高级中学高二数学寒假作业平面向量与解三角形(一) Word版含答案
高二数学寒假作业(人教A版必修五)解三角形的综合应用word版含答案
高二数学寒假作业(人教A 版必修五)解三角形的综合应用(时间:40分钟)1.(2016·江苏高考)在△ABC 中,AC =6,cos B =45,C =π4。
(1)求AB 的长;(2)求cos ⎝⎛⎭⎪⎫A -π6的值。
解析 (1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫452=35。
由正弦定理知AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=52。
(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos ⎝⎛⎭⎪⎫B +π4=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45×22+35×22=-210。
因为0<A <π,所以sin A =1-cos 2A =7210。
因此, cos ⎝ ⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=-210×32+7210×12=72-620。
答案 (1)5 2 (2)72-6202.(2016·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 。
已知2(tan A +tan B )=tan A cos B +tan Bcos A。
(1)证明:a +b =2c ; (2)求cos C 的最小值。
解析 (1)由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B ,因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C 。
高二数学文科寒假作业:第2天_三角函数与平面向量 有答案
第2天 三角函数与平面向量、解三角形【课标导航】1.掌握三角函数的概念与图像、性质;2.三角恒等变换;3.解三角形;4.平面向量. 一、选择题1. 向量++++)()( 化简后等于( )A. B.C.D. AM 2. 在)2,0(π上是增函数,且最小正周期为π的函数是( )A. ||sin x y =B. |cos |x y =C. ||cos x y =D. |sin |x y =3.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =- ,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .54.对任意向量,a b,下列关系式中不恒成立的是 ( )A .||||||a b a b ⋅≤ B. ||||||||a b a b -≤- C .22()||a b a b +=+ D .22()()a b a b a b +⋅-=-5.已知下列命题中:(1)若k R ∈,且0kb = ,则0k =或0b = ;(2)若0a b ⋅= ,则0a = 或0b =;(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a ;(4)若a 与b 平行,则a b a b ⋅=⋅ . 其中真命题的个数是 ( )A. 0B. 1C.2D. 36. 为了得到函数x x y 3cos 3sin +=的图象,可以将函数x y 3cos 2=的图象 ( ) A.向右平移12π个单位 B.向右平移4π个单位 C.向左平移12π个单位 D.向左平移4π个单位 7. 函数)sin(ϕω+=x A y (其中)0,0,0πϕω<<>>A 的部分图象 如图所示,则此函数的解析式是( )A.)24sin(22ππ+=x y B.)434sin(22ππ+=x yC.)48sin(22ππ+=x yD.3)84y x ππ=-8. △ABC 中,若BC BA AC AB ⋅=⋅,则△ABC 必为 ( )A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形9. 已知向量e =(-45,35),点O(0,0)和A(1,-2)在e 所在直线上的射影分别为O 1和A 1,则11O A =λe , 则λ=( )A.115B.-115C.2D.-210.若,a b 是非零向量且满足(2)a b a -⊥ ,(2)b a b -⊥ ,则a 与b的夹角是( )A.6πB.3π C. 32π D. 65π二、填空题11. 如图,平行四边形ABCD 中,E,F 分别是BC,DC 的中点,G 为交点,若AB a = ,AD b = ,试以,a b为基底表示CG =.12.设20πθ<<,向量)cos ,1(),cos ,2(sin θθθ-==,若0=⋅,则=θtan .13.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b= . 14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= .15.在直角坐标系xOy 中,已知点(2,0)A 和点(3,4)B -.若点C 在AOB ∠的平分线上且||OC =,则OC= .三、解答题16. 已知向量()()2,1,1,AB k AC k =--=.(Ⅰ)若△ABC 为直角三角形,求k 值;(Ⅱ)若△ABC 为等腰直角三角形,求k 值 .17.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =与(cos ,sin )n A B = 平行.(Ⅰ)求A ;(Ⅱ)若2a b ==求ABC ∆的面积.18. 已知向量.1,43),1,1(-=⋅=且的夹角为与向量向量π(Ⅰ)求向量;(Ⅱ)设向量)sin ,,(cos ),0,1(x x ==向量,其中R x ∈,若0=⋅,试求||b n +的取值范围.19.在某个旅游业为主的地区,每年各个月份从事旅游服务工作的人数会发生周期性的变化.现假设该地区每年各个月份从事旅游服务工作的人数()f n 可近似地用函数2()100cos 3f n A n k ωπ⎛⎫⎛⎫=⋅++ ⎪ ⎪⎝⎭⎝⎭来刻画.其中正整数n 表示月份且[]1,12n ∈. 例如1n =时表示1月份;A 和k 是正整数;0ω>.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:① 各年相同的月份,该地区从事旅游服务工作的人数基本相同;② 该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差约400人;③ 2月份该地区从事旅游服务工作的人数约为100人,随后逐月递增直到8月份达到最多. (Ⅰ)试根据已知信息,确定一个符合条件的()f n 的表达式;(Ⅱ)一般地,当该地区从事旅游服务工作的人数达到或超过400时,该地区也进入了一年中的旅游“旺 季”.那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.【链接高考】(1)如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i = 是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅= 的不同值的个数为( )(A )7 (B )5 (C )3 (D )1(2)如图,已知点O (0,0),A (1.0),B (0,−1),P是曲线y =则OP BA ×uu u r uu r 的取值范围是 .第2天 三角函数、平面向量与解三角形1-10: AD D B C , ACDDB . 11. ()13a b -+;12. 12 ;13. 3 ; 14. 43-; 15.()1,216.(Ⅰ)当1k =时,△ABC 是以A 为直角顶点的直角三角形;当1k =-△ABC 是以C 为直角顶点的直角三角形. (Ⅱ)当1k =时,△ABC 是以BC 为斜边的等腰直角三角形.17.(Ⅰ)3A π=;18.(Ⅰ)令⎩⎨⎧-==⎩⎨⎧=-=⇒⎪⎩⎪⎨⎧-=+⋅-=+=1001143cos 21),(22y x y x y x y x y x 或则π )1,0()0,1(-=-=∴n n 或 (Ⅱ))1,0(0),0,1(-=∴=⋅= , )1sin ,,(cos -=+x x+x sin 22-=)sin 1(2x -,∵―1≤sinx≤1, ∴ +≤2.19.(Ⅰ)根据三条规律,可知该函数为周期函数,且周期为12.由此可得,2126T ππωω==⇒=;由规律②可知,max ()(8)100100f n f A k ==+,min ()(2)100100f n f A k ==-+(8)(2)2004002f f A A -==⇒=;又当2n =时,2(2)200cos(2)10010063f k ππ=⋅⋅++=,所以, 3k =.综上可得,2()200cos 30063f n n ππ⎛⎫=++⎪⎝⎭符合条件.(Ⅱ)由2200cos 30040063n ππ⎛⎫++≥ ⎪⎝⎭得21cos 632n ππ⎛⎫+≥⎪⎝⎭2223633k n k ππππππ⇒-≤+≤+,k Z ∈ 126122k n k ⇒-≤≤-,k Z ∈.2因为[]1,12n ∈,*N n ∈,所以当1k =时,610n ≤≤,故6,7,8,9,10n =,即一年中的6,7,8,9,10五个月是该地区的旅游“旺季”. 【链接高考】(1)C (2)[]2,1-。
高二数学寒假作业:(八)(Word版含答案)
高二数学寒假作业(八)一、选择题,每小题只有一项是正确的。
1.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a += ( )A 、7B 、 5C 、-5D 、-7 2.下列结论正确的是( )A .当0>x 且1≠x 时,x x lg 1lg +≥2B .当0>x 时,xx 1+≥2 C .当x ≥2时,x x 1+的最小值为2 D .当x <0≤2时,xx 1-无最大值 3.设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥-≤+≥+144222y x y x y x ,则目标函数y x z-=3的取值范 围是( )A .⎥⎦⎤⎢⎣⎡-6,23 B. ⎥⎦⎤⎢⎣⎡--1,23 C .[]6,1- D. ⎦⎤⎢⎣⎡-23,6 4.已知双曲线)0,0(1:2222>>=-b a bx a y C 的离心率为25,则C 的渐近线方程为( ) A .x y 2±= B .x y 21±= C .x y 4±= D .x y 41±= 5.已知()0,12,1--=t t ,()t t ,,2=的最小值为( )A. 2B. 6C. 5D. 36.在正方体1111D C B A ABCD -中,M 、N 分别为棱1AA 和1BB 的中点,则><N D CM 1,sin 的值为( )A. 91B. 594C. 592D. 32 7.设等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d=A .2B .3C .6D .78.数列{}n a 的通项公式2=n a n n +,则数列1n a ⎧⎫⎨⎬⎩⎭的前10项和为 A .910 B .1011 C .1110 D .12119.已知椭圆的一个焦点为F ,若椭圆上存在点P ,满足以椭圆短轴为直径的圆与线段PF 相 切于线段PF 的中点,则该椭圆的离心率为 ( )2359 二、填空题10.在====∆A AC BC AB ABC 则中,,4,13,3 .11.设等差数列{}n a 的前n 项和为n S ,若1133,,122k k a a S +=-==-,则正整数K=____.12.数列{a n }的前n 项和是S n ,若数列{a n }的各项按如下规则排列:,…,若存在整数k ,使S k <10,S k+1≥10,则a k = _________ .13.已知ABC ∆的三边,,a b c 成等差数列,且22263a b c ++=,则b 的最大值是▲ .三、计算题14.(10分)在ΔABC 中 ,已知,3,30,30=︒==︒c B A 解三角形ABC 。
2020年高考数学一轮复习专题5.2平面向量的基本定理练习(含解析)
5.2 平面向量的坐标运算一、平面向量的坐标运算 1.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1). 2.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 2+x 1,y 2+y 1),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1), |a |a +b 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. 4.向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.如果向量a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .考向一 坐标运算【例1】(1)已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为.(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,a =m b +n c (m ,n ∈R ),则m +n = 【答案】(1)(2,0) (2)-2【解析】(1) 设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0. (2)由已知得a =(5,-5),b =(-6,-3),c =(1,8).∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.∴m +n =-2.【举一反三】1.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a+2b的最小值是( )A .2B .4C .6D .8【答案】 D【解析】 由题意可得,OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),所以AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).又∵A ,B ,C 三点共线,∴AB →∥AC →,即(a -1)×2-1×(-b -1)=0,∴2a +b =1,又∵a >0,b >0,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+⎝ ⎛⎭⎪⎫b a +4a b ≥4+4=8,当且仅当b a =4a b时,取“=”.故选D.2.已知点P (-1,2),线段PQ 的中点M 的坐标为(1,-1).若向量PQ →与向量a =(λ,1)共线,则λ=________. 【答案】 -23【解析】 点P (-1,2),线段PQ 的中点M 的坐标为(1,-1), ∴向量PQ →=2PM →=2(1+1,-1-2)=(4,-6).又PQ →与向量a =(λ,1)共线,∴4×1+6λ=0,即λ=-23.3.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43【解析】 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝ ⎛⎭⎪⎫-133,-43.考向二 平面向量在几何中 的运用【例2】已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是( )A.2+1B.7+1C.2-1D.7-1 【答案】 A【解析】 设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,则x 2+(y +2)2=1, 即动点M 的轨迹是以C 为圆心、1为半径的圆, ∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,几何意义表示:点M (x ,y )与点N (-1,-1)之间的距离,即圆C 上的点与点N (-1,-1)的距离,∵点N (-1,-1)在圆C 外部,∴|OA →+OB →+OM →|的最大值是|NC |+1=(0+1)2+(-2+1)2+1=2+1.故选A. 【举一反三】1.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数( )A .B .C .D .O :10l x ky -+=22:4C x y +=, A B OM OA OB =+M C k =2-1-01考向三 向量中的坐标【例3】给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______. 【答案】2【解析】解法1( 考虑特值法) 当C 与A 重合时,10,OC OA OB =⨯+⨯1x y +=,当C 与B 重合时,01,OC OA OB =⨯+⨯1x y +=, 当C 从AB 的端点向圆弧内部运动时,1x y +>, 于是猜想当C 是AB 的中点时,x y +取到最大值.当C 是AB 的中点时,由平面几何知识OACB 是菱形, ∴,OC OA OB =+∴11 2.x y +=+= 猜想x y +的最大值是2.解法二(考虑坐标法)建立如图3,所示的平面直角坐标系,设AOC α∠=,则1(1,0),((cos ,sin )2A B C αα-.于是OC xOA yOB =+可化为:1(cos ,sin )(1,0)(,22x y αα=+-,∴1cos ,2sin .x y y αα⎧=-⎪⎪⎨⎪=⎪⎩(1)解法2 函数法求最值由方程组(1)得:cos ,.x y ααα⎧=+⎪⎪⎨⎪=⎪⎩∴cos 2sin(30)x y ααα+=+=+,又0120α≤≤, ∴当30α=时,max () 2.x y += 解法3 不等式法求最值由方程组(1)得:222221sin cos ()3x y xy x y xy αα=+=+-=+-,∴211()33xy x y =+-, 由0,0x y >>,及x y +≥2()4x y xy +≥, ∴2()4x y +≤,∴2x y +≤,当且仅当1x y ==时取等号. ∴max () 2.x y +=思考方向三 考虑向量的数量积的运算 解法4 两边点乘同一个向量∵,OC xOA yOB =+∴,.OC OA xOA OA yOB OA OC OB xOA OB yOB OB ⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩ 设AOC α∠=,则 120BOC α∠=-,又||||||1OC OA OB ===,∴1cos ,21cos(120).2x y x y αα⎧=-⎪⎪⎨⎪-=-+⎪⎩∴2[cos cos(120)]2sin(30)x y ααα+=+-=+, ∴当30α=时,max () 2.x y += 解法5 两边平方法∵,OC xOA yOB =+∴22(),OC xOA yOB =+∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=, ∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y +=思考方向四 考虑平行四边形法则过C 作CM ∥OB 交OA 于M ,作CN ∥OA 交OB 于N ,则OM CN 是平行四边形,由向量加法的平行四边形法则得:OC OM ON =+,在OMC ∆中,设AOC α∠=,则 120BOC α∠=-, 且||,||.OM x MC y == 解法6 利用正弦定理sin sin sin OM MC OCOCM COM OMC==∠∠∠, 1sin(60)sin sin 60x y αα==+,由等比性值得:1sin(60)sin sin 60x y αα+=++,∴2sin(30)x y α+=+,∴当30α=时,max () 2.x y += 解法7 利用余弦定理222||||||2||||cos60,OC OM MC OM MC =+-⋅∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=,∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y += 【举一反三】1.如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.【答案】6【解析】 方法一 如图,作平行四边形OB 1CA 1,则OC →=OB 1→+OA 1→,因为OA →与OB →的夹角为120°,OA →与OC →的夹角为30°, 所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23, 所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,C (3,3).由OC →=λOA →+μOB →,得⎩⎪⎨⎪⎧3=λ-12μ,3=32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6.2.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若点P 为CD 的中点,且AP →=λAB →+μAE →,则λ+μ=.【答案】 52【解析】 由题意,设正方形的边长为1,建立平面直角坐标系如图,则B (1,0),E (-1,1), ∴AB →=(1,0),AE →=(-1,1), ∵AP →=λAB →+μAE →=(λ-μ,μ), 又∵P 为CD 的中点,∴AP →=⎝ ⎛⎭⎪⎫12,1,∴⎩⎪⎨⎪⎧λ-μ=12,μ=1,∴λ=32,μ=1,∴λ+μ=52.1.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 【答案】 (-3,-5)【解析】 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).2.已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 【答案】 1【解析】 ∵a -2b =(3,3),且a -2b ∥c ,∴3×3-3k =0,解得k =1.3.线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =. 【答案】 -2或6【解析】 由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ).由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →时,有⎩⎪⎨⎪⎧1-x =6,-4=2-2y ,解得⎩⎪⎨⎪⎧x =-5,y =3,此时x +y =-2;当AC →=-2BC →时,有⎩⎪⎨⎪⎧1-x =-6,-4=-2+2y ,解得⎩⎪⎨⎪⎧x =7,y =-1,此时x +y =6.综上可知,x +y =-2或6.4. 已知O 为坐标原点,点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为. 【答案】 (3,3)【解析】 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).5.已知向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =.【答案】 4【解析】 ∵向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),∴a -2b =⎝ ⎛⎭⎪⎫8-2x ,x2-2,2a +b =(16+x ,x +1),∵(a -2b )∥(2a +b ),∴(8-2x )(x +1)-(16+x )⎝ ⎛⎭⎪⎫x2-2=0,即-52x 2+40=0,又∵x >0,∴x =4.6.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为. 【答案】 3【解析】 建立如图所示的平面直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连结CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255, 当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.7.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =2,AB =4,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示).