数学竞赛六答案
小学数学知识竞赛六年级决赛试题(附答案)
小学数学知识竞赛六年级决赛试题(附答案)班级 姓名 得分一、填空。
(每空3分,共27分)1、小明做20朵花用去23 小时,则她平均做一朵花用__ ___分钟。
2、一块长方形耕地如图所示,已知其中三块小长方形的面积分别是15、16、20亩,则阴影部分的面积是___ ___亩。
3、一项工作,甲独做10天完成,乙独做5天只能完成全部任务的13,现在两人合作 天才能完成全部工作。
4、甲、乙、丙三个数的比是3 :4 :5,已知丙是50,这三个数的平均数是 _5、甲、乙两辆汽车同时从A 地去B 地。
甲车去时每小时行30千米,返回时每小时行20千米;乙车往返都是每小时25千米。
甲、乙两车往返A 、B 两地所用的时间比是 。
6、某小学举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣3分。
小炜得了60分,问他做对了 道题。
7、一批货物第一次降价20%,第二次按降价后的价格又降价15%,这批货物的价格比原价格降低 。
8、在右边括号中填上相同的数,使等式成立:17+( )33+( ) =359、十字路口东西方向的交通指示灯中,绿灯、黄灯、红灯亮的时间之比为6:1:3,则一天中东西方向亮红灯的时间共_____ _____小时。
二、选择题,将答案填在括号中。
(每题3分,共24分) 1、从甲堆煤取出15 给乙堆,这时两堆煤的质量相等,原来甲、乙两堆煤的重量比是( )。
A 、5 :3B 、4 :5C 、2 :5D 、5 :12、已知MN=C ,CB =A ,(A ,B ,C ,D ,M ,N 都是自然数),那么下面的比例式中正确的是( )。
A 、M N =B A B 、M N =B AC 、A N =B MD 、M A =B N 3、一根绳子剪成两段,第一段长为711 米,第二段长占全长的611 ,那么下列结论正确的是( )。
A 、第一段长B 、第二段长C 、两段一样长D 、以上都不对 4、一项工作,原计划8天完成任务,由于改进操作技术,结果提前3天完成任务,工作效率提高了( )%。
浙江温州市瑞安市解放路小学2024年六年级下学期竞赛数学试卷含参考答案
浙江省瑞安市解放路小学第三届“行知杯”数学竞赛六年级试卷(时间:60分钟 总分100分) 2024.6一、填空(每小题4分,共64分)1.一个数由32个百、56个百分之一组成,这个数是( ),读作( )它含有( )个0.01,这个数保留到十分位是( )2.5.02立方米=( )立方米( )立方分米,5小时20分=( )小时3.一张零件图纸的比例尺是6:1,在图上量得某零件长是48毫米,这零件实际长是( )毫米。
4.小明语文、数学、英语的平均分是a 分,语文、数学的平均分是b 分,英语 分。
5.一项工程,甲单独做8天完成,乙单独做3天完成这项工程的41,则甲乙合作需要 天能完成这项工程。
6.如图,用黑白两种颜色的正五边形地砖按下图所示的规律,拼成若干个蝴蝶图案。
则第7个蝴蝶图案中白色地砖有 个。
(第4题图) (第6题图)7.已知x=2×3×5×A,y=2×3×A×11,已知xy 的最大公因数是42,则A=( )8.如图,边长是12厘米的正方形与半径是8厘米的圆有部分重叠,若没有重叠的两空白部分的面积分别是1s 和2s ,则1s -2s = 平方厘米。
(π取3.14)9.阳光小学组织安全意识知识竞赛,共20题。
答对一道题得10分,答错一道题扣5分,弃权不扣也不加。
芳芳弃权两道题,得了120分,则她答对了 题。
10 .把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了200平方厘米。
圆柱高20厘米,圆柱的体积是 立方厘米。
11.王老师今年39岁,是他弟弟年龄的1.3倍,再过 年王老师的年龄是他弟弟年龄的1.25倍。
12. 计算:21+61+121+201+301= 13.现有 2.5.8.9四张牌,请将这四个数用适当的运算符号和括号组成24,写出四种方法: 、 、 、 。
14.A 、B 是平面上的两个定点,在平面上找一点C ,使三角形ABC 构成等腰直角三角形,这样的点C 有 个。
世界少年奥林匹克数学竞赛六年级海选赛试题有答案
绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛试题选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分.2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置.3、比赛时不能使用计算工具.4、比赛完毕时试卷和草稿纸将被收回.六年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题.(每题5分,共计50分)1、甲、乙、丙三个数的平均数为80,甲是乙的2倍,乙是丙的3倍,甲数比丙数多 .2、定义运算符号“*”的意义为:abba b a +=*(其中a,b 都不为0),则(2*2)*2= . 3、72015的个位数字为 .4、如图,正方形ABCD 中包含一个正方形EFGH,且AB=28厘米,AE=3EB,那么正方形EFGH 的面积 为 .5、甲、乙的平均数为32,乙、丙的平均数为37,甲、丙的平均数为33,甲、乙、丙中最小的数为 (填数字).6、一个自行车运动员骑自行车从甲地到乙地,原来需要6小时,通过训练现在只需5小时,那么, 该运动员骑自行车的速度要比原来提高了 %.7、学校食堂管理员老李去商店买大米和面粉,所带的钱可以买20袋大米和12袋面粉,或者买28袋面粉和16袋大米.如果老李只买面粉,他可以买 袋.8、有23个零件,其中有一个次品,不知它比正品轻还是重,用天平至少 次可以找出次品. 9、要使六位数15□□□6能被36整除,且所得的商最大,□□□内应填 .10、有6个谜语,让50个人去猜,共猜对202个.已知每人至少猜对2个,且猜对2个的有5人,猜对4个的有9人,猜对3个和5个的人数一样多.那么6个谜语全部猜对人数是 .二、计算题.(每题6分,共计12分)11、(741513498⨯⨯)÷(74394138⨯⨯)12、81.5×15.8+81.5×51.8+67.6×18.5密 封 线 内 不 要 答 题BCF F F H F 均三、解答题.(第13题6分,第14题8分,第15题10分,第16题10分,第17题12分,第18题12分,共计58分)13、设a △b=3a+b,已知(x+1)△6=18,求x .14、有两箱水果共重37千克,第一箱吃掉2千克后,剩下的水果与第二箱水果的重量比为3:4,第一箱水果原来有多少千克?15、小寒和小丽在学校共得小红花72朵,其中小寒所得的红花数量31与小丽的21一共有31朵.两人所得红花谁多?多几朵?16、将168个边长为1厘米的小正方体,拼成一个长方体,使得长方体的表面积达到最小,这个表面积是多少平方厘米?17、1011009987654321与⨯⋯⨯⨯⨯⨯比较,哪个大?为什么?18、如图,长方形ABCD,将BC 边沿BE 翻折,使C 点落到AD 边上成为F 点.已知AD:DC=5:3,AF:DF=4:1,DC 边比DF 长4cm,求折叠部分△BEF 的面积.C∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕六年级A 测试答案一、填空题(每题5分,共计50分)1、1202、233、34、4905、286、20%7、928、49、9,8,7 10、6 二、计算题(每题6分,共计12分)11、)743×94×138(÷)7415×134×98( =)3÷15(×)8÷4(×)4÷8(...................................................................................2分。
小六数学竞赛试题及答案
小六数学竞赛试题及答案试题一:计算题题目:计算下列各题的结果。
1. 36 × 252. 87 - 493. 56.8 + 34.24. 1234 ÷ 65. (23 + 19) × 12试题二:应用题题目:小明和小红一起买了一些水果,小明买了3千克苹果,每千克苹果的价格是8元,小红买了2千克橙子,每千克橙子的价格是6元。
请问他们一共花了多少钱?试题三:几何题题目:一个长方形的长是12厘米,宽是8厘米,求这个长方形的周长和面积。
试题四:逻辑推理题题目:有5个盒子,编号为1到5。
每个盒子里都装有不同数量的球,分别是1个、2个、3个、4个和5个。
现在有5个人,每个人随机选择一个盒子并打开它,每个人只能打开一个盒子。
如果第5个人打开的盒子里正好是5个球,那么第4个人打开的盒子里有几个球?试题五:数列题题目:给定一个数列:2, 4, 8, 16, 32, ...。
