不等式练习题
不等式练习题
不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。
2. 已知x > 3,求证:x^2 > 9。
3. 已知0 < x < 1,求证:x^3 < x。
4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。
5. 已知|x| > |y|,求证:x^2 > y^2。
二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。
2. 解不等式:5 2(x 3) ≤ 3x 1。
3. 解不等式:2(x 1) 3(x + 2) > 7。
4. 解不等式:4 3(x 2) ≥ 2x + 5。
5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。
三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。
2. 解不等式:2x^2 3x 2 < 0。
3. 解不等式:x^2 4x + 4 ≤ 0。
4. 解不等式:3x^2 + 4x 4 > 0。
5. 解不等式:x^2 + 5x 6 < 0。
四、分式不等式1. 解不等式:x / (x 1) > 2。
2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。
3. 解不等式:(x 1) / (x + 1) < 0。
4. 解不等式:(2x + 3) / (x 4) ≥ 1。
5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。
五、含绝对值的不等式1. 解不等式:|x 2| > 3。
2. 解不等式:|2x + 1| ≤ 5。
3. 解不等式:|3x 4| < 2。
4. 解不等式:|x + 3| |x 2| > 1。
5. 解不等式:|x 5| + |x + 1| < 6。
六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。
100道不等式练习题
3
8abc(
1 a2
) 1
11: a,b, c 0, pro :
(a b)2 (a b)2
(a c)(b c) a2 b2 c2
由柯西 : LHS (a b)2 (b c)2 (c a)2 (a c)(b c) (b a)(c a) (c b)(a b)
ab c 1 1 1 1 1 1 1 c 1 1 1
1 ab 1 c
1 ab (1 c)2 1 2c c2 1 ab (1 c)2 ab 2 c
20 : x, y, z 0; pro : x y yz z x 1 引理 : 0 x, y 1 x y x
27
(4 xy)(4 xy)( x
y)2
27 x2 [
y2
10xy ]3
4( x 2
xy
y2 )3
16
16
3
8 : a,b, c 0, a b c 3, pro : 1 1 1 1 ab a 1 bc b 1 ca c 1
(a x 1)(b y 1) (a x 1)(b y 1)(c z 1)
(a a2
b)2 b2 c2
12
:
a,b, c
0;
pro
:
1 a
1 b
1 c
a
9 b
c
4(
a
1
) b
两边乘以(a
不等式练习题及答案
1.设M ={x |x 2-x ≤0},N ={x |1x ≤1},则M ∩N =( B ) A .∅ B .{1} C .{x |0<x ≤1} D .{x |x ≥1} 2.不等式组îïíïìx -1>a2x -4<2a 有解,则实数a 的取值范围是( A ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1) D .(-∞,-3)∪(1,+∞) 3.已知a 1、a 2∈(0,1).记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( B ) A .M <N B .M >N C .M =ND .不确定.不确定4.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( D ) A .(0,5π6) B .(-π6,5π6) C .(0,π) D .(-π6,π)5.若不等式ax 2+bx +c >0的解集是(-4,1),则不等式b (x 2-1)+a (x +3)+c >0的解集为( A ) A .(-43,1) B .(-∞,1)∪(43,+∞) C .(-1,4) D .(-∞,-2)∪(1,+∞) 6.(2012·洛阳调研)若不等式x 2+ax +1≥0对一切x ∈(0,12]成立,则a 的最小值为( C ) A .0 B .-2 C .-52D .-3 7.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( A )f (5)>0 A .(-235,+∞) B .[-235,1] C .(1,+∞) D .(-∞,-235] 8.(2012·贵阳质检)对于在区间[a ,b ]上有意义的两个函数m (x )与n (x ),如果对于区间[a ,b ]中的任意x 均有|m (x )-n (x )|≤1,则称m (x )与n (x )在[a ,b ]上是“密切函数”,[a ,b ]称为“密切区间”,若函数m (x )=x 2-3x +4与n (x )=2x -3在区间[a ,b ]上是“密切函数”,则b -a 的最大值为_____ 1 ___.x ∈[2,3] 9.(2012·上海交大附中月考)不等式(x +2)x 2-9≤0的解集为__x ≤-3或x =3.______. 10.若不等式-4<2x -3<4与不等式x 2+px +q <0的解集相同,则p q =_127_______. 11.设函数f (x )=ax +b (0≤x ≤1),则“a +2b >0”是“f (x )>0在[0,1]上恒成立”的____“必要但不充分____条件.(填“充分但不必要”,“必要但不充分”,“充要”或“既不充分也不必要”) 12、已知31,11£-££+£-y x y x ,求y x -3的取值范围。
完整版)解不等式组计算专项练习60题(有答案)
完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
(完整版)不等式练习及答案汇总
一.选择题(共2小题)1.若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a2.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是.4.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).6.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B 种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.8.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?9.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.10.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?12.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?13.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案与试题解析一.选择题(共2小题)1.(2010春•邹城市校级期末)若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.2.