若AP →=λED →+μAF →,其中λ,μ∈R ,则2λ-μ的取值范围是.【答案】 ⎣⎢⎡⎦⎥⎤-22,12 【解析】 建立如图所示的平面直角坐标系,则A (0,0),E (2,0),D (0,2),F (3,1),P (cos α,sin α)⎝⎛⎭⎪⎫-π2≤α≤π2,即AP →=(cos α,sin α),ED →=(-2,2),AF →=(3,1). ∵AP →=λED →+μAF →,∴(cos α,sin α)=λ(-2,2)+μ(3,1), ∴cos α=-2λ+3μ,sin α=2λ+μ,∴λ=18(3sin α-cos α),μ=14(cos α+sin α),∴2λ-μ=12sin α-12cos α=22sin ⎝ ⎛⎭⎪⎫α-π4.∵-π2≤α≤π2,∴-3π4≤α-π4≤π4.∴-22≤22sin ⎝⎛⎭⎪⎫α-π4≤12.8.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量AP →=mAB →+nAF →(m ,n 为实数),求m +n 的最大值.【答案】5【解析】如图所示,①设点O 为正六边形的中心, 则AO →=AB →+AF →.当动圆Q 的圆心经过点C 时,与边BC 交于点P ,点P 为边BC 的中点.连结OP , 则AP →=AO →+OP →, ∵OP →与FB →共线,∴存在实数t ,使得OP →=tFB →, 则AP →=AO →+tFB →=AB →+AF →+t (AB →-AF →) =(1+t )AB →+(1-t )AF →,∴此时m +n =1+t +1-t =2,取得最小值.②当动圆Q 的圆心经过点D 时,取AD 的延长线与圆Q 的交点为P ,则AP →=52AO →=52()AB →+AF →=52AB →+52AF →,此时m +n =5,为最大值.9.在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP →=23AB →+λAC →,则|AP →|的最大值为________. 【答案】2133【解析】 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系,∵AB =3,AC =2,∠BAC =60°, ∴A (0,0),B (3,0),C (1,3),设点P 为(x ,y ),0≤x ≤3,0≤y ≤3, ∵AP →=23AB →+λAC →,∴(x ,y )=23(3,0)+λ(1,3)=(2+λ,3λ),∴⎩⎨⎧x =2+λ,y =3λ,∴y =3(x -2),① 直线BC 的方程为y =-32(x -3),② 联立①②,解得⎩⎪⎨⎪⎧x =73,y =33,此时|AP →|最大,∴|AP →|=499+13=2133. 10.已知三角形ABC 中,AB =AC ,BC =4,∠BAC =120°,BE →=3EC →,若点P 是BC 边上的动点,则AP →·AE →的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤-23,103 【解析】 因为AB =AC ,BC =4,∠BAC =120°,所以∠ABC =30°,AB =433.因为BE →=3EC →,所以BE →=34BC →.设BP →=tBC →,则0≤t ≤1,所以AP →=AB →+BP →=AB →+tBC →,又AE →=AB →+BE →=AB →+34BC →,所以AP →·AE →=(AB →+tBC →)·⎝⎛⎭⎪⎫AB →+34BC →=AB →2+tBC →·AB →+34BC →·AB →+34tBC →2=163+t ×4×433cos150°+34×4×433cos150°+34t ×42=4t -23, 因为0≤t ≤1,所以-23≤4t -23≤103,即AP →·AE →的取值范围是⎣⎢⎡⎦⎥⎤-23,103.11在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. 【答案】102【解析】 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵AP =52,∴x 2+y 2=54. 点P 满足的约束条件为 ⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ), ∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102, 当且仅当x =y 时取等号, ∴5λ+3μ的最大值为102. 12.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.【答案】 (-1,0)【解析】 由题意得,OC →=kOD →(k <0), 又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →, ∴mOA →+nOB →=k λOA →+k (1-λ)OB →, ∴m =k λ,n =k (1-λ), ∴m +n =k ,从而m +n ∈(-1,0).。
高考数学(理)总复习高考达标检测(二十一) 平面向量的基本运算 Word版含答案
高考达标检测(二十一) 平面向量的基本运算一、选择题1.(2017·长春模拟)如图所示,下列结论正确的是( ) ①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误,故选C.2.(2017·长沙一模)已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D.13解析:选A AB ―→=OB ―→-OA ―→=(4-k ,-7), AC ―→=OC ―→-OA ―→=(-2k ,-2). ∵A ,B ,C 三点共线, ∴AB ―→,AC ―→共线,∴-2×(4-k )=-7×(-2k ), 解得k =-23.3.(2016·嘉兴调研)已知点O 为△ABC 外接圆的圆心,且OA ―→+OB ―→+CO ―→=0,则△ABC 的内角A 等于( )A .30°B .45°C .60°D .90°解析:选A 由OA ―→+OB ―→+CO ―→=0得,OA ―→+OB ―→=OC ―→,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知,四边形OACB 为菱形,且∠CAO =60°,故A =30°.4.(2017·武汉武昌区调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→,故选D.5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC ―→=2BD ―→,CE ―→=2EA ―→,AF ―→=2FB ―→,则AD ―→+BE ―→+CF ―→与BC ―→( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD ―→=AB ―→+BD ―→=AB ―→+13BC ―→,BE ―→=BA ―→+AE ―→=BA ―→+13AC ―→,CF ―→=CB ―→+BF ―→=CB ―→+13BA ―→,因此AD ―→+BE ―→+CF ―→=CB ―→+13(BC ―→+AC ―→-AB ―→)=CB ―→+23BC ―→=-13BC ―→,故AD ―→+BE ―→+CF ―→与BC ―→反向平行.6.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则xy x +y的值为( )A .3 B.13 C .2D.12解析:选B 利用三角形的性质,过重心作平行于底边BC 的直线,易得x =y =23,则xyx +y=13. 7.(2017·兰州模拟)已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=( )A.π6 B.π4 C.π3D.5π12解析:选B 因为a ∥b ,所以(1-sin θ)×(1+sin θ)-1×12=0,得sin 2θ=12,所以sin θ=±22,故锐角θ=π4. 8.已知△ABC 是边长为4的正三角形,D ,P 是△ABC 内的两点,且满足AD ―→=14(AB ―→+AC ―→),AP ―→=AD ―→+18BC ―→,则△APD 的面积为( )A.34B.32C. 3 D .2 3解析:选A 取BC 的中点E ,连接AE ,由于△ABC 是边长为4的正三角形,则AE ⊥BC ,AE ―→=12(AB ―→+AC ―→),又AD ―→=14(AB ―→+AC ―→),所以点D 是AE 的中点,AD = 3.取AF ―→=18BC ―→,以AD ,AF 为邻边作平行四边形,可知AP ―→=AD ―→+18BC ―→=AD ―→+AF ―→.而△APD 是直角三角形,AF =12,所以△APD 的面积为12×12×3=34. 二、填空题9.在矩形ABCD 中,O 是对角线的交点,若BC ―→=5e 1,DC ―→=3e 2,则OC ―→=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC ―→=12AC ―→=12(AB ―→+AD ―→)=12(DC ―→+BC ―→)=12(5e 1+3e 2)=52e 1+32e 2.答案:52e 1+32e 210.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD ―→=x AB ―→+y AC ―→+z AS ―→,则x +y +z =________.解析:依题意得BD ―→=AD ―→-AB ―→=12(AS ―→+AC ―→)-AB ―→=-AB ―→+12AC ―→+12AS ―→,因此x +y +z =-1+12+12=0.答案:011.(2017·贵阳模拟)已知平面向量a ,b 满足|a |=1,b =(1,1),且a∥b ,则向量a 的坐标是________.解析:设a =(x ,y ).∵平面向量a ,b 满足|a |=1,b =(1,1),且a∥b , ∴x 2+y 2=1,x -y =0.解得x =y =±22. ∴a =⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22. 答案:⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-2212.(2016·抚顺二模)如图,平面内有三个向量OA ―→,OB ―→,OC ―→,其中OA ―→与OB ―→的夹角为120°,OA ―→与OC ―→的夹角为30°,且|OA ―→|=|OB ―→|=1,|OC ―→|=23,若OC ―→=λOA ―→+μOB ―→ (λ,μ∈R),即λ+μ的值为________.解析:如图,构成平行四边形,∵∠OCD =90°,|OC |=23,∠COD =30°,∴|CD |=23×33=2=|OE |=|μ|, |OD |=23cos 30°=|λ|=4,注意共线的条件和单位向量有λ+μ=6.答案:6 三、解答题13.图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线.解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到平行四边形ABGC ,所以AG ―→=a +b ,AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.14.(2017·郑州模拟)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +kc )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标. 解:(1)a +kc =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1), 又a +b =(2,4),|d -c |=5,∴⎩⎪⎨⎪⎧x --y -=0,x -2+y -2=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d 的坐标为(3,-1)或(5,3).。
高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案
第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。
2022-2021学年上学期高二数学寒假作业 07(人教A版选修2-1第三章空间向量与立体几何)
作业范围:选修2-1第三章空间向量与立体几何姓名:_______ 学校:_______ 班级:_________时间: 100分钟分值:120分第Ⅰ卷一、选择题(本题共14小题,每小题4分,共56分,在每小题给出的四个选项中,只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14答案1.已知向量()1,1,0a=,()1,0,2b=-,且ka b+与2a b-相互垂直,则k的值为()A.B.15C.35D.75】2021-2022学年广西桂林市一中高二下期中数学试卷【答案】D考点:空间向量垂直的充要条件.【题型】选择题【难度】较易2.若()()2,3,,2,6,8a mb n==且,a b为共线向量,则m n+的值为()A.7 B.52 C.6 D.】2021-2022学年广西桂林市一中高二下期中数学试卷【答案】C【解析】由,a b为共线向量得23268mn==,解得4,2m n==,则6m n+=.故选C.考点:空间向量平行的充要条件.【题型】选择题【难度】较易3.向量=(2,4,x),=(2,y,2),若||=6,且⊥,则x+y的值为()A.-3 B.1 C.-3或1 D.3或1】2021-2022学年新疆兵团农二师华山中学高二下学前考试理科数学试卷【答案】C考点:空间向量的坐标运算及垂直的性质.【题型】选择题【难度】较易4.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则AC与AB的夹角为()A.30° B.45° C.60° D.90°】2021-2022学年福建省晋江市季延中学高二上学期期末理科数学试卷【答案】C【解析】设AC与AB的夹角为θ,()1,1,0AC=-,()0,3,3AB=,cosθ∴312232AC ABAC AB⋅==⨯,60θ∴=︒.考点:向量夹角.【题型】选择题【难度】较易5.已知()1,2,1A-,()5,6,7B,则直线AB与平面xOz交点的坐标是()A.()0,1,1B.()0,1,3-C.()1,0,3-D.()1,0,5--】2021-2022学年福建省三明市A片高二上学期期末理科数学试卷【答案】D【解析】直线AB与平面xOz交点的坐标是()0,M x z,,则()1,2,1A zM x-=-+,又AB=(4,4,8),AM与AB 共线,∴AM AB λ=,即14,24,18,x z λλλ-=⎧⎪-=⎨⎪+=⎩解得1x =-,5z =-,∴点()1,0,5M --.考点:空间中的点的坐标. 【题型】选择题 【难度】较易6.若平面α的一个法向量为()()()1,2,2,1,0,2,0,1,4,,n A B A α=-∉B α∈,则点A 到平面α的距离为()A .1B .2C .13D .23】【百强校】2022-2021学年黑吉两省八校高二上期中数学(理)试卷 【答案】C 【解析】由于()()1,0,2,0,1,4A B -,所以(1,1,2)AB =--,所以点A 到平面α的距离为22212413122AB n d n⋅--+===++,故选C .考点:空间向量的应用. 【题型】选择题 【难度】较易7.在四棱锥O ABCD -中,底面ABCD 是平行四边形,设,,OA a OB b OC c ===,则OD 可表示为() A .a c b +- B .2a b c +- C .b c a +- D .2a c b +-】【百强校】2022-2021学年黑吉两省八校高二上期中数学(理)试卷 【答案】A考点:空间向量的线性运算. 【题型】选择题 【难度】较易8.点()2,3,4关于xOz 平面的对称点为()A.()2,3,4-B.()2,3,4-C.()2,3,4-D.()2,3,4-- 】2021-2022学年陕西延川县中学高一下学期期中数学(理)试卷 【答案】C考点:空间中点的坐标. 【题型】选择题【难度】较易9.已知)1,2,2(=−→−AB ,)3,5,4(=−→−AC ,则下列向量中是平面ABC 的法向量的是()A.)6,2,1(-B.)1,1,2(-C.)2,2,1(-D.)1,2,4(-】2021-2022学年陕西延川县中学高二下学期期中数学(理)试卷 【答案】C【解析】设平面ABC 的法向量为()z y x n ,,= ,则,,n AB n AC ⎧⊥⎪⎨⊥⎪⎩那么220,4530,x y z x y z ++=⎧⎨++=⎩那么2:)2(:1::-=z y x ,满足条件的只有C ,故选C. 考点:空间向量. 【题型】选择题 【难度】较易10.已知(2,1,3)a →=-,(1,4,2)b →=--,(7,5,)c λ→=,若c b a ,,三向量共面,则实数λ等于() A .627 B .637 C .647 D .657】2021-2022学年安徽省淮南二中高二下学期期中理科数学试卷【答案】D考点:空间向量共面的性质及方程思想. 【题型】选择题 【难度】较易11.已知)2,0,4(A ,)2,6,2(-B ,点M 在轴上,且到B A ,的距离相等,则M 的坐标为() A .)0,0,6(- B .)0,6,0(- C .)6,0,0(- D .)0,0,6( 】【百强校】2021-2022学年福建省厦门一中高一6月月考数学试卷 【答案】A【解析】由于点M 在轴上,所以可设(),0,0M x ,又MA MB=,所以()()()()()()2222224000220602x x -+-+-=-+-+-,解得6x =-,所以(6,0,0)M -.考点:空间两点间距离公式.【题型】选择题 【难度】一般12.在四周体ABCD 中,E 、G 分别是CD 、BE 的中点,若AC z AD y AB x AG ++=,则x +y +z =()A .31B .21C . 1D .2】2021-2022学年山西省孝义市高二上学期期末考试理科数学试卷 【答案】C【解析】()1122AG AB BG AB BE AB AE AB AB=+=+=+-=()1122AC AD AB ⎡⎤++-⎢⎥⎣⎦,整理得AD AC AB AG 414121++=,所以21=x ,41==z y ,所以1=++z y x ,故选C.考点:空间向量的运算. 【题型】选择题 【难度】一般13.若平面α、β的法向量分别为1n =(2,3,5),2n =(-3,1,-4),则( )A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均有可能】【百强校】2021-2022学年海南省文昌中学高二上期末理科数学试卷 【答案】C考点:两平面的位置关系,用向量推断两平面的位置关系. 【题型】选择题 【难度】一般14.如图,在平行六面体1111ABCD A B C D -中,M 为11AC 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是()MC1CB1D1A1ABDA.1122a b c-++B.1122a b c++C.1122a b c--+D.1122a b c-+】2021-2022学年河南三门峡市陕州中学高二上其次次对抗赛理科数学卷 【答案】A【解析】依据向量加法的运算法则,可得111=2BM BB B McBD c 111222BA BC a b c .考点:空间向量的表示. 【题型】选择题 【难度】一般 第II 卷二、填空题(本题共6个小题,每小题4分,共24分) 15.已知向量()()(),12,1,4,5,1,,10,1OA k OB OC k ===-,且A 、B 、C 三点共线,则=k ________.】【百强校】2021-2022学年山西太原五中高二上学期期末理科数学试卷【答案】32-【解析】由于()()(),12,1,4,5,1,,10,1OA k OB OC k ===-,所以(4,7,0),(2,2,0)AB k AC k =--=--,又由于A 、B 、C 三点共线,所以存在实数λ使得AB AC λ=,所以42,72,k k λλ-=-⎧⎨-=-⎩解得7,22,3k λ⎧=⎪⎪⎨⎪=-⎪⎩所以=k 32-.考点:向量的坐标运算和向量共线定理. 【题型】填空题 【难度】较易16.设点B 是A (2,-3, 5)关于平面xOy 对称的点,则线段AB 的长为 . 】2022-2021学年广东省广州六中高一上学期期末考试数学试题 【答案】10考点:空间中点的坐标和两点之间的距离. 【题型】填空题【难度】较易17.在如图所示的长方体ABCD -A 1B 1C 1D 1中,||8DA =,||6DC =,1||3DD =,则11D B 的中点M 的坐标为__________,||DM =_______.】2021-2022学年福建省八县一中高一上学期期末考试数学试卷 【答案】(4,3,3);34考点:中点坐标公式,空间中两点的距离公式. 【题型】填空题 【难度】较易18.已知空间单位向量1231223134,,,,,5⊥⊥⋅=e e e e e e e e e ,若空间向量123x y z =++m e e e 满足:14⋅=m e ,233,5⋅=⋅=m e m e ,则x y z ++=________,=m ________.】【百强校】2021-2022学年浙江省金华十校高二上学期调研数学试卷 【答案】34【解析】由于1223134,,5⊥⊥⋅=e e e e e e ,空间向量123x y z =++m e e e 满足:14⋅=m e ,233,5⋅=⋅=m e m e ,所以123112321233()4,()3,()5,x y z x y z x y z ++⋅=⎧⎪++⋅=⎨⎪++⋅=⎩e e e e e e e e e e e e 即44,53,45,5x z y x z ⎧+=⎪⎪=⎨⎪⎪+=⎩解得0,3,5,x y z =⎧⎪=⎨⎪=⎩所以8x y z ++=,=m 34考点:向量的数量积的运算及向量的模的计算. 【题型】填空题【难度】一般19.若直线的方向向量()1,1,1a =,平面α的一个法向量()2,1,1n=-,则直线与平面α所成角的正弦值等于_________。
高二数学寒假作业(人教A版必修五)正弦定理和余弦定理word版含答案
高二数学寒假作业(人教A 版必修五)正弦定理和余弦定理(时间:40分钟)一、选择题1.在△ABC 中,已知a ,b ,c 分别为∠A ,∠B ,∠C 所对的边,且a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或120°解析 sin B =b sin A a =43sin30°4=32, 又因为b >a ,所以∠B 有二解,所以∠B =60°或120°。
故选D 。
答案 D2.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b =( )A.53B.107C.57D.5214解析 因为cos A =35,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫352=45,所以sin C =sin[180°-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45cos45°+35sin45°=7210。
由正弦定理b sin B =c sin C ,得b =17210³sin45°=57。
故选C 。
答案 C3.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2D .1解析 由题意可得12AB ²BC ²sin B =12,又AB =1,BC =2,所以sin B =22,所以B =45°或B =135°。
当B =45°时,由余弦定理可得AC =AB 2+BC 2-2AB ²BC ²cos B =1,此时AC =AB =1,BC =2,易得A =90°,与“钝角三角形”条件矛盾,舍去。
高二数学 人教版选修2-1习题 第2章 圆锥曲线与方程 2.4.1 Word版含答案
