =,12DM BC =,再根据等腰三角形三线合一的性质分析,即可得到答案.(1)∵BD 、CE 是ABC 的两条高,∴90ADB AEC ∠=∠=︒,∵A A ∠=∠,∴ABD ACE ∽△△,∴AB ADAC AE=,∴AB ACAD AE=,∵A A ∠=∠,∴ADE ABC △△∽;(2)如图,连接DM ,EM∵BD 、CE 是ABC 的两条高,∴90CDB BEC ==︒∠∠∵M 是BC 的中点,,∴12EM BC =,12DM BC =,∴EM DM =,∵N 是DE 的中点,∴MN 垂直平分DE .24.(1)四边形ABDE 是菱形,理由见解析(2)30(3)见解析【分析】(1)先判定△AOE ≌△DOB (ASA ),得出AE =BD ,根据AE ∥BD ,即可得出四边形ABDE 是平行四边形,再根据BD =BA ,即可得到平行四边形ABDE 是菱形;(2)根据四边形ABDE是菱形,AB =OA:OB =3:5,运用勾股定理求得AD =6,BE =10,即可得出菱形ABDE 的面积;(3)根据菱形的性质得出∠GDF =∠DCF ,再根据∠GFD =∠DFC ,即可判定△DFG ∽△CFD ,进而得到GFDFDF CF =,得证.(1)解:(1)四边形ABDE 是菱形.理由:∵AE BC ∥,∴EAO BDO ∠=∠,∵O 是AD 的中点,∴AO DO =,在AOE △和DOB 中,EAO BDOAO DO AOE DOB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AOE DOB △△≌,∴AE BD =,又∵AE BD ∥,∴四边形ABDE 是平行四边形,∵AD 是BC 边上的中线,∴2BC BD =,又∵2BC AB =,∴BD BA =,∴平行四边形ABDE 是菱形.(2)解:∵四边形ABDE 是菱形,∴AD BE ⊥,12AO AD =,12BO BE =,设3OA k =,5OB k =,在Rt AOB △中,由勾股定理得222AO OB AB +=,∴()()22235k k +=,整理得2292534k k +=,解得1k =,∴3OA =,5OB =,∴6AD =,10BE =,∴菱形ABDE 的面积1106302=⨯⨯=.(3)证明:∵四边形ABDE 是菱形,∴BE 垂直平分AD ,EA ED =,FA FD =,∴EAO EDO ∠=∠,FAO FDO ∠=∠,∴EAF EDF ∠=∠,∵AE BC ∥,∴EAF DCF ∠=∠,∴GDF DCF ∠=∠,又∵GFD DFC ∠=∠,∴DFG CFD △△∽,∴GFDFDF CF =,∴2DF FG FC =⋅.25.(1)解:证明:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,∵CF ∥ED ,∴四边形CDEF 是平行四边形,∵DC=DE .∴四边形CDEF 是菱形;(2)如图,连接GF ,∵四边形CDEF 是菱形,∴CF=CD=5,∵BC=3,∴BF=4==,∴AF=AB-BF=5-4=1,在△CDG 和△CFG 中,CD CF DCG FCG CG CG =⎧⎪∠=∠⎨⎪=⎩,∴△CDG ≌△CFG (SAS ),∴FG=GD ,∴FG=GD=AD-AG=3-AG ,在Rt △FGA 中,根据勾股定理,得FG 2=AF 2+AG 2,∴(3-AG )2=12+AG 2,解得AG=43.26.(1)见解析(2)【分析】(1)证△ABE ≌△CBE (SAS ),即可得出结论;(2)连接AC 交BD 于H ,先由菱形的性质可得AH ⊥BD ,BH =DH ,AH =CH ,求出BH 、EH 的长,由勾股定理求出AH 的长,再由勾股定理求出AB 的长,即可得出结果.【详解】(1)∵四边形ABCD 是菱形,∴∠ABE =∠CBE ,AB =CB ,在△ABE 和△CBE 中,AB CB ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE ,∴AE =CE ,∵AE =DE ,∴CE =DE ;(2)如图,连接AC 交BD 于H ,∵四边形ABCD 是菱形,∴AH ⊥BD ,BH =DH ,AH =CH ,∵CE =DE =AE =1,∴BD =BE+DE =2+1=3,∴BH =12BD =32,EH =BE ﹣BH =2﹣32=12,在Rt △AHE 中,由勾股定理得:AH在Rt △AHB 中,由勾股定理得:AB=27.(1)y =2x;(2)1【分析】(1)将点A 坐标代入两个解析式可求a 的值,k 的值,即可求解;(2)连接OA ,OB ,先求得B 、C 的坐标,然后求得S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,则可求得S △AOB =32,根据同高三角形面积的比等于底边的比即可求得结论.【详解】解:(1)把点A (1,a )代入y =﹣x+3,得a =2,∴A (1,2),把A (1,2)代入反比例函数k y x =,∴k =1×2=2,∴反比例函数的表达式为y =2x;(2)如图,连接OA ,OB ,由一次函数y =﹣x+3可知C 的坐标为(3,0),解23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,∴B (2,1),∴S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,∴33322AOB AOC BOC S S S =-=-= ,∴AOB BOC S S ∆∆=1,∴AB BC =1.。

北师大版九年级上册数学期末考试试卷含答案解析

北师大版九年级上册数学期末考试试卷含答案解析

北师大版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.在一个四边形ABCD 中,依次连结各边中点的四边形是菱形,则对角线AC 与BD 需要满足条件()A .垂直B .相等C .垂直且相等D .不再需要条件2.如图,在矩形ABCD 中,AB=3,BC=4,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为()A .32B .2C .52D .33.下列方程中,是关于x 的一元二次方程的是A .()()12132+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 4.已知点()12,A y -、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是A .9%B ..5%C .9.5%D .10%6.二次三项式243x x -+配方的结果是()A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-7.函数x ky =的图象经过(1,-1),则函数2-=kx y 的图象是2222-2-2-2-2O OOOy y y y xxxxA .B .C .D.8.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动A .变短B .变长C .不变D.无法确定9.如图,点A 在双曲线=6上,且OA =4,过A 作AC ⊥轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A .47B .5C .27D .2210.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为.二、填空题11.反比例函数2k y x+=的图象在一、三象限,则k 应满足_________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的12倍,边长应缩小到原来的____倍.13.已知一元二次方程22(1)7340a x ax a a -+++-=有一个根为0,则a 的值为_______.14.已知534a b c ==,则232a b c a b c++=++_______15.如图,已知点A 在反比例函数(0)ky x x=<的图象上,AC y ⊥轴于点C ,点B 在x 轴的负半轴上,若2ABC S = ,则k 的值为_________.16.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD=_____.17.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.三、解答题18.解方程(1);(2).19.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m .B(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.20.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.21.已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.23.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?24.如图,已知A (−4,n ),B (2,−4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式kx +b −mx<0的解集(请直接写出答案).25.在平面直角坐标系中,直线l 1:y =x +5与反比例函数y =kx(k ≠0,x >0)图象交于点A(1,n );另一条直线l 2:y =﹣2x +b 与x 轴交于点E ,与y 轴交于点B ,与反比例函数y =k x(k ≠0,x >0)图象交于点C 和点D (12,m ),连接OC 、OD .(1)求反比例函数解析式和点C 的坐标;(2)求△OCD 的面积.26.(12分)如图,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.CE FA B(1)当ECF△的面积与四边形EABF的面积相等时,求CE的长;(2)当ECF△的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得EFP△为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案1.B【解析】试题分析:如图:∵四边形EFGH是菱形,∴EH=FG=EF=HG=12BD=12AC,故AC=BD.故选B.考点:中点四边形.2.A【解析】试题分析:由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程即可得到答案.设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,,∴Rt△EFC中,FC=5-3=2,EC=4-X,∴,解得,故选A.考点:本题考查的是图形折叠的性质及勾股定理点评:熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.3.A【解析】试题分析:A、由原方程得到3x2+4x+1=0,符合一元二次方程的定义,故本选项正确;B、该方程中分母中含有未知数.不属于整式方程,故本选项错误;C、当a=0时.该方程不是一元二次方程.故本选项错误;D、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;故选A.考点:一元二次方程定义4.D【分析】分别把各点坐标代入反比例函数y=4x,求出y1,y2,y3的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4x的图象上,∴y1=-2,y2=-4,y3=4 3,∵-4<-2<4 3,∴y2<y1<y3.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.D【解析】试题分析:设平均每次降价的百分数是x,依题意得100(1-x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.考点:一元二次方程的应用6.B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.7.A【解析】试题分析:∵函数xky=的图象经过(1,-1),∴k=-1,∴函数2-=kxy的解析式为:y=-x-2,函数y=-x-2的图像过二、四象限过(0,-2),(-2,0)点,故选A考点:1.反比例函数图像2.一次函数8.C【解析】试题分析:∵E,F分别是AM,MR的中点,∴EF=12AR.∵R是定点,∴AR的定长.∴无论M运动到哪个位置EF的长不变.故选C.考点:1.动点问题;2.三角形中位线定理.9.C【解析】试题分析:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:ab=6,a2+b2=16,解得a+b=27,即△ABC的周长=OC+AC=27.故选C考点:反比例函数图象上点的坐标特征10.2 3【解析】试题分析::∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC,∵AD=4,DB=2,∴AD:AB=DE:BC=2:3.则的值为2 3.考点:相似三角形的判定与性质.11.k>-2【解析】试题分析:反比例函数:当时,图象在第一、三象限;当时,图象在第二、四象限.由题意得,考点:本题主要考查了反比例函数的性质点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.12.2【解析】试题分析::∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的2倍.考点:相似三角形的性质13.-4【解析】【分析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-4=0,可得a2+3a-4=0,解得a=-4或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-4,故答案为-4.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.14.15 26【解析】试题分析:设=k ,则a=5k ,b=3k ,c=4k ,25641532153826a b c k k k a b c k k k ++++==++++考点:比例的性质15.-4【分析】连结OA ,由AC ⊥y 轴,可得AC ∥x 轴,可知S △ACB =S △ACO =2,可得=4k ,由反比例函数图像在第二象限(x<0),可知k<0,可求k=-4.【详解】解:连结OA ,∵AC ⊥y 轴,∴AC ∥x 轴,∴S △ACB =S △ACO =2,∴1=22k ,∴=4k ,∵反比例函数图像在第二象限(x<0),∴k<0,∴k=-4.故答案为:-4.【点睛】本题考查反比例函数解析式,掌握反比例函数的性质,关键是反比例函数中k 的几何意义.16.2.【分析】首先证△ACD ∽△CBD ,然后根据相似三角形的对应边成比例求出CD 的长.【详解】解:Rt △ACB 中,∠ACB=90°,CD ⊥AB ;∴∠ACD=∠B=90°﹣∠A ;又∵∠ADC=∠CDB=90°,∴△ACD ∽△CBD ;∴CD 2=AD•BD=4,即CD=2.故答案为:2【点睛】本题考查相似三角形的判定与性质.17.0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩,∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.18.(1)1x =2x =.(2)【详解】试题分析:(1)用公式法(2)用分解因式法试题解析:(1)因为(()245248∆=--⨯-⨯=,所以x =即1x =2x =.(2)移项得,分解因式得,解得考点:解一元二次方程19.(1)见解析;(2)DE=10m【解析】试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB BC DE EF =.计算可得DE试题解析:(1)如图:连接AC ,过点D 作DE//AC ,交直线BC 于点F ,线段EF 即为DE 的投影(2)∵AC//DF ,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC ∽△DEF.53,.6AB BC DE EF DE ∴=∴= ∴DE=10(m )考点:平行投影20.(1)BD=CD .(2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形.【解析】试题分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,根据全等三角形对应边相等可得AF=CD ,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD 是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.试题解析:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.考点:1.矩形的判定2.全等三角形的判定与性质.21.(1)列表见解析;(2)不公平,理由见解析.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【详解】(1)列表如下:a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499> 即此游戏不公平.22.证明见解析.【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA ,∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD .∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD .∵AC=EF ,AC=AD ,∴EF=AD .∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23.每张贺年卡应降价0.1元.【分析】设每张贺年卡应降价x 元,等量关系为:(原来每张贺年卡盈利-降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【详解】设每张贺年卡应降价x 元,根据题意得:(0.3-x )(500+1000.1x )=120,整理,得:21002030x x +-=,解得:120.1,0.3x x ==-(不合题意,舍去),∴0.1x =,答:每张贺年卡应降价0.1元.24.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【分析】(1)先把B 点坐标代入代入m y x =求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx +b −m x <0可得kx +b <m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.25.(1)y =6x ,点C (6,1);(2)1434.【分析】(1)点A (1,n )在直线l 1:y =x +5的图象上,可求点A 的坐标,进而求出反比例函数关系式,点D 在反比例函数的图象上,求出点D 的坐标,从而确定直线l 2:y =﹣2x +b 的关系式,联立求出直线l 2与反比例函数的图象的交点坐标,确定点C 的坐标,(2)求出直线l 2与x 轴、y 轴的交点B 、E 的坐标,利用面积差可求出△OCD 的面积.【详解】解:(1)∵点A (1,n )在直线l 1:y =x +5的图象上,∴n =6,∴点A (1,6)代入y =k x 得,k =6,∴反比例函数y =6x ,当x =12时,y =12,∴点D (12,12)代入直线l 2:y =﹣2x +b 得,b =13,∴直线l 2:y =﹣2x +13,由题意得:6213y x y x ⎧=⎪⎨⎪=-+⎩解得:111212x y ⎧=⎪⎨⎪=⎩,2261x y =⎧⎨=⎩,∴点C (6,1)答:反比例函数解析式y =6x,点C 的坐标为(6,1).(2)直线l 2:y =﹣2x +13,与x 轴的交点E (132,0)与y 轴的交点B (0,13)∴S △OCD =S △BOE ﹣S △BOD ﹣S △OCE11311113143131312222224=⨯⨯-⨯⨯⨯=答:△OCD 的面积为1434.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.26.(1)CE =22;(2)CE 的长为724;(3)在AB 上存在点P ,使△EFP 为等腰直角三角形,此时EF =3760或EF =49120【解析】试题分析:(1)因为EF ∥AB ,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P 点可能的位置,再找到相似三角形,依据相似三角形的性质解答.试题解析:(1)∵△ECF 的面积与四边形EABF 的面积相等∴S △ECF :S △ACB =1:2又∵EF ∥AB ∴△ECF ∽△ACB.,21)(2==∆∆CA CE S S ACB ECF 且AC =4∴CE =22;(2)设CE 的长为x∵△ECF ∽△ACB ∴CB CF CA CE =∴CF=x 43.由△ECF 的周长与四边形EABF 的周长相等,得EFx x x EF x +-++-=++)433(5)4(43解得724=x ∴CE 的长为724;(3)△EFP 为等腰直角三角形,有两种情况:①如图1,假设∠PEF =90°,EP =EF图1A B由AB =5,BC =3,AC =4,得∠C =90°∴Rt △ACB 斜边AB 上高CD =512设EP =EF =x ,由△ECF ∽△ACB ,得CD EP CD AB EF -=,即5125125xx -=,解得3760=x ,即EF =3760,当∠EFP´=90°,EF =FP´时,同理可得EF =3760.②如图2,假设∠EPF =90°,PE =PF 时,点P 到EF 的距离为EF 21。

北师大版九年级数学上册期末检测数学试卷及答案【精-3套】

北师大版九年级数学上册期末检测数学试卷及答案【精-3套】

九 年 级 数 学 期末试 卷一、选择题1.一元二次方程042=-x 的解是( )A .2=xB .2-=xC .21=x ,22-=xD .21=x ,22-=x2.二次三项式243x x -+配方的结果是( )A .2(2)7x -+ B .2(2)1x -- C .2(2)7x ++ D .2(2)1x +- 3.小明从上面观察下图所示的两个物体,看到的是( )A B C D5.函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是( )6.在Rt△ABC 中,∠C=90°,a =4,b =3,则sinA 的值是( )A .54 B .35C .43D .457.下列性质中正方形具有而矩形没有的是( )A .对角线互相平分B .对角线相等C .对角线互相垂直D .四个角都是直角 二、填空题(本大题共7个小题,每小题3分,满分21分) 9.计算tan60°= . 10.已知函数22(1)m y m x -=-是反比例函数,则m 的值为 .11.若反比例函数xky =的图象经过点(3,-4),则此函数在每一个象限内y 随x 的增大而 . 13.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组牌中各抽取一张,数字和是6的概率是 .14.依次连接矩形各边中点所得到的四边形是 . 三、解答题16.解方程:3(3)x x x -=-B17.如图,楼房和旗杆在路灯下的影子如图所示。

试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不18.(本小题8分)如图所示,课外活动中,小明在离旗杆AB 的10米C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD 米,求旗杆AB 的高.(精确到米)(供选用的数据:sin 400.64≈,cos 400.77≈,tan 400.84≈)19.(本小题8分)小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?转盘1 转盘221.某水果商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?24.(本小题10分)阅读探索:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已A知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是y x 和,由题意得方程组:⎪⎩⎪⎨⎧==+327xy y x ,消去y 化简得:06722=+-x x ,∵△=49-48>0,∴x 1= ,x 2= . ∴满足要求的矩形B 存在.(2)如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .(3)如果矩形A 的边长为m 和n ,请你研究满足什么条件时,矩形B 存在?九年级数学上学期期末检测试题卷一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分) 1.下列方程中,是一元二次方程的是( ) A .32-=y x B .2(1)3x +=C .11322+=-+x x xD .29x =2.有一实物如下左图,那么它的主视图是( )4.甲、乙两地相距60km ,则汽车由甲地行驶到乙地所用时间y (小时)与行驶速度x (千米/时)之间的函数图像大致是( )5.下列命题中,不正确的是( )A .顺次连结菱形各边中点所得的四边形是矩形B .有一个角是直角的菱形是正方形A B C DC .对角线相等且垂直的四边形是正方形D .有一个角是60°的等腰三角形是等边三角形 6.在Rt △ABC 中,∠C=90°,a =4,b =3,则sinA 的值是( ) A .45 B .35C .43 D .548.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A .至少有两名学生生日相同B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大 二、填空题(本大题共7个小题,每小题3分,满分21分) 9.计算2cos60°+ tan 245°= 。