(2013春•蚌埠期中)若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x ≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.4.(2016春•谷城县期末)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.6.(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.7.(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.8.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【分析】(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;(3)分别计算出相应方案,比较即可.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.9.(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.10.(2015•淄博模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.11.(2012•绥化)在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?【分析】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【解答】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所.则,解得由①的a≤3,由②得a≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.12.(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.13.(2016•宿州二模)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a的值为8,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)=12800,解得:a=8,故采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.。
不等式习题练习
不等式习题练习1、若x/y>0,则xy____0;2、代数式(6-3x)/5的值不大于0,则x=_________。
3、不等式13-3x>0的整数解为____________________________。
4、若|x-y|=y-x,则x_____y。
5、若x不等以y,则x^2+|y|_______0。
-3—4x<06、不等式组的解集为________________________3-2x<07、1.若|a|>-a,则a的取值范围是( ).(A)a>0; (B)a≥0; (C)a<0; (D)自然数.8、2.不等式23>7+5x的正整数解的个数是( ).(A) 1个;(B)无数个;(C)3个;(D)4个.9、4.无论x取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2 ≥0.10、解不等式。
(1)x/3-0.5*(x-1)>=1 (2) (1-2x)/3>x-14(x-1)<3x-411、x取什么值时,代数式(1-5x)/2的值不大于代数式【(3-2x)/3】-4的值。
12、k取何值时,2x-3k=5(x-k)+1的解是非负整数解。
13、不等式2x<1/3 的解集是________;14、.一个三角形的三边长分别是3,1-2m,8,则m的取值范围是________.15、若不等式(3m-2)x<7 的解集为x>-1/3,则m的值为________.x<m+116、若不等式组无解,则m的取值范围是________.x>2m-117、如果不等式(m-2)x>m-2的解集为x<1,那么( )A.m/2 B.m>2 C.m<2 D.m为任意有理数18、如果方程(a-b)x=|a-b|,有唯一解x=-1,则()A.a-bB.a/bC.a>bD.a<b19、已知满足不等式5-3x<=1的最小正整数是关于x的方程(a+9)x=4(x+1)的解,求代数式的值.(12分)20、某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)21、某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)2x-1>4x+522、已知不等式组无解,则m的取值范围是x>m23、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?24、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?25、学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票。
不等式练习及答案汇总
一.选择题(共2小题)1.若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a2.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是.4.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).6.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B 种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.8.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?9.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.10.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?12.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?13.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案与试题解析一.选择题(共2小题)1.(2010春•邹城市校级期末)若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.2.(2013春•蚌埠期中)若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x ≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.4.(2016春•谷城县期末)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.6.(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.7.(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.8.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【分析】(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;(3)分别计算出相应方案,比较即可.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.9.(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.10.