第二章 2.4 2.4.1一、选择题1.在平面直角坐标系内,到点(1,1)和直线x +2y =3的距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线[答案] A[解析] ∵点(1,1)在直线x +2y =3上,故所求点的轨迹是过点(1,1)且与直线x +2y =3垂直的直线.2.过点A (3,0)且与y 轴相切的圆的圆心的轨迹为( )A .圆B .椭圆C .直线D .抛物线[答案] D[解析] 如图,设点P 为满足条件的一点,不难得出结论:点P 到点A 的距离等于点P 到y 轴的距离,故点P 在以点A 为焦点,y 轴为准线的抛物线上,故点P 的轨迹为抛物线,因此选D.3.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .5[答案] D[解析] 解法一:∵y =4,∴x 2=4·y =16,∴x =±4, ∴A (±4,4),焦点坐标为(0,1), ∴所求距离为42+(4-1)2=25=5.解法二:抛物线的准线为y =-1,∴A 到准线的距离为5,又∵A 到准线的距离与A 到焦点的距离相等.∴距离为5.4.抛物线y 2=mx 的焦点为F ,点P (2,22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为( )A .1B .32 C .2D .52[答案] D[解析] ∵点P (2,22)在抛物线上,∴(22)2=2m ,∴m =4,P 到抛物线准线的距离为2-(-1)=3,F 到准线距离为2, ∴M 到抛物线准线的距离为d =3+22=52.5.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .4[答案] C[解析] 抛物线的准线为x =-p2,将圆方程化简得到(x -3)2+y 2=16,准线与圆相切,则-p2=-1,∴p =2,故选C.6.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为( )A .12B .8C .6D .4[答案] B[解析] ∵点P 到y 轴的距离为6,∴点P 到抛物线y 2=8x 的准线x =-2的距离d =6+2=8, 根据抛物线的定义知点P 到抛物线焦点的距离为8. 二、填空题7.抛物线y =ax 2的准线方程是y =2,则a 的值为________.[答案] -18[解析] 抛物线方程化为标准形式为x 2=1a y ,由题意得a <0,∴2p =-1a ,∴p =-12a ,∴准线方程为y =p 2=-14a =2,∴a =-18.8.沿直线y =-2发出的光线经抛物线y 2=ax 反射后,与x 轴相交于点A (2,0),则抛物线的准线方程为________(提示:抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行).[答案] x =-2[解析] 由直线y =-2平行于抛物线的轴知A (2,0)为焦点,故准线方程为x =-2. 三、解答题9.若抛物线y 2=2px (p >0)上一点M 到准线及对称轴的距离分别为10和6,求M 点的横坐标及抛物线方程.[解析] ∵点M 到对称轴的距离为6, ∴设点M 的坐标为(x,6). 又∵点M 到准线的距离为10,∴⎩⎪⎨⎪⎧62=2px ,x +p 2=10.解得⎩⎪⎨⎪⎧ x =9,p =2,或⎩⎪⎨⎪⎧x =1,p =18.故当点M 的横坐标为9时,抛物线方程为y 2=4x . 当点M 的横坐标为1时,抛物线方程为y 2=36x .10.求顶点在坐标原点,对称轴为坐标轴,过点(-2,3)的抛物线的标准方程.[解析] ∵点(-2,3)在第二象限,∴设抛物线方程为y 2=-2px (p >0)或x 2=2p ′y (p ′>0), 又点(-2,3)在抛物线上,∴p =94,p ′=23,∴抛物线方程为y 2=-92x 或x 2=43y .一、选择题1.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则点M 的轨迹方程是( ) A .x +4=0 B .x -4=0 C .y 2=8xD .y 2=16x[答案] D[解析] 依题意可知M 点到点F 的距离等于M 点到直线x =-4的距离,因此其轨迹是抛物线,且p =8,顶点在原点,焦点在x 轴正半轴上,∴其方程为y 2=16x ,故答案是D.2.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .4[答案] C[解析] 抛物线C 的准线方程为x =-2,焦点F (2,0),由|PF |=42及抛物线的定义知,P 点的横坐标x P =32,从而y P =±26,∴S △POF =12|OF |·|y P |=12×2×26=2 3.3.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|P 1F |+|P 2F |=|FP 3|B .|P 1F |2+|P 2F |2=|P 3F |2C .2|P 2F |=|P 1F |+|P 3F |D .|P 2F |2=|P 1F |·|P 3F |[答案] C[解析] ∵点P 1、P 2、P 3在抛物线上,且2x 2=x 1+x 3,两边同时加上p , 得2(x 2+p 2)=x 1+p 2+x 3+p2,即2|P 2F |=|P 1F |+|P 3F |,故选C.4.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为( )A.522 B .522+1 C.522-2D .522-1[答案] D[解析] 设抛物线焦点为F ,过P 作P A 与准线垂直,垂足为A ,作PB 与l 垂直,垂足为B ,则d 1+d 2=|P A |+|PB |-1=|PF |+|PB |-1,显然当P 、F 、B 三点共线(即P 点在由F 向l 作垂线的垂线段上)时,d 1+d 2取到最小值,最小值为522-1.二、填空题5.已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段F A 交抛物于点B ,过B 点作l 的垂线,垂足为M ,若AM ⊥MF ,则p =________.[答案]2[解析] 由抛物线的定义可得BM =BF ,F (P2,0),又AM ⊥MF ,故点B 为线段F A 中点,即B (p 4,1),所以1=2p ×p4⇒p = 2.6.在平面直角坐标系xOy 中,点B 与点A (-1,0)关于原点O 对称.点P (x 0,y 0)在抛物线y 2=4x 上,且直线AP 与BP 的斜率之积等于2,则x 0=________.[答案] 1+ 2[解析] ∵点B 与点A (-1,0)关于原点O 对称,∴B (1,0),根据题意,得y 20x 20-1=2,又y 20=4x 0,∴2x 0=x 20-1,即x 20-2x 0-1=0,解得x 0=2±82=1±2,舍去负值,得x 0=1+ 2. 三、解答题7.求适合下列条件的抛物线的标准方程:(1)过抛物线y 2=2mx 的焦点F 作x 轴的垂线交抛物线于A 、B 两点,且|AB |=6; (2)抛物线顶点在原点,对称轴是x 轴,点P (-5,25)到焦点的距离是6.[解析] (1)设抛物线的准线为l ,交x 轴于K 点,l 的方程为x =-m2,如图,作AA ′⊥l于A ′,BB ′⊥l 于B ′,则|AF |=|AA ′|=|FK |=|m |,同理|BF |=|m |.又|AB |=6,则2|m |=6. ∴m =±3,故所求抛物线方程为y 2=±6x .(2)设焦点F (a,0),|PF |=(a +5)2+20=6,即a 2+10a +9=0,解得a =-1或a =-9.当焦点为F (-1,0)时,p =2,抛物线开口方向向左,其方程为y 2=-4x ;当焦点为F (-9,0)时,p =18,抛物线开口方向向左,其方程为y 2=-36x .8.一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[解析] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则B 点的坐标为(a2,-a 4),如图所示,设隧道所在抛物线方程为x 2=my ,则(a 2)2=m ·(-a 4),∴m =-a ,即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得 0.82=-ay , 即y =-0.82a.欲使卡车通过隧道,应有y -(-a 4)>3,即a 4-0.82a >3,由于a >0,得上述不等式的解为a >12.21,∴a 应取13.。
专题15 三角形的五心与向量-名师揭秘2020年高考数学(理)一轮总复习之三角函数、三角形、平面向量(解析版)
1专题15 三角形的五心与向量一【知识点】1.三角形的重心:三角形各边中线的交点2. 三角形的垂心:三角形各边高线的交点3. 三角形的内心:三角形各个内角平分线的交点4. 三角形的外心:三角形各边垂直平分线的交点5. 三角形的中心:正三角形四心合一为中心 二.【学习目标】1.理解三角形五心的概念. 2.掌握五心的向量表示.3.掌握五心的向量表示的轨迹问题. 三.【题型方法】 (一)三角形的内心例1. O 是平面上一定点,,,A B C 是平面上不共线的三个点,动点P 满足:,[0,)||||AB AC OP OA AB AC λλ⎛⎫=++∈+∞ ⎪ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r ,则P 的轨迹一定通过ABC ∆的( ) A .内心 B .垂心 C .重心 D .外心【答案】A 【解析】Q ||AB AB u u u r u u u r 、AC ACu u u v u u u v 分别表示向量AB u u u v 、AC u u u v 方向上的单位向量 ∴AB AC AB AC +u u u v u u u vu u u v u u u v 的方向与BAC ∠的角平分线一致 又Q ()||||AB ACOP OA AB AC λ=++u u u r u u u r u u u r u u u r u u ur u u u r , ∴()||||AB ACOP OA AP AB AC λ-==+u u u r u u u ru u u r u u u r u u u r u u ur u u u r ∴向量AP uu u r的方向与BAC ∠的角平分线一致 ∴一定通过ABC ∆的内心故选:A .2练习1. 已知ABC ∆满足()0AB AC BC AB ACu u u v u u u vu u uv u u u v u u u v +⋅=,12AB AC AB AC ⋅=u u u r u u u ru u u r u u u r ,则ABC ∆为( ) A .顶角为120︒的等腰三角形 B .等腰直角三角形 C .有一个内角为60︒的直角三角形 D .等边三角形【答案】D【解析】设,AB AC AD AE AB AC==u u u r u u u ru u u v u u u vu u u v u u u v ,则AD AE AF +=u u u r u u u r u u u r,而1AD AE ==u u u r u u u r ,所以AF 是BAC ∠的角平分线,又0AF BC AF BC ⋅=⇒⊥u u u r u u u u u u v r u u u v,所以ABC ∆为等腰三角形,cos 11cos 21232AB AC AB AC AB AC BA AB A C BAC C CBA π⋅⋅⋅=⇒=∠∠=⇒∠⋅=⇒u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r ,所以ABC ∆是等边三角形.练习2.O 是平面内的一定点,A,B ,C 是平面内不共线的三个点,动点P 满足则P 点的轨迹一定通过三角形ABC 的( )A .内心B .外心C .重心D .垂心 【答案】A 【解析】∵、分别表示向量、方向上的单位向量,∴的方向与∠BAC 的角平分线重合,又∵可得到 λ()∴向量的方向与∠BAC 的角平分线重合,∴一定通过△ABC 的内心故选:A .(二)三角形的重心例2.已知ABC ∆中,向量()()AP AB AC R λλ=+∈u u u r u u u r u u u r,则点P 的轨迹通过ABC ∆的( )3A .垂心B .内心C .外心D .重心【答案】D【解析】设D 为BC 中点,则2AB AC AD +=u u u r u u u r u u u r2AP AD λ∴=u u u r u u u r,即P 点在中线AD 上可知P 点轨迹必过ABC ∆的重心 本题正确选项:D 练习1.过的重心作直线,已知与、的交点分别为、,,若,则实数的值为( )A .或B . 或C .或D .或【答案】B 【解析】设,因为G 为的重心,所以,即.由于三点共线,所以,即.因为,,所以,即有,解之得或.故选B.练习2.已知O 是△ABC 所在平面上的一点,若= , 则O 点是△ABC 的( )A .外心B .内心C .重心D .垂心【答案】C【解析】作BD ∥OC ,CD ∥OB ,连结OD ,OD 与BC 相交于G ,则BG =CG ,(平行四边形对角线互相平分),∴,又∵,可得:,∴,∴A,O,G在一条直线上,可得AG是BC边上的中线,同理:BO,CO的延长线也为△ABC的中线.∴O为三角形ABC的重心.故选:C.练习3.已知是所在平面上的一定点,若动点满足,,则点的轨迹一定通过的( )A.内心B.外心C.重心D.垂心【答案】C【解析】∵=设它们等于t,∴而表示与共线的向量,而点D是BC的中点,所以即P的轨迹一定通过三角形的重心.故选:C.4练习4.已知O是平面上一定点,A,B,C是平面上不共线的三点,动点P 满足,,则点P 的轨迹一定通过的__________心.【答案】重.【解析】设D为BC 的中点,则,于是有,,P,D三点共线,又D是BC的中点,所以AD是边BC的中线,于是点P 的轨迹一定通过的重心.例4.是平面上不共线的三点,为所在平面内一点,是的中点,动点满足,则点的轨迹一定过____心(内心、外心、垂心或重心).【答案】重心【解析】∵动点P 满足[(2﹣2λ)(1+2λ)](λ∈R),且,∴P、C、D三点共线,又D是AB的中点,∴CD为中线,∴点P的轨迹一定过△ABC的重心.故答案为重心.(三)三角形的外心5例3. 已知点为外接圆的圆心,且,则的内角等于( )A .B .C .D .【答案】B【解析】因为,所以点为的重心,延长交于,则为的中点,又为外接圆的圆心,所以,则,同理可得,为等边三角形,,故选B.练习1.已知,点,为所在平面内的点,且,,,则点为的( )A.内心B.外心C.重心D.垂心【答案】B【解析】因为,所以,即又因为,所以,即所以即所以,所以,同理所以为的外心。
含解析高中数学《平面向量》专题训练30题(精)
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
2023年新高考数学大一轮复习专题二平面向量与三角函数第1讲平面向量(含答案)
新高考数学大一轮复习专题:第1讲 平面向量[考情分析] 1.平面向量是高考的热点和重点,命题突出向量的基本运算与工具性,在解答题中常与三角函数、直线和圆锥曲线的位置关系问题相结合,主要以条件的形式出现,涉及向量共线、数量积等.2.常以选择题、填空题形式考查平面向量的基本运算,中低等难度;平面向量在解答题中一般为中等难度. 考点一 平面向量的线性运算 核心提炼1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.例1 (1)如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为( )A .-12B.12 C .-14D.14答案 A解析 由题意知,CO →=12(CD →+CA →)=12×⎝ ⎛⎭⎪⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →, 则λ=14,μ=-34,故λ+μ=-12.(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则m n=________. 答案 -2解析 ∵a ∥b ,∴m ×(-1)=2×n ,∴m n=-2.(3)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 由题意可得,OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞).易错提醒 在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.跟踪演练1 (1)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题意可设CG →=xCE →(0<x <1), 则CG →=x (CB →+BE →)=x ⎝ ⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.(2)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y的取值范围是________.答案 [1,3]解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略), 则B (1,0),A ⎝ ⎛⎭⎪⎫12,32,C (cos θ,sin θ)⎝ ⎛⎭⎪⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝ ⎛⎭⎪⎫12,32+y (1,0),即⎩⎪⎨⎪⎧x 2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3. 令g (θ)=3cos θ-33sin θ, 易知g (θ)=3cos θ-33sin θ在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3, 当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].考点二 平面向量的数量积 核心提炼1.若a =(x ,y ),则|a |=a ·a =x 2+y 2. 2.若A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 例2 (1)(2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b|a ||a +b |=25-65×7=1935. (2)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( )A .3B .4C .-3D .-4 答案 C解析 如图,连接CO ,∵点C 是弧AB 的中点, ∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝ ⎛⎭⎪⎫-12-12×4=-3. (3)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________________.答案 ⎣⎢⎡⎦⎥⎤255,22 解析 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴, 建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (1,2),D (0,2),设AM →=λAC →(0≤λ≤1),则M (λ,2λ), 故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ), 则MB →+MD →=(2-2λ,2-4λ), ∴|MB →+MD →|=2-2λ2+2-4λ2=20⎝⎛⎭⎪⎫λ-352+45,0≤λ≤1, 当λ=0时,|MB →+MD →|取得最大值为22, 当λ=35时,|MB →+MD →|取得最小值为255,∴|MB →+MD →|∈⎣⎢⎡⎦⎥⎤255,22.易错提醒 两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.跟踪演练2 (1)(2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6 答案 B解析 方法一 设a 与b 的夹角为θ,因为(a -b )⊥b ,所以(a -b )·b =a ·b -|b |2=0, 又因为|a |=2|b |,所以2|b |2cos θ-|b |2=0, 即cos θ=12,又θ∈[0,π],所以θ=π3,故选B. 方法二 如图,令OA →=a ,OB →=b ,则BA →=OA →-OB →=a -b .因为(a -b )⊥b ,所以∠OBA =π2,又|a |=2|b |,所以∠AOB =π3,即a 与b 的夹角为π3,故选B.(2)(2020·新高考全国Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)答案 A解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3). 设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3. 所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).(3)设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使得OA →+OB →=OD →.则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB →=1-(OA →+OB →)·OC →=1-OD →·OC →,由图可知,当点C 在OD 的反向延长线与圆O 的交点处时,OD →·OC →取得最小值,最小值为-2,此时(OC →-OA →)·(OC →-OB →)取得最大值,最大值为1+ 2.故选A.专题强化练一、单项选择题1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE →等于( )A .-12AB →+AD →B.12AB →-AD →C.AB →+12AD →D.AB →-12AD →答案 A解析 由题意可知,BE →=BC →+CE →=-12AB →+AD →.2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为π3,每只胳膊的拉力大小均为400 N ,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g =10 m/s 2,3≈1.732)( )A .63B .69C .75D .81 答案 B解析 设该学生的体重为m ,重力为G ,两臂的合力为F ′,则|G |=|F ′|,由余弦定理得|F ′|2=4002+4002-2×400×400×cos 2π3=3×4002,∴|F ′|=4003,∴|G |=mg =4003,m =403≈69kg.3.已知向量a =(1,2),b =(2,-2),c =(λ,-1),若c ∥(2a +b ),则λ等于( ) A .-2B .-1C .-12D.12答案 A解析 ∵a =(1,2),b =(2,-2),∴2a +b =(4,2),又c =(λ,-1),c ∥(2a +b ),∴2λ+4=0,解得λ=-2,故选A.4.(2020·潍坊模拟)在平面直角坐标系xOy 中,点P (3,1),将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,则点Q 的坐标是( )A .(-2,1)B .(-1,2)C .(-3,1)D .(-1,3) 答案 D解析 由P (3,1),得P ⎝⎛⎭⎪⎫2cos π6,2sin π6,∵将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2, 又cos ⎝⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q (-1,3).5.(2020·泰安模拟)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 等于( )A .0B .1C .2D .3 答案 C解析 如图,连接AO ,由O 为BC 的中点可得,AO →=12(AB →+AC →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线, ∴m 2+n2=1. ∴m +n =2.6.在同一平面中,AD →=DC →,BE →=2ED →.若AE →=mAB →+nAC →(m ,n ∈R ),则m +n 等于( ) A.23B.34C.56D .1 答案 A解析 由题意得,AD →=12AC →,DE →=13DB →,故AE →=AD →+DE →=12AC →+13DB →=12AC →+13(AB →-AD →)=12AC →+13⎝ ⎛⎭⎪⎫AB →-12AC →=13AB →+13AC →,所以m =13,n =13,故m +n =23.7.