北师大版九年级(上)期末数学试卷及答案

北师大版九年级(上)期末数学试卷及答案

北师大版九年级(上)期末数学试卷及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)如图,该几何体的主视图是()A.B.C.D.2.(3分)下列函数不是反比例函数的是()A.y=B.y=C.y=5x﹣1D.xy=103.(3分)一元二次方程2x2+3x=1化为一般式后的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,14.(3分)某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x,根据题意列出的方程是()A.125(1﹣x)2=80B.80(1﹣x)2=125C.125(1+x)2=80D.125(1﹣x2)=805.(3分)已知点C是线段AB的黄金分割点,且AB=2,AC<BC,则AC长是()A.B.﹣1C.3﹣D.6.(3分)如图,△ABC的中线BE、CF交于点O,连接EF,则的值为()A.B.C.D.7.(3分)如图,反比例函数的图象经过A(﹣1,﹣2),则以下说法错误的是()A.k=2B.x>0,y随x的增大而减小C.图象也经过点B(2,1)D.当x<﹣1时,y<﹣28.(3分)如图,在矩形ABCD中,点E为AD上一点,且AB=8,AE=3,BC=4,点P为AB边上一动点,连接PC、PE,若△P AE与△PBC是相似三角形,则满足条件的点P的个数为()A.1B.2C.3D.4二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在菱形ABCD中,AC与BD交于点O,若AC=8,BD=6,则菱形ABCD的面积为.10.(3分)已知=,且a+b=22,则a的值为.11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为.12.(3分)若sin A=,则锐角∠A的度数为.13.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:4cos230°+|2﹣4|+6×.15.(5分)解方程:x(x+1)﹣x=1.16.(5分)已知:△ABC.求作:菱形DBEC,使菱形的顶点D落在AC边上.结论:.17.(6分)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.18.(6分)点P在反比例函数(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,求反比例函数的表达式.19.(5分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.求证:四边形ABCD是菱形.20.(5分)如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F 在南偏东45°方向上,接原方向再航行10海里至C处,测得小岛F在正东方向上,求A,B之间的距离.(结果保留根号)21.(8分)如图,路灯OP在BC左侧,路灯P距地面8米,当身高1.6米的小明在点A时影长为AM,距离灯的底部O点20米,小明沿AB所在的直线从点A行走14米到点B处时,影长为BN,(1)请你画出灯杆OP位置;(保留作图痕迹)(2)求此时人影的长度BN.22.(5分)关于x的一元二次方程x2﹣(k﹣3)x﹣2k+2=0.请说明方程实数根的情况并加以证明.23.(7分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.24.(7分)已知A(﹣3,4),B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与x轴交于点C.(1)求反比例函数和一次函数的关系式;(2)连接OB,求△AOB的面积.25.(5分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣2,1)、B (1,2),C(﹣4,4).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的下方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并写出A2,B2,C2的坐标.26.(12分)问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(1)你认为勤奋小组同学的作法正确吗?请说明理由;(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)解决问题:(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)如图,该几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,可得如下图形:故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)下列函数不是反比例函数的是()A.y=B.y=C.y=5x﹣1D.xy=10【分析】根据反比例函数的定义,知道反比例函数的形式有:y=(k为常数,k≠0)或y=kx﹣1(k为常数,k ≠0)或xy=k(k为常数,k≠0).【解答】解:A,C,D选项都是反比例函数的形式,故A,C,D选项都不符合题意;B选项不是反比例函数的形式,它是正比例函数,故该选项符合题意;故选:B.【点评】本题考查了反比例函数的定义,掌握反比例函数的三种形式是解题的关键.3.(3分)一元二次方程2x2+3x=1化为一般式后的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1【分析】先把方程化为一元二次方程的一般形式,再确定a、b、c.【解答】解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式为ax2+bx+c=0(a≠0).其中a、b分别是二次项和一次项系数,c为常数项.4.(3分)某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x,根据题意列出的方程是()A.125(1﹣x)2=80B.80(1﹣x)2=125C.125(1+x)2=80D.125(1﹣x2)=80【分析】设平均每次降价的百分率为x,则原价×(1﹣x)2=现价,据此列方程.【解答】解:设平均每次降价的百分率为x,由题意得,125(1﹣x)2=80.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5.(3分)已知点C是线段AB的黄金分割点,且AB=2,AC<BC,则AC长是()A.B.﹣1C.3﹣D.【分析】根据黄金分割的定义:点C把线段AB分成两条线段AC和BC(AC<BC),且使BC是AB和AC的比例中项(即AB•BC=BC•AC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中BC=AB ≈0.618AB.【解答】解:∵点C是线段AB的黄金分割点,且AB=2,AC<BC,BC2=AC•AB(2﹣AC)2=2ACAC2﹣6AC+4=0解得AC=3+(舍去)或3﹣则AC长是3﹣.故选:C.【点评】本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.6.(3分)如图,△ABC的中线BE、CF交于点O,连接EF,则的值为()A.B.C.D.【分析】先根据三角形中位线的性质得到EF∥BC,EF=BC,则可判断△OEF∽△OBC,利用相似比得到=,然后根据比例的性质得到的值.【解答】解:∵中线BE、CF交于点O,∴EF为△ABC的中位线,∴EF∥BC,EF=BC,∴△OEF∽△OBC,∴==,∴=.故选:B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.7.(3分)如图,反比例函数的图象经过A(﹣1,﹣2),则以下说法错误的是()A.k=2B.x>0,y随x的增大而减小C.图象也经过点B(2,1)D.当x<﹣1时,y<﹣2【分析】把A(﹣1,﹣2)代入反比例函数的解析式能求出k,把A的坐标代入一次函数的解析式得出关于k的方程,求出方程的解即可.【解答】解:把A(﹣1,﹣2)代入反比例函数的解析式得:k=xy=2,故A正确;∵k=2>0,∴y随x的增大而减小,∴x>0,y随x的增大而减小,故B正确;∵反比例函数的解析式为y=,把x=2代入求得y=1,∴图象也经过点B(2,1),故C正确;由图象可知x<﹣1时,则y>﹣2,故D错误;故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,主要考查反比例函数的性质,题目较好,难度适中.8.(3分)如图,在矩形ABCD中,点E为AD上一点,且AB=8,AE=3,BC=4,点P为AB边上一动点,连接PC、PE,若△P AE与△PBC是相似三角形,则满足条件的点P的个数为()A.1B.2C.3D.4【分析】设AP=x,则BP=8﹣x,分△P AE∽△PBC和△P AE∽△CBP两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:设AP=x,则BP=8﹣x,当△P AE∽△PBC时,=,即=,解得,x=,当△P AE∽△CBP时,=,即=,解得,x=2或6,可得:满足条件的点P的个数有3个.故选:C.【点评】本题考查了相似三角形的性质,解答时,注意分情况讨论思想的灵活运用.二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在菱形ABCD中,AC与BD交于点O,若AC=8,BD=6,则菱形ABCD的面积为24.【分析】由菱形面积公式即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=8,BD=6,∴菱形ABCD的面积为AC×BD=×8×6=24;故答案为:24.【点评】本题考查了菱形的性质;熟记菱形面积公式是解题的关键.10.(3分)已知=,且a+b=22,则a的值为12.【分析】根据题意设==k(k≠0),得出a=6k,b=5k,求出k的值,然后求出a的值即可.【解答】解:设==k(k≠0),则a=6k,b=5k,∵a+b=22,∴6k+5k=22,∴k=2,∴a=6k=6×2=12.故答案为:12.【点评】此题考查了比例的性质,根据题意设出a=6k,b=5k是解题的关键.11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为(x+3)2=10.【分析】根据配方法即可求出答案.【解答】解:∵x2+6x﹣1=0,∴x2+6x=1,∴(x+3)2=10,故答案为:(x+3)2=10【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.12.(3分)若sin A=,则锐角∠A的度数为30°.【分析】根据锐角三角函数值即可确定锐角的度数.【解答】解:∵sin A=,∴锐角∠A的度数为30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.13.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为6.【分析】当点F与C重合时,△EFP的边长最长,周长也最长,根据30°角所对的直角边是斜边的一半可得AC =4,AP=2,再由勾股定理可得答案.【解答】解:如图,当点F与C重合时,△EFP的边长最长,周长也最长,∵∠ACB=90°,∠PFE=60°,∴∠PCA=30°,∵∠A=60°,∴∠APC=90°,△ABC中,AC=AB=4,△ACP中,AP=AC=2,∴PC===2,∴周长为2×3=6.故答案为:6.【点评】本题考查含30°角的直角三角形的性质,运用勾股定理是解题关键.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:4cos230°+|2﹣4|+6×.【分析】首先代入特殊角的三角函数值,再利用绝对值的性质和二次根式的乘法法则进行计算,最后计算加减即可.【解答】解:原式=4×+4﹣2+2=4+3=7.【点评】此题主要考查了二次根式的混合运算,关键是掌握特殊角的三角函数值和绝对值的性质,注意计算顺序.15.(5分)解方程:x(x+1)﹣x=1.【分析】先移项,再将左边利用提公因式法因式分解,继而可得两个关于x的一元一次方程,分别求解即可得出答案.【解答】解:∵x(x+1)﹣x=1,∴x(x+1)﹣(x+1)=0,则(x+1)(x﹣1)=0,∴x+1=0或x﹣1=0,解得x1=1,x2=﹣1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.(5分)已知:△ABC.求作:菱形DBEC,使菱形的顶点D落在AC边上.结论:菱形DBEC即为所求.【分析】作BC的垂直平分线交AC于点D,连接DB,再分别以点B,C为圆心,BD长为半径画弧交于点E,进而可得菱形DBEC.【解答】解:如图,菱形DBEC即为所求.故答案为:菱形DBEC即为所求.【点评】本题考查作图﹣复杂作图,菱形的判定和性质等知识,解题的关键是掌握菱形的判定和性质,属于中考常考题型.17.(6分)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,再由概率公式求解即可.【解答】解:(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为,故答案为:;(2)画树状图如下:共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,∴摸出的这两个小球标记的数字之和为7的概率为=.【点评】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)点P在反比例函数(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,求反比例函数的表达式.【分析】先求出P点坐标,再把P点坐标代入反比例函数的解析式即可求出k的值,进而得出结论.【解答】解:∵点Q(2,4)和点P关于y轴对称,∴P点坐标为(﹣2,4),将(﹣2,4)代入解析式得,k=xy=﹣2×4=﹣8,∴反比例函数解析式为.【点评】本题考查的是待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.(5分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.求证:四边形ABCD是菱形.【分析】根据菱形的判定方法可得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,∵△ACE是等边三角形,∴EA=EC,∴BE⊥AC,∴平行四边形ABCD是菱形.【点评】本题考查了菱形的判定,等边三角形的性质,平行四边形的性质,熟练掌握菱形的判定方法是解题的关键.20.(5分)如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F 在南偏东45°方向上,接原方向再航行10海里至C处,测得小岛F在正东方向上,求A,B之间的距离.(结果保留根号)【分析】根据等腰直角三角形的性质求出CF,根据正切的定义求出AC,结合图形计算,得到答案.【解答】解:在Rt△BCF中,∠BFC=45°,∴CF=BC=10,在Rt△ACF中,tan∠CAF=,即=,解得,AC=10,∴AB=AC﹣BC=10(﹣1),答:A,B之间的距离为10(﹣1)海里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.21.(8分)如图,路灯OP在BC左侧,路灯P距地面8米,当身高1.6米的小明在点A时影长为AM,距离灯的底部O点20米,小明沿AB所在的直线从点A行走14米到点B处时,影长为BN,(1)请你画出灯杆OP位置;(保留作图痕迹)(2)求此时人影的长度BN.【分析】(1)小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化;(2)证明△BCN∽△OPN,推出,由此可得结论.【解答】解:(1)如图即为所求.(2)解:∵OA=20米,AB=14米,∴OB=20﹣14=6(米).∵BC∥OP,∴△BCN∽△OPN,∴,即,解得BN=1.5(米)答:人影的长度为1.5米.【点评】本题考查的是相似三角形的应用,测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.22.(5分)关于x的一元二次方程x2﹣(k﹣3)x﹣2k+2=0.请说明方程实数根的情况并加以证明.【分析】方程总有两个实数根.计算方程根的判别式,利用根的判别式的符号进行证明即可.【解答】解:方程总有两个实数根.理由如下:∵Δ=b2﹣4ac=(k﹣3)2﹣4(﹣2k+2)=k2﹣6k+9+8k﹣8=k2+2k+1=(k+1)2≥0.所以方程总有两个实数根.【点评】此题考查了根的判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.23.(7分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(7分)已知A(﹣3,4),B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与x轴交于点C.(1)求反比例函数和一次函数的关系式;(2)连接OB,求△AOB的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得反比例函数解析式,则可求得B点坐标,再由A、B两点坐标可求得一次函数解析式;(2)根据一次函数解析式可求得C点的坐标,则可求得OC的长度,且根据S△AOB=S△AOC+S△BOC可求得△AOB 的面积.【解答】解:(1)∵A(﹣3,4)在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数的关系式为y=﹣,又∵B(n,﹣2)在反比例函数y=的图象上,∴n=6,又∵B(6,﹣2),A(﹣3,4)是一次函数y=kx+b的上的点,∴,解得,∴一次函数的关系式为y=﹣x+2;(2)在y=﹣x+2中,令y=0,则x=3,∴C(3,0),∴CO=3,∴S△AOB=S△AOC+S△BOC=×3×4+=9.【点评】本题主要考查待定系数法求函数解析式,三角形的面积,掌握待定系数法求函数解析式的关键是求得点的坐标.25.(5分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣2,1)、B (1,2),C(﹣4,4).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的下方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并写出A2,B2,C2的坐标.【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据位似变换的定义分别作出三个顶点的对应点,再首尾顺次连接即可.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(﹣2,﹣4),C2(8,﹣8).【点评】本题主要考查作图—位似变换、轴对称变换,解题的关键是掌握位似变换与旋转变换的定义及性质.26.(12分)问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(1)你认为勤奋小组同学的作法正确吗?请说明理由;(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)解决问题:(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.【分析】(1)由正方形的性质得出IJ=KJ,KJ∥BC,由平行线分线段成比例定理得出,则GF=EF,可得出结论;(2)按题意画出图形即可;(3)若DE=2DG,设AN=x,则MN=6﹣x,证明△AGF∽△ABC,由相似三角形的性质得出,则,求出x=3,若DG=2DE,可求出x=,则可得出答案.【解答】解:(1)正确.理由:∵EF⊥BC,BC⊥GD,∴∠FED=∠EDG=90°,∵FG∥BC,∴∠EFG=180°﹣∠FED=90°,∴四边形DEFG是矩形,∵四边形HIJK是正方形,∴IJ=KJ,KJ∥BC,∴,∴GF=EF,∴四边形DEFG为正方形;(2)如图1和图2,矩形DEFG为所作.(3)如图3,作△ABC的高AM,交GF于点N,∵△ABC的面积=BC•AM=×12×AM=36,∴AM=6,∵DE=2DG,设AN=x,则MN=6﹣x,DG=MN=6﹣x,DE=GF=2(6﹣x)=12﹣2x,∵GF∥BC,∴△AGF∽△ABC,∴,∴,解得x=3,∴DG=6﹣x=3,∴DE=2DG=6,∴矩形DEFG的面积=6×3=18,同理,在矩形DEFG中,若DG=2DE,可求出x=,∴DG=6﹣x=,DE=,∴矩形DEFG的面积==,故矩形DEFG的面积为18或.【点评】此题是四边形综合题,考查了相似三角形的判定与性质、正方形的判定与性质、矩形的性质等知识.解题时注意数形结合思想与方程思想的应用,注意准确作出辅助线是解此题的关键.。