这个数列的第6项是多少?答案:试题一:1. 36 × 25 = 9002. 87 - 49 = 383. 56.8 + 34.2 = 914. 1234 ÷ 6 = 205...4(余数4)5. (23 + 19) × 12 = 42 × 12 = 504试题二:小明买苹果花费3 × 8 = 24 元,小红买橙子花费2 × 6 = 12 元,他们一共花费 24 + 12 = 36 元。
试题三:长方形的周长= (12 + 8) × 2 = 40 厘米,面积= 12 × 8 = 96 平方厘米。
试题四:如果第5个人打开的盒子里有5个球,那么第4个人打开的盒子里一定有4个球,因为1到5的数字是连续的,且每个人只能打开一个盒子。
试题五:这个数列是2的幂次方数列,第6项是 2^6 = 64。
结束语:本次小六数学竞赛试题涵盖了基础计算、应用题、几何题、逻辑推理题和数列题,旨在考察学生的综合数学能力。
2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)
2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)一、填空题。
1.(3分)使得以下不等式成立的自然数有很多,所有满足题目要求的自然数之和是。
÷>2.(3分)计算:=.3.(3分)某种计算机病毒会“吃掉”硬盘空间。
第一天吃掉硬盘空间的二分之一,第二天吃掉剩下的三分之一,第三天吃掉剩下的四分之一,第四天吃掉剩下的五分之一,第五天吃掉剩下的六分之一。
此时,硬盘还剩下160G(G是硬盘大小的单位)。
这个硬盘本来一共有G。
4.(3分)=。
5.(3分)两圆公共部分的面积是大圆面积的九分之一,是小圆面积的十五分之四。
大圆面积比小圆面积大56平方厘米。
大圆面积是平方厘米?6.(3分)一个长方形的长与宽之比为13:8,在这个长方形中剪掉一个最大的正方形。
剩下的长方形长与宽的比值是。
7.(3分)今年是2021年,健康、幸福、爱情、和睦、勤奋、逐梦、富贵、崛起,这八个词每个词刚好是21划。
那么8个2021相乘的积有个因数。
8.(3分)如图,在正方形ABCD中,红色、绿色正方形的面积分别是125平方厘米和20平方厘米,且红、绿两个正方形有一个公共顶点。
黄色正方形的一个顶点位于红色正方形的中心,一个顶点位于绿色正方形的中心。
那么黄色正方形的面积是平方厘米。
9.(3分)在如图中,正方形ABCD的面积是196平方厘米,E、F分别是AB、AD的中点,2FG=5CG。
则阴影部分面积是平方厘米。
10.(3分)有一辆自行车,前轮和后轮都是新的,并且可以互换。
1个新轮胎在前轮位置可以行驶4000千米,在后轮位置可以行驶2400千米。
使用2个新轮胎,这辆自行车最多可行驶千米。
11.(3分)一个自然数分别除以3、4、6、7,所得余数分别为2、1、5、6,并且四个商的和为859。
这个自然数是。
12.(3分)如图,用一个斜边长43厘米的红色直角三角形,一个斜边长94厘米的蓝色直角三角形与一个黄色正方形正好拼成一个大的直角三角形。
红色三角形与蓝色三角形的面积之和是平方厘米?13.(3分)在如图中,正方形ABCD的面积是36平方米,AE=3EB,BF=4FC,CG:GD=4:11,DH:HA=1:5,阴影部分面积是平方分米。
2024年希望杯六年级竞赛数学试卷培训题+答案
2024年希望杯竞赛六年级数学培训题1 .计算: .2 . 计算: .3 .计算: .4 .计算:.5 .等式中的和都是自然数,.6 . .7 .的积不到,里最大填 .8 .以表示不超过的最大整数,若要,则自然数的最小值是 .9 .如果正整数使得,则为 .(其中表示不超过的最大整数) 10 .的整数部分是 .11 .不等式,时的解为 ,时的解为 ,时的解为 .12 .甲、乙两个两位数,甲数的等于乙数的,这两个数的和最大是 . 13 .一个三位数加或者乘的结果都是完全平方数,这个三位数是 . (注:一个自然数与自身相乘的积叫做完全平方数.) 14 .已知是数字到中的一个,若循环小数,则.15 .下面竖式中,相同的图标表示相同的数字,不同的图标表示不同的数字.那么,., .17 .将至填入右图的网格中,要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍,已知左右格子已经填有数字和,问:标有字母的格子所填的数字最大是 .18 .