若P 为△ABC 所在平面内一点,且|PA →-PB →|=|PA →+PB →-2PC →|,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 ∵|PA →-PB →|=|PA →+PB →-2PC →|,∴|BA →|=|(PA →-PC →)+(PB →-PC →)|=|CA →+CB →|,即|CA →-CB →|=|CA →+CB →|,两边平方整理得,CA →·CB →=0,∴CA →⊥CB →,∴△ABC 为直角三角形.故选C. 8.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则||PA →+PB →+2PC →的最大值为( )A .23B .33C .43D .5 3 答案 D解析 设△ABC 的外接圆的圆心为O , 则圆的半径为332×12=3,OA →+OB →+OC →=0, 故PA →+PB →+2PC →=4PO →+OC →.又||4PO →+OC→2=51+8PO →·OC →≤51+24=75, 故||PA →+PB →+2PC →≤53, 当PO →,OC →同向共线时取最大值.9.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A.2B.3C .2D .2 2 答案 C解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0), 设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA →=(3,3),BD →=(3,0), 故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎪⎨⎪⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎪⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ]. 由题意知,x ≥0,y ≥0, |BM →|的最大值为232-32=3,又2x +y 24≥2xy ,即-2x +y 24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号. 二、多项选择题10.(2020·长沙模拟)已知a ,b 是单位向量,且a +b =(1,-1),则( ) A .|a +b |=2 B .a 与b 垂直C .a 与a -b 的夹角为π4D .|a -b |=1 答案 BC解析 |a +b |=12+-12=2,故A 错误;因为a ,b 是单位向量,所以|a |2+|b |2+2a ·b =1+1+2a ·b =2,得a ·b =0,a 与b 垂直,故B 正确;|a -b |2=a 2+b 2-2a ·b =2,|a -b |=2,故D 错误;cos 〈a ,a -b 〉=a ·a -b |a ||a -b |=a 2-a ·b 1×2=22,所以a 与a -b 的夹角为π4,故C 正确. 11.设向量a =(k,2),b =(1,-1),则下列叙述错误的是( )A .若k <-2,则a 与b 的夹角为钝角B .|a |的最小值为2C .与b 共线的单位向量只有一个为⎝ ⎛⎭⎪⎫22,-22 D .若|a |=2|b |,则k =22或-2 2 答案 CD解析 对于A 选项,若a 与b 的夹角为钝角,则a ·b <0且a 与b 不共线,则k -2<0且k ≠-2,解得k <2且k ≠-2,A 选项正确;对于B 选项,|a |=k 2+4≥4=2,当且仅当k =0时等号成立,B 选项正确;对于C 选项,|b |=2,与b 共线的单位向量为±b |b |,即与b 共线的单位向量为⎝⎛⎭⎪⎫22,-22或⎝ ⎛⎭⎪⎫-22,22,C 选项错误;对于D 选项,∵|a |=2|b |=22,∴k 2+4=22,解得k =±2,D 选项错误.12.已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的两点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE →+OC →=0C .|OA →+OB →+OC →|=32D.ED →在BC →方向上的投影为76答案 BCD解析 因为AE →=EB →,△ABC 是等边三角形,所以CE ⊥AB ,所以AB →·CE →=0,选项A 错误;以E 为坐标原点,EA →,EC →的方向分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO →=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233, 又BO →∥DO →,所以y -233=-13y ,解得y =32, 即O 是CE 的中点,OE →+OC →=0,所以选项B 正确;|OA →+OB →+OC →|=|2OE →+OC →|=|OE →|=32, 所以选项C 正确;ED →=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3),ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确. 三、填空题13.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0.因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22. 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.答案 5解析 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴A ⎝ ⎛⎭⎪⎫12,32.设C (a,0). ∵AC →·AB →=-1,∴⎝ ⎛⎭⎪⎫a -12,-32·⎝ ⎛⎭⎪⎫-12,-32 =-12⎝ ⎛⎭⎪⎫a -12+34=-1,解得a =4. ∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12()BA →+BC → =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12,32+4,0=⎝ ⎛⎭⎪⎫32,36. ∴BO →·AC →=⎝ ⎛⎭⎪⎫32,36·⎝ ⎛⎭⎪⎫72,-32=5. 15.(2020·石家庄模拟)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________. 答案 19解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →), 得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|. ∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13, 即λμ≤13⇒λμ≤19,∴λμ的最大值是19.16.(2020·浙江)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________. 答案 2829解析 设e 1=(1,0),e 2=(x ,y ),则a =(x +1,y ),b =(x +3,y ).由2e 1-e 2=(2-x ,-y ),故|2e 1-e 2|=2-x 2+y 2≤2,得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2,化简,得4x ≥3,即x ≥34,因此34≤x ≤1.cos 2θ=⎝ ⎛⎭⎪⎫a ·b|a |·|b |2=⎣⎢⎡⎦⎥⎤x +1x +3+y 2x +12+y 2x +32+y 22=⎝ ⎛⎭⎪⎫4x +42x +26x +102=4x +12x +13x +5=4x +13x +5=433x +5-833x +5=43-833x +5,。
高二数学上学期期中模拟试卷(空间向量与立体几何、直线与圆、椭圆)(解析版)
高二数学上学期期中模拟试卷(试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.(2022·福建福州·高二期中)直线20x y --=的倾斜角是()A.30°B.45°C.60°D.75°【答案】B【解析】直线20x y --=的斜率为1,倾斜角为45°,故选:B.2.(2022·江苏·南京市大厂高级中学高二期中)已知圆22:68100C x y x y +---=,则()A.圆C 的圆心坐标为()3,4--B.圆C 的圆心坐标为()4,3C.圆C D.圆C 的半径为35【答案】C【解析】圆C 的方程可化为()()223435x y -+-=,则圆心坐标为()3,4C.3.(2022·安徽滁州·高二期中)已知椭圆221259x y +=的焦点为1F 、2F ,P 为椭圆上的一点,若1260F PF ∠=︒,则12F PF △的面积为()A.3B.9C.D.【答案】C【解析】根据椭圆的定义有1210,4PF PF c +==,①根据余弦定理得221212642cos 60PF PF PF PF =+-︒,②结合①②解得1212PF PF =,所以12F PF △的面积12113sin 6012222S PF PF =︒=⨯⨯=4.(2022·福建·柘荣县第一中学高二期中)如图,在平行六面体1111ABCD A B C D -中,M为11AC 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是()A.1122a b c-++B.1122++a b cC.1122--+a b c D.1122-+a b c【答案】A【解析】11BM BB B M =+,()1111112=+-AA A D A B ()112=+-AA AD AB ,1122a b c =-++,故选;A5.10y +-=与直线30my ++=平行,则它们之间的距离是()A.1B.54C.3D.4【答案】B10y +-=与直线30my ++=平行,可得0=,解之得2m =10y +-=与直线230y ++=54=,故选:B 6.(2022·江苏常州·高二期中)直三棱柱111ABC A B C -中,11111π,,,2BCA AC BC CC A M MB A N NC ∠=====,则BM 与AN 所成的角的余弦值为()A.10B.22C.110D.25【答案】A【解析】如图所示,以C 为原点,以1,,CA CB CC 分别为,,x y z 轴,建立空间直角坐标系,设12AC BC CC ===,可得()2,0,0A ,()0,2,0B ,()1,1,2M ,()1,0,2N .()1,0,2AN ∴=-,()1,1,2BM =-cos ,10AN BM AN BM AN BM⋅∴==故BM 与AN7.(2022·河南·洛宁县第一高级中学高二阶段练习)若直线y x b =+与曲线x =有一个公共点,则b 的取值范围是()A.⎡⎣B.⎡-⎣C.(-D.(]{1,1-⋃【答案】D【解析】由曲线x =2210x y x +=≥(),表示以原点为圆心,半径为1的右半圆,y x b =+是倾斜角为4π的直线与曲线x =一个公共点有两种情况:①直线与半圆相切,根据d r =,所以1d ==,结合图象可得b =②直线与半圆的上半部分相交于一个交点,由图可知11b -<≤.综上可知:11b -<≤或b =.故选:D.8.(2022·福建泉州·高二期中)已知椭圆22122:1(0)x y C a b a b +=>>与圆22224:5b C x y +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是()A.⎛ ⎝⎭B.⎛ ⎝⎭C.⎫⎪⎪⎣⎭D.⎫⎪⎪⎣⎭【答案】D【解析】由题意,如图,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直则只需90APB ∠≤︒,即45APO α=∠≤︒,sin sin 45α=≤︒,即2285b a ≤,因为222a b c =+,解得:2238a c ≤.238e ∴≥,即e ≥,而01e <<,1e <,即e ⎫∈⎪⎪⎣⎭.故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022·江苏·连云港高中高二期中)给出下列命题,其中是真命题的是()A.若直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,则l 与m 垂直B.若直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,则l α⊥C.若平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,则αβ⊥D.若存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面【答案】AD【解析】对于A:因为直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,且()12,1,21101,1,22a b ⎛⎫-=--= ⎪⎝⎭⋅=-⋅,所以a b ⊥,所以l 与m 垂直.故A 正确;对于B:因为直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,且a n λ≠,所以l α⊥不成立.故B 不正确;对于C:因为平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,且2100660n n =++≠⋅=,所以12,n n 不垂直,所以αβ⊥不成立.故C 不正确;对于D:若,MA MB 不共线,则可以取,MA MB 为一组基底,由平面向量基本定理可得存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面;若,MA MB 共线,则存在实数,,x y 使,=+MP xMA yMB 所以,,,P M A B 共线,则点,,,P M A B 共面也成立.综上所述:点,,,P M A B 共面.故D 正确.故选:AD10.(2022·广东·汕头市潮南区陈店实验学校高二期中)已知直线:0l x y +=与圆22:(1)(1)4C x y -++=,则()A.直线l 与圆C 相离B.直线l 与圆C 相交C.圆C 上到直线l 的距离为1的点共有2个D.圆C 上到直线l 的距离为1的点共有3个【答案】BD【解析】由圆22:(1)(1)4C x y -++=,可知其圆心坐标为(1,1)-,半径为2,圆心(1,1)-到直线:0l x y +=的距离1d =,所以可知选项B,D 正确,选项A,C 错误.故选:BD11.(2022·湖北恩施·高二期中)如图,在棱长为1的正方体ABCD A B C D ''''-中,M 为BC 的中点,则下列结论正确的有()A.AM 与D B ''所成角的余弦值为10B.C 到平面DA C ''C.过点A ,M ,D ¢的平面截正方体ABCD A B C D ''''-所得截面的面积为92D.四面体A C BD ''内切球的表面积为π3【答案】ABD【解析】对于A,构建如图①所示的空间直角坐标系,则(0,0,1)A ,1(,1,1)2M ,(0,1,0)B ',(1,0,0)D ',1(,1,0)2AM ∴=,(1,1,0)D B ''=-,112cos ,10AM D B AM D B AM D B -+''⋅''∴=='',故A 正确;对于B,方法1:如图②,连接AC ,由正方体几何特征得://AC A C '',又AC ⊄面A C D '',A C ''⊂面A C D '',//AC ∴面A C D '',设C 到平面DA C ''的距离为d ,即点A 到平面A DC ''的距离,C A DC A DA C V V ''''--=,即11131113234⨯⨯⨯⨯=,求得33d =.方法2:根据图①,()1,0,1D ,()1,1,0C ',()1,0,1A D '∴=,()1,1,0A C ''=,设平面DA C ''的法向量(,,)m x y z =,则00A D m A C m '''⎧⋅=⎨⋅=⎩,即00x z x y +=⎧⎨+=⎩,令1z =-得:11x y =⎧⎨=-⎩,∴平面DA C ''的一个法向量为(1,1,1)m =--,(1,0,0)AD =,设C 到平面''DA C 的距离为d,则||AD m d m ⋅=B 正确;对于C,取CC '的中点N ,连接MN ,D N ',AD ',则MN //AD ',如图②所示,则梯形AMND '为过点A ,M ,D ¢的平面截正方体ABCD A B C D ''''-所得的截面,易知2MN =,AD '=2AM D N '==,可得梯形AMND '则梯形AMND '的面积1928S ==,故C 错误;对于D,易知四面体A C BD ''的体积111141323V =-⨯⨯⨯=,因为四面体A C BD ''1π4sin 23S =⨯=设四面体A C BD ''内切球的半径为r,则1133⨯=,解得r =所以四面体AMND '内切球的表面积为2π4π3r =,故D 正确.故选:ABD.12.(2022·江苏·淮阴中学高二期中)已知椭圆22:14x M y +=,若P 在椭圆M 上,1F 、2F 是椭圆M 的左、右焦点,则下列说法正确的有()A.若12PF PF =,则1230PF F ∠=B.12F PF △C.12PF PF -的最大值为D.满足12F PF △是直角三角形的点P 有4个【答案】ABC【解析】在椭圆M 中,2a =,1b =,c =12F F =对于A 选项,当12PF PF =时,则122PF PF a ===,由余弦定理可得222112212112cos 2PF F F PF PF F PF F F +-∠==⋅因为120180PF F <∠<,所以,1230PF F ∠=,A 对;对于B 选项,当点P 为椭圆M 的短轴顶点时,点P 到x 轴的距离最大,所以,12F PF △面积的最大值为122c b bc ⨯⨯==对;对于C 选项,因为2a c PF a c -≤≤+,即222PF ≤+所以,()12222222PF PF a PF a a c c -=-≤--==,C 对;对于D 选项,当112PF F F ⊥或212PF F F ⊥时,12PF F 为直角三角形,此时满足条件的点P 有4个,当P 为直角顶点时,设点()00,P x y ,则220044x y =-,()100F P x y =+,()200F P x y =-,222120003130F P F P x y y ⋅=-+=-=,所以,0y =,03x =±,此时,满足条件的点P 有4个,综上所述,满足12F PF △是直角三角形的点P 有8个,D 错.故选:ABC.三、填空题:本题共4小题,每小题5分,共20分13.(2022·全国·高二期中)已知直线1:20l ax y +=,直线()2:10l a x y --=,若12l l ⊥,则实数a 的值为______.【答案】2a =或1a =-【解析】因为12l l ⊥,所以(1)2(1)0a a -+⨯-=,解得2a =或1a =-,故答案为:2a =或1a =-14.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.【答案】0【解析】因为2=PM MC ,则()2BM BP BC BM -=-,所以,()()121221333333BM BP BC AP AB AC AB AB AC AP =+=-+-=-++,所以,1x =-,23y =,13z =,因此,0x y z ++=.故答案为:0.15.(2022·上海金山·高二期中)求过点()13M -,的圆224x y +=的切线方程__________.【答案】y =+y =+【解析】过点()13M -,的斜率不存在的直线为:1x =-,圆心到直线的距离为1,与圆相交,不是切线;当斜率存在,设其为k ,则切线可设为()31y k x -=+.2=,解得:33k +=或33k -=.所以切线方程为:y =+y =+故答案为:y =+y =+.16.(2022·湖北恩施·高二期中)已知1F ,2F 分别是椭圆2222:1(0,0)x y C a b a b+=>>的左、右焦点,点P 在椭圆上,且在第一象限,过2F 作12F PF ∠的外角平分线的垂线,垂足为A ,O为坐标原点,若||OA =,则该椭圆的离心率为______.【答案】63【解析】如图所示:延长2F A ,交1PF 于点Q ,∵PA 是12F PF ∠的外角平分线,2||AQ AF ∴=,2||PQ PF =,又O 是12F F 的中点,1QF AO ∴∥,且12||QF OA ==.又1112||2QF PF PQ PF PF a =+=+=,2a ∴=,222233()a b a c ∴==-,∴离心率为c a四、解答题:本小题共6小题,共70分。
高二数学寒假作业一:解三角形 含答案
数学寒假作业(一)测试范围:解三角形使用日期:腊月十九 测试时间:120分钟一、选择题(本大题共12个小题,每个小题5分,共60分,每小题给出的四个备选答案中,有且仅有一个是符合题目要求的)1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 22.在△ABC 中,若AB =3-1,BC =3+1,AC =6,则B 等于( ) A .30° B .45° C .60° D .120°3.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( ) A.31010 B .-31010 C.55D .-554.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75° C .30° D .15°5.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为( ) A .α>β B .α=β C .α+β=90°D .α+β=180°6.(2012·天津理,6)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725 C .±725D.24257.△ABC 的三边分别为2m +3,m 2+2m ,m 2+3m +3(m >0),则最大内角度数为( ) A .150° B .120° C .90°D .135°8.在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为( ) A .A >B B .A <B C .A ≥B D .A ,B 的大小关系不能确定9.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a sin A sin B +b cos 2A =2a ,则ba =( )A .2 3B .2 2 C. 3D. 210.在△ABC 中,a 2+b 2-ab =c 2=23S △ABC ,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形11.在△ABC 中,若|AB →|=2,|AC →|=5,AB →·AC →=-5,则S △ABC =( )A.532B. 3C.52 D .512.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.三角形一边长为14,它对的角为60°,另两边之比为85,则此三角形面积为________.14.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.15.如图,已知梯形ABCD 中,CD =2,AC =19,∠BAD =60°,则梯形的高为__________.16.在△ABC 中,cos 2A 2=b +c2c ,则△ABC 的形状为________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,若tan A =3,cos C =55.(1)求角B 的大小;(2)若c =4,求△ABC 面积.18.(本题满分12分)在△ABC 中,已知a =6,A =60°,b -c =3-1,求b 、c 和B 、C .19.(本题满分12分)如图,某海轮以30n mile/h 的速度航行,在点A 测得海面上油井P 在南偏东60°,向北航行40min 后到达点B ,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再航行80min 到达C 点,求P 、C 间的距离.20.