北师大版数学九年级上学期《期末考试卷》含答案

北师大版数学九年级上学期《期末考试卷》含答案

北 师 大 版 数 学 九 年 级 上 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________满分150分 时间120分钟A 卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(2020•新宾县四模)在△ABC 中,∠A ,∠B 都是锐角,tan A =1,sin B =√22,你认为△ABC 最确切的判断是()A .等腰三角形B .等腰直角三角形C .直角三角形D .锐角三角形2.(2020•成都模拟)如图所示的四棱柱的主视图为( )A .B .C .D .3.(2019•桓台县二模)已知a b =25,则a+b b 的值为( )A .25B .35C .23D .754.(2020•临沂模拟)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5C .7D .45.将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式为( )A .y =(x ﹣1)2+1B .y =(x ﹣1)2+2C .y =(x ﹣2)2﹣3D .y =(x ﹣2)2﹣16.(2020•南山区校级二模)下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A .3B .2C .1D .07.(2019秋•毕节市期末)已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )A .√5−12B .√5−1C .3−√52D .3−√58.(2020•武昌区模拟)函数y =−a 2−1x(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 19.如图,EF ∥AC ,GH ∥AB ,MN ∥BC ,EF 、GH 、MN 、交于点P ,则图中与△PGF 相似的三角形的个数是( )个.A .4B .5C .6D .710.(2020•立山区二模)如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( )A.2√2B.4C.4√2D.8√2二.填空题(共3小题,满分12分,每小题4分)11.(2019秋•仪征市期末)已知四条线段a,2,6,a+1成比例,则a的值为.12.(2019秋•深圳期末)元旦到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有个同学.13.(2020•无锡)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.三.解答题(共6小题,满分54分)14.(12分)(2018秋•新都区期末)计算(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+√27(2)解方程:x(x﹣3)=2x15.(6分)(2019•花都区一模)已知:A=(m+1)(m﹣1)﹣(m+2)(m﹣3)(1)化简A;(2)若关于x的一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,求A的值.16.(8分)(2020•陕西一模)小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)17.(8分)(2019秋•仪征市期末)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会.(1)抽取一名同学,恰好是甲的概率为;(2)抽取两名同学,求甲在其中的概率.18.(10分)(2020•宿州模拟)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.19.(10分)(2020•烟台二模)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D .(1)求证:DE 是⊙O 的切线;(2)若DE =3,CE =2,①求BC AE 的值;②若点G 为AE 上一点,求OG +12EG 最小值.B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)20.(2019•宿豫区模拟)若2m ﹣n +1=0,则代数式5﹣6m +3n 的值是 .21.(2019•大邑县模拟)有五张正面分别写有数字﹣4,﹣3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n ,则抽取的n 既能使关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,又能使以x 为自变量的反比例函数y =n 2−16x 的图象在每个象限内y 随x 的增大而增大的概率为 .22.(2019秋•滦州市期中)计算:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)= . 23.(2019•南充)在平面直角坐标系xOy 中,点A (3m ,2n )在直线y =﹣x +1上,点B (m ,n )在双曲线y =k x 上,则k 的取值范围为 .24.(2020•青白江区模拟)如图,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,则四边形AGCD 的面积的最小值为 .五.解答题(共3小题,满分30分)25.(8分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)(2020•衢州模拟)(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B =∠C =∠EDF =a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD =2.①如图2,当点D 在线段BC 上时,求AE AF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.27.(12分)(2020•铁岭四模)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=−49x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=−49x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.答案与解析A 卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020•新宾县四模)在△ABC 中,∠A ,∠B 都是锐角,tan A =1,sin B =√22,你认为△ABC 最确切的判断是( )A .等腰三角形B .等腰直角三角形C .直角三角形D .锐角三角形 [解析]解:由题意,得∠A =45°,∠B =45°.∠C =180°﹣∠A ﹣∠B =90°,故选:B .2.(3分)(2020•成都模拟)如图所示的四棱柱的主视图为( )A .B .C .D .[解析]解:由图可得,几何体的主视图是:故选:B . 3.(3分)(2019•桓台县二模)已知a b =25,则a+b b 的值为( ) A .25B .35C .23D .75 [解析]解:由a b =25,得a+b b =2+55=75.故选:D .4.(3分)(2020•临沂模拟)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5C .7D .4[解析]解:∵x 1,x 2是方程x 2−√5x +1=0的两根,∴x 1+x 2=√5,x 1•x 2=1,∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=5﹣2=3.故选:A .5.(3分)将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式为( )A .y =(x ﹣1)2+1B .y =(x ﹣1)2+2C .y =(x ﹣2)2﹣3D .y =(x ﹣2)2﹣1[解析]解:y =x 2﹣2x +3=x 2﹣2x +1+2=(x ﹣1)2+2,故选:B .6.(3分)(2020•南山区校级二模)下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A .3B .2C .1D .0[解析]解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;图形平移的方向不一定是水平的,③是假命题;两直线平行,内错角相等,④是假命题;相等的角不一定是对顶角,⑤是假命题;垂线段最短,⑥是真命题,故选:C .7.(3分)(2019秋•毕节市期末)已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )A .√5−12B .√5−1C .3−√52D .3−√5[解析]解:由于P 为线段AB =2的黄金分割点,且AP >BP ,则AP =√5−12×2=√5−1.故选:B.8.(3分)(2020•武昌区模拟)函数y=−a2−1x(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y1[解析]解:∵a2≥0,∴﹣a2≤0,﹣a2﹣1<0,∴反比例函数y=−a2−1x的图象在二、四象限,∵点(2,y3)的横坐标为2>0,∴此点在第四象限,y3<0;∵(﹣4,y1),(﹣1,y2)的横坐标﹣4<﹣1<0,∴两点均在第二象限y1>0,y2>0,∵在第二象限内y随x的增大而增大,∴y2>y1,∴y2>y1>y3.故选:A.9.(3分)如图,EF∥AC,GH∥AB,MN∥BC,EF、GH、MN、交于点P,则图中与△PGF相似的三角形的个数是()个.A.4B.5C.6D.7[解析]解:∵EF∥AC,GH∥AB,MN∥BC,∴△PGF∽△EBF,△PGF∽△HGC,△AMN∽△ABC,△EMP∽△ENF,△HPN∽△HGC,△EBF∽△ABC,故选:C.10.(3分)(2020•立山区二模)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A .2√2B .4C .4√2D .8√2[解析]解:过点O 作OC ⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,如图, ∵∠AMB =45°,∴∠AOB =2∠AMB =90°,∴△OAB 为等腰直角三角形,∴AB =√2OA =2√2,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值=S 四边形DAEB =S △DAB +S △EAB =12AB •CD +12AB •CE =12AB (CD +CE )=12AB •DE =12×2√2×4=4√2.故选:C .二.填空题(共3小题,满分12分,每小题4分)11.(4分)(2019秋•仪征市期末)已知四条线段a ,2,6,a +1成比例,则a 的值为 3 .[解析]解:∵四条线段a ,2,6,a +1成比例,∴a 2=6a+1,解得:a 1=3,a 2=﹣4(舍去),所以a =3,故答案为:312.(4分)(2019秋•深圳期末)元旦到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有 40 个同学.[解析]解:设该班有x 个同学,则每个同学需交换(x ﹣1)件小礼物,依题意,得:x (x ﹣1)=1560, 解得:x 1=40,x 2=﹣39(不合题意,舍去).故答案为:40.13.(4分)(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为83.[解析]解:如图,过点D 作DF ∥AE ,则DF AE=BD BA =23,∵ECAE=13,∴DF =2EC ,∴DO =2OC ,∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC ,∴S △ABO =23S △ABC ,∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4,此时△ABO 的面积最大为:23×4=83.故答案为:83.三.解答题(共6小题,满分54分) 14.(12分)计算(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+√27(2)解方程:x (x ﹣3)=2x[解析]解:(1)原式=1﹣1﹣3×√33+3√3=1﹣1−√3+3√3=2√3; (2)x (x ﹣3)﹣2x =0,x (x ﹣3﹣2)=0,x =0或x ﹣3﹣2=0,所以x 1=0,x 2=5. 15.(6分)(2019•花都区一模)已知:A =(m +1)(m ﹣1)﹣(m +2)(m ﹣3) (1)化简A ;(2)若关于x的一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,求A的值.[解析]解:(1)A=(m+1)(m﹣1)﹣(m+2)(m﹣3)=m2﹣1﹣(m2﹣m﹣6),=m2﹣1﹣m2+m+6,=m+5,(2)∵一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,∴△=0,即△=(m+2)2﹣4×14m2=0,解得m=﹣1.当m=﹣1时,A=m+5=﹣1+5=4.16.(8分)(2020•陕西一模)小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)[解析]解:如图,过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,CF=EF•tan50°=AB•tan50°=35.76m,在Rt△DEG中,DG=EG•tan60°=√3EG,设热气球的直径为x米,则35.76+12x=√3(30−12x),解得x≈11.9.故热气球的直径约为11.9米.17.(8分)(2019秋•仪征市期末)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会.(1)抽取一名同学,恰好是甲的概率为 14;(2)抽取两名同学,求甲在其中的概率.[解析]解:(1)随机抽取1名学生,可能出现的结果有4种,即甲、乙、丙、丁,并且它们出现的可能性相等.恰好抽取1名恰好是甲的结果有1种,所以抽取一名同学,恰好是甲的概率为14,故答案为:14.(2)随机抽取2名学生,可能出现的结果有6种,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它们出现的可能性相等.恰好抽取2名甲在其中的结果有3种,即甲乙、甲丙、甲丁,故抽取两名同学,甲在其中的概率为36=12.18.(10分)(2020•宿州模拟)如图,已知反比例函数y =kx的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ).(1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.[解析]解:(1)把A 点(1,4)分别代入反比例函数y =kx ,一次函数y =x +b ,得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x 的图象上,∴n =4−4=−1;(2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.19.(10分)(2020•烟台二模)如图,已知AB 是圆O 的直径,F 是圆O 上一点,∠BAF 的平分线交⊙O 于点E ,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D . (1)求证:DE 是⊙O 的切线; (2)若DE =3,CE =2,①求BC AE的值;②若点G 为AE 上一点,求OG +12EG 最小值.[解析](1)证明:连接OE ∵OA =OE ∴∠OAE =∠OEA ∵AE 平分∠BAF ∴∠OAE =∠EAF ∴∠OEA =∠EAF ∴OE ∥AD ∵ED ⊥AF ∴∠D =90°∴∠OED =180°﹣∠D =90°∴OE ⊥DE ∴DE 是⊙O 的切线(2)解:①连接BE ∵AB 是⊙O 直径∴∠AEB =90°∴∠BEA =∠D =90°,∠BAE +∠ABE =90° ∵BC 是⊙O 的切线∴∠ABC =∠ABE +∠CBE =90°∴∠BAE =∠CBE ∵∠DAE =∠BAE ∴∠DAE =∠CBE ∴△ADE ∽△BEC ∴AE BC=DE CE∵DE =3,CE =2∴BC AE=23②过点E 作EH ⊥AB 于H ,过点G 作GP ∥AB 交EH 于P ,过点P 作PQ ∥OG 交AB 于Q∴EP ⊥PG ,四边形OGPQ 是平行四边形∴∠EPG =90°,PQ =OG ∵BC AE=23∴设BC =2x ,AE =3x ∴AC =AE +CE =3x +2∵∠BEC =∠ABC =90°,∠C =∠C ∴△BEC ∽△ABC∴BC AC=CE BC∴BC 2=AC •CE 即(2x )2=2(3x +2)解得:x 1=2,x 2=−12(舍去)∴BC =4,AE =6,AC =8∴sin ∠BAC =BC AC =12,∴∠BAC =30°∴∠EGP =∠BAC =30°∴PE =12EG ∴OG +12EG =PQ +PE ∴当E 、P 、Q 在同一直线上(即H 、Q 重合)时,PQ +PE =EH 最短 ∵EH =12AE =3∴OG +12EG 的最小值为3B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)20.(4分)(2019•宿豫区模拟)若2m ﹣n +1=0,则代数式5﹣6m +3n 的值是 8 . [解析]解:∵2m ﹣n +1=0,∴2m ﹣n =﹣1,则原式=5﹣3(2m ﹣n )=5+3=8,故答案为:821.(4分)(2019•大邑县模拟)有五张正面分别写有数字﹣4,﹣3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n ,则抽取的n 既能使关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,又能使以x 为自变量的反比例函数y =n 2−16x 的图象在每个象限内y 随x 的增大而增大的概率为15.[解析]解:∵关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,∴当n =﹣3时,关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,当n ≠﹣3时,(n +1)2﹣4(n +3)×12=n 2﹣5≥0,∴n 2≥5, ∵反比例函数y =n 2−16x的图象在每个象限内y 随x 的增大而增大,∴n 2﹣16<0,∴n 2<16,∴5≤n 2≤16,∴n =3,∴概率为,15,故答案为:15.22.(4分)(2019秋•滦州市期中)计算:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)=2019x(x+2019).[解析]解:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)=1x−1x+1+1x+1−1x+2+1x−2−1x+3+⋯+1x+2018−1x+2019=1x−1x+2019=2019x(x+2019)故答案为:2019x(x+2019).23.(4分)(2019•南充)在平面直角坐标系xOy 中,点A (3m ,2n )在直线y =﹣x +1上,点B (m ,n )在双曲线y =k x上,则k 的取值范围为 k ≤124且k ≠0 .[解析]解:∵点A (3m ,2n )在直线y =﹣x +1上,∴2n =﹣3m +1,即n =−3m+12, ∴B (m ,−3m+12),∵点B 在双曲线y =kx 上,∴k =m •−3m+12=−32(m −16)2+124,∵−32<0,∴k 有最大值为124,∴k 的取值范围为k ≤124,∵k ≠0,故答案为k ≤124且k ≠0.24.(4分)(2020•青白江区模拟)如图,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,则四边形AGCD 的面积的最小值为152.[解析]解:∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5,∵AB =3,AE =2, ∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G到AC的距离为h,∵S四边形AGCD=S△ACD+S△ACG=12AD×CD+12AC×h=12×4×3+12×5×h=52h+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,即点E,点G,点H共线.由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC=BCAC=45,在Rt△AEH中,AE=2,sin∠BAC=EHAE=45,∴EH=45AE=85,∴h=EH﹣EG=85−1=35,∴S四边形AGCD最小=52h+6=52×35+6=152.故答案为:152.五.解答题(共3小题,满分30分)25.(8分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?[解析]解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:{200=15k +b300=10k +b ,解得:{k =−20b =500,即:函数的表达式为:y =﹣20x +500,(25>x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =−b 2a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680, 此时,既能销售完又能获得最大利润.26.(10分)(2020•衢州模拟)(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B =∠C =∠EDF =a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD =2.①如图2,当点D 在线段BC 上时,求AE AF的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.[解析]解:(1)△BDE ∽△CFD ,理由:∠B =∠C =∠EDF =a ,在△BDE 中,∠B +∠BDE +∠BED =180°,∴∠BDE +∠BED =180°﹣∠B =180°﹣α,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =180°﹣α,∴∠BED =∠CDF ,∵∠B =∠C ,∴△BDE ∽△CFD ;(2)①设AE =x ,AF =y ,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =8, 由折叠知,DE =AE =x ,DF =AF =y ,∠EDF =∠A =60°,在△BDE 中,∠B +∠BDE +∠BED =180°, ∴∠BDE +∠BED =180°﹣∠B =120°,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =120°,∴∠BED =∠CDF ,∵∠B =∠C =60°,∴△BDE ∽△CFD ,∴BD CF=BE CD =DE FD∵BE =AB ﹣AE =8﹣x ,CF =AC ﹣AF =8﹣y ,CD =BC ﹣BD =6,∴28−y=8−x 6=xy,∴{2y =x(8−y)6x =y(8−x),∴xy =1014=57,∴AE AF =57; ②设AE =x ,AF =y ,∵△ABC 是等边三角形,∴∠A =∠ABC =∠ACB =60°,AB =BC =AC =8,由折叠知,DE =AE =x ,DF =AF =y ,∠EDF =∠A =60°,在△BDE 中,∠ABC +∠BDE +∠BED =180°,∴∠BDE +∠BED =180°﹣∠ABC =120°,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =120°,∴∠BED =∠CDF ,∵∠ABC =∠ACB =60°,∴∠DBE =∠DCF =120°,∴△BDE ∽△CFD ,∴BD CF=BE CD=DE FD∵BE =AB ﹣AE =8﹣x ,CF =AF ﹣AC =y ﹣8,CD =BC +BD =10,∴2y−8=8−x 10=x y ,∴{2y =x(y −8)10x =y(8−x),∴x y =13.∵△BDE ∽△CFD ,∴△BDE 与△CFD 的周长之比为DE DF=x y=13.27.(12分)(2020•铁岭四模)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =−49x 2+bx +c 经过点A 、C ,与AB 交于点D . (1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S .①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =−49x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.[解析]解:(1)将A 、C 两点坐标代入抛物线,得{c =8−49×36+6b +c =0,解得:{b =43c =8,∴抛物线的解析式为y =−49x 2+43x +8;(2)①∵OA =8,OC =6,∴AC =√OA 2+OC 2=10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB =QE QC =AB AC =35, ∴QE 10−m=35,∴QE =35(10﹣m ),∴S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m ; ②∵S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m =−310(m ﹣5)2+152, ∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y =−49x 2+43x +8的对称轴为x =32,D 的坐标为(3,8),Q (3,4),当∠FDQ =90°时,F 1(32,8),当∠FQD =90°时,则F 2(32,4),当∠DFQ =90°时,设F (32,n ),则FD 2+FQ 2=DQ 2,即94+(8﹣n )2+94+(n ﹣4)2=16,解得:n =6±√72,∴F 3(32,6+√72),F 4(32,6−√72),满足条件的点F 共有四个,坐标分别为F 1(32,8),F 2(32,4),F 3(32,6+√72),F 4(32,6−√72).。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列给出的几何体中,主视图和俯视图都是圆的是( )A .球B .正方体C .圆锥D .圆柱2.若锐角A 满足cos A =∠A 的度数为( ) A .30° B .45° C .60° D .75°3.菱形、矩形、正方形都具有的性质是( )A .对角线互相垂直B .对角线相等C .四条边相等,四个角相等D .两组对边分别平行且相等 4.关于x 的一元二次方程x 2+(k ﹣2)x+k 2﹣1=0的一个根是0,则k 的值是( ) A .1 B .﹣1 C .±1 D .25.在平面直角坐标系中,点P 的坐标为(),m n ,从2-,0,2这三个数中任取一个数作为m 的值,再从余下的两个数中任取一个数作为n 的值,则点P 在坐标轴上的概率是( )A .13B .12 C .23 D .346.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4)7.若点A (-1,1y ),B (2,2y ),C (3,3y )在反比例函数10y x =-图象上,则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .1y >3y >2yC .3y >2y >1yD .3y >1y >2y8.已知∠PAQ=36°,点B 为射线AQ 上一固定点,按以下步骤作图:∠分别以A ,B 为圆心,大于12AB 的长为半径画弧,相交于两点M ,N ;∠作直线MN 交射线AP 于点D ,连接 BD ;∠以B 为圆心,BA 长为半径画弧,交射线AP 于点C ; 根据以上作图过程及所作图形,下列结论中错误的是( )A.∠CDB=72°B.∠ADB∠∠ABCC.CD:AD=2:1 D.∠ABC=3∠ACB9.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与∠PDC相似,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个10.已知反比例函数y=abx的图象如图所示,则二次函数y =ax 2-2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题11.一幅比例尺为1:300000的地图上,某道路的长度为2cm,则它的实际长度为______ km.12.若方程230x x c-+=没有实数根,则c的取值范围是_____________.13.如图,ABC的顶点都在方格纸的格点上,则sin ABC∠=______.14.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同,小红通过多次试验发现,摸出红球的频率稳定在0.2左右,则袋子里红球的个数最有可能是__________.15.点P (m ,n )是函数3y x=和y =x +4图象的一个交点,则mn +n -m 的值为________.16.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴,下列四个结论:∠abc <0;∠2a +b >0;∠a +b +c =0;∠a >1.其中正确的有________.(填序号)17.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题18.解方程:2233(1)x x x x --=-.19.如图所示,太阳光线AC 和A C ''是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.20.如图,直线l :34y x m =+与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线212y x bx c =++经过点B ,且与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)P 是直线AC 下方的抛物线上一动点,设其横坐标为a .过点P 作PD∠y 轴交AC 于点D ,点D 在线段AC 上,当a 为何值时,∠APC 的面积最大,并求出其最大值.21.如图,矩形OABC 的顶点A ,C 分别落在x 轴,y 轴的正半轴上,顶点B (2,2,反比例函数k y x=(x >0)的图象与BC ,AB 分别交于D ,E ,BD =12. (1)求反比例函数关系式和点E 的坐标;(2)写出DE 与AC 的位置关系并说明理由;(3)点F 在直线AC 上,点G 是坐标系内点,当四边形BCFG 为菱形时,求出点G 的坐标并判断点G 是否在反比例函数图象上.22.如图,在矩形ABCD中,E为AD的中点,EF∠EC交AB于F,延长FE与直线CD 相交于点G,连接FC(AB>AE).(1)求证:∠AEF∠∠DCE;(2)∠AEF与∠ECF是否相似?若相似,证明你的结论;若不相似,请说明理由;(3)设ABkBC,是否存在这样的k值,使得∠AEF与∠BFC相似?若存在,证明你的结论并求出k的值;若不存在,请说明理由.23.如图,矩形ABCD中,点E在边CD上,将∠BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∠CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.24.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P.(1)分别求出抛物线和直线AB的函数表达式;(2)连接PA、PB,求∠PAB面积的最大值,并求出此时点P的坐标.(3)如图2,点E(2,0),将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.25.已知:如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:(1)∠AFD∠∠CEB;(2)四边形AECF是平行四边形.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC∠x轴,垂足为点C,且∠AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求∠AOB的面积.参考答案1.A【分析】主视图是从正面看,俯视图是从上往下看,分别进行判断即可.【详解】A.球的主视图和俯视图都是圆,故选项A正确;B.正方体主视图和俯视图都是正方形,故选项B错误;C.圆锥的主视图是三角形,俯视图是圆,故选项C错误;D.圆柱的主视图是长方形,俯视图是圆,故选项D错误;故选:A.【点睛】本题考查了几何体的三视图,解题关键是明确主视图、俯视图、左视图分别是从物体的正面、上面、左面看所得到的图形.2.A【分析】根据特殊的锐角三角比值可确定∠A的度数.【详解】∠cos A∠∠A=30°,故选:A.【点睛】本题主要考查了特殊角的三角函数值,熟记特殊角的三角函数值是解答关键.3.D【分析】根据菱形、矩形、正方形的性质,逐项判断即可求解.【详解】解:A、矩形的对角线不一定互相垂直,故本选项不符合题意;B、菱形的对角线不一定相等,故本选项不符合题意;C、矩形的四条边不一定相等,菱形的四个角不应当相等,故本选项不符合题意;D、菱形、矩形、正方形的两组对边分别平行且相等,故本选项符合题意;故选:D【点睛】本题主要考查了菱形、矩形、正方形的性质,熟练掌握菱形、矩形、正方形的性质是解题的关键.4.C【分析】把x=0代入方程计算即可求出k的值.【详解】解:把x=0代入方程得:k2﹣1=0,解得:k=1或k=﹣1,故选:C.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握解一元二次方程的方法是解本题的关键.5.C【分析】利用树状图得出所有的情况,从中找到使点P落在坐标轴上的结果数,再根据概率公式计算可得.【详解】解:画树状图如下由树状图知,共有6种等可能结果,其中使点P 在轴上的有4种结果,∠点P 在坐标轴上的概率是4263= 故选:C【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.6.B 【详解】试题分析:在抛物线y =-3x 2-4中a<0,所以开口向下;b=0,对称轴为x=0,所以顶点坐标为(0,-4),故选B.7.B 【分析】根据反比例函数表达式中的k 值可以确定函数图象所在的象限,再根据象限内点的坐标特征及函数增减性即可求解.【详解】解:∠反比例函数10y x =-,k=-10<0, ∠此函数经过第二、四象限,在每一象限内,y 随x 的增大而增大.∠A (-1,1y ),B (2,2y ),C (3,3y ),∠点A 在第二象限,10y >,点B 、点C 在第四象限,∠3>2∠230y y <<∠1y ,2y ,3y 的大小关系是:1y >3y >2y .故选:B【点睛】本题考查了反比例函数比大小,熟练掌握象限内点的坐标特征及反比例函数的增减性是解决本题的关键.8.C 【分析】根据垂直平分线的性质、等腰三角形的性质及判定,相似三角形的判定一一判断即可.【详解】解:由作图可知,MN 垂直平分AB ,AB =BC ,∠MN 垂直平分AB ,∠DA=DB,∠∠A=∠DBA,∠∠PAQ=36°,∠∠CDB=∠A+∠DBA=72°,(A正确)∠AB=BC,∠∠A=∠ACB=36°,∠∠ABD=∠ACB,又∠∠A=∠A,∠∠ADB∠∠ABC,(B正确)∠∠A=∠ACB=36°,∠∠ABC=180°-∠A-∠ACB=108°,∠∠ABC=3∠ACB,(D正确)∠∠ABD=36°,∠ABC=108°,∠∠CBD=∠ABC-∠ABD=72°,∠∠CBD=∠CDB=72°,∠CD=BC,∠∠A=∠ACB=36°,∠AB=BC,∠CD=AB,∠AD+DB>AB,AD=DB∠2AD>AB∠2AD>CD,(C错误)故选:C【点睛】本题考查作图﹣复杂作图,线段的垂直平分线的性质,等腰三角形的性质及判定、相似三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.C【分析】设AP=x,则PD=AD﹣AP=10﹣x,然后分类讨论:若∠APB=∠DPC,则Rt∠APB∠Rt∠DPC,得到比例式,代入求出即可;若∠APB=∠PCD,则Rt∠APB∠Rt∠DCP,得到比例式,代入求出即可.【详解】∠四边形ABCD是矩形,∠AB=DC=3,AD=BC=10,∠A=∠D=90°,设AP=x,则PD=AD﹣AP=10﹣x,若∠APB=∠DPC,则Rt∠APB∠Rt∠DPC,∠APPD=ABCD,即3103xx=-,解得:x=5;若∠APB=∠PCD,则Rt∠APB∠Rt∠DCP,∠ABDP=APCD,即3103xx=-,解得:x=1或9;所以当AP=1或5或9时,以P,A,B为顶点的三角形与以P,D,C为顶点的三角形相似,即这样的P点有三个.故选:C.【点睛】本题考查了矩形的性质及相似三角形的判定和性质,分类讨论的思想是解决问题的关键.10.C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】解:∠当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∠反比例函数y=abx的图象在第一、三象限,∠ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=1a<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.11.6【分析】根据比例尺=图上距离:实际距离即可求解.【详解】解:设实际距离为x厘米,则1:300000=2:x,解得:x=600000,600000厘米=6千米,故答案为:6.【点睛】本题考查了比例尺的定义、比例线段的性质,根据比例尺=图上距离:实际距离是解答的关键,注意单位的换算.12.94c >【分析】令方程230x x c -+=的0<即可. 【详解】230x x c -+=中a=1,b=-3,c=c则()22434194b ac c c =-=--⋅⋅=-△若方程230x x c -+=没有实数根则令940c =-<△ 即94c > 故答案为:94c >. 【点睛】本题考查了一元二次方程式根的判别式,使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定a ,b ,c 的值.注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,0>;有两个相等的实数根时,0=;没有实数根时,0<.当240b ac =-=时,方程有两个相等的实数根,不能说方程只有一个根.13.35【分析】利用网格构造直角三角形,根据格点线段的长度求出斜边的长,再根据三角函数的意义求出答案.【详解】解:如图,由网格的特征可知,∠ADB 是直角三角形,∠AD=3,BD=4,∠由勾股定理得:5AB =, ∠3sin 5AD ABC AB ∠==, 故答案为:35. 【点睛】本题考查了直角三角形的边角关系,利用网格构造直角三角形是解题的关键.14.4【分析】设袋子中红球有x 个,根据摸出红球的频率稳定在0.2左右列出关于x 的方程,求出x 的值,从而得出答案.【详解】解:设袋子中红球有x 个, 根据题意,得:0.220=x 解得x=4,∠袋子中红球的个数最有可能是4个,故答案为:4.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.7【分析】将点P (m ,n )分别代入3y x =和y =x +4得mn=3,n-m=4,再求值即可.【详解】解:∠点P (m ,n )是函数3y x =和y =x +4图象的一个交点, ∠3n m =,n=m+4, ∠mn=3,n-m=4,∠mn +n-m=3+4=7.故答案为:7.【点睛】本题考查反比例函数与一次函数图象的交点问题,解题关键是理解函数图象上点的坐标特征.16.∠∠∠【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:观察图象得:抛物线开口向上,对称轴02b a->,且与y 轴交于负半轴, ∠0,0a c ><,∠0b <,∠abc >0,故∠错误; 观察图象得:12b a-<,0a >, ∠2b a >-,∠20b a +>,故∠正确;观察图象得:当时x=1时,y=0,∠a +b +c =0,故∠正确;∠图象经过点(-1,2)和(1,0),∠a +b +c =0,a-b +c =2,∠2a+2c=2,即a=-c+1,∠0c <,∠0c ->,即11c -+>,∠a >1,故∠正确;∠正确的有∠∠∠.故答案为:∠∠∠【点睛】本题考查二次函数的图象与系数的关系,综合应用相关知识分析问题、解决问题的能力是关键.17.60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∠OA=OC ,∠∠OCA=x ,∠OA=OB ,∠∠OBA=x+y ,∠OC=OB ,∠∠OBC=x+30°,∠30ACB ∠=︒,∠∠CAB+∠OBA+∠OBC=150°,∠y+x+y+ x+30°=150°,∠2(x+y)=120°,∠∠AOB=180°-2∠OBA=180°-2(x+y),∠∠AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.18.13x =,21x =-【分析】先把方程整理成一般形式,再用因式分解法解方程即可.【详解】解:2233(1)x x x x --=-整理2233(1)x x x x --=-得,2230x x --=,因式分解得,(x -3)(x +1)=0,∠x -3=0或x +1=0,解得13x =,21x =-.【点睛】此题考查了一元二次方程,熟练掌握一元二次方程的解法是解题的关键.19.一样高,理由见解析【分析】证明∠ABC =∠A B C ''',∠ACB =∠AC B ''',结合BC =B C '',推出∠ABC∠∠A B C ''',得到AB =A B ''.【详解】建筑物一样高.理由如下 :∠AB∠BC ,A B ''∠B C '',∠∠ABC =∠A B C '''=90°,∠AC∠A C '',∠∠ACB =∠AC B ''',又∠BC =B C ''∠∠ABC∠∠A B C '''∠AB =A B ''.即建筑物一样高.【点睛】本题主要考查了全等三角形,解决问题的关键是熟练掌握全等三角形的判定和性质.20.(1)n =2,215124y x x =--(2)a =2,最大值为83 【分析】(1)将点B 的坐标代入直线34y x m =+求出m ,得到直线解析式314y x =-,再将点C 的坐标代入求出n ,然后将点B 、C 的坐标代入二次函数表达求解;(2)先表示出点P 、D 、A 的坐标,进而求出PD ,再利用三角形面积公式求出∠APC 的面积=228(2)33a --+,再利用二次函数的性质求解. (1)解:∠直线l :34y x m =+过点B (0,-1),∠m = -1, ∠直线l :314y x =-, 将点C (4,n )代入314y x =-解得:n =2, ∠点C (4,2).将点B 、C 的坐标代入二次函数表达式得1216421b c c ⎧=⨯++⎪⎨⎪=-⎩, 解得:541b c ⎧=-⎪⎨⎪=-⎩, ∠抛物线的表达式为:215124y x x =--; (2)解:∠PD∠y 轴,点D 在线段AC 上,设其横坐标为a ,由题意得P (a ,215124a a --),则D (a ,314a -),A (43,0), ∠PD =314a -−2215112242a a a a ⎛⎫--=-+ ⎪⎝⎭. ∠A (43,0),C (4,2), ∠∠APC 的面积=214118(4)(2)23223PAD PDC S S PD a a ∆∆+=⨯⨯-=⨯-+⨯=228(2)33a --+, ∠a =2时,∠APC 的面积最大,最大值为83. 【点睛】本题主要考查了一次函数和二次函数解析式的求法,二次函数的最值,求出解析式是解答关键.21.(1)y E ⎛=⎝⎭;(2)//DE AC,理由见解析;(3)点G的坐标为(或(,这两个点都在反比例函数图象上【分析】(1)求出D(32,,再用待定系数法即可求解;(2)证明EB BDAB BC=,即可求解;(3)∠当点F在点C的下方时,求出FH=1,CHF(1,则点G (3,即可求解;∠当点F在点C的上方时,同理可解.【详解】解:(1)∠B(2,,则BC=2,而BD=12,∠CD=2﹣12=32,故点D(32,,将点D的坐标代入反比例函数表达式得:32K,解得k=故反比例函数表达式为y,当x=2时,yE(2;(2)由(1)知,D(32,,点E(2,点B(2,,则BD=12,BE故BDBC=122=14,EBAB=14=BDBC,∠DE∠AC;(3)∠当点F在点C的下方时,如下图,过点F 作FH∠y 轴于点H ,∠四边形BCFG 为菱形,则BC =CF =FG =BG =2,在RT∠OAC 中,OA =BC =2,OB =AB =则tan∠OCA =AOCO ∠OCA =30°,则FH =12FC =1,CH =CF•cos∠OCA =故点F (1,则点G (3,当x =3时,y G 在反比例函数图象上; ∠当点F 在点C 的上方时,同理可得,点G (1,,同理可得,点G 在反比例函数图象上;综上,点G 的坐标为(31,,这两个点都在反比例函数图象上.【点睛】本题主要考查反比例函数,解题关键是过点F 作FH∠y 轴于点H.22.(1)见解析(2)相似,证明见解析(3)存在,k 【分析】(1)由题意可得∠AEF +∠DEC =90°,又由∠AEF +∠AFE =90°,可得∠DEC =∠AFE ,据此证得结论;(2)根据题意可证得Rt∠AEF∠Rt∠DEG(ASA),可得EF =EG ,∠AFE =∠EGC ,可得CE 垂直平分FG ,∠CGF 是等腰三角形,据此即可证得∠AEF 与∠ECF 相似;(3)假设∠AEF 与∠BFC 相似,存在两种情况:∠当∠AFE =∠BCF ,可得∠EFC =90°,根据题意可知此种情况不成立;∠当∠AFE =∠BFC ,使得∠AEF 与∠BFC 相似,设BC =a ,则AB =ka ,可得AF =13ka ,BF =23ka ,再由∠AEF∠∠DCE ,即可求得k 值. (1)证明:∠EF∠EC ,∠∠FEC =90°,∠∠AEF +∠DEC =90°,∠∠AEF +∠AFE =90°,∠∠DEC=∠AFE,又∠∠A=∠EDC=90°,∠∠AEF∠∠DCE;(2)解:∠AEF∠∠ECF.理由:∠E为AD的中点,∠AE=DE,∠∠AEF=∠DEG,∠A=∠EDG,∠∠AEF∠∠DEG(ASA),∠EF=EG,∠AFE=∠EGC.又∠EF∠CE,∠CE垂直平分FG,∠∠CGF是等腰三角形.∠∠AFE=∠EGC=∠EFC.又∠∠A=∠FEC=90°,∠∠AEF∠∠ECF;(3)解:存在k∠AEF与∠BFC相似.理由:假设∠AEF与∠BFC相似,存在两种情况:∠当∠AFE=∠BCF,则有∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况不成立;∠当∠AFE=∠BFC,使得∠AEF与∠BFC相似,设BC=a,则AB=ka,∠∠AEF∠∠BCF,∠12 AF AEBF BC,∠AF=13ka,BF=23ka,∠∠AEF∠∠DCE,∠AE AFDC DE=,即113212kaaka a=,解得,k=.∠存在k=使得∠AEF与∠BFC相似.【点睛】本题考查了矩形的性质,相似三角形的判定及性质,全等三角形的判定与及性质,等腰三角形的判定及性质,采用分类讨论的思想是解决本题的关键.23.(1)见解析(2)四边形CEFG的面积为203.【分析】(1)根据题意和翻折的性质,可以得到∠BCE∠∠BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,∠BCE∠∠BFE,∠∠BEC=∠BEF,FE=CE,∠FG∠CE,∠∠FGE=∠CEB,∠∠FGE=∠FEG,∠FG=FE,∠FG=EC,∠四边形CEFG是平行四边形,又∠CE=FE,∠四边形CEFG是菱形;(2)解:∠矩形ABCD中,AB=6,AD=10,BC=BF,∠∠BAF=90°,AD=BC=BF=10,∠AF=8,∠DF=2,设EF=x ,则CE=x ,DE=6-x ,∠∠FDE=90°,∠22+(6-x )2=x 2,解得,x=103, ∠CE=103, ∠四边形CEFG 的面积是:CE•DF=103×2=203. 24.(1)239344y x x =-++,334y x =-+;(2)PAB S 最大值为6,点P 的坐标为(2,92);(3)E'A+23E'B【分析】(1)把点(-1,0),B (0,3)代入23y mx mx n =-+,即可求得m 的值,得到抛物线的解析式令0y =,求出抛物线与x 轴交点,根据待定系数法可以确定直线AB 的解析式;(2)设点P 的坐标为(a ,239344a a -++),则点N 的坐标为(a ,334a -+),利用PAB PBN PAN 12S S S PN OA =+=⨯,得到()2PAB 3262S a =--+,利用二次函数的性质即可求解;(3)在y 轴上 取一点M 使得OM′=43,构造相似三角形,可以证明AM′就是E'A+23E'B 的最小值.【详解】(1)∠抛物线23y mx mx n =-+(m≠0)与x 轴交于点(-1,0)与y 轴交于点B (0,3),则有303m m n n ++=⎧⎨=⎩, 解得:343m n ⎧=-⎪⎨⎪=⎩, ∠抛物线的解析式为:239344y x x =-++, 令0y =,得到2393044x x -++=, 解得:4x =或1-,∠A (4,0),B (0,3),设直线AB 解析式为y kx b =+,则403k b b +=⎧⎨=⎩, 解得343k b ⎧=-⎪⎨⎪=⎩,∠直线AB 解析式为334y x =-+;(2)如图,设点P 的坐标为(a ,239344a a -++),∠PE∠OA 交直线AB 于点N ,交x 轴于E ,∠点N 的坐标为(a ,334a -+), ∠PAB PBN PAN 111222S S S PN OE PN EA PN OA =+=⨯+⨯=⨯,∠2PAB 13933342444S a a a ⎛⎫=-+++-⨯ ⎪⎝⎭213933342444a a a ⎛⎫=-+++-⨯ ⎪⎝⎭()23262a =--+,∠302-<,∠当2a =时,PAB S 有最大值,最大值为6,此时点P 的坐标为(2,92);(3)如图中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∠OE′=2,OM′•OB=4343⨯=, ∠OE′2=OM′•OB , ∠O OB O O E M E =''', ∠∠BOE′=∠M′OE′,∠∠M′OE′∠∠E′OB , ∠O 2B OB 3M E E E ''=='', ∠M′E′=23BE′, ∠E'A+23E'B=AE′+E′M′=AM′,此时E'A+23E'B 最小(两点间线段最短,A 、M′、E′共线时),最小值=. 【点睛】本题属于二次函数综合题,考查了相似三角形的判定和性质、待定系数法、两点间线段最短等知识,第(3)问解题的关键是构造相似三角形,找到线段AM′就是E'A+23E'B 的最小值.25.(1)见解析(2)见解析【分析】(1)由SAS 证明AFD CEB ∆≅∆即可;(2)由(1)知AE CF =,AFD CEB ∆≅∆,则AF CE =,即可得出结论.(1)解:证明:四边形ABCD 是平行四边形,AB CD ∴=,AD BC =,B D ∠=∠,又E ,F 分别是AB ,CD 的中点,12AE BE AB ∴==,12CF DF CD ==,BE DF ∴=,AE CF =,在AFD ∆和CEB ∆中,AD CB D B DF BE =⎧⎪∠=∠⎨⎪=⎩,()AFD CEB SAS ∴∆≅∆; (2)解:由(1)知AE CF =,AFD CEB ∆≅∆,AF CE ∴=,∴四边形AECF 是平行四边形.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识,解题的关键是熟练掌握平行四边形的判定与性质.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式ky x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆=,24AOC k S ∆∴==;4y x ∴=;(2)解:0k >,∴函数y 的值在各自象限内随x 的增大而减小;0a >,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==, 4(,)A a a ∴,2(2,)B a a ; ()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。