(2015•淄博模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.11.(2012•绥化)在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?【分析】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【解答】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所.则,解得由①的a≤3,由②得a≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.12.(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.13.(2016•宿州二模)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a的值为8,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)=12800,解得:a=8,故采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.。
不等式专项练习题200
30.
5 1 x2 x4 2 2
31.
x2 x5 2 3
32.
1 x 2x 1 2 3
33.
3x 1 2x 0 2
34.
1 x 1 2x 3 7
35.
2 x x 1 5 10
36.
x4 x 1 2 3
不等式专项练习 200 题(朱韬老师分享) 37.
3 x x 1 92. 5 4 x 3 x
2 x 3 x 1 93. 1 x 1 4
2 x 4 x 1 94. x 1 2 x 2
x 2 0 95. x 1 1 x 2
3 x 2 x 8 103. x x 1 3 2
x 3 2x 5 104. 1 3 1 x 2 2
不等式专项练习 200 题(朱韬老师分享)
3 x 2 x 4 105. x 1 x 0 2 3
11. 1 x 2 x 3
12. 2 x 1 4 x 12
13. 2 x 2 3 x 4
14. 3老师分享) 15. 3 x 2 4 2 x 16. 3 x 4 6 2 x 2
5 3 x 4 2 2 x 3 1
3 x 2 2 x 1 85. 4 x 3 3 x 2
2 x 4 0 86. 1 x 8 2 0 2
87.
2 x 1 2 3 x 3 x x 1
不等式专项练习 200 题(朱韬老师分享) 一、解不等式 1. 3x+2>﹣1 2. 3 x 12
解不等式组计算专项练习60题(有答案)
解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。
3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。
4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。
5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。
6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。
7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。
9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。
10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。
11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。
12.删除此段。
13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。
14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。
15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。
基本不等式练习题
基本不等式练习题一、选择题1. 若a、b均为正数,则下列不等式中正确的是()A. (a+b)/2 ≥ √(ab)B. (a+b)/2 ≤ √(ab)C. a^2 + b^2 ≥ 2abD. a^2 + b^2 ≤ 2ab2. 已知x > 0,则下列不等式中正确的是()A. x + 1/x ≥ 2B. x + 1/x ≤ 2C. x 1/x ≥ 0D. x 1/x ≤ 03. 若a、b、c均为正数,且a+b+c=1,则下列不等式中正确的是()A. a^2 + b^2 + c^2 ≥ 1/3B. a^2 + b^2 + c^2 ≤ 1/3C. a^3 + b^3 + c^3 ≥ 1/3D. a^3 + b^3 + c^3 ≤ 1/3二、填空题1. 若a、b均为正数,且a+b=1,则a^2 + b^2 的取值范围是______。
2. 已知x > 0,则x + 1/x 的最小值是______。
3. 若a、b、c均为正数,且a+b+c=abc,则a+b+c 的最小值是______。
三、解答题1. 设x、y均为正数,证明:x^2 + y^2 ≥ 2xy。
2. 已知a、b均为正数,且a+b=1,求证:(a^2 + b^2) / (a + b) ≥ 1/2。
3. 设x、y、z均为正数,证明:(x+y+z) / (1/x + 1/y + 1/z)≤ (x^2 + y^2 + z^2) / (x + y + z)。
4. 已知a、b、c均为正数,且a+b+c=3,求证:a^2 + b^2 + c^2 ≥ 3。
5. 设x、y均为实数,证明:(x+y)^2 ≤ 2(x^2 + y^2)。
四、应用题1. 在一个矩形中,长比宽大2厘米,如果矩形的周长不超过20厘米,求矩形面积的最大值。
2. 某企业生产两种产品A和B,生产每吨A产品可获利1000元,生产每吨B产品可获利1500元。
若企业每月的生产能力为生产A产品10吨和B产品8吨,且每月的总利润不少于12000元,求该企业每月生产A、B产品的最佳利润分配方案。
不等式练习题及答案解析
基本不等式练习题一、选择题1.下列各式,能用基本不等式直接求得最值的是( C )A .x +12xB .x 2-1+1x 2-1C .2x +2-x D .x (1-x )2.函数y =3x 2+6x 2+1的最小值是( D )A .32-3B .-3C .6 2D .62-3解析: y =3(x 2+2x 2+1)=3(x 2+1+2x 2+1-1)≥3(22-1)=62-3.3.已知m 、n ∈R ,mn =100,则m 2+n 2的最小值是( A )A .200B .100C .50D .20解析:选A.m 2+n 2≥2mn =200,当且仅当m =n 时等号成立. 4.给出下面四个推导过程:①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·ab=2;②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;③∵a ∈R ,a ≠0,∴4a +a ≥24a·a =4;w w w .x k b 1.c o m④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x )]≤-2(-x y )(-yx)=-2.其中正确的推导过程为( D )A .①②B .②③C .③④D .①④ 解析:选D.从基本不等式成立的条件考虑.