(本题满分12分)在△ABC 中,a 、b 、c 分别为内角A 、B 、C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.21.(本题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C ,求b 及c 的长.22.(本题满分14分)在△ABC中,角A、B、C的对边分别为a、b、c,已知3cos(B-C)-1=6cos B cos C.(1)求cos A的值;(2)若a=3,△ABC的面积为2,求b、c.家长签字:日期:数学寒假作业(一)答案1、[答案] D2、[答案] C[解析] cos B =AB 2+BC 2-AC 22AB ·BC =12,∴B =60°.3、[答案] D4、[答案] A5、[答案] B[解析] 仰角和俯角都是水平线与视线的夹角,故α=β.6、[答案] A7、[答案] B8、解析:由正弦定理a sin A =bsin B ,∴a >b .∴A >B .答案:A 9、[答案] D[解析] ∵a sin A sin B +b cos 2A =2a ,∴由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A ,∴sin B (sin 2A +cos 2A )=2sin A ,∴sinB =2sin A ,∴sin B sin A = 2.由正弦定理,得ba =sin Bsin A = 2.10、[答案] B[解析] 由a 2+b 2-ab =c 2得:cos C =a 2+b 2-c 22ab =12,∴∠C =60°,又23S △ABC =a 2+b 2-ab ,∴23×12ab ·sin60°=a 2+b 2-ab ,得2a 2+2b 2-5ab =0,即a =2b 或b =2a . 当a =2b 时,代入a 2+b 2-ab =c 2得a 2=b 2+c 2;当b =2a 时,代入a 2+b 2-ab =c 2得b 2=a 2+c 2.故△ABC 为直角三角形.11、[答案] A[解析] AB →·AC →=|AB →|·|AC →|cos A =10cos A =-5,∴cos A =-12,∴sin A =32,∴S △ABC =12|AB →|·|AC →|·sin A =532.12、[答案] D[解析] 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形,由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin π2-A 1sin B 2=cos B 1=sin π2-B 1sin C 2=cos C 1=sinπ2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1B 2=π2-B1C 2=π2-C1,那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾,故假设不成立, 即△A 2B 2C 2是钝角三角形,故选D.13、[答案] 403[解析] 设另两边长为8x 和5x ,则cos60°=64x 2+25x 2-14280x 2得x =2,另两边长为16和10,此三角形面积为S =12×16×10·sin60°=40 3. 14、[答案]102[解析] ∵tan A =13,∴sin A =1010,由正弦定理,得AB =BC ·sin C sin A =102. 15、[答案] 332[解析] 解法一:∵∠BAD =60°,∴∠ADC =180°-∠BAD =120°.∵CD =2,AC =19,∴19sin120°=2sin ∠CAD ,∴sin ∠CAD =5719. ∴sin ∠ACD =sin(60°-∠CAD )=35738.∴AD =AC ·sin ∠ACD sin D=19×35738sin120°=3.∴h =AD ·sin60°=332. 解法二:在△ACD 中,AC 2=AD 2+CD 2-2AD ·CD cos120°,∴AD 2+2AD -15=0.∴AD =3 (AD =-5舍去).∴h =AD sin60°=332.16、[答案] 直角三角形[解析] ∵cos 2A 2=1+cos A 2=b +c 2c =12+b2c ,∴cos A =b c .由余弦定理,得cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc ,∴a 2+b 2=c 2.∴△ABC 为直角三角形.17、[解析] (1)∵cos C =55,∴sin C =255,∴tan C =2.∵tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =-3+21-3×2=1,又0<B <π,∴B =π4.(2)由正弦定理,得b sin B =c sin C ,∴b =c ×sin B sin C =4×22255=10.∵B =π4,∴A =3π4-C .∴sin A =sin(3π4-C )=sin 3π4cos C -cos 3π4sin C =22×55-(-22)×255=31010.∴S △ABC =12bc sin A =12×10×4×31010=6.18、[解析] 由余弦定理,得6=b 2+c 2-2bc cos60°,∴b 2+c 2-bc =6 ①由b -c =3-1平方得:b 2+c 2-2bc =4-2 3 ② ①、②两式相减得bc =2+2 3.由⎩⎨⎧b -c =3-1bc =2+23,解得⎩⎨⎧b =3+1c =2,由正弦定理,得sin B =b sin Aa =3+1sin60°6=6+24.∵6<3+1,∴B =75°或105°.∵a 2+c 2>b 2,∴B 为锐角, ∴B =75°,从而可知C =45°.[点评] 求角B 时,若先求得sin C =c sin A a =22,∵a >c ,∴C =45°,从而得B =75°. 若用余弦定理cos B =a 2+c 2-b 22ac =6-24,∴B =75°. 19、[解析] AB =30×4060=20,BC =30×8060=40.在△ABP 中,∠A =120°,∠ABP =30°,∠APB =30°, ∴BP =ABsin ∠APB ·sin ∠BAP =20sin30°sin120°=20 3. 在Rt △BCP 中,PC =BC 2+BP 2=402+2032=207.∴P 、C 间的距离为207nmile.20、[解析] (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,得a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)由a 2=b 2+c 2+bc ,得sin 2A =sin 2B +sin 2C +sin B sin C .又sin B +sin C =1,故sin B =sin C =12.因为0°<B <90°,0°<C <90°,故B =C . 所以△ABC 是等腰的钝角三角形.21、[解析] (1)∵cos2C =1-2sin 2C =-14,0<C <π,∴sin C =104.(2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4. 由cos2C =2cos 2C -1=-14及0<C <π,得cos C =±64.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0(b >0),解得b =6或26,∴⎩⎨⎧b =6c =4,或⎩⎨⎧b =26c =4.22、[解析] (1)由3cos(B -C )-1=6cos B cos C ,得3(cos B cos C -sin B sin C )=-1,即cos(B +C )=-13,∴cos A =-cos(B +C )=13.(2)∵0<A <π,cos A =13,∴sin A =223.由S △ABC =22,得12bc sin A =22, ∴bc =6.由余弦定理,得a 2=b 2+c 2-2bc cos A ,∴9=(b +c )2-2bc (1+cos A )=(b +c )2-16, ∴b +c =5. 由⎩⎪⎨⎪⎧ b +c =5bc =6,得⎩⎪⎨⎪⎧ b =2c =3或⎩⎪⎨⎪⎧b =3c =2.。
(新教材)2020新人教A版高中数学必修第二册同步学案:6.1 平面向量的概念 Word版含答案
6.1 平面向量的概念问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些? 3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|. (2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.判断(正确的打“√”,错误的打“×”) (1)两个向量,长度大的向量较大.( ) (2)如果两个向量共线,那么其方向相同.( ) (3)向量的模是一个正实数.( ) (4)向量就是有向线段.( )(5)向量AB →与向量BA →是相等向量.( )(6)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (7)零向量是最小的向量.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× (7)×已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M答案:D已知点O 固定,且|OA →|=2,则A 点构成的图形是( ) A .一个点 B .一条直线 C .一个圆 D .不能确定答案:C如图,四边形ABCD 和ABDE 都是平行四边形,则与ED →相等的向量有________.答案:AB →,DC →向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB →=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向.1.下列说法中正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的向量可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小解析:选D.不管向量的方向如何,它们都不能比较大小,故A ,B 不正确;向量的大小即为向量的模,指的是有向线段的长度,与方向无关,故C 不正确;向量的模是一个数量,可以比较大小.故D 正确.2.下列说法正确的是( )A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线 B .长度相等的向量叫做相等向量 C .零向量与任一向量平行D .共线向量是在一条直线上的向量解析:选C.向量AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故A 错;相等向量不仅要求长度相等,还要求方向相同,故B 错;C 显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D 错.向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB →,使|AB →|=4,点B 在点A 正东方向上; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°方向上.【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA →,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC →,如图所示.用有向线段表示向量的步骤已知飞机从A 地按北偏东30°的方向飞行2 000 km 到达B 地,再从B地按南偏东30°的方向飞行 2 000 km 到达C 地,再从C 地按西南方向飞行1 000 2 km 到达D 地.(1)作出向量AB →,BC →,CD →,DA →;(2)问D 地在A 地的什么方向?D 地距A 地多远? 解:(1)由题意,作出向量AB →,BC →,CD →,DA →,如图所示.(2)依题意知,三角形ABC 为正三角形,所以AC =2 000 km.又因为∠ACD =45°,CD =1 0002,所以△ACD 为等腰直角三角形,即AD =1 000 2 km ,∠CAD =45°,所以D 地在A 地的东南方向,距A 地1 000 2 km.共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量. 解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO →,ED →,AB →.2.[变问法]本例条件不变,与AD →共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.1.已知向量AB →与向量BC →共线,下列关于向量AC →的说法中,正确的为( ) A .向量AC →与向量AB →一定同向B .向量AC →,向量AB →,向量BC →一定共线 C .向量AC →与向量BC →一定相等 D .以上说法都不正确解析:选B.根据共线向量的定义,可知AB →,BC →,AC →这三个向量一定为共线向量,故选B.2.如图,四边形ABCD 和BCED 都是平行四边形,在每两点所确定的向量中:(1)写出与BC →相等的向量; (2)写出与BC →共线的向量.解:(1)因为四边形ABCD 和BCED 都是平行四边形,所以BC ∥AD ∥DE ,BC =AD =DE ,所以BC →=AD →=DE →.故与BC →相等的向量为AD →,DE →.(2)与BC →共线的向量共有7个,分别是AD →,DE →,DA →,ED →,AE →,EA →,CB →.1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE →平行的向量为BE →,FD →,FC →共3个. 2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③B .②③C .③④D .②④解析:选B.两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC →相等的向量; (2)与OB →长度相等的向量; (3)与DA →共线的向量. 解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD , 所以与BC →相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC , 所以与OB →长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →. (3)与DA →共线的向量为AD →,BC →,CB →.[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a|.A .3B .2C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的;对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的.2.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.3.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB →=OC →B.AB →∥DE → C .|AD →|=|BE →|D.AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →的方向不同,故AD →≠FC →,故选D. 4.设O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .模相等的向量 C .平行向量D .起点相同的向量解析:选B.因为三角形的外心是三角形外接圆的圆心,所以点O 到三个顶点A ,B ,C 的距离相等,所以AO →,BO →,CO →是模相等的向量.5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤解析:选B.①|a |>|b |不正确,a 是任一非零向量,模长是任意的,故不正确;②不一定有a ∥b ,故不正确;③向量的模长是非负数,而向量a 是非零向量,故|a |>0正确;④|b |=1,故④不正确;⑤a|a |是与a 同向的单位向量,不一定与b 同向,故不正确.6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22,所以|OA →|= 2. 答案: 27.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD →长度的最小值为________.解析:根据题意,在正△ABC 中,有向线段AD 的长度最小时,AD 应与边BC 垂直,有向线段AD 长度的最小值为正△ABC 的高,为532.答案:5328.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图. (1)在每两点所确定的向量中,写出与向量FC →共线的向量; (2)求证:BE →=FD →.解:(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB →,ED →,DE →,AE →,EA →,AD →,DA →.(2)证明:在▱ABCD 中,AD 綊BC . 又E ,F 分别为AD ,BC 的中点, 所以ED 綊BF ,所以四边形BFDE 是平行四边形,所以BE 綊FD ,所以BE →=FD →.10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD满足下列情况.(1)四边形ABCD 是等腰梯形;(2)四边形ABCD 是平行四边形.解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB →∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD →|=|BC →|,同时两向量不平行.(2)AD →=BC →(或AD →∥BC →).若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是 ( )A .与AB →相等的向量只有一个(不含AB →)B .与AB →的模相等的向量有9个(不含AB →)C .BD →的模恰为DA →模的3倍D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →解析:选D.由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC→≠BD →;PE →与PF →的模相等而方向相反,故PE →≠PF →;EP →与PF →的模相等且方向相同,所以EP →=PF →.13.如图,在△ABC 中,∠ACB 的平分线CD 交AB 于点D .若AC →的模为2,BC →的模为3,AD →的模为1,则DB →的模为________.解析:如图,延长CD ,过点A 作BC 的平行线交CD 的延长线于点E .因为∠ACD =∠BCD =∠AED ,所以|AC →|=|AE →|.因为△ADE ∽△BDC ,所以|AD →||DB →|=|AE →||BC →|=|AC →||BC→|,故|DB →|=32. 答案:3214.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →;(2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →,如图所示.(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=5 5.[C 拓展探究]15.如图,A 1,A 2,…,A 8是⊙O 上的八个等分点,则在以A 1,A 2,…,A 8及圆心O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少个?模等于半径的2倍的向量有多少个?解:模等于半径的向量只有两类,一类是OA →i (i =1,2,…,8),共8个;另一类是A i O →(i=1,2,…,8),也有8个.两类共计有16个.以A 1,A 2,…,A 8中四点为顶点的⊙O 的内接正方形有两个,一个是正方形A 1A 3A 5A 7,另一个是正方形A 2A 4A 6A 8.在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的长度为半径的2倍,故模为半径的2倍的向量共有4×2×2=16(个).。
(教案) 向量的加法运算Word版含解析
6.2平面向量的运算6.2.1向量的加法运算课标解读课标要求核心素养1.借助实例理解并掌握向量加法的概念.2.掌握向量加法运算法则,并能熟练地进行加法运算.(重点)3.理解向量加法运算的几何意义.(难点)1.通过向量加法的三角形法则、平行四边形法则,培养直观想象核心素养.2.借助向量加法的运算律进行相关运算,培养数学运算核心素养.俄罗斯著名寓言作家克雷洛夫在他所著的《克雷洛夫寓言》中有一篇《天鹅、梭子鱼和虾》的故事,故事的大意是这样的:有一天,天鹅、梭子鱼和虾一起拉一车货物,天鹅想,我的家在天上,应该把货物拉到我家,于是,天鹅伸长脖子拼命往天上飞.梭子鱼想,我的家在河里,应该往河里拉,于是,梭子鱼使劲往河里拽.虾想,我的家在池塘里,应该把货送到池塘,于是,虾弓着身子往池塘拉.他们三个累的精疲力尽,车子却纹丝不动.问题1:车子为什么纹丝不动?答案天鹅、梭子鱼和虾用力的方向不一致.问题2:这则故事给我们的启示是什么?答案要想成功,就要好好合作,用力方向要合理.1.向量的加法(1)定义:求①两个向量和的运算,叫做向量的加法.这种求向量和的方法,称为向量加法的三角形法则.对于零向量与任意向量a,规定0+a=a+0=a.(2)向量求和的法则:三角形法则已知非零向量a,b,在平面内任取一点A,作AB⃗⃗⃗⃗⃗ =a,BC⃗⃗⃗⃗⃗ =b,则向量AC⃗⃗⃗⃗⃗ 叫做a与b的和,记作②a+b,即a+b=AB⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗平行四边以同一点O为起点的两个已知向量a,b,以OA,OB为邻边作③▱OACB,则以O为起点的形法则向量OC⃗⃗⃗⃗⃗ (OC是▱OACB的对角线)就是向量a与b的和,即OC⃗⃗⃗⃗⃗ =a+b特别提醒三角形法则与平行四边形法则的区别与联系三角形法则平行四边形法则区别满足条件两向量“首尾相接”两向量“共起点”适用范围所有向量不共线的两向量联系平行四边形法则与三角形法则在本质上是一致的.这两种求向量和的方法,通过向量平移能相互转化,解决具体问题时视情况而定2.向量加法的运算律(1)交换律:a+b=④b+a.(2)结合律:(a+b)+c=⑤a+(b+c).思考:向量加法的运算律与实数加法的运算律相同吗?提示相同.3.|a|-|b|,|a±b|,|a|+|b|三者的关系根据三角形的三边关系可得|a|-|b|≤|a+b|≤|a|+|b|,当且仅当向量a,b方向相同时取“=”.探究一向量加法运算法则的应用例1如图所示,已知向量a、b、c,试作出向量a+b+c.解析解法一:如图1所示,首先在平面内任取一点O,作向量OA⃗⃗⃗⃗⃗ =a,接着作向量AB⃗⃗⃗⃗⃗ =b,则得向量OB⃗⃗⃗⃗⃗ =a+b,然后作向量BC⃗⃗⃗⃗⃗ =c,则向量OC⃗⃗⃗⃗⃗ =(a+b)+c=a+b+c.解法二:如图2所示,首先在平面内任取一点O,作向量OA ⃗⃗⃗⃗⃗ =a,OB ⃗⃗⃗⃗⃗ =b,OC ⃗⃗⃗⃗⃗ =c,以OA 、OB 为邻边作▱OADB,连接OD,则OD ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =a+b,再以OD 、OC 为邻边作▱ODEC,连接OE,则OE ⃗⃗⃗⃗⃗ =OD ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =a+b+c. 思维突破向量求和法则的应用技巧(1)当两个不共线向量求和时,三角形法则和平行四边形法则都可以用. (2)多个向量求和时,可先求两个向量的和,再和其他向量求和. 1-1如图(1)、图(2)所示,试作出向量a 与b 的和. 解析如图①、图②所示.OB⃗⃗⃗⃗⃗ 即为所求. 探究二向量加法运算律的应用例2化简下列各式:(1)AB ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ ; (2)(AB ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ )+CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ . 解析(1)AB ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =0. (2)(AB ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ )+CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+(CD ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ )+EA ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ =0. 2-1化简:(AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )+(BO ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+OM ⃗⃗⃗⃗⃗⃗ =. 答案AC⃗⃗⃗⃗⃗ 解析(AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )+(BO ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+OM ⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+MB ⃗⃗⃗⃗⃗⃗ +(BO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ . 探究三向量加法的实际应用例3在某地抗震救灾时,一架飞机先从A 地按北偏东35°方向飞行800km 到达B 地接到受伤人员,然后从B 地按南偏东55°方向飞行800km 将受伤人员送往C 地医院,求这架飞机飞行的路程及两次飞行的位移的和.解析如图所示,设AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ 分别表示飞机从A 地按北偏东35°方向飞行800km 到达B 地,从B 地按南偏东55°方向飞行800km 到达C 地.则飞机飞行的路程是|AB ⃗⃗⃗⃗⃗ |+|BC ⃗⃗⃗⃗⃗ |,两次飞行的位移的和是AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ . 依题意,有|AB ⃗⃗⃗⃗⃗ |+|BC ⃗⃗⃗⃗⃗ |=800+800=1600(km),∠ABC=35°+55°=90°, 所以|AC ⃗⃗⃗⃗⃗ |=√|AB ⃗⃗⃗⃗⃗ |2+|BC ⃗⃗⃗⃗⃗ |2=√8002+8002=800√2(km). 其中∠BAC=45°,所以方向为北偏东35°+45°=80°.故飞机飞行的路程是1600km,两次飞行的位移和的大小为800√2km,方向为北偏东80°. 思维突破向量加法解决实际问题的应用技巧(1)准确画出几何图形,将几何图形中的边转化为向量.(2)将所求问题转化为向量的加法运算,进而利用向量加法的几何意义进行求解.3-1如图,用两根绳子把重10N 的物体W 吊在水平木杆AB上,∠ACW=150°,∠BCW=120°,求A 处和B 处所受力的大小(绳子的质量忽略不计). 解析如图,设CE⃗⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗⃗ 分别表示A,B 所受的力, 10N 的重力用CG ⃗⃗⃗⃗⃗ 表示,则CE ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ =CG⃗⃗⃗⃗⃗ . 易得∠ECG=180°-150°=30°,∠FCG=180°-120°=60°, ∴|CE ⃗⃗⃗⃗⃗ |=|CG ⃗⃗⃗⃗⃗ |×cos30° =10×√32=5√3(N).|CF ⃗⃗⃗⃗⃗ |=|CG ⃗⃗⃗⃗⃗ |×cos60°=10×12=5(N).故A 处所受的力的大小为5√3N,B 处所受的力的大小为5N. 1.在四边形ABCD 中,若AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,则() A.四边形ABCD 一定是矩形 B.四边形ABCD 一定是菱形 C.四边形ABCD 一定是正方形 D.四边形ABCD 一定是平行四边形答案D 由向量加法的平行四边形法则可知,四边形ABCD 必为平行四边形. 2.化简OP ⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ +PS ⃗⃗⃗⃗ +SP ⃗⃗⃗⃗ 的结果为() A.QP⃗⃗⃗⃗⃗ B.OQ ⃗⃗⃗⃗⃗⃗ C.SP ⃗⃗⃗⃗ D.SQ ⃗⃗⃗⃗⃗ 答案B OP ⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ +PS ⃗⃗⃗⃗ +SP ⃗⃗⃗⃗ =OQ⃗⃗⃗⃗⃗⃗ +0=OQ ⃗⃗⃗⃗⃗⃗ . 3.(多选题)在如图所示的▱ABCD 中,下列结论正确的是() A.AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ +CB⃗⃗⃗⃗⃗ =0 答案ABD 由▱ABCD 知A,B,D 正确,因为AB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ ≠BD ⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,所以C 错误. 4.若a 表示“向东走8km ”,b 表示“向北走8km ”,则|a+b|=,a+b 的方向是. 答案8√2km;东北方向 解析如图所示,作OA ⃗⃗⃗⃗⃗ =a,AB ⃗⃗⃗⃗⃗ =b, 则a+b=OA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =OB⃗⃗⃗⃗⃗ , 所以|a+b|=|OB ⃗⃗⃗⃗⃗ |=√82+82=8√2(km), 因为∠AOB=45°,所以a+b 的方向是东北方向.5.如图,已知向量a,b,c,求作向量a+b+c.解析在平面内任取一点O,作OA ⃗⃗⃗⃗⃗ =a,AB ⃗⃗⃗⃗⃗ =b,BC ⃗⃗⃗⃗⃗ =c,如图所示: 则由向量加法的三角形法则,得OB⃗⃗⃗⃗⃗ =a+b,OC ⃗⃗⃗⃗⃗ =a+b+c,故OC ⃗⃗⃗⃗⃗ 即为所求向量a+b+c. 逻辑推理——向量加法的应用如图,在正六边形OABCDE 中,OA ⃗⃗⃗⃗⃗ =a,OE ⃗⃗⃗⃗⃗ =b,试用向量a,b 将OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OD ⃗⃗⃗⃗⃗⃗ 表示出来. 解析如图,连接BE,AD,设正六边形的中心为P,则四边形ABPO,AOEP,ABCP,OPDE 均为平行四边形.由向量加法的平行四边形法则得 OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OE ⃗⃗⃗⃗⃗ =a+b. ∵AB ⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ =a+b.在△AOB 中,根据向量加法的三角形法则, 得OB⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =a+a+b. 同理,在△OBC 中, OC⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =a+a+b+b, 在△OED 中,OD ⃗⃗⃗⃗⃗⃗ =OE ⃗⃗⃗⃗⃗ +ED ⃗⃗⃗⃗⃗ =OE⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ =b+a+b. 素养探究:用已知向量表示待求向量,可以利用向量的平移性,根据三角形法则、平行四边形法则,结合正六边形的几何性质转化求解,体现了逻辑推理的核心素养. P,Q 是△ABC 的边BC 上的两点,且BP=QC.求证:AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ +AQ ⃗⃗⃗⃗⃗ .证明如图,取BC 的中点O,连接AO 并延长至点D,使OD=AO,连接BD,CD,则四边形ABDC 是平行四边形,所以AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ ,又BP=QC,BO=CO,所以PO=QO,连接PD,QD,则四边形APDQ 是平行四边形,所以AP ⃗⃗⃗⃗⃗ +AQ ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ ,所以AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ +AQ ⃗⃗⃗⃗⃗ . 1.(多选题)下列等式正确的有() A.AB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =0B.AC⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ C.OA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ =0 D.AB ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =0答案ABD 由向量加法的三角形法则和零向量的定义可知AB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =0,故A 正确. DC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ,故B 正确. OA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ ,故C 不正确. AB⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =0,故D 正确. 2.在▱ABCD 中,若|BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ |,则四边形ABCD 是() A.菱形B.矩形 C.正方形D.不确定 答案B3.在▱ABCD 中,O 是对角线的交点,下列结论正确的是() A.AB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ C.AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ D.AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ 答案C4.在矩形ABCD 中,AB=√3,BC=1,则向量AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ 的长度为() A.2B.2√3C.3D.4答案D 在矩形ABCD 中,AB=√3,BC=1, 所以AC=2,因为AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ ,故其长度为4. 5.根据图示填空,其中a=DC ⃗⃗⃗⃗⃗ ,b=CO ⃗⃗⃗⃗⃗ ,c=OB ⃗⃗⃗⃗⃗ ,d=BA ⃗⃗⃗⃗⃗ . (1)a+b+c=; (2)b+d+c=. 答案(1)DB ⃗⃗⃗⃗⃗⃗ (2)CA⃗⃗⃗⃗⃗解析(1)a+b+c=DC ⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗⃗ . (2)b+d+c=CO ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =CO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ . 6.若P 为△ABC 的外心,且PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =PC ⃗⃗⃗⃗⃗ ,则∠ACB=. 答案120°解析由PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =PC ⃗⃗⃗⃗⃗ 知四边形ACBP 为平行四边形, 又P 为外心,所以四边形ACBP 为菱形, 且PA=PC=AC,∠ACP=60°, 易得∠ACB=120°.7.如图所示,已知在矩形ABCD 中,|AD ⃗⃗⃗⃗⃗ |=4√3,设AB ⃗⃗⃗⃗⃗ =a,BC ⃗⃗⃗⃗⃗ =b,BD ⃗⃗⃗⃗⃗⃗ =c,求|a+b+c|的大小. 解析如图所示,过点D 作AC 的平行线,交BC 的延长线于点E. ∵DE ∥AC,AD ∥BE,∴四边形ADEC 为平行四边形, ∴DE ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ , 于是a+b+c=AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =DE ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ , ∴|a+b+c|=2|AD ⃗⃗⃗⃗⃗ |=8√3.8.(多选题)向量a 、b 均为非零向量,下列说法中正确的是() A.若向量a 与b 反向,且|a|>|b|,则向量a+b 与a 的方向相同 B.若向量a 与b 反向,且|a|<|b|,则向量a+b 与a 的方向相同 C.若向量a 与b 同向,则向量a+b 与a 的方向相同 D.若向量a 与b 同向,则向量a+b 与b 的方向相同答案ACD 当向量a 与b 反向,且|a|<|b|时,向量a+b 与b 的方向相同,只有B 错误,A 、C 、D 都正确.9.(多选题)如图,D,E,F 分别是△ABC 的边AB,BC,CA 的中点,则下列等式中正确的是()A.FD ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ =0B.AD ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ =0C.FD ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗D.AD ⃗⃗⃗⃗⃗ +EC ⃗⃗⃗⃗⃗ +FD ⃗⃗⃗⃗⃗ =BD⃗⃗⃗⃗⃗⃗ 答案ABC FD ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ =FA ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ =0,故A 正确;AD ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ =0,故B 正确;FD ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =FE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,故C 正确;AD ⃗⃗⃗⃗⃗ +EC ⃗⃗⃗⃗⃗ +FD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +0=AD ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗⃗ ≠BD ⃗⃗⃗⃗⃗⃗ ,故D 错误.10.已知▱ABCD,设AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =a,且b 是非零向量,则下列结论:①a ∥b;②a+b=a;③a+b=b;④|a+b|<|a|+|b|,其中正确的有.(填序号) 答案①③解析因为在平行四边形ABCD 中,AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =0,BC ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =0,所以a 为零向量,因为零向量和任意向量都平行,零向量和任意向量的和等于这个向量本身,所以①③正确,②④错误.11.雨滴在下落一定时间后的运动是匀速的,无风时雨滴下落的速度是4.0m/s,现在有风,风使雨滴以4√33m/s 的速度水平向东移动,求雨滴着地时的速度和方向.解析如图,用OA ⃗⃗⃗⃗⃗ 表示雨滴下落的速度,OB ⃗⃗⃗⃗⃗ 表示风使雨滴水平向东移动的速度. 以OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 为邻边作四边形OACB,OC ⃗⃗⃗⃗⃗ 就是雨滴下落的实际速度. 在Rt △OAC 中,|OA ⃗⃗⃗⃗⃗ |=4,|AC⃗⃗⃗⃗⃗ |=4√33, ∴|OC ⃗⃗⃗⃗⃗ |=√|OA ⃗⃗⃗⃗⃗ |2+|AC ⃗⃗⃗⃗⃗ |2 =√42+(4√33)2=8√33, ∴tan ∠AOC=|AC⃗⃗⃗⃗⃗ ||OA ⃗⃗⃗⃗⃗⃗ |=4√334=√33,∴∠AOC=30°.故雨滴着地时的速度大小是8√33m/s,方向为南偏东30°.12.过△ABC 内一点M 任作一条直线l,再分别过顶点A,B,C 作l 的垂线,垂足分别为D,E,F,若AD ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ =0恒成立,则点M 是△ABC 的() A.垂心B.重心C.外心D.内心答案B 设直线l 过点A,则|AD|=0,有BE⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ =0. 则直线AM 经过BC 的中点,同理,直线BM 经过AC 的中点.直线CM 经过AB 的中点,所以点M 是△ABC 的重心.13.设|a|=2,e 为单位向量,求|a+e|的最大值. 解析在平面内任取一点O,作OA ⃗⃗⃗⃗⃗ =a,AB ⃗⃗⃗⃗⃗ =e,则a+e=OA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ,因为e 为单位向量,所以点B 在以A 为圆心的单位圆上(如图所示),由图可知,当点B 在点B 1处时,O,A,B 1三点共线,此时|OB⃗⃗⃗⃗⃗ |(即|a+e|)最大,最大值是3.。
用平面向量解三角形问题
第五编 平面向量、解三角形§5.1 平面向量的概念及线性运算基础自测 1.下列等式正确的是 (填序号).①a +0=a ②a +b =b +a ③+≠0 ④=++答案 ①②④2.如图所示,在平行四边行ABCD 中,下列结论中正确的是 . ①= ②+= ③-= ④+=0答案 ①②④3.(2008²广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若=a ,=b ,则= . 答案 32a +31b 4.若ABCD 是正方形,E 是DC 边的中点,且AB =a ,AD =b ,则= . 答案 b -21a 5.设四边形ABCD 中,有=21,且||=||,则这个四边形是 . 答案 等腰梯形例1 给出下列命题①向量的长度与向量的长度相等;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③两个有共同起点并且相等的向量,其终点必相同;④两个有共同终点的向量,一定是共线向量;⑤向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上;⑥有向线段就是向量,向量就是有向线段.其中假命题的个数为 .答案 4例2 如图所示,若四边形ABCD 是一个等腰梯形, AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知=a ,=b,=c,试用a 、b 、c 表示,,+.C D∵MN =MD ++AN ,∴=-21,=-,=21, ∴MN =21a -b -21c . +CN =+MN +CM +MN =2MN =a -2b -c .例3 设两个非零向量a 与b 不共线,(1)若=a +b ,=2a +8b ,=3(a -b ),求证:A 、B 、D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵=a +b ,=2a +8b ,=3(a -b ),∴=+=2a +8b +3(a -b )=2a +8b +3a -3b=5(a +b )=5.∴、共线,又∵它们有公共点B ,∴A 、B 、D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.例4 (14分)如图所示,在△ABO 中,=41, =21,AD 与BC 相交于点M ,设=a ,=b .试 用a 和b 表示向量.解 设OM =m a +n b , 则=-=m a +n b -a =(m -1)a +n b .=-=21-=-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得=t ,即(m -1)a +n b =t (-a +21b ). 4分 ∴(m -1)a +n b =-t a +21t b . ⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m -1=-2n . 即m +2n =1. ① 6分∴又∵CM =-=m a +n b -41a =(m -41)a +n b . =-=b -41a =-41a +b . 又∵C 、M 、B 三点共线,∴与共线. 10分∴存在实数t 1,使得=t 1,∴(m -41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m ,消去t 1得,4m +n =1 ② 12分由①②得m =71,n =73, ∴OM =71a +73b . 14分1.下列命题中真命题的个数为 .①若|a |=|b |,则a =b 或a =-b ;②若=,则A 、B 、C 、D 是一个平行四边形的四个顶点;③若a =b ,b =c ,则a =c ;④若a ∥b ,b ∥c ,则a ∥c . 答案 12.在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =31OB .DC 与OA 交于E ,设=a ,=b ,用a , b 表示向量,. 解 因为A 是BC 的中点,所以=21(+),即=2-=2a -b ; =-=-32=2a -b -32b =2a -35b . 3.若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t b ,31(a +b )三向量的终点在同一条直线上? 解 设=a ,=t b ,=31(a +b ), ∴=-=-32a +31b ,=-=t b -a . 要使A 、B 、C 三点共线,只需AC =λ即-32a +31b =λt b -λa a b∴有 ⎪⎪⎩⎪⎪⎨⎧=-=-t λλ3132,∴⎪⎪⎩⎪⎪⎨⎧==2132t λ ∴当t =21时,三向量终点在同一直线上. 4.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 的值.解 方法一 设e 1=BM ,e 2=, 则=+CM =-3e 2-e 1,=+=2e 1+e 2.=λ=-3λe 2-λe 1,因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使=μ=2μe 1+μe 2,∴=-=(λ+2μ)e 1+(3λ+μ)e 2, 另外=+=2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴=54,=53,∴AP ∶PM =4∶1. 方法二 设=λAM , ∵=21(+)=21+43, ∴=2λ+43λ. ∵B 、P 、N 三点共线,∴-=t (-),∴=(1+t )-t ∴⎪⎪⎩⎪⎪⎨⎧-=+=t t λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM =4∶1.一、填空题1.下列算式中正确的是 (填序号).①++=0 ②-= ③0²=0 ④λ(μa )=λ²μ²a 答案 ①③④2.(2008²全国Ⅰ理)在△ABC 中,=c ,=b ,若点D 满足=2,则= (用b ,c 表示). 答案 32b +31c11是 .答案 等腰梯形4.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若=a 1+b 2,且点P 落在第Ⅲ部分,则实数a ,b 满足a 0,b 0.