北师大版九年级上册数学期末考试试卷附答案详解

北师大版九年级上册数学期末考试试卷附答案详解

北师大版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是()A .B .C .D .2.如图,Rt △ABC 中,∠C=90°,AB=2,BC=1,则sinA 等于()A .2BC .12D 3.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是A .∠ABP=∠CB .∠APB=∠ABC C .AP ABAB AC=D .AB ACBP CB=4.如果两个相似三角形的相似比是1:4,那么这两个相似三角形的周长比是()A .2:1B .1:16C .1:4D .1:25.要使菱形ABCD 成为正方形,需要添加的条件是()A .AB=CDB .AD=BCC .AB=BCD .AC=BD 6.已知点A (3,a )与点B (5,b )都在反比例函数y=﹣2x的图象上,则a 与b 之间的关系是()A .a >bB .a <bC .a≥bD .a=b7.某池塘中放养了鲫鱼1000条,鲮鱼若干条,在几次随机捕捞中,共抓到鲫鱼200条,鲮鱼400条,估计池塘中原来放养了鲮鱼()A .500条B .1000条C .2000条D .3000条8.一元二次方程x 2﹣2x+3=0根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断9.已知反比例函数ky x=的图象经过点(﹣1,5),则此反比例函数的图象位于()A .第一、二象限B .第二、三象限C .第二、四象限D .第一、三象限10.如图,一次函数1(0)y kx b k =+≠的图象与反比例函数2my x=(m 为常数且0m ≠)的图象都经过()()1,2,2,1A B --,结合图象,则不等式mkx b x+>的解集是()A .1x <-B .10x -<<C .1x <-或02x <<D .10x -<<或2x >二、填空题11.方程22x x =的根是________.12.如图,已知DE ∥BC ,AE=3,AC=5,AB=6,则AD=_____.13.如图,过反比例函数y=6x(x >0)图象上的一点A ,作x 轴的垂线,垂足为B 点,连接OA ,则S △AOB =_____14.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC=8,BD=6,则菱形ABCD 的高DH=_____.15.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.16.已知矩形的长是3,宽是2,另一个矩形的周长和面积分别是已知矩形周长和面积的2倍,那么新矩形的长是_____.三、解答题17.计算:2sin30°+4cos30°·tan60°-cos245°18.由于提倡环保节能,自行车已成为市民日常出行的主要工具之一,据某自行车经销店4至6月份统计,某品牌自行车4月份销售200辆,6月份销售338辆,求该品牌自行车销售量的月平均增长率.19.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的格点上.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且相似比为1:2;(2)连接(1)中的BB′,CC′,求四边形BB′C′C的周长.(结果保留根号)20.如图,某幢大楼顶部有广告牌CD,小宇身高MA为1.89米,他站在立在离大楼45米的A 处测得大楼顶端点D的仰角为30°;接着他向大楼前进15米,站在点B处测得广告牌顶端点C 的仰角为45°.(1)求这幢大楼的高DH ;(2)求这块广告牌CD 的高度.(.732,计算结果保留一位小数)21.在一个不透明的口袋里装有若干个除颜色外其余均相同的红、黄、蓝三种颜色的小球,其中红球2个,篮球1个,若从中任意摸出一个球,摸到球是红球的概率为12.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.22.某超市服装专柜在销售中发现:某男装上衣的进价为每件30元,当售价为每件50元时,每周可卖出200件,现需降价处理,经过市场调查,发现每降价1元,每周可多卖出20件.(1)为占有更大的市场份额,当降价为多少元时,每周盈利为4420元?(2)当降价为多少元时,每周盈利额最大?最大盈利多少元?23.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.24.如图,以△ABC 的各边,在边BC 的同侧分别作三个正方形ABDI ,BCFE ,ACHG .(1)求证:△BDE ≌△BAC ;(2)求证:四边形ADEG 是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC 满足条件_____________________时,四边形ADEG 是矩形.②当△ABC 满足条件_____________________时,四边形ADEG 是正方形?25.如图,直线y=﹣23x+c 与x 轴交于点A (3,0),与y 轴交于点B ,抛物线y=﹣43x 2+bx+c 经过点A ,B ,M (m ,0)为x 轴上一动点,点M 在线段OA 上运动且不与O ,A 重合,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .(1)求点B 的坐标和抛物线的解析式;(2)在运动过程中,若点P 为线段MN 的中点,求m 的值;(3)在运动过程中,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;参考答案1.D【详解】试题分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.因此,A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.故选D.考点:简单几何体的三视图.2.C【解析】【分析】结合图形运用三角函数定义求解.【详解】∵AB=2、BC=1,∴sinA=1=2 BC AB,故选C.【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.4.C【分析】直接根据相似三角形周长的比等于相似比即可得出结论.【详解】∵两个相似三角形的相似比是1:4,∴这两个相似三角形的周长比是1:4.故选C.【点睛】本题考查的是相似三角形的性质,熟知相似三角形对应周长的比等于相似比是解答此题的关键.5.D【分析】根据有一个角是直角的菱形是正方形即可解答.【详解】如图,∵四边形ABCD是菱形,∴要使菱形ABCD成为一个正方形,需要添加一个条件,这个条件可以是:∠ABC=90°或AC=BD.故选D.【点睛】本题考查了正方形的判定,解答此题的关键是熟练掌握正方形的判定定理,正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用①或②进行判定.6.B【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵点A(3,a)与点B(5,b)都在反比例函数y=﹣2x的图象上,∴每个象限内y随x的增大而增大,则a<b.故选B.【点睛】此题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题关键.7.C【分析】先根据题意可得到鲫鱼与鲮鱼之比为1:2,再根据鲫鱼的总条数计算出鲮鱼的条数即可.【详解】由题意得:鲫鱼与鲮鱼之比为:200:400=1:2,∵鲫鱼1000条,∴鲮鱼条数是:1000×2=2000.故答案选:C.【点睛】本题主要考查了用样本估计总体,关键是知道样本的鲫鱼与鲮鱼之比就是池塘内鲫鱼与鲮鱼之比.8.C【分析】直接利用根的判别式进而判断,即可得出答案.【详解】∵a=1,b=﹣2,c=3,∴b2﹣4ac=4=4﹣4×1×3=﹣8<0,∴此方程没有实数根.故选C.【点睛】此题主要考查了根的判别式,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.C 【分析】把点(-1,5)代入反比例函数ky x=得到关于k 的一元一次方程,解之,即可得到反比例函数的解析式,根据反比例函数的图象和性质,即可得到答案.【详解】解:把点(﹣1,5)代入反比例函数ky x=得:1k-=5,解得:k =﹣5,即反比例函数的解析式为:y =5x-,此反比例函数的图象位于第二、第四象限,故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的图象,反比例函数的性质,正确掌握代入法,反比例函数的图象和性质是解题的关键.10.C 【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式mkx b x+>的解集.【详解】解:由函数图象可知,当一次函数()10y kx b k =+≠的图象在反比例函数2my x=(m 为常数且0m ≠)的图象上方时,x 的取值范围是:1x <-或02x <<,∴不等式mkx b x+>的解集是1x <-或02x <<.故选C .【点睛】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.11.x 1=0,x 2=2【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12.3.6.【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.相似三角形的判定推出【详解】解:∵DE ∥BC ,∴AE ADAC AB=,∴356AD =,解得:AD =3.6,故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,能根据平行线得出比例式是解此题的关键.13.3【分析】设A (x ,6x ),则有OB=x ,AB=6x,根据三角形面积公式可得答案.【详解】设A (x ,6x )则有,OB=x ,AB=6x∴S△AOB =162xx⨯⨯=3,故答案为:3,【点睛】本题考查反比例函数系数k的几何意义,记住:反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.14.4.8.【详解】试题分析:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt△AOB中,由勾股定理可得AB=5,∵DH⊥AB,∴菱形ABCD的面积=12AC•BD=AB•DH,即12×6×8=5•DH,解得DH=4.8.考点:菱形的性质.15.8【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.16.【分析】设新矩形的长为x,则新矩形的宽为(10-x),根据新矩形的面积为12,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【详解】设新矩形的长为x,则新矩形的宽为(10﹣x),根据题意得:x(10﹣x)=2×3×2,整理得:x2﹣10x+12=0,解得:x1=5x2∵x≥10﹣x,∴x≥5,∴故答案为:【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.132【解析】分析:将sin30°=12,详解:原式=2×12+2=1+6-12=132点睛:考查了特殊角的三角函数值,解答本题的关键是掌握一些特殊角的三角函数值,请牢记以下特殊三角函数值:18.月平均增长率为30%.【分析】设该品牌自行车销售量的月平均增长率为x ,根据4月、6月份的销售量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设该品牌自行车销售量的月平均增长率为x ,根据题意得:200(1+x )2=338,解得:x 1=0.3=30%,x 2=﹣2.3(不合题意,舍去).答:该品牌自行车销售量的月平均增长率为30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.(1)见解析;(2)【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用勾股定理得出各线段长,进而得出答案.【详解】(1)如图所示:△A′B′C′,即为所求;(2)四边形BB′C′C 的周长为:.【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.20.(1)楼高DH 为27.9米;(2)广告牌CD 的高度为4.0米.【解析】【分析】在Rt △DME 与Rt △CNE ;应利用ME-NE=AB=15构造方程关系式,进而可解即可求出答案.【详解】解:(1)在Rt △DME 中,ME=AH=45;由tan 30°=DE ME ,得DE=45×3≈15×1.732=25.98;又因为EH=MA=1.89,故大楼DH=DE+EH=25.98+1.89=27.87≈27.9.(2)在Rt △CNE 中,NE=45-15=30,由tan 45°=CE NE,得CE=NE=30,因而广告牌CD=CE-DE=30-25.98≈4.0.答:楼高DH 为27.9米,广告牌CD 的高度为4.0米.【点睛】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(1)袋中黄球的个数1个;(2)两次摸到球的颜色是红色与黄色这种组合的概率为1 3 .【分析】(1)首先设袋中的黄球个数为x个,然后根据古典概率的知识列方程,求解即可求得答案;(2)首先画树状图,然后求得全部情况的总数与符合条件的情况数目,求其二者的比值即可.【详解】(1)设袋中的黄球个数为x个,∴21= 212x++,解得:x=1,经检验,x=1是原方程的解,∴袋中黄球的个数1个;(2)画树状图得:,∴一共有12种情况,两次摸到球的颜色是红色与黄色这种组合的有4种,∴两次摸到球的颜色是红色与黄色这种组合的概率为:4 12 =13【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.22.(1)当降价为7元时,每周盈利为4420元;(2)当降价为5元时,每周盈利额最大,最大盈利4500元.【分析】(1)设降价为x元,根据“总利润=每件利润×销售量”列出关于x的方程,解之得出x的值,再根据要占有更大的市场份额,即销量尽可能的大取舍即可得;(2)设每周盈利为y,根据以上所列相等关系列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得.【详解】(1)设降价为x元,根据题意,可得:(50﹣x ﹣30)(200+20x )=4420,整理,得:x 2﹣10x+21=0,解得:x 1=3,x 2=7,因为要占有更大的市场份额,即销量尽可能的大,所以x=7,答:当降价为7元时,每周盈利为4420元;(2)设每周盈利为y ,则y=(50﹣x ﹣30)(200+20x )=﹣20x 2+200x+4000=﹣20(x ﹣5)2+4500,所以当x=5时,y 取得最大值,最大值为4500,答:当降价为5元时,每周盈利额最大,最大盈利4500元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.23.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x 的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b,解得b=﹣3,∴一次函数的解析式为:y=x﹣3;(2)∵令x=0,则y=﹣3,∴D(0,﹣3),即DO=3.解方程4x=x﹣3,得x=﹣1,∴B(﹣1,﹣4),∴S△AOB =S△AOD+S△BOD=12×3×4+12×3×1=152;(3)∵A(4,1),B(﹣1,﹣4),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.24.(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC【分析】(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:AC=.【详解】(1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∵BD BADBE ABCBE BC=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BAC(SAS);(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD.又∵四边形ACHG是正方形,∴AC=AG,∴AC=,∴当∠BAC=135°且AC=时,四边形ADEG是正方形.【点睛】本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.25.(1)B(0,2),抛物线解析式为y=﹣43x2+103x+2;(2)m的值为1 2;(3)当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5.0)或(118,0).【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点,可得到关于m 的方程,可求得m的值.(3)由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值,从而得到点M的坐标.【详解】(1)∵y=﹣23x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣43x2+bx+c经过点A,B,∴12302b cc-++=⎧⎨=⎩,解得1032bc⎧=⎪⎨⎪=⎩,∴抛物线解析式为y=﹣43x2+103x+2;(2)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∵P为线段MN的中点时,∴有2(﹣23m+2)=﹣43m2+103m+2,解得m=3(三点重合,舍去)或m=1 2.故m的值为1 2.(3)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∴PM=﹣23m+2,AM=3﹣m,PN=﹣43m2+103m+2﹣(﹣23m+2)=﹣43m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣43m2+103m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m ,BC=﹣43m 2+103m+2﹣2=﹣43m 2+103m ,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC ,∴Rt △NCB ∽Rt △BOA ,∴NC CB =OB OA,∴2π=2410333m m -+,解得m=0(舍去)或m=118,∴M (118,0);综上可知,当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5.0)或(118,0).【点睛】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中得到m 的方程是解题的关键,在(3)中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

北师大版九年级上学期期末学业教学质量监测数学试题(含答案)

北师大版九年级上学期期末学业教学质量监测数学试题(含答案)

第1页(共23页)北师大新版九年级上册数学期末复习试卷说明:1.本试卷分为第Ⅰ卷和第Ⅰ卷,满分为120分,考试时间90分钟.2.用黑色或蓝色钢笔或圆珠笔在答卷上作答.第Ⅰ卷一.选择题(本大题10小题,每小题3分,共30分)1.下列方程属于一元二次方程的是( )A .x 2+y ﹣2=0B .x +y =3C .x 2+2x =3D .x +x 1=52.已知3a =2b (a ≠0,b ≠0),下列变形错误的是( )A .32b a= B .32a b= C .23a b= D .3b2a=3.关于菱形,下列说法错误的是( )A .对角线互相平分B .对角线互相垂直C .四条边相等D .对角线相等4.在中ABC R △t 中,ⅠC = 90,若ⅠABC 的三边都缩小5倍,则A sin 的值( )A . 放大5倍B . 缩小5倍C . 不变D .无法确定5.关于x 的一元二次方程9x 2﹣6x +k =0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥16.如图,已知Ⅰ1=Ⅰ2,那么添加下列一个条件后,仍无法判定ⅠABC ~ⅠADE 的是()A .DE BCAD AB = B .AE ACAD AB = C .ⅠB =ⅠD D .ⅠC =ⅠAED第2页(共23页)7. 如图,已知ABC R △t 中,斜边BC 上的高AD =3,B cos =53,则AC 的长为( ) A . 3 B . 3.5 C . 4.8 D . 58.四张完全相同的卡片上,分别画有菱形、矩形、等边三角形、等腰梯形,现从中随机抽取一张卡片上画的恰好是中心对称图形的概率为( )A .41B .21C .43 D .1 9.如下表给出了二次函数y =x 2+2x ﹣10中x ,y 的一些对应值,则可以估计一元二次方程y =x 2+2x ﹣10的一个近似解(精确到0.1)为( )A .2.2B . 2.3C . 2.4D . 2.510. 如图,点A 在反比例函数y 1=x 20(x >0)的图象上,过点A 作AB Ⅰx 轴,垂足为B ,交反比例函数y 2=x8的图象于点C ,P 为轴上一点,连接P A ,PC ,则ⅠAPC 的面积为( )A . 6B . 8C . 12D . 20第6题图 第7题图 第10题图 第Ⅰ卷二.填空题(本大题7小题,每小题4分,共28分)第3页(共23页)11.方程x 2=4x 的解是.12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知ⅠAOD =120°,AB =2.5则AC 的长为。