①∵a ,b ∈(0,+∞),∴b a ,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x ,y ∈(0,+∞),但当x ∈(0,1)时,lg x 是负数,y ∈(0,1)时,lg y 是负数,∴②的推导过程是错误的;③∵a ∈R ,不符合基本不等式的条件, ∴4a +a ≥24a·a =4是错误的; ④由xy <0得x y ,y x 均为负数,但在推导过程中将全体x y +y x 提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a >0,b >0,则1a +1b+2ab 的最小值是( C )A .2B .2 2C .4D .5解析:选C.∵1a +1b +2ab ≥2ab +2ab ≥22×2=4.当且仅当⎩⎨⎧a =b ab =1时,等号成立,即a =b =1时,不等式取得最小值4.6.已知x 、y 均为正数,xy =8x +2y ,则xy 有( C )A .最大值64B .最大值164C .最小值64D .最小值164解析:选C.∵x 、y 均为正数,∴xy =8x +2y ≥28x ·2y =8xy ,当且仅当8x =2y 时等号成立.∴xy ≥64.7.若xy >0,则对 x y +yx说法正确的是( B )A .有最大值-2B .有最小值2C .无最大值和最小值D .无法确定8.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是( A )A .400B .100C .40D .20 9.在下列各函数中,最小值等于2的函数是( D ) A .y =x +1xB .y =cosx +1cosx ⎝ ⎛⎭⎪⎫0<x<π2C .y =x2+3x2+2D .24-+=x xee y [解析] x<0时,y =x +1x ≤-2,故A 错;∵0<x<π2,∴0<cosx<1,∴y =cosx +1cosx ≥2中等号不成立,故B 错;∵x2+2≥2,∴y =x2+2+1x2+2≥2中等号也取不到,故C 错∴选D.10.已知正项等比数列{an}满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得nm a a =4 a 1,则1m+4n 的最小值为( A ) A.32B.53C.256D .不存在[解析] 由已知an>0,a7=a6+2a5,设{an}的公比为q ,则a6q =a6+2a6q ,∴q2-q -2=0,∵q>0,∴q =2,∵aman =4a1,∴a12·qm+n -2=16a12,∴m +n -2=4, ∴m +n =6,∴1m +4n =16(m +n)⎝ ⎛⎭⎪⎫1m +4n =16⎣⎢⎡⎦⎥⎤5+n m +4m n ≥16⎝ ⎛⎭⎪⎫5+2n m ·4m n =32, 等号在n m =4mn,即n =2m =4时成立.11. “a=14”是“对任意的正数x ,均有x +ax ≥1”的( A )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[解析] ∵a =14,x>0时,x +ax ≥2x·a x =1,等号在x =12时成立, 又a =4时,x +a x =x +4x≥2x·4x =4也满足x +ax≥1,故选A. 12.设a ,b ∈R ,则“a+b =1”是“4ab≤1”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不是充分条件也不是必要条件[解析] a ,b 中有一个不是正数时,若a +b =1,显然有4ab≤1成立,a ,b 都是正数时,由1=a +b≥2ab 得4ab≤1成立,故a +b =1⇒4ab≤1,但当4ab≤1成立时,未必有a +b =1,如a =-5,b =1满足4ab≤1,但-5+1≠1,故选A.13.若a>0,b>0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b ,则α+β的最小值为( D )A .2B .3C .4D .5[解析] ∵12为a 、b 的等差中项,∴a +b =12×2=1.a +1a +b +1b ⇒1+1a +1b =1+a +b ab =1+1ab, ∵ab ≤a +b 2,∴ab≤a +b 24=14.∴原式≥1+4.∴α+β的最小值为5.故选D.二、填空题1.函数y =x +1x +1(x ≥0)的最小值为____1____.2.若x >0,y >0,且x +4y =1,则xy 有最___大_____值,其值为___116_____.解析:1=x +4y ≥2x ·4y =4xy ,∴xy ≤116.3.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为___3_____.解析:∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案:34.已知x ≥2,则当x =_2___时,x +4x有最小值__4__.5.已知t>0,则函数y =t2-4t +1t 的最小值为__-2_____.[解析] y =t2-4t +1t =t +1t -4因为t>0,y =t +1t-4≥2t·1t -4=-2.,等号在t =1t,即t =1时成立.6.已知正数a ,b ,c 满足:a +2b +c =1则1a +1b +1c 的最小值为 [答案] [解析]1a +1b +1c =a +2b +c a +a +2b +c b +a +2b +c c =⎝ ⎛⎭⎪⎫2b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +2b c +4≥22+2+22+4=6+42,等号在2b a =a b ,c a =a c ,c b =2b c 同时成立时成立,即a =c =2b =1-22时等号成立.7.已知x>0,y>0,lg2x +lg8y =lg2,则xy 的最大值是____112____.[解析] ∵lg2x +lg8y =lg2,∴2x·8y =2,即2x +3y =2,∴x +3y =1,∴xy =13x·(3y)≤13·⎝⎛⎭⎫x +3y 22=112,等号在x =3y ,即x =12,y =16时成立. 三、解答题1.已知f (x )=12x+4x .(1)当x >0时,求f (x )的最小值; (2)当x <0 时,求f (x )的最大值.解:(1)∵x >0,∴12x ,4x >0. ∴12x +4x ≥212x ·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,f (x )的最小值为8 3.(2)∵x <0,∴-x >0.则-f (x )=12-x +(-4x )≥212-x ·(-4x )=83,当且仅当12-x=-4x 时,即x =-3时取等号.∴当x <0时,f (x )的最大值为-8 3.2.(1)设x >-1,求函数y =x +4x +1+6的最小值;(2)求函数y =x 2+8x -1(x >1)的最值.解:(1)∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2 (x +1)·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴x =1时,函数的最小值是9.(2)y =x 2+8x -1=x 2-1+9x -1=(x +1)+9x -1=(x -1)+9x -1+2.∵x >1,∴x -1>0.∴(x -1)+9x -1+2≥2(x -1)·9x -1+2=8.当且仅当x -1=9x -1,即x =4时等号成立,∴y 有最小值8.3.已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:(1a -1)·(1b -1)·(1c-1)≥8.证明:∵a ,b ,c ∈(0,+∞),a +b +c =1,∴1a -1=1-a a =b +c a =b a +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c ,以上三个不等式两边分别相乘得 (1a -1)(1b -1)(1c-1)≥8. 当且仅当a =b =c 时取等号.4.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x 米,则宽为200x米.总造价f (x )=400×(2x +2×200x )+100×200x+60×200=800×(x +225x )+12000≥1600x ·225x+12000=36000(元)当且仅当x =225x(x >0),即x =15时等号成立.。