(用“>”,“<”或“=”填空)答案 > <5.设=x +y ,且A 、B 、C 三点共线(该直线不过端点O ),则x +y = .答案 16.已知平面内有一点P 及一个△ABC ,若++=,则点P 在线段 上.答案 AC7.在△ABC 中,=a ,=b ,M 是CB 的中点,N 是AB 的中点,且CN 、AM 交于点P ,则可用a 、b 表示为 . 答案 -32a +31b 8.在△ABC 中,已知D 是AB 边上一点,若=2,=31+λ,则λ= . 答案 32 二、解答题9.如图所示,△ABC 中,=32,DE ∥BC 交AC 于E ,AM 是BC 边上中线,交DE 于N .设=a ,=b ,用a ,b 分别表示向量,,,,,. 解 ⎪⎭⎪⎬⎫=BC DE 32//⇒=32=32b . BC =AC -=b -a .由△ADE ∽△ABC ,得=32=32(b -a ). 由AM 是△ABC 的中线,DE ∥BC ,得=21DE =31(b -a ). 而且=+=a +21=a +21(b -a ) =21(a +b ). ⎪⎭⎪⎬⎫=∆∆ABM ADN 32⇒=32=31(a +b ). 10.如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,=32,=a ,=b . (1)用a 、b 表示向量、、、、;(2)求证:B 、E 、F 三点共线.(1)解 延长AD 到G ,使=21, 连接BG 、CG ,得到 ABGC , ∽AD =21=21(a +b ), =32=31(a +b ). =21=21b , =-=31(a +b )-a =31(b -2a ). =-=21b -a =21(b -2a ). (2)证明 由(1)可知=32BF ,所以B 、E 、F 三点共线. 11.已知:任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:=21(+). 证明 方法一 如图,∵E 、F 分别是AD 、BC 的中点,∴+=0,FB +=0,又∵+++=0, ∴=++ ① 同理=++ ② 由①+②得,2=++(+)+(+)=+.∴=21(+). 方法二 连结,,则=+DC ,=+AB ,∴=21(+) =21(+++) =21(+). 12.已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且=x ,=y , 求x 1+y1的值. 解 根据题意G 为三角形的重心,故AG =31(+AC ), =-=31(+)-x=(31-x )+31, =-=y - =y -31(+) =(y -31)-31, 由于MG 与GN 共线,根据共线向量基本定理知=λ⇒(31-x )+31 =λ⎥⎦⎤⎢⎣⎡--AB AC y 31)31(, ⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131y x λλ⇒3131--x =3131-y ⇒x +y -3xy =0两边同除以xy 得x 1+y1=3. §5.2 平面向量基本定理及坐标表示基础自测 1.已知平面向量a =(1,1),b =(1,-1),则向量21a -23b = . 答案 (-1,2) 2.(2008² 安徽理)在平行四边形ABCD 中,AC 为一条对角线,若=(2,4),=(1,3),则= . 答案 (-3,-5)3.若向量a =(1,1),b =(1,-1),c =(-2,1),则c = (用a ,b 表示).答案 -21a -23b 4.已知向量a =⎪⎭⎫ ⎝⎛x 2`1,8,b =(x ,1),其中x >0,若(a -2b )∥(2a +b ),则x 的值为 . 答案 45.设a =⎪⎭⎫ ⎝⎛43,sin x ,b =⎪⎭⎫ ⎝⎛x ,cos 2131,且a ∥b ,则锐角x 为 . 答案4π例1 设两个非零向量e 1和e 2不共线.(1)如果=e 1-e 2,=3e1+2e 2,=-8e 1-2e 2,求证:A 、C 、D 三点共线;121212(1)证明 =e 1-e 2,BC =3e 1+2e 2, CD =-8e 1-2e 2,=+=4e 1+e 2=-21(-8e 1-2e 2)=-21, ∴与共线, 又∵与有公共点C , ∴A 、C 、D 三点共线.(2)解 =+=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴与共线,从而存在实数λ使得=λ,即3e 1-2e 2=λ(2e 1-k e 2),由平面向量的基本定理,得⎩⎨⎧-=-=kλλ223,解之得λ=32,k =34. 例2 已知点A (1,0)、B (0,2)、C (-1,-2),求以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.解 设D 的坐标为(x ,y ).(1)若是 ,则由=DC 得(0,2)-(1,0)=(-1,-2)-(x ,y ),即(-1,2)=(-1-x ,-2-y ),∴⎩⎨⎧=---=--2211y x , ∴x =0,y =-4.∴D 点的坐标为(0,-4)(如图中的D 1).(2,则由=CB 得(x ,y )-(1,0)=(0,2)-(-1,-2),即(x -1,y )=(1,4).解得x =2,y =4.∴D 点坐标为(2,4)(如图中的D 2).(3,则由=得(0,2-(1,0)=(x ,y )-(-1,-2),即(-1,2)=(x +1,y +2).解得x =-2,y =0.∴D 点的坐标为(-2,0)(如图中的D 3).综上所述,以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标为(0,-4)或(2,4)或(-2,0). 例3 (14分)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).回答下列问题:(1)若(a +k c )∥(2b -a ),求实数k ;(2)设d =(x ,y )满足(d -c )∥(a +b )且|d -c |=1,求d .解 (1)∵(a +k c )∥(2b -a ),又a +k c =(3+4k ,2+k ),2b -a =(-5,2), 2分 ∴2³(3+4k )-(-5)³(2+k )=0, 4分 ∴k =-1316. 6分 (2)∵d -c =(x -4,y -1),a +b =(2,4),又(d -c )∥(a +b )且|d -c |=1,∴()()()()⎪⎩⎪⎨⎧=-+-=---1140124422y x y x , 10分 解得⎪⎪⎩⎪⎪⎨⎧+=+=5521554y x 或⎪⎪⎩⎪⎪⎨⎧-=-=5521554y x . 12分∴d =⎪⎪⎭⎫ ⎝⎛++55255520,或d =⎪⎪⎭⎫ ⎝⎛--55255520,. 14分1.如图所示,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM =c ,=d ,试用c ,d 表示,AD . 解 方法一 设AB =a ,AD =b ,则a =+=d +⎪⎭⎫ ⎝⎛-b 21 b =+=c +⎪⎭⎫ ⎝⎛-a 21 将②代入①得a =d +⎪⎭⎫ ⎝⎛-21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+a c 21 ⇒a =d 34-32c ,代入② 得b =c+⎪⎭⎫ ⎝⎛-21=⎪⎭⎫ ⎝⎛-c d 323434c -32d 即=34d-32c ,=34c -32d 方法二 设=a ,=b .因M ,N 分别为CD ,BC 的中点,所以=21b ,=21a , 因而⇒⎪⎪⎩⎪⎪⎨⎧+=+=b a d a b c 2121⎪⎪⎩⎪⎪⎨⎧-=-=)2(32)2(32d c b c d a , 即AB =32(2d -c ), AD =32(2c -d ). 2.已知A (-2,4)、B (3,-1)、C (-3,-4)且CM =3,=2,求点M 、N 及的坐标. 解 ∵A (-2,4)、B (3,-1)、C (-3,-4), ∴=(1,8),=(6,3),∴CM =3=(3,24),=2=(12,6). 设M (x ,y ),则有CM =(x +3,y +4),∴⎩⎨⎧=+=+24433y x ,∴⎩⎨⎧==200y x , ∴M 点的坐标为(0,20).同理可求得N 点坐标为(9,2),因此=(9,-18),故所求点M 、N 的坐标分别为(0,20)、(9,2),的坐标为(9,-18).3.已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且=31,=31. 求证:∥. 证明 设E 、F 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则依题意,得=(2,2),=(-2,3), =(4,-1).AE =31=⎪⎭⎫ ⎝⎛32,32,BF =31=⎪⎭⎫ ⎝⎛-1,32 =(x 1,y 1)-(-1,0)= ⎪⎭⎫ ⎝⎛32,32, =(x 2,y 2)-(3,-1)= ⎪⎭⎫ ⎝⎛-1,32.一、填空题1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则n m = . 答案 -21 2.设a 、b 是不共线的两个非零向量,已知=2a +p b ,BC =a +b ,CD =a -2b .若A 、B 、D 三点共线,则 p 的值为 .答案 -13.已知向量=(3,-2),=(-5,-1),则21= . 答案 ⎪⎭⎫ ⎝⎛-214, 4.(2007²北京文)已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λb ),则实数λ的值是. 答案 -3EF EF .AB AB的坐标为 .答案 ⎪⎭⎫ ⎝⎛272, 6.设0≤θ<2π,已知两个向量1=(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . 答案 327.(2008²全国Ⅱ文)设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ= .答案 28.(2008²菏泽模拟)已知向量m =(a -2,-2),n =(-2,b -2),m ∥n (a >0,b >0),则ab 的最小值是 .答案 16二、解答题9.已知A (-2,4),B (3,-1),C (-3,-4).设=a ,=b ,=c ,且CM =3c ,=-2b ,(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎨⎧-=+-=+-58356n m n m ,解得⎩⎨⎧-=-=11n m . 10.若a ,b 为非零向量且a ∥b ,λ1,λ2∈R ,且λ1λ2≠0.求证:λ1a +λ2b 与λ1a -λ2b 为共线向量.证明 设a =(x 1,y 1),b =(x 2,y 2).∵a ∥b ,b ≠0,a ≠0,∴存在实数m ,使得a =m b ,即a =(x 1,y 1)=(mx 2,my 2),∴λ1a +λ2b =((m λ1+λ2)x 2,(m λ1+λ2)y 2)=(m λ1+λ2)(x 2,y 2)同理λ1a -λ2b =(m λ1-λ2)(x 2,y 2),∴(λ1a +λ2b )∥(λ1a -λ2b )∥b , 而b ≠0,∴(λ1a +λ2b )∥(λ1a -λ2b ). 11.中,A (1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若=(3,5),求点C 的坐标;(2)当||=||时,求点P 的轨迹.解 (1)设点C 坐标为(x 0,y 0),又=+=(3,5)+(6,0)=(9,5),即(x 0-1,y 0-1)=(9,5),∴x 0=10,y 0=6,即点C (10,6).(2)由三角形相似,不难得出=2MP设P (x ,y ),则BP =-=(x -1,y -1)-(6,0)=(x -7,y -1),=AM +MC =21+3MP=21+3(-21) =3-=(3(x -1),3(y -1))-(6,0)=(3x -9,3y -3),∵||=||为菱形,∴AC ⊥BD ,∴⊥BP ,即(x -7,y -1)²(3x -9,3y -3)=0.(x -7)(3x -9)+(y -1)(3y -3)=0,∴x 2+y 2-10x -2y +22=0(y ≠1).∴(x -5)2+(y -1)2=4(y ≠1).故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y =1的两个交点.12.A (2,3),B (5,4),C (7,10),=+λ.当λ为何值时,(1)点P 在第一、三象限的角平分线上;(2)点P 到两坐标轴的距离相等?解 (1)由已知=(3,1),AC =(5,7),则+λ=(3,1)+λ(5,7)=(3+5λ,1+7λ).设P (x ,y ),则=(x -2,y -3),∴⎩⎨⎧+=-+=-λλ713532y x ,∴⎩⎨⎧+=+=λλ7455y x .∵点P 在第一、三象限的角平分线上,∴x =y ,即5+5λ=4+7λ,∴λ=21. (2)若点P 到两坐标轴的距离相等,则|x |=|y |,即|5+5λ|=|4+7λ|,∴λ=21或λ=-43.1.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为 .答案 565 2.在边长为1的正三角形ABC 中,设=a ,=c ,=b ,则a ²b +b ²c +c ²a = . 答案21 3.向量a =(cos15°,sin15°),b =(-sin15°,-cos15°),则|a -b |的值是 .答案 34.(2009²常州市武进区四校高三联考)已知向量a =(2,1),b =(3,λ) (λ>0),若(2a -b )⊥b ,则λ= .答案 35.(2008²浙江理)已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )²(b -c )=0,则|c |的最大值是 . 答案 2例1 已知向量a =⎪⎭⎫ ⎝⎛x x 23sin ,23cos b =⎪⎭⎫ ⎝⎛-2sin ,2cos x x 且x ∈⎥⎦⎤⎢⎣⎡-4,3ππ. (1)求a ²b 及|a +b |; (2)若f (x )=a ²b -|a +b |,求f (x )的最大值和最小值.解 (1)a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , a +b =⎪⎭⎫ ⎝⎛-+2sin 23sin 2cos 23cos x x ,x x(2)由(1)可得f (x )=cos2x -2cos x =2cos 2x -2cos x -1∴当cos x =21时,f (x )取得最小值为-23; 当cos x =1时,f (x )取得最大值为-1.例2 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)(1)证明 (a +b )²(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β),a -k b =(cos α-k cos β,sin α-k sin β), b a +k =,1)cos(22+-+αβk kb a k -=.)cos(212k k +--αβb a +k =b a k -,).cos(2)cos(2αβαβ--=-∴k k又k ≠0,∴cos(αβ-)=0.而0<α<β<π,∴β-α=2π. 例3 (14分)设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为3π,若向量2t e 1+7e 2与e 1+t e 2的夹 角为钝角,求实数t 的范围.解 由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得()()2121212·72·72e e e e e e e ++++<0, 3分 即(2t e 1+7e 2)²(e 1+t e 2)<0, 化简即得:2t 2+15t +7<0,t e 1 t t t解得-7<t <-21, 7分 当夹角为π时,也有(2te 1+7e 2)²(e 1+t e 2)<0,但此时夹角不是钝角,2t e 1+7e 2与e 1+t e 2反向. 9分设2t e 1+7e 2=λ(e 1+t e 2),λ<0,可求得⎪⎩⎪⎨⎧<==072λλλt t ,∴⎪⎩⎪⎨⎧-=-=21414t λ 12分∴所求实数t 的范围是⎪⎪⎭⎫ ⎝⎛--2147, ⎪⎪⎭⎫ ⎝⎛--21,214. 14分1.向量a =(cos23°,cos67°),向量b =(cos68°,cos22°).(1)求a ²b ;(2)若向量b 与向量m 共线,u =a +m ,求u 的模的最小值.解 (1)a ²b =cos23°²cos68°+cos67°²cos22°=cos23°²sin22°+sin23°²cos22°=sin45°=22. (2)由向量b 与向量m 共线,得m =λb (λ∈R ),u =a +m =a +λb=(cos23°+λcos68°,cos67°+λcos22°)=(cos23°+λsin22°,sin23°+λcos22°),|u |2=(cos23°+λsin22°)2+(sin23°+λcos22°)2 =λ2+2λ+1=222⎪⎪⎭⎫ ⎝⎛+λ +21, ∴当λ=-22时,|u |有最小值为22. 2.已知平面向量a =⎪⎪⎭⎫ ⎝⎛-23,21,b =(-3,-1). (1)证明:a ⊥b ;(2)若存在不同时为零的实数k 、t ,使x =a +(t 2-2)b ,y =-k a +t 2b ,且x ⊥y ,试把k 表示为t 的函数.(1)证明 a ²b =⎪⎪⎭⎫ ⎝⎛-23,21²()1,3-- =⎪⎭⎫ ⎝⎛-21³(-3)+23³(-1)=0, ∴a ⊥b .(2)解 ∵x ⊥y ,∴x ²y =0,即[a +(t 2-2)b ]²(-k a +t 2b )=0.展开得-k a 2+[t 2-k (t 2-2)]a ²b +t 2(t 2-2)b 2=0,∵a ²b =0,a 2=|a |2=1,b 2=|b |2=4,∴-k +4t 2(t 2-2)=0,∴k =f (t )=4t 2 (t 2-2).3.设a =(cos α,sin α),b =(cos β,sin β),且a 与b 具有关系|k a +b |=3|a -k b |(k >0).(1)用k 表示a ²b ;(2)求a ²b 的最小值,并求此时a 与b 的夹角.解 (1)∵|k a +b |=3|a -k b |,∴(k a +b )2=3(a -k b )2,且|a |=|b |=1,即k 2+1+2k a ²b =3(1+k 2-2k a ²b ),∴4k a ²b =k 2+1.∴a ²b =kk 412+(k >0). (2)由(1)知:∵k >0∴a ²b =kk k k 1··2·41414≥+ =21. ∴a ²b 的最小值为21(当且仅当k =1时等号成立) 设a 、b 的夹角为θ,此时cos θ=b a b a ·=21. 0≤θ≤π,∴θ=3π. 故a ²b 的最小值为21,此时向量a 与b 的夹角为3π.一、填空题 1.点O 是三角形ABC 所在平面内的一点,满足OA ²OB =OB ² OC =OC ²OA ,则点O 是△ABC 的 心.答案 垂2.若向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a ²b +b ²b 的值为 .答案 53.已知向量a ,b 满足|a |=1,|b |=4,且a ²b =2,则a 与b 的夹角为 .答案 3π 4.若a 与b -c 都是非零向量,则“a ²b =a ²c ”是“a ⊥(b -c )”的 条件.答案 充要5.已知a ,b 是非零向量,且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是 .答案 3π 6.(2009²成化高级中学高三期中)已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ²(b +c )= .答案 53- 7.(2008²天津理,14)如图所示,在平行四边形ABCD 中,=(1,2),=(-3,2),则²= .答案 38.(2008² 江西理,13)直角坐标平面内三点A (1,2)、B (3,-2)、C (9,7),若E 、F 为线段BC 的三等分点,则²= . 答案 22二、解答题9.已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°.(1)求证:(a -b )⊥c ;(2)若|k a +b +c |>1 (k ∈R ),求k 的取值范围.(1)证明 ∵(a -b )²c =a ²c -b ²c=|a |²|c |²cos120°-|b |²|c |²cos120°=0,∴(a -b )⊥c .(2)解 |k a +b +c |>1⇔|k a +b +c |2>1, ⇔k 2a 2+b 2+c 2+2k a ²b +2k a ²c +2b ²c >1. ∵|a |=|b |=|c |=1,且a 、b 、c 的夹角均为120°, ∴a 2=b 2=c 2=1,a ²b =b ²c =a ²c =-21, ∴k 2+1-2k >1,即k 2-2k >0,∴k >2或k <0.10.已知a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛32cos ,32sin ,34cos ,34sin θθθθb ,且θ∈⎥⎦⎤⎢⎣⎡π30,. (1)求ba b a +·的最值; (2)若|k a +b |=3|a -k b | (k ∈R ),求k 的取值范围.解 (1)a ²b =-sin34θ²sin 32θ+cos 34θ²cos 32θ=cos2θ, |a +b |2=|a |2+|b |2+2a ²b =2+2cos2θ=4cos 2θ.∵θ∈⎥⎦⎤⎢⎣⎡3,0π,∴cos θ∈⎥⎦⎤⎢⎣⎡1,21,∴|a +b |=2cos θ. ∴ba b a +·= θθcos 22cos =cos θ-θcos 21. 令t =cos θ,则21≤t ≤1,⎪⎭⎫ ⎝⎛-t t 21′=1+221t >0, ∴t -t 21在t ∈⎥⎦⎤⎢⎣⎡121,上为增函数. ∴-21≤t -t21≤21, 即所求式子的最大值为21,最小值为-21. (2)由题设可得|k a +b |2=3|a -k b |2,∴(k a +b )2=3(a -k b )2又|a |=|b |=1,a ²b =cos2θ,∴cos2θ=kk 412+. 由θ∈⎥⎦⎤⎢⎣⎡π30,,得-21≤cos2θ≤1. ∴-21≤kk 412+≤1.解得k ∈[2-3,2+3] {-1}. 11.设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.解 由|m |=1,|n |=1,夹角为60°,得m ²n =21. 则有|a |=|2m +n |=2)2(n m +=2244n n ·m m ++=7.|b |=2)32(m n -=229124m n m n +⋅-=7.而a ²b =(2m +n )²(2n -3m )=m ²n -6m 2+2n 2=-27, 设a 与b 的夹角为θ, 则cos θ=b a b a ··=727-=-21.故a ,b 夹角为120°. 12.已知向量a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-222323x sin ,x cos ,x sin ,x cos b ,x ∈⎥⎦⎤⎢⎣⎡20π,.若函数f (x )=a ²b -21λ|a +b |的最小值为-23,求实数λ的值. 解 ∵|a |=1,|b |=1,x ∈⎥⎦⎤⎢⎣⎡20π,, ∴a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , |a +b |=2)(b a +=222b b a a +⋅+=x 2cos 22+=2x cos =2cos x .∴f (x )=cos2x -λcos x =2cos 2x -λcos x -1 =224cos ⎪⎭⎫ ⎝⎛-λx -82λ-1,cos x ∈[0,1]. ①当λ<0时,取cos x =0,此时f (x )取得最小值,并且f (x )min =-1≠-23,不合题意. ②当0≤λ≤4时,取cos x =4λ, 此时f (x )取得最小值,并且f (x )min =-82λ-1=-23,解得λ=2. ③当λ>4时,取cos x =1,此时f (x )取得最小值,并且f (x )min =1-λ=-23, 解得λ=25,不符合λ>4舍去,∴λ=2. §5.4 正弦定理和余弦定理1.