新版北师大版九年级数学上学期期末检测试卷含答案

新版北师大版九年级数学上学期期末检测试卷含答案

新版北师大版九年级数学上学期期末检测试卷含答案一、单选题1.如图,在四边形中,,、相交于点,点、分别是、的中点,若,那么等于()A.B.C.D.2.若关于x的方程x2﹣2x+c=0有一根为﹣1,则方程的另一根为()A.﹣1B.﹣3C.1D.33.如图,已知反比例函数在第一象限的图象上有A、B两点,过点B作轴于点C,现有一动点P从点A出发,沿匀速运动,终点为C,在点P的运动过程中,分别过点P作轴于点M,轴于点N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是A.B.C.D.4.一元二次方程x2+4x﹣2=0配方后化为()A.(x+4)2=4B.(x﹣2)2=2C.(x+2)2=2D.(x+2)2=65.已知是一元二次方程的一个解,则的值是()A. B. C. D.2或6.若点,,在反比例函数的图象上,则,,的大小关系是( )A .B .C .D .7.已知△ABC ∽△A 'B 'C ',AB =8,A'B'=6,则=( ) A .2 B . C .3 D .8.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片,使AD 落在BC 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB ,AC 于点E 、G ,连结GF ,给出下列结论①∠AGD =110.5°;②S △AGD =S △OGD ;③四边形AEFG 是菱形;④BF =OF ;⑤如果S △OGF =1,那么正方形ABCD 的面积是12+8,其中正确的有( )个. A .2个 B .3个 C .4个 D .5个9.方程的根的情况是( )A .一定有两个不等实数根B .一定有两个实数根C .一定有两个相等实数根D .一定无实数根10.设是两个任意独立的一位正整数, 则点()在抛物线上方的概率是 ( ) A . B . C .D . 11.如图,中,,,要判定四边形是菱形,还需要添加的条件是( ) A .平分 B . C . D .二、填空题12.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列关系式中y 是x 的反比例函数的是()A .5y x=B .k y x=C .25y x =D .3xy =2.如图,三视图正确的是()A .主视图B .左视图C .左视图D .俯视图3.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=4.反比例函数ky x=的图象如图所示,则k 值可能是()A .-2B .2C .4D .85.已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有()A .1个B .2个C .3个D .4个6.如图,在△ABC 中,点D 、E 在边AB 上,点F 、G 在边AC 上,且DF ∥EG ∥BC ,AD=DE =EB ,若Δ1ADF S =,则EBCG S =四边形()A .3B .4C .5D .67.若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为()A .-4B .2C .-4或2D .4或-28.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是()A .3B .4C .5D .69.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为()A .1B .2C .3D .410.如图,将矩形ABCD 沿对角线BD 折叠,点A 落在点E 处,DE 交BC 于点F ,若∠CFD =40°,则∠ABD 的度数为()A .50°B .60°C .70°D .80°二、填空题11.反比例函数ky x=图象上有两点A (-3,4)、B (m ,2),则m =_____.12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.13.已知一元二次方程(m -2)m x +3x -4=0,那么m 的值是_____.14.在平面直角坐标系中,△ABC 中点A 的坐标是(2,3),以原点O 为位似中心把△ABC 放大,使放大后的三角形与△ABC 的相似比为3:1,则点A 的对应点A′的坐标为_____.15.若一元二次方程220x -=的两根分别为m 与n ,则m nn m+=_____.16.在矩形ABCD 中,AB =6,BC =8,BD ⊥DE 交AC 的延长线于点E ,则DE =_____.17.如图,在平行四边形ABCD 中,CE ⊥AB 且E 为垂足,如果∠A =125°,则∠BCE =____.三、解答题18.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求菱形BMDN 的面积.19.等腰三角形的三边长分别为a 、b 、c ,若6a =,b 与c 是方程22(31)220x m x m m -+++=的两根,求此三角形的周长.20.如图,一次函数2y kx =+与y 轴交于点A ,与反比例函数my x=的图象相交于B 、C 两点,BD ⊥y 轴交y 轴于点D ,OA =OD ,8ABDS ∆=.(1)求一次函数与反比例函数的表达式;(2)求点C 的坐标,并直接写出不等式2mkx x+>的解集;(3)在所在平面内,存在点E 使以点B 、C 、D 、E 为顶点的四边形为平行四边形,请直接写出所有满足条件的点E 的坐标.21.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.22.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A :乘坐电动车,B :乘坐普通公交车或地铁,C :乘坐学校的定制公交车,D :乘坐家庭汽车,E :步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.23.如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=45,求AF的长.24.已知:如图,△ABO与△BCD都是等边三角形,点O为坐标原点,点B、D在x轴上,AO=2,点A、C在一反比例函数图象上.(1)求此反比例函数解析式;(2)求点C的坐标;(3)问:以点A为顶点,且经过点C的抛物线是否经过点(0?请说明理由.25.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.参考答案1.D 【分析】根据反比例函数的定义:(0)ky k x=≠且k 为比例系数,即可作出判断.【详解】A 、此函数为一次函数,故不符合题意;B 、不一定反比例函数,当k=0时,则y=0,故不符合题意;C 、不是反比例函数,未知数x 的指数不满足反比例函数的定义,故不符合题意;D 、由3xy =得:3y x=,符合反比例函数的定义,故符合题意;故选:D【点睛】本题主要考查了反比例函数的定义,掌握其解析形式是关键,特别注意k 是不为零的常数.2.A 【分析】根据几何体的形状,从三个角度得到其三视图即可.【详解】解:主视图是一个矩形,内部有两条纵向的实线,故选项A 符合题意;左视图是一个矩形,内部有一条纵向的实线,故选项B 、C 不符合题意;俯视图是一个“T ”字,故选项D 不符合题意;故选:A .【点睛】此题主要考查了画三视图的知识,解题的关键是掌握主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.B 【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式.【详解】解:2250x x --=移项得:225x x -=方程两边同时加上一次项系数一半的平方得:22151x x -+=+配方得:()216x -=.故选:B .【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.B 【分析】根据函数所在象限和反比例函数上的点的横纵坐标的积小于4判断.【详解】解:∵反比例函数图象在第一、三象限,∴k >0,∵当图象上的点的横坐标为2时,纵坐标小于2,∴k <4,故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,反比例函数的图象与性质,比例系数等于在它上面的点的横纵坐标的积,熟练掌握反比例函数的图象与性质是解答本题的关键.5.A 【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解: 四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6.C 【分析】利用////DF EG BC ,得到ADF ABC ∆∆∽,ADF AEG ∆∆∽,利用AD DE EB ==,得到13AD AB =,12AD AE =,利用相似三角形的性质,相似三角形的面积比等于相似比的平方,分别求得AEG ∆和ABC ∆的面积,利用ABC AEG EBCG S S S ∆∆=-四边形即可求得结论.【详解】解:AD DE EB == ,∴13AD AB =,12AD AE =.////DF EG BC ,ADF ABC ∴∆∆∽,ADF AEG ∆∆∽.∴2(ADF ABC S AD S AB∆∆=,2(ADF AEG S AD S AE ∆∆=.99ABC ADF S S ∆∆∴==,44AEG ADF S S ∆∆==.945ABC AEG EBCG S S S ∆∆∴=-=-=四边形.故选:C .【点睛】本题主要考查了相似三角形的判定与性质,解题的关键是利用相似三角形的面积比等于相似比的平方,用ABC AEG EBCGS S S ∆∆=-四边形解答.7.B 【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值.【详解】解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解,当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点睛】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.8.A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.9.C 【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB 6,∵M 是AD 的中点,∴OM =12CD =3.故答案为:C .【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C 【分析】根据矩形的性质和平行线的性质得到∠FDA =40°,根据翻折变换的性质得到∠ADB =∠EDB =20°,根据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°,∴∠FDA =∠CFD =40°,由翻折变换的性质得到∠ADB =∠EDB =20°∴∠ABD =70°故选C .【点睛】本题考查平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.6-【分析】由点A 的坐标得到反比例函数的解析式,再把点B 的坐标代入可得m 的值.【详解】解:把(3,4)A -代入ky x =可得3412k =-⨯=-,所以反比例函数的解析式是12y x=-,当2y =时,6m =-.故答案为:6-.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握待定系数法求得解析式.12.20000【详解】试题分析:1000÷10200=20000(条).考点:用样本估计总体.13.2-【分析】根据一元二次方程的定义进行计算即可.【详解】解:由题意可得:||2m =且20m -≠,2m ∴=±且2m ≠,2m ∴=-,故答案为:2-.【点睛】本题考查了绝对值,一元二次方程的定义,解题的关键是熟练掌握一元二次方程的定义,即()200ax bx c a ++=≠.14.(6,9)或(6,9)--【分析】根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -进行解答.【详解】解:以原点O 为位似中心,把ABC ∆放大,使放大后的三角形与ABC ∆的相似比为3:1,则点(2,3)A 的对应点A '的坐标为(6,9)或(6,9)--.故答案为:(6,9)或(6,9)--.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.15.72-【分析】先根据根与系数的关系得m n +=mn=-2,再把原式变形为2()2m n mn mn+-,然后利用整体代入的方法计算.【详解】解:∵一元二次方程220x -=的两根分别为m 与n ,根据根与系数的关系得m n +=,mn=-2,所以原式=()(()2222222722m n mn m n mn mn -⨯-+-+===--.故答案为:72-.16.1207【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH =,即可求解.【详解】解:如图:过点D 作DH AC ⊥于H ,6AB = ,8BC =,10AC ∴==,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====, 11··22ADC S AD CD AC DH == ,6810DH ∴⨯=,245DH ∴=,75OH ∴===,∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E∠=∠90DHO EHD ∠=∠=︒Q ,ODH DEH ∴∆∆∽,∴OD DE OH DH=,∴572455DE =,1207DE ∴=,故答案为:1207.17.35【详解】分析:根据平行四边形的性质和已知,可求出∠B ,再进一步利用直角三角形的性质求解即可.详解:∵AD ∥BC ,∴∠A+∠B=180°,∴∠B=180°-125°=55°,∵CE ⊥AB ,∴在Rt △BCE 中,∠BCE=90°-∠B=90°-55°=35°.故答案为35.点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.18.(1)见解析;(2)菱形BMDN 的面积是20【分析】(1)证△DMO ≌△BNO ,得出OM =ON ,根据对角线互相平分证四边形BMDN 是平行四边形,再根据对角线互相垂直证菱形即可;(2)设BM=x ,根据勾股定理列出方程,求出菱形边长,再用面积公式求解即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,MN 垂直平分BD ,∴AD ∥BC ,∠A =90°,OB =OD ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,∵在△DMO 和△BNO 中,DMO BNO MDO NBO OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DMO ≌△BNO (AAS )∴OM =ON又∵OB =OD∴四边形BMDN 是平行四边形∵MN 垂直平分BD ,即MN ⊥BD∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形∴MB =MD在Rt △AMB 中,设BM=x ,BM 2=AM 2+AB 2即x 2=(8﹣x )2+42解得:x =5,MD=5∴BN=MD=5∴5420BMDN S BN AB =⨯=⨯=菱形答:菱形BMDN 的面积是20.19.此三角形的周长为16或22.【分析】分两种情况进行讨论分析:①若6a =是三角形的腰,则b 与c 中至少有一边长为6;若6a =是三角形的底边,则b 、c 为腰,即b c =;根据题意,代入方程确定m 的值,然后代入方程求解,确定三边长度,考虑三边关系判定能否构成三角形,然后求周长即可得.【详解】解:①若6a =是三角形的腰,则b 与c 中至少有一边长为6,代入方程得:()226316220m m m -+⨯++=,解得3m =或5m =,∴当3m =时,方程可化为210240x x -+=,解得14x =,26x =,∴三角形三边长分别为4、6、6,周长为:46616++=;当5m =时,方程可化为216600x x -+=,解得16x =,210x =;三角形三边长分别为6、6、10,周长为:106622++=;∴三角形的周长为16或22;②若6a =是三角形的底边,则b 、c 为腰,即b c =,则方程有两个相等的实数根,∴()()22314220m m m ⎡⎤-+-+=⎣⎦,解得1m =,∴原方程可化为2440x x -+=,解得122x x ==,此时,6a =,2b c ==,不能构成三角形,舍去;综上所述,三角形的周长为16或22.【点睛】题目主要考查等腰三角形的定义及一元二次方程的解法,三角形的三边关系等,理解题意,进行分类讨论是解题关键.20.(1)一次函数的解析式为:2y x =+;反比例函数的解析式为:8y x=(2)40x -<<或2x >(3)(6,4)、(-6,-8)、(-2,4)【分析】(1)首先求出点D 的坐标,从而得出AD 的长,由8ABD S ∆=,得出BD 的长,从而得出点B 的坐标,从而解决问题;(2)由(1)可联立方程组28y x y x =+⎧⎪⎨=⎪⎩,解方程组得出点C 的坐标,根据图象可得答案;(3)分当BC 、CD 、BD 为对角线三种情形,分别通过对角互相平分进行求解.(1)解: 点A 是一次函数2y kx =+与y 轴的交点,∴令0x =,则022y k =⨯+=,即(0,2)A 2OA ∴=,又OD OA =Q ,2OD ∴=,(0,2)D ∴-,24AD OD ∴==.BD y ⊥ 轴,∴点B 的纵坐标为2-,8ABD S ∆= ,∴182AD BD ⋅=,∴1482BD ⨯⨯=,4BD ∴=,∴点B 的坐标为(4,2)--,把点(4,2)B --分别代入一次函数2y kx =+与反比例函数my x =,可得:422k -=-+,24m-=-,1k ∴=,8m =,∴一次函数的解析式为:2y x =+,反比例函数的解析式为:8y x =;(2)解:由(1)可联立方程组28y x y x=+⎧⎪⎨=⎪⎩,解这个方程组得:42x y =-⎧⎨=-⎩或24xy =⎧⎨=⎩,点C 在第一象限,故点C 坐标为(2,4),由图象可得当40x -<<或2x >时,2mkx x +>;(3)解:如图,当BC 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为1,BC DE 的中点,(4,2),(2,4),(0.2)B C D --- ,42241,122x y -+-+==-==,设111(,)E x y ,11021,122x y+-+-==,解得:112,4x y =-=,1(2,4)E ∴-;如图,当CD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为2,CD BE 的中点,(4,2),(2,4),(0.2)B C D --- ,20421,122x y +-====,设222(,)E x y ,22421,122x y --==,解得:116,4x y ==,2(6,4)E ∴;如图,当BD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为3,BD CE 的中点,(4,2),(2,4),(0.2)B C D --- ,40222,222x y -+--==-==-,设333(,)E x y ,33242,222x y ++-=-=,解得:336,8x y =-=-,3(6,8)E ∴--;∴符合条件的点E 的坐标为:(6,4)、(6,8)--、(2,4)-.【点睛】本题是反比例函数综合题,主要考查了反比例函数图象与一次函数图象交点问题,平行四边形的性质,函数与不等式的关系等知识,解题的关键是运用分类思想来解答.21.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.22.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B项对应的扇形圆心角是40 36072200︒⨯=︒,故答案为:200;72;(2)C选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为31 93=.【点睛】此题考查了列表法与树状图法、条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出解题的有关信息,正确画出树状图.23.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.24.(1)y =(2)(1C -;(3)是,理由见解析.【分析】(1)首先过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,根据AO =2,△ABO 与△BCD 是等边三角形,得出A 点坐标,进而求出反比例函数解析式;(2)首先表示出C 点坐标,进而代入函数解析式求出即可;(3)首先设y =a (x +1)2C 坐标代入得出a 的值,进而将点(0答案.【详解】解:(1)过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,∵AO =2,△ABO 与△BCD 是等边三角形,∴OF =1,FAA 的坐标是(-1,把(-1k y x=,得k∴反比例函数的解析式是y =(2)设BE =a ,则CE∴点C 的坐标是(-2-a),把点C 的坐标代入y=2-a a 1,∴点C的坐标是(-1-);(3)过点C的抛物线是经过点(0.理由:设y=a(x+1)2把点C坐标代入得a,∴y(x+1)2当x=0时,代入上式得y=2,∴点C的抛物线是经过点(0,2).【点睛】此题主要考查了反比例函数的综合应用以及图象上点的坐标特点等知识,根据已知表示出C点坐标是解题关键.25.(1)见解析(2)四边形CEFG的面积为20 3.【分析】(1)根据题意和翻折的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式k y x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆= ,24AOC k S ∆∴==;4y x ∴=;(2)解:0k > ,∴函数y 的值在各自象限内随x 的增大而减小;0a > ,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==,4(,)A a a ∴,2(2,)B a a ;()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.若反比例函数12my x-=的图象位于第一、三象限,则m 的取值范围是()A .m <0B .m >0C .m <12D .m >122.如图是某个几何体的展开图,则把该几何体平放在平面上时,其俯视图为()A .B .C .D .3.如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标()A .(﹣1,﹣1)B .(﹣43,﹣1)C .(﹣1,﹣43)D .(﹣2,﹣1)4.已知关于x 的一元二次方程224x m x +=有两个不相等的实数根,则m 的取值范围是A .m≥2B .m<2C .m≥0D .m<05.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上.若AB =6,BC =9,则BF 的长为()A .4B .C .4.5D .56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是()A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=8.如图,在矩形ABCD 中,AB =4,BC =3,点E 为AB 上一点,连接DE ,将△ADE 沿DE 折叠,点A 落在A '处,连接A C ',若F ,G 分别为A C ',BC 的中点,则FG 的最小值为()A .2BCD .19.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为()A .20B .24C .28D .3010.某数学兴趣小组来到城关区时代广场,设计用手电来测量广场附近某大厦CD 的高度,如图,点P 处放一水平的平面镜.光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,测得AB =1.5米,BP =2米,PD =52米,那么该大厦的高度约为()A .39米B .30米C .24米D .15米11.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .412.计算2cos 30°的值为()A .1B 3C 2D .12二、填空题13.已知一元二次方程()222340m x x m --+-=的一个根为0,则m =________.14.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4,那么sinA=___.15.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.16.如图,矩形OABC 的顶点A ,C 分别在坐标轴上,A (8,0),D (5,7),点P 是边AB 或边OA 上的一点,连接CP ,DP ,当△CDP 为等腰三角形时,点P 的坐标为_____.17.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题18.解方程:()32142x x x +=+19.如图,在四边形ABCD 中,AB ∥CD ,连接BD ,点E 在BD 上,连接CE ,若∠1=∠2,AB=ED .(1)求证:BD=CD .(2)若∠A=150°,∠BDC=2∠1,求∠DBC 的度数.20.如图,在平行四边形ABCD 中,AC ⊥DE ,AE=AD ,AE 交BC 于O .(1)求证:∠BCA=∠EAC ;(2)若CE=3,AC=4,求 COE 的周长.21.某兴趣小组开展课外活动.如图,小明从点M 出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米.(1)请在图中画出光源O点的位置,并画出O到MN的垂线段OH(不写画法);(2)若小明身高1.5m,求OH的长.22.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低1万元时,平均每周能多售出2辆.该4S店要想平均每周的销售利润为96万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?23.如图,△ABC是等边三角形,点D在AC上,连接BD并延长,与∠ACF的角平分线交于点E.(1)求证:△ABD∽△CED;(2)若AB=8,AD=2CD,求CE的长.24.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=6,AD=8,求tan∠ADP的值.25.某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y(千米/小时)与时间x(小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是__________千米/小时,最高风速维持了__________小时;(2)当20x≥时,求出风速y(千米/小时)与时间x(小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,求“危险时刻”共有几小时.26.如图,一次函数y=kx+b(k≠0)与反比例函数y=ax(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是以AO为直角边的直角三角形,直接写出所有可能的E点坐标.27.如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.参考答案1.C【分析】根据反比例函数图象位于第一、三象限,可得1-2m>0,解不等式即可求解.【详解】解:∵反比例函数12myx-=的图象位于第一、三象限,∴1-2m>0,∴m<1 2 .故选C.【点睛】本题主要考查反比例函数图象性质,解决本题的关键是要熟练掌握反比例函数图象的性质.2.B【分析】先根据几何体的展开图,判断所围成的几何体的形状,然后利用三视图的概念求解.【详解】解:因为几何体的展开图为一个扇形和一个圆形,故这个几何体是圆锥,故选:B.【点睛】此题主要考查了展开图折叠成几何体以及三视图问题,熟悉圆锥的展开图特点是解答此题的关键.3.B【分析】根据关于以原点为位似中心的对应点的坐标的关系,把A 点的横纵坐标都乘以13-即可.【详解】解:∵以点O 为位似中心,位似比为13,而A (4,3),∴A 点的对应点C 的坐标为(43-,﹣1).故选:B .【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .4.B【分析】根据根的判别式,可知Δ>0,据此即可求出m 的取值范围.【详解】解:∵关于x 的一元二次方程224x m x +=有两个不相等的实数根,∴2420x x m -+=Δ=()24420m --⨯>,解得:m<2,故选:B 5.A【分析】先求出BC′,再由图形折叠特性知,C′F =CF =BC ﹣BF =9﹣BF ,在Rt △C′BF 中,运用勾股定理BF 2+BC′2=C′F 2求解.【详解】解:∵点C′是AB 边的中点,AB =6,∴BC′=3,由图形折叠特性知,C′F =CF =BC ﹣BF =9﹣BF ,在Rt △C′BF 中,BF 2+BC′2=C′F 2,∴BF 2+9=(9﹣BF )2,解得,BF =4,故选:A .【点睛】本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.6.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7.D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程得:2250025001250019100x x ++++()()=.故选D .【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.8.D【分析】由勾股定理和折叠的性质可求5BD =,3AD A D '==,由三角形的三边关系,A B BD A D >'-',则当点A '在DB 上时,A B '有最小值为2BD A D '-=,由三角形的中位线定理可求解.【详解】解:如图,连接A B ',BD ,4AB =Q ,3AD BC ==,5BD ∴===,将ADE ∆沿DE 折叠,3AD A D '∴==,在△A DB '中,A B BD A D >'-',∴当点A '在DB 上时,A B '有最小值为2BD A D '-=,F ,G 分别为A C ',BC 的中点,12FG A B '∴=,FG ∴的最小值为1,故选:D .9.D【分析】直接由概率公式求解即可.【详解】根据题意得9n=30%,解得:n=30,经检验:n=30符合题意,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选:D .10.A【分析】同学和大厦均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.【详解】解:∵AB ⊥BD ,CD ⊥BD ,∴∠ABP=∠CDP ,∵∠APB=∠CPD ,∴△ABP ∽△PDC ,∴CD PDAB BP=,∴CD =PDBP ×AB =522×1.5=39米;那么该大厦的高度是39米.故选:A .11.A【分析】连接OA 、OB ,延长AB ,交x 轴于D ,如图,利用三角形面积公式得到S △OAB =S △ABC ,再根据反比例函数的比例系数k 的几何意义得到S △OAD =3,S △OBD =2,即可求得S △OAB =S △OAD -S △OBD =1.【详解】连结OA 、OB ,延长AB ,交x 轴于D ,如图,∵AB ∥y 轴,∴AD ⊥x 轴,OC ∥AB ,∴S △OAB=S △ABC ,而S △OAD=12×6=3,S △OBD=12×4=2,∴S △OAB=S △OAD ﹣S △OBD=1,∴S △ABC=1,故选:A .12.B【分析】直接利用特殊角的三角函数值进行计算即可得出答案.【详解】解:2cos30°,=2×32,3故选B .13.-2【分析】把x=0代入已知方程,列出关于m 的新方程,通过解新方程可以求得m 的值.【详解】解:根据题意将x=0代入原方程得:m 2-4=0,解得:m=2或m=-2,又∵m-2≠0,即m≠2,∴m=-2,故答案为:-2.14.35【详解】解:由题意知∠C=90°,BC=3,AC=4,根据勾股定理得,AB=5,因此可得:sinA=35BC AB .故答案为:3.515.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC∴=ADE ABC∴ 21()4ADE ABC S DE S BC ∴==△△,即4ABC ADES S =△△又12ADE S = 1422ABC S ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.16.(8,3)或(52,0)【分析】分两种情形分别讨论即可解决问题;【详解】解:∵四边形OABC 是矩形,A (8,0),D (5,7),∴B (8,7),OA =BC =8,OC =AB =7,∴CD =5,BD =3,∵点P 是边AB 或边OA 上的一点,∴当点P 在AB 边时,CD =DP =5,∴BP4,∴PA =AB ﹣BP =3,∴P (8,3).当点P 在边OA 上时,只有PC =PD ,此时P 在CD 的垂直平分线上,∴P (52,0).综上所述,满足条件的点P 坐标为(8,3)或(52,0).故答案为(8,3)或(52,0).17.60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∵OA=OC ,∴∠OCA=x ,∵OA=OB ,∴∠OBA=x+y ,∵OC=OB ,∴∠OBC=x+30°,∵30ACB ∠=︒,∴∠CAB+∠OBA+∠OBC=150°,∴y+x+y+x+30°=150°,∴2(x+y)=120°,∵∠AOB=180°-2∠OBA=180°-2(x+y),∴∠AOB=180°-120°=60°,故答案为:60.18.123x =,212x =-【分析】先把方程化为:3(21)2(21)0x x x +-+=,再利用因式分解法解方程即可得到答案.【详解】解:方程整理得:3(21)2(21)0x x x +-+=,分解因式得:(32)(21)0x x -+=,可得320x -=或210x +=,解得:123x =,212x =-.19.(1)见解析(2)80°【分析】(1)根据平行线的性质可得ABD EDC ∠=∠,依据全等三角形的判定和性质即可证明;(2)根据全等三角形的性质可得150DEC A ∠=∠=︒,21∠=∠,再由各角之间的数量关系得出210∠=︒,利用等边对等角及三角形内角和定理即可得出结果.(1)证明:∵AB CD ∥,∴ABD EDC ∠=∠,在ABD 和EDC 中,12ABD EDC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABD EDC ≌,∴DB CD =;(2)∵ABD EDC ≌,∴150DEC A ∠=∠=︒,21∠=∠,∵21BDC ∠=∠,∴22BDC ∠=∠,∵222230BDC ∠+∠=∠+∠=︒,∴210∠=︒,∴20BDC ∠=︒,∵BD CD =,∴()()11180180208022DBC DCB BDC ∠=∠=︒-∠=⨯︒-︒=︒.20.(1)证明见解析(2)8【分析】(1)先根据平行四边形的性质证明∠DAC=∠BCA ,再由三线合一定理证明EAC DAC ∠=∠,即可证明∠BCA=∠EAC ;(2)先根据等角对等边证明OA=OC ,再由勾股定理求出AE 的长,最后证明△COE 的周长=AE+CE 即可得到答案.(1)解:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴∠DAC=∠BCA ,∵AE=AD ,AC ⊥ED ,∴EAC DAC ∠=∠,∴∠BCA=∠EAC ;(2)解:∵∠BCA=∠EAC ,∴OA=OC ,∵AC ⊥DE ,即∠ACE=90°,∴在Rt △ACE 中,由勾股定理得:5AE ==,∴△COE 的周长=CE+OC+OE=OA+OE+CE=AE+CE=8.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,勾股定理,熟知等腰三角形的性质与判定条件是解题的关键.21.(1)见解析;(2)4m【分析】(1)作射线MA 和GC 交于O ,过O 作OH ⊥MN ,垂足为H ;(2)证明△CDG ∽△OHG 和△ABM ∽△OHM ,列比例式,可得OH 的长.【详解】解:(1)如图所示:(2)由题意得:BM=BD=2×1.5=3,∵CD∥OH,∴△CDG∽△OHG,∴CD DG OH GH=,∵AB=CD=1.5,∴1.5 1.21.2OH DH=+①,∵AB∥OH,∴△ABM∽△OHM,AB BMOH MH=,∴1.536OH DH=+②,由①②得:OH=4,则OH的长为4m.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了构建相似三角形,利用相似三角形的性质计算相应线段的长.22.21万元【分析】销售利润=一辆汽车的利润×销售汽车数量,一辆汽车的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每辆的盈利×销售的件数=96万元,即可列方程求解.【详解】解:设每辆汽车的定价应为x元,(x-15)[8+2(25-x)]=96解得x1=21,x2=23,为使成本尽可能的低,则x=21.答:每辆汽车的定价应为21万元.【点睛】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的件数=96万元是解决问题的关键.23.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=【点睛】此题考查了相似三角形的判定与性质,涉及了等边三角形的性质,角平分线的性质,熟练掌握相关基本性质是解题的关键.24.(1)证明见解析(2)35【分析】(1)由矩形的性质得出∠FAB=∠ABE=90°,AF ∥BE ,证出四边形ABEF 是矩形,再证明AB=BE,即可得出四边形ABEF是正方形;(2)由正方形的性质得出BP=PF,BA⊥AD,∠PAF=45°,得出AB∥PH,求出DH=AD-AH=5,在Rt△PHD中,由三角函数即可得出结果.【详解】(1)证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形;(2)解:过点P作PH⊥AD于H,如图所示:∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°,∴AB∥PH,∵AB=6,∴AH=PH=3,∵AD=8,∴DH=AD﹣AH=8﹣3=5,在Rt△PHD中,∠PHD=90°.∴tan∠ADP=PHHD=35.25.(1)32,10;(2)640yx;(3)共有59.5小时【分析】(1)由速度=增加幅度×时间可得4时风速为8千米/时,10时达到最高风速,为32千米/时,与x轴平行的一段风速不变,最高风速维持时间为20-10=10小时;(2)设k y x=,将(20,32)代入,利用待定系数法即可求解;(3)由于4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,所以4.5时风速为10千米/时,再将y=10代入(2)中所求函数解析式,求出x 的值,再减去4.5,即可求解.【详解】解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20-10=10小时;故答案为:32,10.(2)设k y x=,将()20,32代入,得:3220k =,解得:640k =.所以当20x ≥时,风速y (千米/小时)与时间x (小时)之间的函数关系为:640y x =.(3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时.将10y =代入640y x =,得64010x=,解得64x =,64 4.559.5-=(小时)故在沙尘暴整个过程中,“危险时刻”共有59.5小时.【点睛】本题考查反比例函数的应用,待定系数法求函数的解析式,学生阅读图象获取信息的能力,理解题意,读懂图象是解决本题的关键.26.(1)y=6x ,y=43-x+6;(2)92;(3)(316-,2)或(416,2).【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A 的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB 的解析式,进而求出AG ,用三角形的面积公式即可得出结论.(3)分情形分别讨论求解即可解决问题;【详解】解:(1)∵点B (3,2)在反比例函数y=a x的图象上,∴a=3×2=6,∴反比例函数的表达式为y=6x,∵点A 的纵坐标为4,∵点A 在反比例函数y=6x 图象上,∴A (32,4),∴32342k b k b +=⎧⎪⎨+=⎪⎩,∴436k b ⎧=-⎪⎨⎪=⎩,∴一次函数的表达式为y=-43x+6;(2)如图1,过点A 作AF ⊥x 轴于F 交OB 于G,∵B (3,2),∴直线OB 的解析式为y=23x ,∴G (32,1),A (32,4),∴AG=4-1=3,∴S △AOB =S △AOG +S △ABG =12×3×3=92.(3)①当∠AOE=90°时,∵直线AC 的解析式为y=83x ,∴直线OE 的解析式为y=83-x ,当y=2时,x=-316,∴E (-316,2);②当∠OAE=90°时,可得直线AE 的解析式为y=-83x+7316,当y=2时,x=416,∴E (416,2).综上所述,满足条件的E 的坐标为(-316,2)或(416,2).【点睛】此题主要考查了反比例函数综合题、待定系数法,三角形的面积公式,直角三角形的判定和性质,解本题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.27.(1)AF =AE ;(2)AF =kAE ,证明见解析;(3)EG 2【分析】(1)证明△EAB ≌△FAD (AAS ),由全等三角形的性质得出AF =AE ;(2)证明△ABE ∽△ADF ,由相似三角形的性质得出AB AE AD AF=,则可得出结论;(3)①如图1,当点F 在DA 上时,证得△GDF ∽△GBA ,得出12DF G GA BA F ==,求出AG=3.由△ABE ∽△ADF 可得出12AB A AF AD E ==,求出AE 2.则可得出答案;②如图2,当点F 在DC 的延长线上时,同理可求出EG 的长.【详解】解:(1)AE =AF .∵AD =AB ,四边形ABCD 矩形,∴四边形ABCD 是正方形,∴∠BAD =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB =∠FAD ,∴△EAB ≌△FAD (AAS ),∴AF =AE ;故答案为:AF =AE .(2)AF =kAE .证明:∵四边形ABCD 是矩形,∴∠BAD =∠ABC =∠ADF =90°,∴∠FAD+∠FAB =90°,∵AF ⊥AE ,∴∠EAF=90°,∴∠EAB+∠FAB=90°,∴∠EAB=∠FAD,∵∠ABE+∠ABC=180°,∴∠ABE=180°﹣∠ABC=180°﹣90°=90°,∴∠ABE=∠ADF.∴△ABE∽△ADF,∴AB AE AD AF=,∵AD=kAB,∴1 ABAD k=,∴1 AEAF k=,∴AF=kAE.(3)解:①如图1,当点F在DA上时,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AD=2AB=4,∴AB=2,∴CD=2,∵CF=1,∴DF=CD﹣CF=2﹣1=1.在Rt△ADF中,∠ADF=90°,∴AF=∵DF∥AB,∴∠GDF=∠GBA,∠GFD=∠GAB,∴△GDF ∽△GBA ,∴12DFG GA BA F==∵AF =GF+AG ,∴AG =233AF =∵△ABE ∽△ADF ,∴2142ABA A D EAF ===,∴AE =1122AF =在Rt △EAG 中,∠EAG =90°,∴EG ==,②如图2,当点F 在DC 的延长线上时,DF =CD+CF =2+1=3,在Rt △ADF 中,∠ADF =90°,∴AF 5==.∵DF ∥AB ,∵∠GAB =∠GFD ,∠GBA =∠GDF ,∴△AGB ∽△FGD ,∴23ABA FG FD G ==,∵GF+AG =AF =5,∴AG =2,∵△ABE ∽△ADF ,∴2142ABA A D EAF ===,∴1155222 AE AF==⨯=,在Rt△EAG中,∠EAG=90°,∴EG2=.综上所述,EG2.。