不等式练习题(含答案)
第九章 不等式与不等式组9.1 不等式1.不等式x ≥–1的解在数轴上表示为 A . B .C .D .2.“x 的2倍与3的差不大于8”列出的不等式是 A .238x -≤ B .238x -≥C .238x -<D .238x ->3.下列不等式中是一元一次不等式的是 ①2x –1>1;②3+12x <0;③x ≤2.4;④1x <5;⑤1>–2;⑥3x–1<0. A .2个 B .3个C .4个D .5个4.用不等式表示“x 的2倍与3的和大于10”是___________. 5.若1123x ->-,则x ___________23. 6.一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x 应满足的不等式为____________. 7.用适当的不等式表示下列不等关系: (1)x 减去6大于12; (2)x 的2倍与5的差是负数; (3)x 的3倍与4的和是非负数; (4)y 的5倍与9的差不大于1-;8.用“>”或“<”填空:(1)如果a–b<c–b,那么a________c;(2)如果3a>3b,那么a________b;(3)如果–a<–b,那么a________b;(4)如果2a+1<2b+1,那么a________b. 9.把下列不等式化为“x>a”或“x<a”的形式:(1)x+6>5;(2)3x>2x+2;(3)–2x+1<x+7;(4)–22x-<14x+.10.下列说法中,正确的是A.x=2是不等式3x>5的一个解B.x=2是不等式3x>5的唯一解C.x=2是不等式3x>5的解集D.x=2不是不等式3x>5的解11.用不等式表示图中的解集,其中正确的是A .x >–3B .x <–3C .x ≥–3D .x ≤–312.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是A .x <2B .x >–2C .当a >0时,x <2D .当a >0时,x <2;当a <0时,x >213.不等式y +3>4变形为y >1,这是根据不等式的性质__________,不等式两边同时加上__________. 14.若a <b ,则a +c __________b +c ;,若mx >my ,且x >y 成立,则m __________0;若5m –7b >5n –7b ,则m __________n .15.如果不等式(a –3)x <b 的解集是x <3ba ,那么a 的取值范围是________. 16.阅读下面解题过程,再解题.已知a >b ,试比较–2019a +1与–2019b +1的大小. 解:因为a >b ,① 所以–2019a >–2019b ,② 故–2019a +1>–2019b +1.③问:(1)上述解题过程中,从第______步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.17.不等式的解集中是否一定有无限多个数?不等式|x |≤0、x 2<0的解集是什么?不等式x 2>0和x 2+4>0的解集分别又是什么?18.(2018·广西)若m >n ,则下列不等式正确的是A .m –2<n –2B .4m >4n C .6m <6n D .–8m >–8n19.(2018·宿迁)若a <b ,则下列结论不一定成立的是A .a –1<b –1B .2a <2bC .–3a >–3b D .a 2<b 21.【答案】A【解析】不等式x ≥–1的解在数轴上表示为,故选A .2.【答案】A【解析】根据题意,得2x –3≤8.故选A . 3.【答案】C【解析】①符合一元一次不等式的定义,故①正确; ②符合一元一次不等式的定义,故②正确; ③符合一元一次不等式的定义,故③正确; ④1x是分式,故此不等式不是一元一次不等式,故④错误; ⑤此不等式不含未知数,不是一元一次不等式,故⑤错误;⑥符合一元一次不等式的定义,故⑥正确;故选C.4.【答案】2x+3>10【解析】∵x的2倍为2x,∴x的2倍与3的和大于10可表示为:2x+3>10.故答案为:2x+3>10.5.【答案】<【解析】12-x>13-两边都乘以−2得:x<23.故答案为:<.6.【答案】2(x+50)≥280【解析】∵一个长方形的长为x米,宽为50米,∴周长为2(x+50)米,∴周长不小于280米可表示为2(x+50)≥280,故答案为2(x+50)≥280.7.【解析】(1)由题意可得:x–6>12;(2)由题意可得:2x–5<0;(3)由题意可得:3x+4≥0;(4)由题意可得:5y–9≤–1.8.【解析】(1)由a–b<c–b得,a<c;(2)由3a>3b,得a>b;(3)由–a<–b,得a>b;(4)由2a+1<2b+1,得2a<2b,∴a<b.故答案为:(1)<;(2)>;(3)>;(4)<.9.【解析】(1)不等式两边同时减去6,得x+6–6>5–6,解得x>–1.(2)不等式两边同时减去2x,得3x–2x>2x+2–2x,解得x>2.(3)不等式两边同时减去(x+1),得–2x+1–(x+1)<x+7–(x+1),–3x<6,不等式两边同时除以–3,得x>–2.(4)不等式两边同时乘4,得–2(x–2)<x+1,整理得–2x+4<x+1,不等式两边同时减去(x+4),得–2x+4–(x+4)<x+1–(x+4),整理得–3x<–3,不等式两边同时除以–3,得x>1.10.【答案】A【解析】A.x=2是不等式3x>5的一个解,正确;B.不等式3x>5的解有无数个,则B错误;C.x=2是不等式3x>5的解,则C错误;D.x=2是不等式3x>5的解,则D错误,故选A.11.【答案】C【解析】由数轴知不等式的解集为x≥–3,故选C.12.【答案】D【解析】因为a的符号不确定,所以要分类讨论,当a>0时,x<2;当a<0时,x>2,故选D. 13.【答案】1;–3【解析】不等式y+3>4变形为y>1,这是根据不等式的性质1,不等式两边同时减去3,即加上–3,不等号的方向不变.故答案是:1;–3.14.【答案】<;>;>【解析】(1)若a<b,则a+c<b+c;(2)若mx>my,且x>y成立,则m>0;(3)若5m–7b>5n–7b,则m>n.故答案是:<;>;>.15.【答案】a>3【解析】因为不等号没有改变方向,所以a–3>0,则a>3,故答案为a>3.16.【解析】(2)②;(2)错误地运用了不等式的基本性质3,即不等式两边都乘以同一个负数,不等号的方向没有改变;(3)因为a>b,所以–2019a<–2019b,故–2019a+1<–2019b+1.17.【解析】不等式的解集中不一定有无数多个数.|x|≤0的解集是x=0,x2<0无解.x2>0的解集为x>0或x<0,x2+4>0的解集为一切实数.18.【答案】BC、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以–8,得:–8m<–8n,此选项错误;故选B.19.【答案】D。
不等式的基本性质练习题