(2008²陕西理,3)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a = .答案 22.(2008²福建理,10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 3π或32π 3.下列判断中不正确的结论的序号是 .①△ABC 中,a =7,b =14,A =30°,有两解②△ABC 中,a =30,b =25,A =150°,有一解③△ABC 中,a =6,b =9,A =45°,有两解④△ABC 中,b =9,c =10,B =60°,无解答案 ①③④4.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为 .答案 1035.(2008²浙江理,13)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A = . 答案 33例1 在△ABC 中,已知a =3,b =2,B =45°,求A 、C 和c .解 ∵B =45°<90°且a sin B <b <a ,∴△ABC 有两解.由正弦定理得sin A =b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A =60°时,C =180°-(A +B )=75°,c =B C b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+. ②当A =120°时,C =180°-(A +B )=15°,c =B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A =60°,C =75°,c =226+或 A =120°,C =15°,c =226-. 例2 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2. (1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.解 (1)由余弦定理知:cos B =acb c a 2222-+, cos C =abc b a 2222-+.将上式代入C B cos cos =-ca b +2得: ac b c a 2222-+²2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cos B =ac b c a 2222-+=ac ac 2- =-21 ∵B 为三角形的内角,∴B =32π. (2)将b =13,a +c =4,B =32π代入 b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac =3. ∴S △ABC =21ac sin B =433. 例3 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc =0. (1)求角A 的大小;(2)若a =3,求bc 的最大值;(3)求cb C a --︒)30sin(的值. 解 (1)∵cos A =bca cb 2222-+=bc bc 2-=-21, 2分 又∵A ∈(0°,180°),∴A =120°. 4分(2)由a =3,得b 2+c 2=3-bc ,又∵b 2+c 2≥2bc (当且仅当c =b 时取等号),∴3-bc ≥2bc (当且仅当c =b 时取等号). 6分 即当且仅当c =b =1时,bc 取得最大值为1. 8分 (3)由正弦定理得:===C c B b A a sin sin sin 2R , ∴C R B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒ 10分 =CB C A sin sin )30sin(sin --︒ 11分 =CC C C sin )60sin()sin 23cos 21(23--︒- 12分 =C C C C sin 23cos 23)sin 43cos 43-- 13分 =21. 14分 例4 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A -B )=(a 2-b 2)sin (A +B ),判断三角形的形状.解 方法一 已知等式可化为a 2[sin (A -B )-sin (A +B )]=b 2[-sin (A +B )-sin(A -B )]∴2a 2cos A sin B =2b 2cos B sin A由正弦定理可知上式可化为:sin 2A cos A sin B =sin 2B cos B sin A∴sin A sin B (sin A cos A -sin B cos B )=0∴sin2A =sin2B ,由0<2A ,2B <2π得2A =2B 或2A =π-2B ,即A =B 或A =2π-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cos A sin B =2b 2sin A cos B由正、余弦定理,可得a 2b bc a c b 2222-+= b 2a ac b c a 2222-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.1.(1)△ABC 中,a =8,B =60°,C =75°,求b ;(2)△ABC 中,B =30°,b =4,c =8,求C 、A 、a .解 (1)由正弦定理得B b A a sin sin =. ∵B =60°,C =75°,∴A =45°, ∴b =︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sin C =430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C =90°.∴A =180°-(B +C )=60°,a =22b c -=43.2.已知△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,求tan C 的值.解 依题意得ab sin C =a 2+b 2-c 2+2ab ,由余弦定理知,a 2+b 2-c 2=2ab cos C .所以,ab sin C =2ab (1+cos C ), 即sin C =2+2cos C ,所以2sin 2C cos 2C =4cos 22C 化简得:tan2C =2.从而tan C =2tan 12tan22C C-=-34. 3.(2008²辽宁理,17)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =3π. (1)若△ABC 的面积等于3,求a 、b 的值;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以21ab sin C =3,所以ab =4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a . (2)由题意得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,A =2π,B =6π,a =334,b =332. 当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a 所以△ABC 的面积S =21ab sin C =332. 4.已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状.解 方法一 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去).∴cos B =21. ∵0<B <π,∴B =3π. ∵a ,b ,c 成等差数列,∴a +c =2b .∴cos B =acb c a 2222-+=ac c a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac =0,解得a =c .又∵B =3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去). ∴cos B =21,∵0<B <π,∴B =3π, ∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B =2sin 3π=3. ∴sin A +sin ⎪⎭⎫ ⎝⎛-A 32π=3, ∴sin A +sin A cos 32π-cos A sin 32π=3. 化简得23sin A +23cos A =3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A +6π=2π,∴A =3π, ∴C =3π,∴△ABC 为等边三角形.一、填空题1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 一定是 三角形.答案 等腰 2.在△ABC 中,A =120°,AB =5,BC =7,则C B sin sin 的值为 . 答案 53 3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =41(b 2+c 2-a 2),则A = . 答案 45°4.在△ABC 中,BC =2,B =3π,若△ABC 的面积为23,则tan C 为 . 答案 33 5.在△ABC 中,a 2-c 2+b 2=ab ,则C = .答案 60°6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C = .答案 45°或135° 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B = .答案 65π 8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 .答案 3或23二、解答题9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ).(1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状.(1)证明 因为a 2=b (b +c ),即a 2=b 2+bc ,所以在△ABC 中,由余弦定理可得, cos B =ac b c a 2222-+=ac bc c 22+=a c b 2+ =ab a 22=b a 2=BA sin 2sin , 所以sin A =sin2B ,故A =2B . (2)解 因为a =3b ,所以ba =3, 由a 2=b (b +c )可得c =2b , cos B =ac b c a 2222-+=22223443bb b b -+=23, 所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.10.(2008²全国Ⅱ理,17)在△ABC 中,cos B =-135,cos C =54. (1)求sin A 的值;(2)△ABC 的面积S △ABC =233,求BC 的长. 解 (1)由cos B =-135,得sin B =1312, 由cos C =54,得sin C =53. 所以sin A =sin(B +C )=sin B cos C +cos B sin C =6533. (2)由S △ABC =233,得21³AB ³AC ³sin A =233. 由(1)知sin A =6533,故AB ³AC =65. 又AC =C B AB sin sin ⨯=1320AB , 故1320AB 2=65,AB =213. 所以BC =C A AB sin sin ⨯=211. 11.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x -b =0 (a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7.(1)求角C ;(2)求a ,b 的值.解 (1)设x 1、x 2为方程ax 2-222b c -x -b =0的两根, 则x 1+x 2=a b c 222-,x 1²x 2=-ab . ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab 4=4. ∴a 2+b 2-c 2=ab . 又cos C =abc b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C =60°.(2)由S =21ab sin C =103,∴ab =40. ① 由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2³40³⎪⎭⎫ ⎝⎛+211. ∴a +b =13.又∵a >b ②∴由①②,得a =8,b =5.12.(2008²广东五校联考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 22B A +-cos2C =27. (1)求角C 的大小;(2)求△ABC 的面积.解 (1)∵A +B +C =180°,由4sin22B A +-cos2C =27, 得4cos 22C -cos2C =27, ∴4²2cos 1C +-(2cos 2C -1)=27, 整理,得4cos 2C -4cos C +1=0,解得cos C =21, ∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =21ab sin C =21³6³23=233.§5.5 正弦定理、余弦定理的应用1.在某次测量中,在A 处测得同一半平面方向的B 点的仰角是60°,C 点的俯角为70°,则∠BAC = . 答案 130°2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的大小关系为 .答案 α=β3.在△ABC 中,若(a +b +c )(a +b -c )=3ab ,且sin C =2sin A cos B ,则△ABC 是 三角形.答案 等边4.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC =120°,则A 、C 两地的距离为 km.答案 1075.线段AB 外有一点C ,∠ABC =60°,AB =200 km,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始 h 后,两车的距离最小.答案4370例1 要测量对岸A 、B 两点之间的距离,选取相距3 km 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A 、B 之间的距离.解 如图所示,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°.∴BC =︒︒60sin 75sin 3=226+. △ABC 中,由余弦定理,得AB 2=(3)2+(226+)2-2³3³226+³cos75° =3+2+3-3=5,∴AB =5(km).∴A 、B 之间的距离为5 km.例2 (14分)沿一条小路前进,从A 到B ,方位角(从正北方向顺时针转到AB 方向所成的角)是50°,距离是3 km ,从B 到C ,方位角是110°,距离是3 km ,从C 到D ,方位角是140°,距离是(9+33)km.试画出示意图,并计算出从A 到D 的方位角和距离(结果保留根号).解 示意图如图所示, 3分连接AC ,在△ABC 中,∠ABC =50°+(180°-110°)=120°,又AB =BC =3,∴∠BAC =∠BCA =30°. 5分由余弦定理可得AC =︒⋅-+120cos 222BC AB BC AB = )21(33299-⨯⨯⨯-+ =27=33(km). 8分在△ACD 中,∠ACD =360°-140°-(70°+30°)=120°,CD =33+9.由余弦定理得AD =︒⋅-+120222cos CD AC CD AC= )21()933(332)933(272-⨯+⨯⨯-++ =2629)(+(km). 10分 由正弦定理得sin ∠CAD =AD ACD sin CD ∠⋅ =2692923)933(+⨯+=22. 12分 ∴∠CAD =45°,于是AD 的方位角为50°+30°+45°=125°,所以,从A 到D 的方位角是125°,距离为2)62(9+km. 14分 例3 如图所示,已知半圆的直径AB =2,点C 在AB的延长线上,BC =1,点P 为半圆上的一个动点,以DC 为边作等边△PCD ,且点D 与圆心O 分别在PC的两侧,求四边形OPDC 面积的最大值.解 设∠POB =θ,四边形面积为y ,则在△POC 中,由余弦定理得PC 2=OP 2+OC 2-2OP ²OC cos θ=5-4cos θ.∴y =S △OPC +S △PCD =21³1³2sin θ+43(5-4cos θ) =2sin(θ-3π)+435. ∴当θ-3π=2π,即θ=65π时,y max =2+435. 所以四边形OPDC 面积的最大值为2+435.1.某观测站C 在A 城的南偏西20°的方向.由A 城出发的一条公路,走向是南偏东40°,在C 处测得公路上B 处有一人距C 为31千米正沿公路向A 城走去,走了20千米后到达D 处,此时CD 间的距离为21千米,问这人还要走多少千米才能到达A 城?解 设∠ACD =α,∠CDB =β.在△BCD 中,由余弦定理得cos β=CD BD CB CD BD ⋅-+2222 =21202312120222⨯⨯-+=-71, 则sin β=734, 而sin α=sin(β-60°)=sin βcos60°-cos βsin60°=734³21+23³71=1435, 在△ACD 中,由正弦定理得︒60sin 21=αsin AD , ∴AD =︒60sin sin 21α=23143521⨯=15(千米). 答 这个人再走15千米就可到达A 城.2.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β由正弦定理得BDC BC ∠sin =CBD CD ∠sin , 所以BC =CBD BDC CD ∠∠sin sin =)sin(sin s β+αβ⋅ 在Rt △ABC 中,AB =BC tan ∠ACB =)sin(sin tan βαβθ+s . 3.为了竖一块广告牌,要制造三角形支架.三角形支架如图所示,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米.为了使广告牌稳固,要求AC 的长度越短越好,求AC 最短为多少米?且当AC 最短时,BC 长度为多少米?解 设BC =a (a >1),AB =c ,AC =b ,b -c =21. c 2=a 2+b 2-2ab cos60°,将c =b -21代入得(b -21)2=a 2+b 2-ab , 化简得b (a -1)=a 2-41.由a >1,知a -1>0. b =1412--a a =14322)1(2-+-+-a a a =(a -1)+)1(43-a +2≥3+2, 当且仅当a -1=)1(43-a 时,取“=”号,即a =1+23时,b 有最小值2+3. 答 AC 最短为(2+3)米,此时,BC 长为(1+23)米.一、填空题1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°视角,则B 、C 的距离是 海里.答案 562.为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是 m.答案 20(1+33) 3.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.答案 3a4.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为 海里/小时.答案 2617 5.如图所示,在河岸AC 测量河的宽度BC ,图中所标的数据a ,b ,c ,α,β是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜的是 (填序号).①c 和α ②c 和b ③c 和β ④b 和α答案 ④6.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为 海里/小时.答案 20(6-2) 7.在△ABC 中,若∠C =60°,则c b a ++ac b += . 答案 18.(2008²苏州模拟)在△ABC 中,边a ,b ,c 所对角分别为A ,B ,C ,且a A sin =b B cos =c C cos ,则∠A = . 答案 2π 二、解答题 9.在△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)f (1)=0且B -C =3π,求角C 的大小; (2)若f (2)=0,求角C 的取值范围. 解 (1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0,∴b 2=4c 2,∴b =2c ,∴sin B =2sin C ,又B -C =3π.∴sin(C +3π)=2sin C , ∴sin C ²cos3π+cos C ²sin 3π=2sin C , ∴23sin C -23cos C =0,∴sin(C -6π)=0, 又∵-6π<C -6π<65π,∴C =6π. (2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0,∴a 2+b 2=2c 2,∴cos C =ab c b a 2222-+=ab c 22, 又2c 2=a 2+b 2≥2ab ,∴ab ≤c 2,∴cos C ≥21, 又∵C ∈(0,π),∴0<C ≤3π. 10.(2008²泰安模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.已知a =1,b =2,cos C =43. (1)求边c 的值;(2)求sin(C -A )的值.解(1)c 2=a 2+b 2-2ab cos C=12+22-2³1³2³43=2, ∴c =2.(2)∵cos C =43,∴sin C =47. 在△ABC 中,A a sin =C c sin ,即A sin 1=472.∴sin A =814,∵a <b ,∴A 为锐角,cos A =825. ∴sin(C -A )=sin C cos A -cos C sin A=47³825-43³814=1614. 11.如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧 AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在 中, , , ,则 的面积是.
(:).
在 中,角 所对的边分别为 , , ,则 .
(:).
在 中,若 ,则边的长等于.
(:).
中, ,三角形 面积 , .
三、简答题(共小题)
(:).
已知 中,内角 的对边分别为 ,现设向量 ,向量 ,且与共线.
()求 的值;
()若 ,且 的面积为 ,求 的值.
()求的大小;
()求的取值范围
(:).
已知向量 ∠=°,且 .()求 , ;
()求 与的夹角及 与的夹角.
(:).
已知向量 , ,当为何值时:
() ?
() ?
()与的夹角是钝角?
(:).
已知 ,且 .
()若 ,求与的夹角;
()若,求的值.
(:).
已知分别为三个内角的对边,.
()求;
()若,的面积为,求.
(:).
设锐角的内角的对边分别为,.
直角三角形
等腰直角三角形
等腰三角形或直角三角形
(:).
在 中,若 , , ,则 的外接圆的直径为()
二、填空题(共小题)
(:).
若为 所在平面内的一点,且满足 则 的形状为.
(:).
如图,在 中, , , ,则 .
(:).
点是 所在平面上一点,且满足 ,则点是 的心.
(:).
在 中,角 所对的边分别是 ,已知点是边的中点,且 ,则角 .
高二寒假作业:平面向量与解三角形(一)
选用模版:选填答()
时间:满分:命卷人:宫兴涛审核人:考试日期:
一、选择题(共小题)
(:).
下,有 ;
②若 ,则对任一非零向量,有 ;
③若 , ,则 ;
④若 ,则与至少有一个为零向量;
⑤若 ,则 ,当且仅当 时成立.
(:).
与分别为 的边 上的中线,且 则等于( )
(:).
已知 ,其中 ,若 ,则 的值等于()
(:).
已知平面向量 ,且 ,则 ( )
(:).
设向量 满足 , ,则 ( )
(:).
在 中,根据下列条件解三角形,其中有两个解的是( )
(:).
在 中, 分别为角 所对的边,若 ,则 的形状是( )
等腰三角形