北师大版九年级(上)期末数学试卷及答案

北师大版九年级(上)期末数学试卷及答案

北师大版九年级(上)期末数学试卷及答案第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.下列关于x的函数是二次函数的是( )B. y=4x3+5A. y=9xC. y=3x−2D. y=2x2−x+13.如图,将一块含45°角的三角板ABC绕点A按逆时针方向旋转到△AB′C′的位置.若∠CAB′=20°,则旋转角的度数为( )A. 20°B. 25°C. 65°D. 70°4.一元二次方程3x2+2x−1=0的根的情况是( )A. 无法确定B. 无实数根C. 有两个相等的实数根D. 有两个不等的实数根5.如图,PA,PB与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=( )A. √3B. 2C. 2√3D. 36.下列事件为随机事件的是( )A. 一个图形旋转后所得的图形与原图形全等B. 直径是圆中最长的弦第2页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………C. 方程ax 2+x =0是关于x 的一元二次方程D. 任意画一个三角形,其内角和为360°7. 一次函数y =x +a 与二次函数y =ax 2−a 在同一平面直角坐标系中的图象可能是( )A. B.C. D.8. 为响应国家传统文化进校园的号召,某校准备购进一批毕加索笔来奖励经典诵读优秀生.某文具超市为让利给学校,经过两次降价,每支毕加索笔单价由121元降为100元,两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得( )A. 121(1−x 2)=100B. 121(1+x)2=100C. 121(1−2x)=100D. 121(1−x)2=1009. 数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB⏜于点D ,测出AB ,CD 的长度,即可计算得出轮子的半径.现测出AB =40cm ,CD =10cm ,则轮子的半径为( )A. 50cmB. 35cmC. 25cmD. 20cm10. 从−1,0,1,2中任取一个数作为a 的值,既要使关于x 的方程x 2+2x −2a =0有实数根,又要满足2a −1<−a +2,则a 符合条件的概率为( )A. 14 B. 12 C. 34 D. 111. 已知⊙O 是正六边形ABCDEF 的外接圆,P 为⊙O 上除C 、D 外任意一点,则∠CPD 的度数为( )A. 30°B. 30°或150°C. 60°D. 60°或120°12. 如图,已知二次函数y =ax 2+bx +c 的图象过点(−1,0)和(m,0),下列结论:①abc <0;②4a +c <2b ;③b =a −am ;④bc =1−1m .其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④第II卷(非选择题)二、填空题(本大题共4小题,共16.0分)13.若点A(1,a)与点B(−1,−2)关于原点对称,则a的值为______.14.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为______ m2(结果取整数).15.已知抛物线y=(x−1)2−4如图1所示,现将抛物线在x轴下方的部分沿x轴翻折,图象其余部分不变,得到一个新图象如图2.当直线y=m与新图象有四个交点时,m的取值范围是______.16.如图,在平面直角坐标系中,点A在y轴的正半轴上,OA=1,将OA绕点O顺时针旋转45°到OA1,扫过的面积记为S1,A1A2⊥OA1交x轴于点A2;将OA2绕点O顺时针旋转45°到OA3,扫过的面积记为S2,A3A4⊥OA3交y轴于点A4;将OA4绕点O顺时针旋转45°到OA5,扫过的面积记为S3,A5A6⊥OA5交x轴于点A6;…;按此规律,则S2022的值为______.第4页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………三、解答题(本大题共9小题,共98.0分。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.方程2x x =的解是()A .13x =,23x =-B .11x =,20x =C .11x =,21x =-D .13x =,21x =-2.四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,可添加条件()A .AB CD=B .AC BD=C .AB CD∥D .AC BD⊥3.若反比例函数的图象经过()2,2-,()1,a ,则=a ()A .1B .-1C .4D .-44.一个不透明的箱子里装有红色小球和白色小球共4个,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量的重复实验后,发现摸到红色小球的频率稳定于0.75左右.请估计箱子里白色小球的个数是()A .1B .2C .3D .45.如图,点C 是线段AB 的黄金分割点,(BC AC >),下列结论错误的是()A .12BC AB -=B .2BC AB AC =⋅C .32BC AC =D .0.618ACBC≈6.某超市一月份的营业额为5万元,第一季度的营业额共60万元,如果平均每月增长率为x ,则所列方程为()A .()25160x +=B .()251260x +=C .()51260x +=D .()()2511160x x ⎡⎤++++=⎣⎦7.如图,在△ABC 中,点D 为AB 边上一点,点E 为BC 边上一点,DE AC ∥,若12BD AD =,则△EDO 和△ACO 的面积比为()A .13B .14C .19D .128.如图,在矩形ABCD 中,BC AB <,折叠矩形ABCD 使点B 与点D 重合,点C 与点E 重合,折痕与AB 、CD 相交于点M 、N ,若2AM =,8CD =,则MN =()A .B .C .D9.如图,在正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,连接BG .若DAF n ∠=︒,则ABG ∠的度数为()A .2n ︒B .90n ︒-︒C .45n ︒+︒D .1353n ︒-︒10.在同一直角坐标系中,一次函数y kx k =-与反比例函数ky x=(k≠0)的图象大致是A .B .C .D .二、填空题11.关于x 的一元二次方程2620kx x +-=有两个实数根,则k 的取值范围是______.12.在菱形ABCD 中,对角线6BD =,8AC =,则菱形ABCD 的周长为______.13.将方程22490x x --=配方成()2x m n +=的形式为______.14.在平面直角坐标系中,△ABC 的顶点A 的坐标为()6,4,以原点O 为位似中心,把△ABC 缩小为原来的12,得到A B C '''V ,则点A 的对应点A '的坐标为______.15.在反比例函数21a y x +=的图像上有()14,A y -,()23,B y -,()32,C y 三个点,则1y ,2y ,3y 的大小关系为______.16.如图,在平面直角坐标系中,△ABO 边AB 平行于y 轴,反比例函数(0)k y x x=>的图像经过OA 中点C 和点B ,且△OAB 的面积为9,则k=________17.如图,在矩形ABCD 中,AB =BC =ABM ,使AM AB =,点E 、点F 分别为BC 、BM 的中点,若15ABM S =V ,则EF =______.18.如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数y=kx的图象交BC 于D ,连接AD ,则四边形AOCD 的面积是_____.三、解答题19.解方程:(1)解方程:267x x -=;(2)()()22231x x -=-.20.一个不透明的箱子里装有4个小球,小球上面分别写有A 、B 、C 、D ,每个小球除标记外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球.(1)求摸到小球A 的概率是______;(2)现从该箱子里摸出1个小球,记下标记后放回箱子里,摇匀后,再摸出1个小球,请用画树状图或列表格的方法,求出两次摸出的小球都不是A 的概率.21.如图,菱形ABCD 的对角线AC 和BD 相交于点O ,DE AB ⊥于点E 交AC 于点P ,BF CD ⊥于点F .(1)判断四边形DEBF 的形状,并说明理由;(2)如果3BE =,6BF =,求出DP 的长.22.如图,身高1.5米的李强站在A 处,路灯底部O 到A 的距离为20米,此时李强的影长5AD =米,李强沿AO 所在直线行走12米到达B 处.(1)请在图中画出表示路灯高的线段和李强在B 处时影长的线段;(2)请求出路灯的高度和李强在B 处的影长.23.某商场销售一种服装,每件服装的进价为40元,当每件售价为60元时,每星期可卖出300件,为了尽快减少库存,该商场决定降价销售,经市场调查发现,当每件降价1元时,每星期可多卖出20件.设每件服装的售价为x 元,每星期销售量为y 件.(1)求y 与x 的函数关系式;(2)当每件服装售价为多少元时,每星期可获得6000元销售利润?24.如图,反比例函数11k y x=(0k ≠,0x <)的图象与直线22y k x b =+()20k ≠交于()2,6A -和()6,B n -,该函数关于x 轴对称后的图象经过点()4,C m -.(1)求1y 和2y 的解析式及m 值;(2)根据图象直接写出12k k x b x≥+时x 的取值范围;(3)点M 是x 轴上一动点,求当AM MC -取得最大值时M 的坐标.25.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,AE BC ⊥交CB 延长线于E ,CF AE ∥交AD 延长线于点F .(1)求证:四边形AECF 是矩形;(2)若4AE =,5AD =,求OB 的长.26.如图,已知点()4,2A -、(),4B n -两点是一次函数y kx b =+的图象与反比例函数图象my x=的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式0kkx b x+->的解集;(3)求△AOB 的面积.27.在△ABC 中,90ACB ∠=︒,60ABC ∠=︒,点D 是直线AB 上一动点,以CD 为边,在它右侧作等边△CDE .(1)如图1,当E 在边AC 上时,直接判断线段DE ,EA 的数量关系______;(2)如图2,在点D 运动的同时,过点A 作AF CE ∥,过点C 作CF AE ∥,两线交于点F ,判断四边形AECF 形状,并说明理由;(3)若263BC =,当四边形AECF 为正方形时,直接写出AD 的值.参考答案1.B 2.B3.D 4.A 5.C 6.D 7.C 8.B 9.A 10.A 11.92k ≥-且0k ≠【分析】根据一元二次方程的定义以及根的判别式的意义可得Δ=22-4=6-4(2)0b ac k ⨯-≥且k≠0,求出k 的取值范围即可.【详解】解:∵一元二次方程2620kx x +-=有两个实数根,∴22Δ=-4=6-4(2)00b ac k k ≠⎧⨯-≥⎨⎩,∴92k ≥-且0k ≠,故答案为:92k ≥-且0k ≠.12.20【分析】菱形的对角线性质:菱形的对角线互相垂直平分且平分每一组对角.根据菱形对角线的性质和勾股定理可得边长为5,再根据菱形的性质:四边相等,可得周长为20.【详解】 菱形的对角线互相垂直平分,∴5=∴菱形ABCD 的周长=45=20⨯故答案为20.13.()21112x -=【分析】先将-9移到等号右边变成2249x x -=,然后等号左右两边同时除以2得到2922x x -=,最后等号左右两边同时加上1,再把左边变成完全平方的形式即可.【详解】解:22490x x --=2249x x -=2922x x -=292112x x -+=+()21112x -=故答案为:()21112x -=【点睛】本题考查了一元二次方程的配方,掌握如何配方是解题关键.14.()3,2或()3,2--【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -,即可求得答案.【详解】解:ABC ∆ 的顶点(6,4)A ,以原点O 为位似中心,把ABC ∆缩小为原来的12,得到△A B C ''',∴点A 的对应点A '的坐标为1(62⨯,142⨯或1[6()2⨯-,14()]2⨯-,即(3,2)或(-3,-2).故答案为:(3,2)或(-3,-2).【点睛】此题主要考查了位似变换,解题的关键是正确掌握位似图形的性质.15.312y y y >>【分析】先由21a +得到函数在第一象限和第三象限的函数值随x 的增大而减小,然后即可得到1y ,2y ,3y 的大小关系.【详解】解:21a + 210a +> ,∴反比例函数在第一象限和第三象限的函数值随x 的增大而减小,4302-<-<< ,312y y y ∴>>(或213y y y <<).故答案为:312y y y >>或213y y y <<.16.6【分析】延长AB 交x 轴于D ,根据反比例函数k y x =(x >0)的图象经过点B ,设B k m m ⎛⎫ ⎪⎝⎭,,则OD =m ,根据△OAB 的面积为9,列等式可表示AB 的长,表示点A 的坐标,根据线段中点坐标公式可得C 的坐标,从而得出结论.【详解】解:延长AB 交x 轴于D ,如图所示:∵AB y ∥轴,∴AD ⊥x 轴,∵反比例函数ky x=(x >0)的图像经过OA 中点C 和点B ,∴设B k m m ⎛⎫⎪⎝⎭,,则OD =m ,∵△OAB 的面积为9,∴192AB OD ⋅=,即12AB•m =9,∴AB =18m ,∴A (m ,18k m+),∵C 是OA 的中点,∴C 11822k m m +⎛⎫ ⎪⎝⎭,,∴11822k k m m+=⋅,∴k =6,故答案为:6.17.1或5【分析】过点M 作GH AB ∥,交直线AD 于点G ,交直线BC 于点H ,由15ABMS =V ,可求得AG 、BH 长,进而由BC =CH 长,然后由AM AB ==,求得GM 和HM 长,再用勾股定理求得CM 长,最后由点E 、点F 分别为BC 、BM 的中点利用中位线性质求得EF 长.【详解】过点M 作GH AB ∥,交直线AD 于点G ,交直线BC 于点H ,则四边形ABHG 是矩形.①如图1所示,当点M 在矩形ABCD 内部时,∵11521522ABMS AB AG AG =⋅=⨯⨯=V ∴32AG BH ==∴()()2222523242GM AM AG =-=-=∴42322CH =-=,52422MH =-=∴()()2222222CM MH CH =+=+=∵点E 、点F 分别为BC 、BM 的中点∴EF 是BCM 的中位线,∴112122EF CM ==⨯=如图2所示,当点M 在直线AD 右侧,直线AB 下方时,由①得32AG BH ==,42GM =2MH =12EF CM =∴2322CH BC BH =+==∴()()222227210CM MH CH =++=∴152EF CM ==如图3所示,当点M 在直线AD 左侧,直线AB 上方时,由①得32AG BH ==,42GM =,2CH =,12EF CM =∵425292MH MG GH =+=+=∴()()2222922241CM MH CH =+=+=∴1412EF CM ==如图4所示,当点M 在直线AD 左侧,在直线AB 下方时,由②得2CH =由③得2MH =∴()()22227292265CM MH CH ++=∴1652EF CM ==故本题答案为1或54165【点睛】本题考查了矩形的性质、等腰三角形的性质、勾股定理、三角形中位线等知识点,利用分类讨论的思想正确的作出各种情况所对应的图形是解答本题的关键.18.9【详解】试题分析:∵四边形ABCD 是平行四边形,A 、C 的坐标分别是(2,4)、(3,0),∴点B 的坐标为:(5,4),把点A (2,4)代入反比例函数ky x=得:k=8,∴反比例函数的解析式为:8y x=;设直线BC 的解析式为:y kx b =+,把点B (5,4),C (3,0)代入得:54{30k b k b +=+=,解得:k=2,b=﹣6,∴直线BC 的解析式为:26y x =-,解方程组26{8y x y x=-=得:42x y =⎧⎨=⎩,或1{8x y =-=-(不合题意,舍去),∴点D 的坐标为:(4,2),即D 为BC 的中点,∴△ABD 的面积=14平行四边形ABCD 的面积,∴四边形AOCD 的面积=平行四边形ABCO 的面积﹣△ABD 的面积=3×4﹣14×3×4=9;故答案为9.考点:1.平行四边形的性质;2.反比例函数系数k 的几何意义;3.综合题;4.压轴题.19.(1)11x =-,27x =(2)134x =,212x =-【分析】(1)用公式法求解即可;(2)按照因式分解法的步骤:等式的右边化为0,左边因式分解,写成两个一元一次方程,分别求解即可.(1)解:2670--x x =,∵1a =6b =-7c =-,∴243628640b ac -=+=>,∴46822b x a -±==,∴11x =-,27x =;(2)解:()()222310x x ---=,()()2312310x x x x -+---+=,∴()430x -=或()210x --=,∴134x =,212x =-.【点睛】本题考查了一元二次方程的解法,熟练掌握解一元二次方程的方法是解题的关键.20.(1)14(2)916【分析】(1)共有4个小球,其中A 只有1个,因此随机摸出1球,是A 的概率为14;(2)用列表法列举出所有可能出现的结果,进而求出相应的概率即可.(1)解:一共有4个小球,其中写A 的只有1个,所以随机摸出1球,摸到小球A 的概率是14,故答案为:14;(2)解:用列表法表示所有可能出现的结果如下:ABCDA ()A A ,()AB ,()AC ,()AD ,B ()B A ,()B B ,()BC ,()BD ,C ()C A ,()C B ,()C C ,()C D ,D()D A ,()D B ,()D C ,()D D ,由表可知共有16种结果,每种结果出现的可能性相同,其中两次摸出的球不是A 的结果有9种∴两次摸出的小球没有A 的概率为916【点睛】本题考查列表法或树状图法求随机事件的概率,列举出所有可能出现的结果的情况是解决问题的关键.21.(1)矩形,理由见解析(2)154【分析】(1)根据菱形的性质和矩形的判定方法即可解答;(2)根据菱形的性质得到PB PD =,根据矩形的性质得到6DE FB ==,进而利用勾股定理即可解答.(1)四边形DEBF 是矩形理由:∵DE AB ⊥于E ,BF CD ⊥于F ,∴90DEB BFD ∠=∠=︒,∵四边形ABCD 是菱形,∴AB CD ∥,∴180DEB EDF ∠+∠=︒,∴90EDF DEB BFD ∠=∠=∠=︒,∴四边形DEBF 是矩形;(2)如图,连接PB ,∵四边形ABCD 是菱形,∴AC 垂直平分BD ,∴PB PD =,由(1)知,四边形DEBF 是矩形,∴6DE FB ==,设PD BP x ==,则()6PE x =-,在Rt △PEB 中,由勾股定理得:222PE BE BP +=,即,()22263x x -+=,解得154x =,∴154PD =.22.(1)见解析(2)路灯高度为7.5米,李强影长2米【分析】(1)利用中心投影的性质画出图形即可;(2)设HO x =米,由证得AED OHD ∽△△得AD AEDO HO=求出HO 的值,再证明FBC HOC ∽△△得到BC BFCO HO=,从而求解.(1)解:如图HO ,BC 即为所求(2)解:由题意知:1.5BF AE ==米,20OA =米,12AB =米,∴20128BO OA AB =-=-=米设HO x =米∵90HOA EAD ∠=∠=︒又∵D D ∠=∠∴AED OHD ∽△△∴AD AEDO HO =即1.5525x =解得,7.5x =∵90FBC HOD ∠=∠=︒又∵FCB FCO ∠=∠∴FBC HOC ∽△△∴BC BFCO HO =即1.587.5BC BC =+解得2BC =答:路灯高度为7.5米,BC 长2米23.(1)201500y x =-+(2)55元【分析】(1)根据当每件售价为60元时,每星期可卖出300件,当每件降价1元时,每星期可多卖出20件,列出关系式即可;(2)根据利润=(售价-进价)×数量列出方程求解即可.(1)解:由题意得:()3002060y x =+-201500x =-+(2)解:由题意得,()()201500406000x x -+-=整理,得211533000x x -+=,解得155x =,260x =(不合题意舍).答:当每件售价55元时,每星期可获得6000元销售利润.24.(1)112y x-=,28y x =+,3m =-(2)20x -≤<或6x ≤-(3)()6,0-【分析】(1)根据点A 坐标可求出1y ,即可得点B 坐标,由A 、B 两点的坐标可得2y 的函数表达式;(2)根据题意,可知要求使得反比例函数1y 在直线2y 的上方,所对应的x 的范围(3)点C 关于x 轴的对称点为()4,3F -,当点A 、F 、M 共线时,可得AM MC -最大,故点M 为直线AF 与x 轴的交点坐标.(1)∵图象过点()2,6A -,∴162k =,得112k =-,∴112y x-=;把点()6,B n -代入112y x-=中得126n -=-,∴2n =,点B 为()6,2-,∵12y k x b =+过点A ,B ,∴把()2,6A -和()6,2B -代入得2662k b k b -+=⎧⎨-+=⎩,解得18k b =⎧⎨=⎩,∴28y x =+易知()4,C m -关于x 轴对称点()4,F m --在12y x-=图象上,∴124m --=-∴3m =-;(2)由图象得20x -≤<或6x ≤-;(3)由(1)得,()2,6A -,()4,3C --,点C 关于x 轴的对称点为()4,3F -,射线AF 交x 轴于点M ,设AF 的解析式为y kx b =+,把()2,6A -,()4,3F -分别代入y kx b =+中,2643k b k b -+=⎧⎨-+=⎩,解得329k b ⎧=⎪⎨⎪=⎩,∴AF 的解析式为392y x =+,令0y =,则6x =-,∴当AM MC -最大时M 的坐标为(6,0)-.25.(1)证明见详解;5【分析】(1)根据菱形的性质;矩形的判定:有一个角是直角的平行四边形是矩形便可求证;(2)根据菱形的性质,在Rt △AEB ,Rt △AEC ,Rt △AOB 中分别利用勾股定理即可求出OB 的长;(1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,∴AF ∥EC ,∵AE ∥CF ,∴四边形AECF 是平行四边形,∵AE ⊥BC∴∠AEC=90°,∴平行四边形AECF 是矩形;(2)解:四边形ABCD 是菱形,则AB=BC=AD=5,线段AC ,BD 互相垂直平分,Rt △AEB 中,由勾股定理得3==,Rt △AEC 中,CE=CB +BE=5+3=8,==,Rt △AOB 中,AO=12AC=,故OB 26.(1)2yx =--;8y x=-(2)4x <-或02x <<(3)6-【分析】(1)把()4,2A -代入反比例函数my x=得出m 的值,再把AB 、代入一次函数的解析式y kx b =+,运用待定系数法分别求其解析式;(2)观察函数图象得到当4x <-或02x <<时,一次函数的图象在反比例函数图象上方,即0kkx b x+->.(3)先求出直线2y x =--与x 轴交点C 的坐标,然后利用S △AOB=S △AOC+S △BOC 进行计算即可;(1)解:∵()4,2A -在my x=上,∴m=-8.∴反比例函数的解析式为8y x=-.∵点(),4B n -在8y x=-上,∴n=2.∴()2,4B -.∵y=kx+b 经过A (-4,2),B (2,-4),∴4224k b k b -+=⎧⎨+=-⎩.解得:12k b =-⎧⎨=-⎩.∴一次函数的解析式为2y x =--.(2)解:根据题意,结合图像可知:当4x <-或02x <<时,一次函数的图象在反比例函数图象上方,即0kkx b x+->.(3)解:∵2yx =--,∴当y=0时,x=-2.∴点C (-2,0).∴OC=2.∴S △AOB=S △ACO+S △BCO=12×2×4+12×2×2=6;27.(1)相等(2)菱形,理由见解析【分析】(1)根据已知条件证明30ADE A ∠=︒=∠即可解答(2)根据已知条件可知四边形AECF 是平行四边形,再证明BCD OCE ≌△△,()OCE OAE SAS ≌△△即可解答(3)分点D 在AB 延长线上或在AB 上,通过解CDA 即可(1)∵90ACB ∠=︒,60ABC ∠=︒∴30A ∠=︒∵CDE △为等边三角形∴60DEC ∠=︒∵DEC ∠是ADE 外角∴DEC A ADE∠=∠+∠∴30ADE A∠=︒=∠∴DE EA=故答案为相等.(2)取AB 中点O ,连接OC 、OE∵AF CE ∥,CF AE∥∴四边形AECF 是平行四边形∵90ACB ∠=︒∴OC OB OA==∵60ABC ∠=︒∴△BCO 为等边三角形∵△CDE 是等边三角形∴60DCB OCE DCO∠=∠=︒-∠∴OC BC =CD CE=∴BCD OCE≌△△∴60EOC B ∠=∠=︒∴60EOA ∠=︒又∵OE OE =,OA OC=∴()OCE OAE SAS ≌△△∴CE EA=∴平行四边形AECF 是菱形(3)当点D 在AB 延长线上时,作CH AD ⊥于H ,当四边形AECF 为正方形时,45ACE BCE ∠=∠=︒,90AEC ∠=︒∵60DCE ∠=︒∴15DCB ∠=︒∵60ABC ∠=︒∴45CDH ∠=︒∵63BC =∴322AC ==∴122CH AC ==∴36AH =∵CDE △为等边三角形∴2CH DH ==∴62AD =当点D 在AB 上时作CH AB ⊥于H ,同理可得CDH △是等腰直角三角形,则AD AH DH=-综上AD=。