不等式的基本性质一、选择题(本大题共13小题,共52分)1.若a>b,则下列式子正确的是()A.-0.5a>-0.5bB.0.5a>0.5bC.a+c<b+cD.a-c<b-c2.若a>b,则下列不等式中错误的是()A.-a5<−b5B.-2a>-2bC.a-2>b-2D.-(-a)>-(-b)3.下列四个不等式:(1)ac>bc;(2)-ma<mb;(3)ac2>bc2;(4)ab>1,一定能推出a>b的有()A.1个B.2个C.3个D.4个4.已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2B.c-a<c-bC.a-3c<b-3cD.ac <bc5.若a>b,则下列不等式一定成立的是()A.a-b<0B.a3<b3C.1-a<1-bD.-1+a<-1+b6.若a>b,那么下面关系一定成立的是()A.ac>bcB.ac2>bc2C.a-c>b-cD.a|c|>b|c|7.若a<b,则下列不等式变形错误的是()A.a+x<b+xB.3-a<3-bC.2a-1<2b-1D.a2-b2<08.下列变形中不正确的是()A.由a>b,得b<aB.由-a<-b,得b<aC.由-3x>a,得x>-a3D.由-x3>y,得x<-3y9.若x<y,则下列不等式中成立的是()A.2+x>2+yB.2x>2yC.2-x>2-yD.-2x<-2y10.若∣a|a=-1,则a只能是()A.a≤-1B.a<0C.a≥-1D.a≤011.如果a、b表示两个负数,且a<b,则()A.a b >1B.ab<1 C.1a<1bD.ab<112.若-a2<-a3,则a一定满足是()A.a>0B.a<0C.a≥0D.a≤013.当0<x<1时,x2、x、1x的大小顺序是()A.x2<x<1x B.1x<x<x2 C.1x<x2<x D.x<x2<1x二、填空题(本大题共7小题,共21分)14.当x <a <0时,x 2 ______ ax (填>,<,=)15.已知:x ≤1,含x 的代数式A=3-2x ,那么A 的值的范围是 ______ .16.若a >b ,则2-13a ______ 2-13b (填“<”或“>”).17.如果7x <4时,那么7x -3 ______ 1.(填“>”,“=”,或“<”).18.若a <b <0;则|a | ______ |b |,-a ______ -b .19.用不等号填空,并说明是根据不等式的哪一条性质:(1)若x +2>5,则x ______ 3,根据不等式的性质 ______ ;(2)若−34x <-1,则x ______ 43,根据不等式的性质 ______ .20.若a <b ,用“>”号或“<”号填空:-1+2a ______ -1+2b ,6-a ______ 6-b .三、计算题(本大题共1小题,共6.0分)21.根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式.(1)x -1<5.(2)4x -1≥3.(3)−12x +1≥4.(4)-4x <-10.四、解答题(本大题共2小题,共21分)22.根据不等式的性质,将下列不等式化成“x >a ”或“x <a ”的形式.(1)10x -1>7x ;(2)-12x >-1.23.【提出问题】已知x -y =2,且x >1,y <0,试确定x +y 的取值范围.【分析问题】先根据已知条件用一个量如y 取表示另一个量如x ,然后根据题中已知量x 的取值范围,构建另一量y 的不等式,从而确定该量y 的取值范围,同法再确定另一未知量x 的取值范围,最后利用不等式性质即可获解.【解决问题】解:∵x -y =2,∴x =y +2.又∵x >1,∴y +2>1,∴y >-1.又∵y <0,∴-1<y <0,…①同理得1<x <2…②由①+②得-1+1<y +x <0+2.∴x +y 的取值范围是0<x +y <2.【尝试应用】已知x-y=-3,且x<-1,y>1,求x+y的取值范围.。
高中数学不等式练习题(附答案)
高中数学不等式练习题(附答案) 高中数学不等式练题一.选择题(共16小题)1.若a>b>0,且ab=1,则下列不等式成立的是()A。
a+log2(a+b)<2aB。
log2(a+b)<a+bC。
a+log2(a+b)<a+bD。
log2(a+b)<a+b<2a2.设x、y、z为正数,且2x=3y=5z,则()A。
2x<3y<5zB。
5z<2x<3yC。
3y<5z<2xD。
XXX<2x<5z3.若x+2y=k,且k<5,则x+2y的最大值为()A。
1B。
3C。
5D。
94.设x+y=1,且z=2x+y,则z的最小值是()A。
﹣15B。
﹣9C。
1D。
95.已知x+2y=3,且z=x+2y,则z的最大值是()A。
3B。
4C。
5D。
66.设x+y=1,且z=x+y,则z的最大值为()A。
1B。
2C。
3D。
47.设x+y=2,且x﹣y<3,则z=x﹣y的取值范围是()A。
[﹣3,3]B。
[﹣3,2]C。
[2,3]D。
[3,+∞)8.已知变量x,y满足约束条件x+y<1,则z=x﹣y的最小值为()A。
﹣3B。
﹣1C。
1D。
39.若变量x,y满足约束条件x+y<1,则目标函数z=﹣2x+y的最大值为()A。
1B。
﹣1C。
﹣2D。
﹣310.若a,b∈R,且ab>0,则a+b+2/(1/a+1/b)的最小值是()A。
1B。
2C。
3D。
411.已知0<c<1,a>b>1,下列不等式成立的是()A。
ca>cbB。
ac<bcC。
loga c>logb cD。
logb c>loga c的最小值是()12.已知x>0,y>0,lg2x+lg8y=lg2,则xy的最小值是()A。
2B。
4C。
8D。
1613.设a>2,b>2,且a+b=3,则a2+b2的最小值是()A。
6B。
8C。
9D。
1014.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是()A。
35B。
105C。
140D。
21015.设正实数x,y满足x>1,y>1,不等式(x+1/y)(y+1/x)≥XXX成立,则m的最小值为()A。
基本不等式练习题及答案
基本不等式练习题及答案1.函数y=x+x/(x>0)的值域是什么?正确答案:B.(0,+∞)解析:当x>0时,x/x=1,所以函数可以简化为y=2x。
因为x>0,所以函数的值域为(0,+∞)。
2.下列不等式中正确的个数是多少?正确答案:C.1解析:只有第一组不等式a^2+1>2a成立,其他两个不等式都不成立。
3.若a>0,b>0,且a+2b-2=0,则ab的最大值为多少?正确答案:B.1解析:将a+2b-2=0变形得到2b=2-a,所以b=1-a/2.因为a>0,所以1-a/2<1,所以b<1.所以ab的最大值为a(1-a/2)=a-a^2/2,当a=1时取得最大值为1/2.4.若函数f(x)=x+1/(x-2)在x=a处取最小值,则a等于多少?正确答案:C.3解析:f(x)可以写成x+1/(x-2)=x-2+3+1/(x-2),所以f(x)的最小值在x=3时取得,此时f(3)=3+1=4.5.已知t>0,则函数y=(t^2-4t+1)/t的最小值为多少?正确答案:1解析:将分子t^2-4t+1写成(t-2)^2-3,所以y=(t-2)^2/t-3/t。
因为t>0,所以y的最小值为3/t-(t-2)^2/t,当t=2时取得最小值1.某单位要建造一间背面靠墙的矩形小房,地面面积为12平方米,房子侧面的长度x不得超过5米。
房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,墙高为3米,不计房屋背面的费用。
求侧面的长度为多少时,总造价最低。
去年,XXX年产量为10万件,每件产品的销售价格为100元,固定成本为80元。
今年起,工厂投入100万元科技成本,每年递增100万元科技成本,预计产量每年递增1万件。
每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80.若水晶产品的销售价格不变,求第n次投入后的年利润f(n)。
不等式区间练习题