北师大版数学九年级上学期《期末考试题》含答案

北师大版数学九年级上学期《期末考试题》含答案

北师大版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________满分150分时间120分钟A卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(2020•十堰)某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱2.(2020春•雨花区校级期末)关于x的方程(m﹣3)x m2−2m−1−mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1B.1C.3D.3或﹣13.(2019秋•长清区期末)如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长4.(2019秋•龙华区期末)如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A.22.5°B.30°C.45°D.67.5°5.(2020•大通区模拟)如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是()A.4:9B.2:5C.2:3D.√2:√36.(2020春•阿城区期末)正方形具有而菱形不具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直7.(2020•宜城市模拟)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.112B.16C.14D.128.(2020春•安庆期末)若关于x的一元二次方程bx2+2bx+4=0有两个相等的实数根,则b的值为() A.0B.4C.0或4D.0或﹣49.(2020•成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A .2B .3C .4D .103 10.(2019秋•阜南县期末)若双曲线y =k−3x 在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( )A .k ≠3B .k <3C .k ≥3D .k >3二.填空题(共4小题,满分16分,每小题4分)11.(2019春•左贡县期中)有一个角是直角的平行四边形是 ;有一组邻边相等的平行四边形是 ;四条边都相等,四个角都是直角的四边形是 .12.(2020•浙江自主招生)如图,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率为 .13.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①AF FD =12;②S △BCE =36;③S △ABE =12;④△AEF ∽△ACD ,其中一定正确的是 .(填序号)14.若关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有实数根,则m 的取值范围是 .三.解答题(共6小题,满分54分)15.(12分)(1)解方程:x2﹣2x﹣24=0.(2)已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a﹣2b+3c的值.16.(8分)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.(1)试判断四边形BEGF的形状并说明理由.(2)求AEPG的值.17.(8分)(2020•宿州模拟)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.18.(8分)已知关于x的一元二次方程(k﹣1)x2﹣k2x﹣1=0的一个根是﹣1,求k的值.方程是否还有其它根?如果有,试求出来.19.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有人,若该居民区有8000人,估计整个居民区爱吃D粽的有人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.20.(10分)(2019•晋江市一模)在我国古代数学著作《九章算术》中,有一名题如下:今有木去人不知远近,立四表,相去各一丈,令左两表与所望参相直,从后右表望之,入前右表三寸.问木去人几何?可译为:有一棵树C与人(A处)相距不知多远,立四根标杆A、B、G、E,前后左右的距离各为1丈(即四边形ABGE是正方形,且AB=100寸),使左两标杆A、E与所观察的树C三点成一直线.又从后右方的标杆B观察树C,测得其“入前右表”3寸(即FG=3寸),问树C与人所在的A处的距离有多远?B卷(共50分)四.填空题(共5小题,满分20分,每小题4分)21.(2020•高邮市一模)如图,由10个完全相同的小正方体堆成的几何体中,若每个小正方体的边长为2,则主视图的面积为.22.(2019秋•天峨县期末)关于x的一元二次方程(m﹣3)x2+x+m2﹣9=0有一根为0,则m的值为.23.如图,点P的坐标为(6,4),PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=kx的图象交PM于点A,交PN于点B,若四边形OAPB的面积为18,则k=.24.(2019秋•莲湖区期末)如图,已知AD:DB=2:1,CE:EA=2:3,则CF:DF=.25.(2020•浙江自主招生)如图,在菱形ABCD中,AB=BD=2,点E,F分别在边CD,BC上,且BF=CE.连接BE,DF相交于点H,连接AH,BD相交于点G.若BF:FC=2:1,则AH=.五.解答题(共3小题,满分30分)26.(8分)某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,请仔细观察并找出规律,解答下列问题:(1)按照此规律,摆第n图时,需用火柴棒的根数是多少?(2)求摆第50个图时所需用的火柴棒的根数;(3)按此规律用1202根火柴棒摆出第n个图形,求n的值.27.(10分)如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.28.(12分)(2019•达拉特旗一模)如图,一次函数y=−12x+3的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为2.(1)求反比例函数的解析式;(2)在y轴上求一点P,使P A+PB的值最小,并求出其最小值和P点坐标.答案与解析A卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020•十堰)某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱[解析]解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.2.(3分)(2020春•雨花区校级期末)关于x的方程(m﹣3)x m2−2m−1−mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1B.1C.3D.3或﹣1[解析]解:由题意得:m2﹣2m﹣1=2,m﹣3≠0,解得m=﹣1或m=3.m=3不符合题意,舍去,所以它的一次项系数﹣m=1.故选:B.3.(3分)(2019秋•长清区期末)如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长[解析]解:当他远离路灯走向B 处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A .4.(3分)(2019秋•龙华区期末)如图,已知四边形ABCD 是正方形,E 是AB 延长线上一点,且BE =BD ,则∠BDE 的度数是( )A .22.5°B .30°C .45°D .67.5°[解析]解:∵BE =DB ,∴∠BDE =∠E ,∵∠DBA =∠BDE +∠BED =45°∴∠BDE =12×45°=22.5°.故选:A .5.(3分)(2020•大通区模拟)如图,四边形ABCD 和A 'B 'C 'D '是以点O 为位似中心的位似图形,若OA :OA '=2:3,则四边形ABCD 与A 'B 'C 'D '的面积比是( )A .4:9B .2:5C .2:3D .√2:√3[解析]解:∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA :OA ′=2:3, ∴DA :D ′A ′=OA :OA ′=2:3,∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为:(23)2=49,故选:A.6.(3分)(2020春•阿城区期末)正方形具有而菱形不具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直[解析]解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的对角线不一定相等,而正方形的对角线一定相等.故选:B.7.(3分)(2020•宜城市模拟)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.112B.16C.14D.12[解析]解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2 种,所以两次都摸到白球的概率是2 12=16,故选:B.8.(3分)(2020春•安庆期末)若关于x的一元二次方程bx2+2bx+4=0有两个相等的实数根,则b的值为() A.0B.4C.0或4D.0或﹣4[解析]解:根据题意得:△=(2b)2﹣4×4×b=4b2﹣16b=0,解得b=4或b=0(舍去).故选:B.9.(3分)(2020•成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A .2B .3C .4D .103[解析]解:∵直线l 1∥l 2∥l 3,∴AB BC=DE EF,∵AB =5,BC =6,EF =4,∴56=DE 4,∴DE =103, 故选:D .10.(3分)(2019秋•阜南县期末)若双曲线y =k−3x在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A .k ≠3B .k <3C .k ≥3D .k >3[解析]解:∵双曲线y =k−3x 在每一个象限内,y 随x 的增大而减小,∴k ﹣3>0∴k >3故选:D . 二.填空题(共4小题,满分16分,每小题4分)11.(4分)(2019春•左贡县期中)有一个角是直角的平行四边形是 矩形 ;有一组邻边相等的平行四边形是 菱形 ;四条边都相等,四个角都是直角的四边形是 正方形 .[解析]解:有一个角是直角的平行四边形是矩形;有一组邻边相等的平行四边形是菱形;四条边都相等,四个角都是直角的四边形是正方形.故答案为:矩形;菱形;正方形.12.(4分)(2020•浙江自主招生)如图,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率为710.[解析]解:根据题意,当不考虑抽牌顺序时,可以画出如下的树形图从上图可以看出,从五张牌中任意抽取两张,共有10种抽法,其中抽取的点数之积是偶数的有7种,所以点数之积是偶数的概率:P =710.故答案为:710. 13.(4分)如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF=4,则下列结论:①AF FD=12;②S △BCE =36;③S △ABE =12;④△AEF ∽△ACD ,其中一定正确的是①②③ .(填序号)[解析]解:∵在▱ABCD 中,AO =12AC ,∵点E 是OA 的中点,∴AE =13CE ,∵AD ∥BC ,∴△AFE ∽△CBE ,∴AFBC =AECE =13,∵AD =BC ,∴AF =13AD ,∴AF FD =12;故①正确;∵S △AEF =4,S △AEF S △BCE=(AF BC)2=19,∴S △BCE =36;故②正确;∵EF BE=AE CE=13,∴S △AEFS △ABE=13,∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误, 故答案为:①②③.14.(4分)若关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有实数根,则m 的取值范围是 m ≥1 .[解析]解:①当m﹣3=0,即m=3时,该方程是一元一次方程,符合题意;②当m﹣3≠0,即m≠3时,△=(﹣4)2﹣4(m﹣3)×(﹣2)≥0,整理,得m﹣1≥0,解得m≥1.则m≥1且m≠3.综合①②知,m的取值范围是:m≥1.三.解答题(共6小题,满分54分)15.(12分)(1)解方程:x2﹣2x﹣24=0.(2)已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a﹣2b+3c的值.[解析]解:(1)∵x2﹣2x﹣24=0,∴(x﹣6)(x+4)=0,即x﹣6=0或x+4=0,解得:x1=6,x2=﹣4.(2)∵a:b:c=2:3:4,∴设a=2k,则b=3k,c=4k.∵2a+3b﹣2c=10,∴4k+9k﹣8k=10,解得:k=2,∴a=2,b=6,c=8,∴a﹣2b+3c=4﹣12+24=16.16.(8分)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.(1)试判断四边形BEGF的形状并说明理由.(2)求AEPG的值.[解析]解(1)四边形BEGF是菱形,理由如下:∵∠GAH=∠BAH,AH=AH,∠AHG=∠AHB=90°,∴△AHG≌△AHB,∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EB,FG=FB,∵∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四边形BEGF是菱形.(2)设OA =OB =OC =a ,菱形BEGF 的边长为b .∵四边形BEGF 是菱形,∴GF ∥OB ,∴∠CGF =∠COB =90°,∴∠GFC =∠GCF =45°,∴CG =GF =b ,∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°∵BH ⊥AF ,∴∠GAH +∠AGH =90°=∠OBG +∠AGH .∴∠GAH =∠OBG ,∴△OAE ≌△OBG .∴OG =OE =a ﹣b .∵在Rt △GOE 中,GE =√2OG ,∴b =√2(a ﹣b ),整理得a =2+√22b . ∴AC =2a =(2+√2)b ,AG =AC ﹣CG =(1+√2)b .∵PC ∥AB ,∴BGPG =AGCG =(1+√2)bb=1+√2,由△OAE ≌△OBG 得AE =BG ,∴AE PG=1+√2.17.(8分)(2020•宿州模拟)如图,已知反比例函数y =kx 的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ).(1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.[解析]解:(1)把A 点(1,4)分别代入反比例函数y =k x,一次函数y =x +b ,得k =1×4,1+b =4,解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x的图象上,∴n =4−4=−1; (2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3), ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.18.(8分)已知关于x的一元二次方程(k﹣1)x2﹣k2x﹣1=0的一个根是﹣1,求k的值.方程是否还有其它根?如果有,试求出来.[解析]解:由题意,(k﹣1)x2﹣k2x﹣1=0的一个根是﹣1,分析有k﹣1+k2﹣1=0,即k2+k﹣2=0,(2分)解得,k1=﹣2,k2=1(不合题意,舍去),∴k=﹣2,(3分)当k=﹣2时,原方程化为:3x2+4x﹣1=0,(4分)∴x1=−1,x2=−13,(5分)∴另一根是x2=−13.(6分)19.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有600人,若该居民区有8000人,估计整个居民区爱吃D粽的有3200人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.[解析]解:(1)根据题意得:240÷40%=600(人);根据题意得:8000×40%=3200(人);故答案为:600;3200;(2)A的人数为600×30%=180(人);C的人数600﹣180﹣60﹣240=120(人);如图:(3)列树状图如下:P=612=0.5.20.(10分)(2019•晋江市一模)在我国古代数学著作《九章算术》中,有一名题如下:今有木去人不知远近,立四表,相去各一丈,令左两表与所望参相直,从后右表望之,入前右表三寸.问木去人几何?可译为:有一棵树C与人(A处)相距不知多远,立四根标杆A、B、G、E,前后左右的距离各为1丈(即四边形ABGE是正方形,且AB=100寸),使左两标杆A、E与所观察的树C三点成一直线.又从后右方的标杆B观察树C,测得其“入前右表”3寸(即FG=3寸),问树C与人所在的A处的距离有多远?[解析]解:∵四边形ABGE 是正方形,∴∠A =∠G =90°,AE ∥BG ,∴∠ACB =∠GBF .∴△BAC ∽△FGB .∴AB GF=AC GB.又AB =BG =100寸,FG =3寸.∴1003=AC 100.解得AC =100003. 答:树C 与人所在的A 处的距离为100003寸.B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)21.(4分)(2020•高邮市一模)如图,由10个完全相同的小正方体堆成的几何体中,若每个小正方体的边长为2,则主视图的面积为 24 .[解析]解:主视图有3列,每列小正方数形数目分别为3,2,1;左视图有3列, ∴主视图的面积为:2×2×(3+2+1)=24.故答案为:24.22.(4分)(2019秋•天峨县期末)关于x 的一元二次方程(m ﹣3)x 2+x +m 2﹣9=0有一根为0,则m 的值为 ﹣3 . [解析]解:把x =0代入方程(m ﹣3)x 2+x +m 2﹣9=0得m 2﹣9=0,解得m 1=3,m 2=﹣3, 而m ﹣3≠0,所以m 的值为﹣3.故答案为﹣3.23.(4分)如图,点P 的坐标为(6,4),PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B ,若四边形OAPB 的面积为18,则k = 6 .[解析]解:∵点P (6,4),∴点A 的横坐标为6,点B 的纵坐标为4,代入反比例函数y =kx 得,点A 的纵坐标为k6,点B 的横坐标为k4,即AM =k 6,NB =k 4,∵S 四边形OAPB =16,即S 矩形OMPN ﹣S △OAM ﹣S △NBO =16,6×4−12×6×k 6−12×4×k4=18,解得:k =6.故答案为:6.24.(4分)(2019秋•莲湖区期末)如图,已知AD :DB =2:1,CE :EA =2:3,则CF :DF = 2:1 .[解析]解:过D 作DM ∥AC ,交BE 于M ,∵DM ∥AC ,∴△BMD ∽△BEA ,∴DM AE=BD AB,∵AD :DB =2:1,∴DM AE=BD AB=11+2=13,即AE =3DM ,∵CE :EA =2:3,∴CE =2DM ,∵DM ∥AC ,∴△DMF ∽△CEF ,∴CFDF=CE DM=2DM DM=21,故答案为:2:1.25.(4分)(2020•浙江自主招生)如图,在菱形ABCD 中,AB =BD =2,点E ,F 分别在边CD ,BC 上,且BF =CE .连接BE ,DF 相交于点H ,连接AH ,BD 相交于点G .若BF :FC =2:1,则AH = 6√77.[解析]解:取CD的中点M,连接BM;设CF=2λ,则F=4λ,BC=6λ;∵四边形ABCD为菱形,∴AB=BC=CD,而AB=BD=2,∴BC=CD=BD=2,△BCD为等边三角形,∴CM=3λ,BM=3√3λ;∵CE=BF=4λ,ME=λ;由勾股定理得:BE2=BM2+EM2,∴BE=2√7λ;在△BDF与△CBE中,{BF=CE∠DBF=∠BCEBD=BC,∴△BDF≌△CBE(SAS),∴∠BDF=∠CBE,∴∠BHF=∠BDF+∠DBE=∠CBE=∠CBE+∠DBE=60°,∴△BFH∽△BEC,∴BFBE=BHBC,∵BF=CE,BC=AB,∴CEBE =BHAB,即CEBH=BEAB;∵AB∥CD,∴∠BEC=∠ABH,∴△BCE∽△AHB,∴BCAH =BEAB,即6λAH=2√7λ6λ,∴AH=18√7λ7,而6λ=2,∴AH=6√77,故答案为6√77.五.解答题(共3小题,满分30分)26.(8分)某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,请仔细观察并找出规律,解答下列问题:(1)按照此规律,摆第n图时,需用火柴棒的根数是多少?(2)求摆第50个图时所需用的火柴棒的根数;(3)按此规律用1202根火柴棒摆出第n个图形,求n的值.[解析]解:(1)第n个图需要的火柴棒根数为:8+6(n﹣1)=6n+2.(2)当n=50时,6n+2=6×50+2=302(根)即摆第50个图时需用火柴棒302根.(3)6n+2=1202,解得:n=200.∴用1202根火柴棒摆出第n个图形,n为200.27.(10分)如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.[解析]解:BE⊥EF.理由如下:设正方形ABCD的边长为4a,∵E是AD的中点,DF=14DC,∴AE=DE=2a,DF=a,∵ABDE=4a2a=2,AEDF=2a a =2,∴ABDE=AEDF,而∠BAE=∠EDF,∴△ABE∽△DEF,∴∠AEB=∠EFD,∵∠EFD+∠DEF=90°,∴∠AEB+∠DEF=90°,∴∠BEF=90°,∴BE⊥EF.28.(12分)(2019•达拉特旗一模)如图,一次函数y=−12x+3的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为2.(1)求反比例函数的解析式;(2)在y轴上求一点P,使P A+PB的值最小,并求出其最小值和P点坐标.[解析]解:(1)设A 点的坐标为(a ,b ),则OM =a ,AM =b ,∵△AOM 面积为2,∴12ab =2, ∴ab =4,∵点A 在反比例函数图象上,∴k =4,∴反比例函数的解析式为y =4x ;(2)依题意可知,A 、B 两点的坐标为方程组{y =−12x +3y =4x的解, 解方程组得:点A 的坐标为(2,2),点B 的坐标为(4,1),点A 关于y 轴的对称点A ′的坐标为(﹣2,2),连接A ′B ,交y 轴于点P ,点P 即为所求,此时P A +PB 最小,最小值为A ′B 的长.由勾股定理得:A ′B =√(4+2)2+(2−1)2=√37.设直线A ′B 的解析式为y =kx +b ,代入A ′,B 的坐标得{2=−2k +b 1=4k +b ,解得:{k =−16b =53, ∴y =−16x +53,点P 的坐标为(0,53).。

北师大版九年级(上)期末数学试卷(含答案)

北师大版九年级(上)期末数学试卷(含答案)