不等式区间练习题一、一元一次不等式1. 解不等式:3x 5 > 22. 解不等式:4 2x ≤ 3x + 13. 解不等式:5x + 4 > 2x 34. 解不等式:7 3x < 2x + 65. 解不等式:9x 2 > 5x + 4二、一元二次不等式1. 解不等式:x^2 5x + 6 > 02. 解不等式:x^2 4x 5 < 03. 解不等式:2x^2 + 5x 3 ≥ 04. 解不等式:3x^2 2x 1 ≤ 05. 解不等式:4x^2 12x + 9 > 0三、分式不等式1. 解不等式:x / (x 2) > 12. 解不等式:1 / (2x 1) ≤ 23. 解不等式:(x + 3) / (x 4) < 04. 解不等式:(2x 5) / (3x + 2) ≥ 15. 解不等式:(3x + 4) / (x 3) > 2四、绝对值不等式1. 解不等式:|2x 3| > 52. 解不等式:|3x + 4| < 23. 解不等式:|x 1| ≥ 44. 解不等式:|2x + 5| ≤ 35. 解不等式:|x 7| > 2x 5五、综合题1. 解不等式组:\[\begin{cases} 2x 3 > 0 \\ x + 4 < 7\end{cases}\]2. 解不等式组:\[\begin{cases} x^2 5x + 6 ≥ 0 \\ 3x 2 < 0 \end{cases}\]3. 解不等式组:\[\begin{cases} |x 2| < 3 \\ x / (x 1) > 0 \end{cases}\]4. 解不等式组:\[\begin{cases} 4x 7 < 0 \\ |2x + 5| > 3 \end{cases}\]5. 解不等式组:\[\begin{cases} x^2 6x + 9 ≤ 0 \\ 1 / (x3) ≥ 0 \end{cases}\]六、不等式的应用题2. 一辆汽车以每小时x公里的速度行驶,要使其在t小时内行驶的距离超过200公里,求x的取值范围。
不等式练习题
若a 是有理数,比较2a 和3a 的大小.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.1.已知a <b ,用“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4);2______2b a (5);7______7b a -- (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a .2.用“<”或“>”填空: (1)若a -2>b -2,则a ______b ;(2)若,33b a <则a ______b ; (3)若-4a >-4b ,则a ______b ; (4),22b a -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______.4.如果a 2x >a 2y (a ≠0).那么x ______y .(1)x -10<0.(2).62121+->x x 2x ≥5. (4).131-≥-x5关于x 的不等式mx -n >0,当m ______时,解集是;mn x <当m ______时,解集是⋅>m n x 6.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0;(2)(2-a )(2-b )______0;(3)(a -2)(a -b )______0.7.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数..2(2x -3)<5(x -1). 10-3(x +6)≤1.⋅-->+22531x x⋅-≥--+612131y y y .3[x -2(x -7)]≤4x ..17)10(2383+-≤--y y y求不等式361633->---x x 的非负整数解.求不等式6)125(53)34(2+<-x x 的所有负整数解.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0.求m 的取值范围.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.如果a >b ,那么不等式组⎩⎨⎧<<.,b x a x 的解集是⎩⎨⎧>>b ,a x x 的解集是______;⎩⎨⎧><b x x ,a 的解集是______;⎩⎨⎧<>b,a x x 的解集是______ ⎩⎨⎧->>3,2x x 的解集是______; ⎩⎨⎧-<<3,2x x 的解集是______; ⎩⎨⎧-><32x x 的解集是______; (4)⎩⎨⎧-<>3,2x x 的解集是______. .⎪⎩⎪⎨⎧⋅>-<-322,352x x x x ⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x .234512x x x -≤-≤-.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x .⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x 求⎪⎩⎪⎨⎧≤-->032,134x x x 的整数解如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为.在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A 、a <12B 、a <0C 、a >0D 、a <-12若不等式组⎩⎨⎧>≤<k x x 21有解,则k 的取值范围是( ). (A )k <2(B)k ≥2(C)k <1 (D)1≤k <2 已知关于x 、y 的方程组⎩⎨⎧-=-+=+3472m y x m y x ,的解为正数.(1)求m 的取值范围;(2)化简|3m +2|-|m -5|.⎪⎩⎪⎨⎧≤<-15112x x x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式练习题
一、单选题
1、若106≤≤a ,a b a
22
≤≤,那么c 的取值范围是( ) A 189≤≤c
B 3015≤≤c
C 309≤≤c
D 189<<c
2、若c b a ,,为实数,且0<<b a ,则下列命题正确的是( ) A 2
2
b ab a >>
B 2
2bc ac <
C
b a 11< D
b
a a
b < 3、正项等比数列{}n a 中,存在两项n m a a ,,+∈Z n m ,使得14a a a m n =,且5672a a a +=,则n
m 51+的最小值是( ) A
4
7
B 3
5
1+
C
6
25 D
3
5
2 4、已知实数x ,y 满足⎪⎩
⎪
⎨⎧≤≥-+≥+-10103x y x y x ,若直线01=-+ky x 将可行域分成面积相等的两部分,则实
数k 的值为( ) A -3
B 3
C
3
1 D 3
1-
5、设函数()0,2>++=a a x x x f 满足()0<m f ,则()1+m f 的符号是( ) A ()01≥+m f
B ()01≤+m f
C ()01>+m f
D ()01<+m f
6、变量x ,y 满足约束条件⎪⎩
⎪
⎨⎧≤-≥+-≥+00220y m x y x y x ,若z=2x ﹣y 的最大值为2,则实数m 等于( )
A -2
B -1
C 1
D 2
7、若变量
满足约束条件
则
的最大值为( ) A 4 B 3
C 2
D 1 8、若,则下列不等式成立的是() A B
9、已知,下列命题正确的是()
A .若
B .若
C ,则
D ,则
10()在处取最小值,则()
C 3
D 4
11
,则的最小值为( )
12
x ,y 恒成立,则实数的取值范围是( )
A
B
C
D
二、填空题
13、已知变量
x ,y 满足⎪⎩
⎪
⎨⎧≤-+≤≥+-0
220
42y x x y x ,则23+++x y x 的取值范围是.
14、若实数y x ,满足04≥-+y x ,则102622+-++=y x y x z 的最小值为 15 16、若不等式022>+-bx ax 的解集为⎭
⎬⎫
⎩⎨⎧<<-
3121|x x ,则=+b a 三、解答题
17、解关于x 的不等式()012>--+a a x x ,(a ∈R ).
a b >ln ln a b >0.30.3a b
>,R a b ∈a b >a b >22
a b >22
a b >2x >x a =a =a b +m [)3,+∞[)6,+∞(],9-∞(],12-∞
18、已知,
求(1
;(2)的最小值.
18、设
(1)用区间表示A ;(2)若,求实数的取值范围.