北师大版九年级(上)期末数学试卷及答案一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12B .13C .14D .254.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的面积始终等于433;④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= .8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是 . 9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 名学生.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 度.11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值之和为 .12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 .三、解答题(本大题共5小题,每小题6分,共30分) 13.(6分)解方程: (1)2(21)9x +=; (2)2(4)3(4)x x +=+.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足. (1)求证:BE DF =;(2)求证:四边形AECF 是矩形.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒. (1)求k 的值及B 点坐标; (2)求ABC ∆的面积.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图 (1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =; (1)求证:BDE C ∠=∠; (2)求证:2AD AE AB =.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?22.(9分)对于两个不相等的有理数a,b,我们规定符号{max a,}b表示a,b中的较大值,如{2max,3}2-=,{1max-,0}0=.请解答下列问题:(1)2{1,1}5max--=;(2)如果{max x,2}x x-=,求x的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值. 六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合 (1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A .菱形既是轴对称图形又是中心对称图形,故此选项符合题意;B .平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;C .等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意;D .等腰梯形是轴对称图形不是中心对称图形,故此选项不合题意.故选:A .【点评】本题考查了中心对称图形和轴对称图形的定义,能熟记中心对称图形和轴对称图形的定义是解此题的关键. 2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-【分析】根据根与系数的关系得到121x x +=,122x x =-,然后利用整体代入的方法计算121(1)(1)x x x ++-的值. 【解答】解:根据题意得121x x +=,122x x =-, 所以1211212(1)(1)111(2)4x x x x x x x ++-=++-=+--=. 故选:A .【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a+=-,12cx x a=. 3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12 B .13C .14D .25【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让灯泡1L 发光的情况,再利用概率公式求解即可求得答案. 【解答】解:画树状图得:共有6种等可能的结果,能让灯泡1L 发光的有2种情况,∴能让灯泡1L 发光的概率为2163=, 故选:B .【点评】本题考查了列表法、树状图法求概率,画出树状图得出所有可能出现的结果情况是正确解答的关键. 4.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m【分析】利用平行得出三角形相似,运用相似比即可解答. 【解答】解://AB DE ,∴AB CBDE CD =, ∴40.87h=, 1.4h m ∴=,经检验: 1.4h =是原方程的根. 故选:D .【点评】此题主要考查了相似三角形的判定,根据已知得出AB CBDE CE=是解决问题的关键. 5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--【分析】首先根据A 点所在位置设出A 点坐标为(,)m m 再根据2AO =,利用勾股定理求出m 的值,然后根据抛物线平移的性质:左加右减,上加下减可得解析式. 【解答】解:A 在直线y x =上,∴设(,)A m m ,2OA =222(2)m m ∴+=,解得:1(1m m =±=-舍去), 1m ∴=,(1,1)A ∴,∴平移后的抛物线解析式为:2(1)1y x =-+,故选:C .【点评】此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的433④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4【分析】连接OB 、OC ,如图,利用等边三角形的性质得30ABO OBC OCB ∠=∠=∠=︒,再证明BOD COE ∠=∠,于是可判断BOD COE ∆≅∆,所以BD CE =,OD OE =,则可对①进行判断;利用BOD COE S S ∆∆=得到四边形ODBE 的面积14333ABC S ∆==则可对③进行判断;作OH DE ⊥,如图,则DH EH =,计算出23ODE S ∆=,利用ODE S ∆随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于BDE ∆的周长443BC DE DE OE =+=+=,根据垂线段最短,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB 、OC ,如图, ABC ∆为等边三角形, 60ABC ACB ∴∠=∠=︒,点O 是ABC ∆的中心,OB OC ∴=,OB 、OC 分别平分ABC ∠和ACB ∠,30ABO OBC OCB ∴∠=∠=∠=︒120BOC ∴∠=︒,即120BOE COE ∠+∠=︒,而120DOE ∠=︒,即120BOE BOD ∠+∠=︒, BOD COE ∴∠=∠,在BOD ∆和COE ∆中 BOD COEBO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, BOD COE ∴∆≅∆,BD CE ∴=,OD OE =,所以①正确; BOD COE S S ∆∆∴=,∴四边形ODBE 的面积21134433343OBC ABC S S ∆∆===⨯⨯=,所以③正确; 作OH DE ⊥,如图,则DH EH =,120DOE ∠=︒,30ODE OEH ∴∠=∠=︒,12OH OE ∴=,332HE OH OE ==, 3DE OE ∴=,21133224ODE S OE OE OE ∆∴=⋅⋅=, 即ODE S ∆随OE 的变化而变化,而四边形ODBE 的面积为定值,ODE BDE S S ∆∆∴≠;所以②错误;BD CE =,BDE ∴∆的周长443BD BE DE CE BE DE BC DE DE OE =++=++=+=+=+,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,此时233OE =, BDE ∴∆周长的最小值426=+=,所以④正确.故选:C .【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= 75︒ . 【分析】直接利用绝对值的非负性和偶次方的非负性得出1sin 02α-=,tan 10β-=,再结合特殊角的三角函数值得出答案.【解答】解:21|sin |(tan 1)02αβ-+-=, 1sin 02α∴-=,tan 10β-=, 1sin 2α∴=,tan 1β=, 30α∴=︒,45β=︒,则304575αβ+=︒+︒=︒.故答案为:75︒.【点评】此题主要考查了特殊角的三角函数值以及非负数的性质,正确记忆特殊角的三角函数值是解题关键.8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是(1,3)-- .【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(1,3)--.故答案为:(1,3)--.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 40 名学生.【分析】设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,利用九(1)班共用去贺卡的数量=人数⨯每人送出新年贺卡的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,依题意得:(1)1560x x -=,整理得:215600x x --=,解得:140x =,239x =-(不合题意,舍去),∴九(1)班有40名学生.故答案为:40.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 15度.【分析】利用菱形的性质得出DCB∠的度数,进而得出答案.∠的度数,再利用等腰三角形的性质得出DCF【解答】解:菱形ABCD中,60∠=︒,DF DC=,DAB∠=∠,AB CD,DFC DCF∴∠=︒,//60BCD⊥于点E,DF AB90∴∠=︒,FDCDFC DCF∴∠=∠=︒,45菱形ABCD中,DCA ACB∠=∠,∴∠=∠=︒,30DCA ACB︒-︒=︒.ACF∴∠的度数为:453015故答案为:15︒.【点评】此题主要考查了菱形的性质以及等腰三角形的性质等知识,得出45∠=∠=︒是解题关键.DFC DCF11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的所有可能的值之和为38.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:主视图最右边可能有4或5或6个小正方体;由主视图最左边看到只有一列,俯视图也只有一列,则左边有一个小正方体;主视图中间有两列,俯视图亦有两列,则中间可以有3或4个小正方形.n∴的值可能为:1438++=,16411++=,++=,15410++=,1539++=,16310++=,1449则n的所有可能的值之和89101138=+++=.故本题答案为:38.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 4或8或43 .【分析】如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心画O 交CD 于3P .只要证明12330EPF FP F FP E ∠=∠=∠=︒,即可推出14FP =,28FP =,343FP=解决问题. 【解答】解:如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心OE 的长度为半径,画O 交CD 于3P .四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,2BF =,23BE =4AF =,43AD =3tan tan FEB ADF ∴∠=∠=, 30ADF FEB ∴∠=∠=︒, 易知4EF OF OD ===,OEF ∴∆是等边三角形,12330EPF FP F FP E ∴∠=∠=∠=︒, 14FP ∴=,28FP=,343FP =, 故答案为4或8或3【点评】本题考查矩形的性质、锐角三角函数、圆的有关知识、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考填空题中的压轴题.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)解方程:(1)2(21)9x +=;(2)2(4)3(4)x x +=+.【分析】(1)两边直接开平方,继而得到两个关于x 的一元一次方程,解之即可;(2)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x 的一元一次方程,再进一步求解即可.【解答】解:(1)2(21)9x +=,213x ∴+=或213x +=-,解得11x =,22x =-;(2)2(4)3(4)x x +=+,2(4)3(4)0x x ∴+-+=,则(4)(1)0x x ++=,40x ∴+=或10x +=,解得14x =-,21x =-.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足.(1)求证:BE DF =;(2)求证:四边形AECF 是矩形.【分析】(1)由平行四边形的性质得出B D ∠=∠,AB CD =,//AD BC ,由已知得出90AEB AEC CFD AFC ∠=∠=∠=∠=︒,由AAS 证明ABE CDF ∆≅∆即可;(2)证出90EAF AEC AFC ∠=∠=∠=︒,即可得出结论.【解答】(1)证明:四边形ABCD 是平行四边形,B D ∴∠=∠,AB CD =,//AD BC ,AE BC ⊥,CF AD ⊥,90AEB AEC CFD AFC ∴∠=∠=∠=∠=︒,在ABE ∆和CDF ∆中,B D AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS ∴∆≅∆,BE DF ∴=;(2)证明://AD BC ,90EAF AEB ∴∠=∠=︒,90EAF AEC AFC ∴∠=∠=∠=︒,∴四边形AECF 是矩形.【点评】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒.(1)求k 的值及B 点坐标;(2)求ABC ∆的面积.【分析】(1)先把(1,)A a 代入2y x =中求出a 得到(1,2)A ;再把A 点坐标代入k y x=中可确定k 的值,然后利用反比例函数和正比例函数图象的性质确定B 点坐标;(2)设(1,)C t ,根据两点间的距离公式和勾股定理得到22222(11)(2)(11)(22)(2)t t +++++++=-,求出t 得到(1,3)C -,从而得到AC 的长,然后关键三角形面积公式求得即可.【解答】解:(1)把(1,)A a 代入2y x =得2a =,则(1,2)A ;把(1,2)A 代入k y x =得122k =⨯=, 点A 与点B 关于原点对称,(1,2)B ∴--;(2)//CA y 轴,C ∴点的横坐标为1,设(1,)C t ,90ABC ∠=︒.222BC AC AB ∴+=,即22222(11)(2)(11)(22)(2)t t +++++++=-,解得3t =-,(1,3)C ∴-,5AC ∴=,11()5(11)522ABC A B S AC x x ∆∴=-=⨯⨯+=. 【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图(1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.【分析】(1)根据矩形的对角线相等且互相平分作出图形即可;(2)根据矩形的性质和三角形中位线定理作出图形即可.【解答】解:(1)如图1,连接AC 、BD 交于点O ,延长EO 交BC 于F ,则点F 即为所求;(2)如图2,BD 交AC 于O ,延长EO 交BC 于F ,连接EB 交AC 于P ,连接DF 交AC 于Q ,则P 、Q 即为所求.【点评】本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图形是解题的关键.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈【分析】利用已知结合锐角三角函数关系得出BM 的长.【解答】解:如图所示:连接MN ,由题意可得:90AMN ∠=︒,30ANM ∠=︒,45BNM ∠=︒,8AN km =, 在直角AMN ∆中,3cos30843()MN AN km =︒==. 在直角BMN ∆中,tan 4543 6.9BM MN km km =︒=≈.答:此时火箭所在点B 处与发射站点M 处的距离约为6.9km .【点评】本题考查解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =;(1)求证:BDE C ∠=∠;(2)求证:2AD AE AB =.【分析】(1)根据角平分线的定义得到ABD CBD ∠=∠,由2BD BE BC =,得到BD BC BE BD=,推出EBD DBC ∆∆∽,根据相似三角形的性质即可得到结论;(2)由BDE C ∠=∠,推出DBC ADE ∠=∠,等量代换得到ABD ADE ∠=∠,证得ADE ABD ∆∆∽,根据相似三角形的性质即可得到结论.【解答】证明:(1)BD 平分ABC ∠,ABD CBD ∴∠=∠, 2BD BE BC =, ∴BD BC BE BD=, EBD DBC ∴∆∆∽,BDE C ∴∠=∠;(2)BDE C ∠=∠,DBC C BDE ADE ∠+∠=∠+∠,DBC ADE ∴∠=∠,ABD CBD ∠=∠,ABD ADE ∴∠=∠,ADE ABD ∴∆∆∽, ∴AD AE AB AD=, 即2AD AE AB =.【点评】本题考查了相似三角形的判定和性质,角平分线的性质,熟练掌握相似三角形的性质即可得到结论.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.【分析】(1)根据角平分线的性质进行导角,可求得四边形EGFH 的四个内角均为90︒,进而可说明其为矩形.(2)根据题目条件可得四边形MNQP 为平行四边形,要证菱形只需邻边相等,连接GH ,由于MN EF GH ==,要证MN MP =,只需证GH MP =,只需证四边形MFHP 为平行四边形,可证G 、H 点分别为MN 、PQ 中点,即可得出结果.【解答】(1)证明:EH 平分BEF ∠,FH 平分DFE ∠,12FEH BEF ∴∠=∠,12EFH DFE ∠=∠, //AB CD ,180BEF DFE ∴∠+∠=︒,11()1809022FEH EFH BEF DFE ∴∠+∠=∠+∠=⨯︒=︒, 180FEH EFH EHF ∠+∠+∠=︒,180()1809090EHF FEH EFH ∴∠=︒-∠+∠=︒-︒=︒,同理可得:90EGF ∠=︒,EG 平分AEF ∠,EH 平分BEF ∠,12GEF AEF ∴∠=∠,12FEH BEF ∠=∠, 点A 、E 、B 在同一条直线上,180AEB ∴∠=︒,即180AEF BEF ∠+∠=︒,11()1809022FEG FEH AEF BEF ∴∠+∠=∠+∠=⨯︒=︒, 即90GEH ∠=︒,∴四边形EGFH 是矩形(2)解:他的猜想正确,理由是:////MN EF PQ ,//MP NQ ,∴四边形MNQP 为平行四边形.如图,延长EH 交CD 于点O ,PEO FEO ∠=∠,PEO FOE ∠=∠,FOE FEO ∴∠=∠,EF FD ∴=,FH EO ⊥,HE HO ∴=,EHP OHQ ∠=∠,EPH OQH ∠=∠,EHP OHQ ∴∆≅∆,HP HQ ∴=,同理可得GM GN =,MN PQ =,MG HP ∴=,∴四边形MGHP 为平行四边形,GH MP ∴=,//MN EF ,//ME NF ,∴四边形MEFN 为平行四边形,MN EF ∴=,四边形EGFH 是矩形,GH EF ∴=,MN MP∴=,∴平行四边形MNQP为菱形.【点评】本题考查矩形、菱形的性质与判定,属于综合题,熟练掌握菱形和矩形的性质及判定方法是解题关键.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.【分析】(1)根据题意得出小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)根据概率公式进行求解即可.【解答】解:(1)根据题意画图如下:小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)一共有4种情况,而过B的有3种,故小聪同学从迷宫口A到达D处经过路口B的概率为34.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,100)、(45,70)代入一次函数表达式,即可求解;(2)由题意得2(30)(2160)2(55)1250w x x x =--+=--+,即可求解;(3)由题意得(30)(2160)800x x --+,解不等式即可得到结论.【解答】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b =+⎧⎨=+⎩, 解得:2160k b =-⎧⎨=⎩, 故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,故当55x <时,w 随x 的增大而增大,而3050x ,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该商店每天的利润最大,最大利润1200元;(3)由题意得:(30)(2160)800x x --+,解得:4070x ,又216020y x =-+,则y 的最小值为27016020-⨯+=,每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润w =得出函数关系式是解题关键.22.(9分)对于两个不相等的有理数a ,b ,我们规定符号{max a ,}b 表示a ,b 中的较大值,如{2max ,3}2-=,{1max -,0}0=.请解答下列问题:(1)2{1,1}5max --= 1- ; (2)如果{max x ,2}x x -=,求x 的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值.【分析】(1)根据定义即可得;(2)由已知等式知2x x >-,解之可得;(3)分2x x >-和2x x <-两种情况分别求解可得.【解答】解:(1)2115->-, ∴2{1,1}15max --=-. 故答案为:1-;(2){max x ,2}x x -=,2x x ∴>-.1x ∴>.x ∴的取值范围是1x >.(3)由题意,得:2x x ≠-.①若2x x >-,即1x >时,{max x ,2}x x -=,|1|1x x -=-.{max x ,2}2|1|5x x -=--,2(1)5x x ∴=--.解得7x =符合题意;)②若2x x <-,即1x <时,{max x ,2}2x x -=-,|1|(1)1x x x -=--=-.{max x ,2}2|1|5x x -=--,22(1)5x x ∴-=--.解得5x =-符合题意.综上所述,7x =或5x =-.【点评】本题主要考查解一元一次不等式,解题的关键是理解新定义,并根据新定义列出关于x 的不等式及分类讨论思想的运用.六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合(1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.【分析】(1)根据待定系数法解出解析式和对称轴即可;(2)从三种情况分析①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形;②当34t <时,DEF ∆与OBC ∆重叠部分是四边形;③当45t <时,DEF ∆与OBC ∆重叠部分是四边形得出S 关于t 的函数关系式即可;(3)直接写出当ABP ∆是直角三角形时符合条件的点P 坐标.【解答】解:(1)根据题意得042393a b a b=+⎧⎨=+⎩, 解得1a =,2b =-,∴抛物线解析式是22y x x =-,对称轴是直线1x =;(2)有3种情况:①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形,如图1:214S t =; ②当34t <时,DEF ∆与OBC ∆重叠部分是四边形,如图2:219342S t t =-+-; ③当45t <时,DEF ∆与OBC ∆重叠部分是四边形,如图3:211322S t t =-+-; (3)当ABP ∆是直角三角形时,可得符合条件的点P 坐标为(1,1)或(1,2)或1(1,)3或11(1,)3. 【点评】此题考查了难度较大的函数与几何的综合题,关键是根据03t ,34t <,45t <三种情况进行分析.。

北师大版九年级上学期数学《期末测试卷》及答案

北师大版九年级上学期数学《期末测试卷》及答案
4.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()
A.25°B.50°C.65°D.75°
[答案]C
[解析]
[分析]
根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和三角形内角和定理求出即可.
[详解]解:∵根据圆周角定理得:∠AOC=2∠ABC,
∵∠ABC+∠AOC=75°,
∴∠AOC= ×75°=A= (180°﹣∠AOC)=65°,
故选C.
[点睛]本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC是解此题的关键.
5.如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的 后,得到线段CD,则点C的坐标为()
16.如图,抛物线y=﹣ (x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则 的最大值为_______.
三.解答题
17.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
24.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F
(1)如图1,求证:BD平分∠ADF;
(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;
(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3 ,DN=9.求sin∠ADB的值.
答案与解析
一.选择题

北师大版九年级上册数学期末考试试题及答案

北师大版九年级上册数学期末考试试题及答案

北师大版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下面的几何体中,俯视图为三角形的是()A .B .C .D .2.下列函数关系式中,y 是x 的反比例函数的是()A .3y x=B .31y x =+C .3y x=D .23y x =3.方程(x ﹣3)(x +4)=0的解是()A .x =3B .x =﹣4C .x 1=3,x 2=﹣4D .x 1=﹣3,x 2=44.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A .12B .13C .14D .155.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为()A .35B .34C .5D .16.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为()A .6cm ,8cmB .3cm ,4cmC .12cm ,16cmD .24cm ,32cm7.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=()A .1:3B .1:4C .2:3D .1:28.函数21a y x--=(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是()A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 19.如图,已知O 是矩形ABCD 的对角线的交点,∠AOB=60°,作DE ∥AC ,CE ∥BD ,DE 、CE 相交于点E.四边形OCED 的周长是20,则BC=()A .5B .C .10D .10.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数4y x=(x >0)的图象上.则y 1+y 2+…+y 8的值为()A .B .6C .D .二、填空题11.如果x :y =1:2,那么x yy+=_____.12.若点(2)m -,在反比例函数6y x=的图像上,则m =______.13.若关于x 的一元二次方程2210x x a -+-=有实数根,则a 的取值范围为_______________.14.如图,Rt ABC ∆中,∠ACB=90°,AC=4,BC=3,CD AB ⊥则tan BCD ∠=_______.15.如图,l 是一条笔直的公路,道路管理部门在点A 设置了一个速度监测点,已知BC 为公路的一段,B 在点A 的北偏西30°方向,C 在点A 的东北方向,若AB=50米.则BC 的长为__________米.(结果保留根号)16.如图,等边△ABC 的边长为6,点D 在AC 上且DC =2,点E 在BC 上,连接AE 交BD 于点F ,且∠AFD =60°,若点M 是射线BC 上一点,当以B 、D 、M 为顶点的三角形与△ABF 相似时,则BM 的长为_____.17.如图,一次函数的图象y x b =-+与反比例函数的图象ay x=交于A(2,﹣4),B(m,2)两点.当x 满足条件______________时,一次函数的值大于反比例函数值.三、解答题1811tan 4512-⎛⎫+︒+ ⎪⎝⎭19.解方程2213x x+=20.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同.两辆汽车经过这个十字路口,求下列事件的概率:(1)两辆车全部继续直行(2)至少有一辆车向左转21.已知:x 2+3x +1=0.求(1)x +1x;(2)x 2+21x .22.如图,在ABC ∆中,点,E F 分别在,AB AC 上,且AE ABAF AC=.(1)求证:AEF ABC ∆∆ ;(2)若点D 在BC 上,AD 与EF 交于点G ,求证:EG FGBD CD=.23.“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雅智教育初二进初三教学检测试卷(全卷满分120分,考试时间100分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程042=-x 的解是( )A .2=xB .2-=xC .21=x ,22-=xD .21=x ,22-=x2.二次三项式243x x -+配方的结果是( ) A .2(2)7x -+ B .2(2)1x -- C .2(2)7x ++ D .2(2)1x +-3.小明从上面观察下图所示的两个物体,看到的是( )A B C D4.人离窗子越远,向外眺望时此人的盲区是( )A .变小B .变大C .不变D .以上都有可能5.函数的图象经过(1,-1),则函数2-=kx y 的图象是( )6.在Rt △ABC 中,∠C=90°,a =4,b =3,则sinA 的值是( )A .54B .35C .43D .457.下列性质中正方形具有而矩形没有的是( ) A .对角线互相平分 B .对角线相等 C .对角线互相垂直 D .四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A .154B .31正面2 2 2 2 -2 -2 -2 -2 O O O O y y y y x x x x A B C D x k y =C .51D .152二、填空题(本大题共7个小题,每小题3分,满分分) 9.计算tan60°= .10.已知函数22(1)m y m x -=-是反比例函数,则m 的值为 . 11.若反比例函数 的图象经过点(3,-4),则此函数在每一个象限内y 随x 的增大而 .12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是 . 13.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组中牌中抽取一张,数字和是6的概率是 .14.依次连接矩形各边中点所得到的四边形是 .15.如图,在△ABC 中,BC = 8 cm ,AB 的垂直平分线交 AB 于点D,交边AC 于点E ,△BCE 的周长等于18 cm ,则AC 的长等于 cm .三、解答题(本大题共9个小题,满分75分)16.(本小题8分)解方程:3(3)x x x -=-18.(本小题10分)如图所示,课外活动中,小明在离旗杆AB 的10米C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD=1.5米,求旗杆AB 的高.(精确到0.1米)(供选用的数据:sin 400.64≈ ,cos 400.77≈ ,tan 400.84≈ )40︒E D CBAAD BC Ek y x =19.(本小题8分)小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?转盘1 转盘220.(本小题12分)如图,平行四边形ABCD 中,AE⊥BD,CF ⊥BD,垂足分别为E 、F .(1)写出图中每一对你认为全等的三角形; (2)选择(1)中的任意一对进行证明.1 2 1 2 3A B C DEF21.(本小题8分)某水果商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?22.(本小题10分)已知:如图,D是△ABC中BC边上一点,E是AD上的一点,EB=EC,∠1=∠2.求证:AD平分∠BAC.AE21B CD23.(本小题9分)正比例函数kx y =和反比例函数的图象相交于A ,B 两点,已知点A 的横坐标为1,纵坐标为3. (1)写出这两个函数的表达式; (2)求B 点的坐标;(3)在同一坐标系中,画出这两个函数的图象.O 1 2 3 4 5 6 65 4 32 1-1-2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6xyxky =2008-2009学年上学期期末检测九年级数学 参考答案一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.C 2.B 3.A 4.B 5.A 6.D 7.C 8.B二、填空题(本大题共7个小题,每小题3分,满分21分)9.3 10.-1 11.增大 12.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形 13.1314.菱形 15.10 三、解答题(本大题共9个小题,满分75分) 16.(本小题6分) 解方程得x 1=1,x 2=3 17.(本小题6分) 略 18.(本小题8分)解:在Rt △ADE 中,tan ∠ADE=DEAE∵ DE=10,∠ADE=40°∴ AE=DE tan ∠ADE =10tan 40°≈100.84⨯=8.4 ∴ AB=AE+EB=AE+DC=8.4 1.59.9+= 答:旗杆AB 的高为9.9米19.(本小题8分)解:∵P (奇数)=31 P (偶数)=32∵31×2=32×1 ∴这个游戏对双方是公平的20.(本小题10分)解:(1)△A BD ≌△CDB ,△AEB≌△CFD ,△AE D ≌△CFB (2)证明略21.(本小题8分)解:设每千克应涨价x 元,根据题意,得(10)(50020)6000x x +-= 即215500x x -+=, 解得x 1=5,x 2=10∵要使顾客得到实惠 ∴102=x 舍去 答:每千克应涨价5元。

转盘2转盘11 2 3 1 1 2 3 224622.(本小题10分)解:上面的证明过程不正确,错在第一步。

证明:∵EB=EC , ∴∠3=∠4 又∵∠1=∠2 ∴∠1+∠3=∠2+∠4 即∠ABC =∠ACB ∴AB=AC∴在△AEB 和△AEC 中,EB=EC 1=2AB=AC ⎧⎪∠∠⎨⎪⎩∴△AEB≌△AEC ∴∠BAE=∠CAE ∴AD 平分∠BAC23.(本小题9分)解:(1)∵正比例函数y=kx 与反比例函数xky =的图像都过点A (1,3),则k =3 ∴正比例函数是y=3x ,反比例函数是3y x=(2)∵点A 与点B 关于原点对称,∴点B 的坐标是(-1,-3) (3)略24.(本小题10分)解:(1)2和32;(2)321x y xy ⎧+=⎪⎨⎪=⎩,消去y 化简得:2x 2-3x +2=0,Δ=9-16<0,所以不存在矩形B . (3)(m + n )2-8 mn ≥0,设所求矩形的两边分别是y x 和,由题意得方程组:22m n x y mn xy +⎧+=⎪⎪⎨⎪=⎪⎩,消去y 化简得:2 x 2-(m + n )x + mn = 0, Δ=(m + n )2-8 mn ≥0.即(m + n )2-8 mn ≥0时,满足要求的矩形B 存在2 1ABCDE34九年级数学上学期期末检测试题卷(全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分) 1.下列方程中,是一元二次方程的是( )A .32-=y xB .2(1)3x +=C .11322+=-+x x x D .29x =2.有一实物如下左图,那么它的主视图是( )3.到三角形各顶点的距离相等的点是三角形( )A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点4.甲、乙两地相距60km ,则汽车由甲地行驶到乙地所用时间y (小时)与行驶速度x (千米/时)之间的函数图像大致是( )5.下列命题中,不正确的是( )A .顺次连结菱形各边中点所得的四边形是矩形B .有一个角是直角的菱形是正方形C .对角线相等且垂直的四边形是正方形D .有一个角是60°的等腰三角形是等边三角形6.在Rt △ABC 中,∠C=90°,a =4,b =3,则sinA 的值是( ) A .45 B .35C .43 D .54A B C DOxyA OxyB OxyC OxD y7.电影院呈阶梯或下坡形状的主要原因是( )A .为了美观B .减小盲区C .增大盲区D .盲区不变8.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A .至少有两名学生生日相同B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算2cos60°+ tan 245°= 。

10.一元二次方程230x x -=的解是 。

11.请你写出一个反比例函数的解析式使它的图象在第一、三象限 。

12.在平行四边形ABCD 中,对角线AC 长为10cm ,∠CAB=30°,AB= 6cm ,则平行四边形ABCD 的面积为 2cm 。

13.命题“等腰梯形的对角线相等”。

它的逆命题是 . 14.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是 。

15.已知反比例函数ky x=的图像经过点(1,-2),则直线y =(k -1)x 的解析式为 。

三、解答题(本大题共9个小题,满分75分)16.(本小题6分)解方程:0672=+-x x17.(本小题6分)为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2005年我省退耕还林1600亩,计划2007年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少? 18.(本小题6分)如图,小明为测量某铁塔AB 的高度,他在离塔底B 的10米C 处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB 的高。

(精确到0.1米)(参考数据:sin43° =0.6820, cos43° =0.7314, tan43° =0.9325)C ABE D α19.(本小题8分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积) s (mm 2)的反比例函数,其图像如图所示。

(1)写出y 与s 的函数关系式;(2)求当面条粗1.6mm 2时,面条的总长度是多少米?20.(本小题8分)两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中摸出一个球,请用列表法表示出可能出现的情况,并求出摸出的球颜色相同的概率。

21.(本小题8分)已知:四边形ABCD 的对角线AC 、BD 相交于点O ,给出下列5个条件:①AB∥DC;②OA=OC;③AB=DC;④∠BAD=∠DCB;⑤AD∥BC。

相关文档
最新文档