20、若不等式的解集为是, (1)求的值(2)求不等式的解集.
21、某单位计划建一长方体状的仓库,底面如图,高度为定值.仓库的后墙和底部不花钱,正面的造价为40元,两侧的造价为45元,顶部的造价为20元.设仓库正面的长为,两
侧的长各为.
(1)用表示这个仓库的总造价(元);
(2)若仓库底面面积时,仓库的总造价最少是多少元,
此时正面的长应设计为多少?
22、已知正数满足:,若对任意满足条件的:恒成立,求实数的取值范围.
⎪⎩
⎪⎨⎧≤--≥-+≥+-052040
2y x y x y x 251022+-+=y y x z {}{}
22
|540,|220A x x x B x x ax a =-+≤=-++<B A ⊆a 02
<--b ax x ()2,3b a ,012
>--ax bx /m /m 2
/m ()x m ()y m ,x y t 2
100S m =t m ,x y 3x y xy ++=,x y 2()()10x y a x y +-++≥a
参考答案
一、单项选择 1、【答案】D 2、【答案】A 3、【答案】A 4、【答案】C 5、【答案】C 6、【答案】C 7、【答案】B 8、【答案】D 9、【答案】D 10、【答案】C 11、【答案】D 12、【答案】C 二、填空题
13、【答案】[,
]
14、【答案】18 15、16、【答案】
-10 三、解答题
17、【答案】
(Ⅱ)的最小值是
试题分析:的几何意义是:可行域中的点与定点的斜率;先求出可行
(Ⅱ)
的几何意义:可行域中的点与点
.
试题解析:(Ⅰ)三条直线的交点分别是
,
,表示点
到两点斜率的取值范围.
,的取值范围是(Ⅱ)表示到可行域中的点的距离的平方最小值,到直线
的距离的平方为
考点:1、线性规划问题;2、点到直线的距离.
18、【答案】(1),(2试题分析:(1)区间是一种表示连续性的数集,中括号表示包括端点,小括号表示不包括端点;(2)由,要分,与两种情况进行讨论,特别是时,由二次函数的性质,找出满足的条件,注意解方程组时,一定要细心,以保证结果正确. 试题解析:解:(1) (2)设,
若,则
若
考点:区间表示及求参数的取值范围.
19、【答案】试题分析:本题可以先对不等式左边进行因式分解,再对相应方程根的大小进行分类讨论,得到本题结论.
试题解析:解:∵关于x 的不等式x 2+x ﹣a (a ﹣1)>0, ∴(x+a )(x+1﹣a )>0, 当﹣a >a ﹣1,即
时,x <a ﹣1或x >﹣a ,
当a ﹣1>﹣a ,即a >时,x <﹣a 或x >a ﹣1,
251022+-+=y y x z (),x y ()1,2--25102
2+-+=y y x z (),x y (0,5))3,1(),9,7(),1,3(C B A )2,1(--N C A ,∴Z Z Q (0,5)Q 02=+-y x []1,4B A ⊆B φ=B φ≠B φ≠a {}[]|(1)(4)01,4A x x x =--≤=2()22f x x ax a =-++B =∅2244(2)02012a a a a a ∆=-+≤⇒--≤⇒-≤≤B ≠∅
当a ﹣1=﹣a ,即时,x
,
∴当
时,原不等式的解集为:{x|x <a ﹣1或x >﹣a},
当a >
时,原不等式的解集为:{x|x <﹣a 或x >a ﹣1},
当时,原不等式的解集为:{x|x ,x ∈R}. 考点:一元二次不等式的解法.
点评:本题考查了一元二次不等式的解法,还考查了分类讨论的数学思想,本题难度不大,属于基础题.
20、【答案】(1)(2试题分析:(1)利用一元二次不等式解集的边界值为与之对应的方程的根,可得方程的根为,利用根与系数的关系可得的值;(2)将求得的
值代入不等式,结合与之对应的函数图像可求得不等式解集
试题解析:(1)由已知可知不等式所以2和3是方程的两个根
由韦达定理得
解得 (2)不等式即为
不等式可化为
考点:1.一元二次不等式解法;2.三个二次关系
21、【答案】(1)(2)总造价最少是元,此时正面的长应设计为
试题分析:(1)求得长方体顶部,正面,侧面的面积,与相应的单位造价的乘积之和即可得到总造
价;(2)在函数式中是定值,利用均值不等式将部分的最小值求解出来,即可得到总造价的最小值,此时等号成立的条件即为设计方案
试题解析:(1)由题意得仓库的总造价为:
(2)仓库底面面积时,
分当且仅当时,等号成立,
又∵,∴.
答:仓库底面面积时,仓库的总造价最少是元,此时正面的长应设计为.—
—12
考点:1.函数的实际应用;2.均值不等式求最值 22、试题分析:先由已知条件及基本不等式得到关于的不等式,解出的取值范围,换元令
调性,求出函数在区间的最小值即可.
令在区间上恒成立, 在区间上恒成立,
在区间上单调递增,
故
56
a b =⎧⎨
=-⎩2
0x ax b --=2,3,a b ,a b 02
<--b ax x 2
0x ax b --=2323a b
+=⎧⎨
⨯=-⎩5
6a b =⎧⎨=-⎩210bx ax -->2
6510x x --->2
6510x x --->26510x x ++<(21)(31)0x x ++<4045220t x y xy =+⨯+320015m xy 40452x y +⨯4045220t x y xy =+⨯+2
100S xy m ==404522040902000t x y xy x y =+⨯+=++4090x y =100xy =15()x m =2
100S m =320015m 3x y xy ++=x y +x y +210t x y t at =+⇒-+≥[6,)+∞210t x y t at =+⇒-+≥[6,)+∞[6,)+∞[6,)+∞a。