各位数字均不大于,且能被整除的六位数共有 个. 19 .八位数(中的数字可重复出现)是的倍数,这样的八位数共有 个.20 .把的所有自然数连写在一起,可以得到这样的一个多位数,它是 位数.21 .某日,可可到动物园里去观赏动物,他看了猴子,熊猫和狮子三种动物,这三种动物的总量在到只之间,根据下面的情况: ①猴子和狮子的总数要比熊猫的数量多, ②熊猫和狮子的总数要比猴子的两倍还多, ③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.22 .儿童节的早上,方玲去图书馆看了一会儿书后到游泳馆游泳.她每天去一次图书馆,每天去游泳一次.方玲下一次既到图书馆看书,又到游泳馆游泳的时间是 月 日.23 .五名选手在一次数学竞赛中共得分,每人得分互不相等且都是整数,并且得分最高的选手得了分,那么得分最低的选手至少得 分,至多得 分. 24 .被除余,被除余,被除余的最小两位数是 。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.小明沿着向上移动的自动扶梯从顶向下走到底,他走了150级,他的同学小刚沿着自动扶梯从底向上走到顶,走了75级,如果小明行走的速度是小刚的3倍,那么可以看到的自动扶梯的级数是多少?2.商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒向上走3个梯级。
结果男孩用40秒钟到达,女孩用50秒钟到达。
则当该扶梯静止时有多少级?3.某商场有一部自动扶梯匀速由下而上运动,甲乙二人都急于上楼办事,因此在扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间乙登梯级数是甲的2倍),他登了60级后到达楼上,求自动扶梯的级数?4.哥哥沿着向上移动的扶梯从顶向下走到底,共走了100级。
在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了50级.如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?5.某商场有一自动扶梯,某顾客沿开动(上行)的自动扶梯走上楼时,数得走了16级;当他以同样的速度(相对电梯)沿开动(上行)的自动扶梯走下楼时,数得走了48级,则该自动扶梯级数为?6.甲乙两人在匀速上升的自动扶梯从底部向顶部行走,甲每分钟走扶梯的级数是乙的2倍;当甲走了36级到达顶部,而乙则走了24级到顶部。
那么,自动扶梯有多少级露在外面?7.甲步行上楼梯的速度是乙的2倍,一层到二层有一上行滚梯(自动扶梯)正在运行。
二人从滚梯步行上楼,结果甲步行了10级到达楼上,乙步行了6级到达楼上。
这个滚梯共有多少级?8.在地铁车站中,从站台到地面有一架向上的自动扶梯。
小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台。
全国数学竞赛小学六年级决赛集训试题(附答案)
全国数学竞赛小学六年级决赛集训试题(一)姓名____得分____一、填空题:(每小题6分,共60分)1.已知C C BA 1111616161-1+++=++,其中A 、B 、C 都是大于0且互不相同的自然数,则(A+B)÷C=。
2.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上的数字之和,如21347。
则这类自然数中,最大的奇数是。
3.如图1,△ABC 中,点E 在AB 上,点F 在AC 上,BF 与CE 相交于点P ,如果S 四边形AEPF =S △BEP =S △CFP =4,则S △BPC =。
4.张老师带领六(1)班的学生去种树,学生恰好可平均分成5组。
已知师生每人种的树一样多,共种树527棵,则六(1)班有学生人。
5.两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒。
已知在电梯静止时,男孩每秒走3米,女孩每秒走2米。
则该自动扶梯长米。
6.有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,如图2,则至少需要绳子分米(结头处绳长不计,π取3.14)。
7.一个深30厘米的圆柱形容器,外圆直径22厘米,壁厚1厘米,已装有深27.5厘米的水。
现放人一个底面直径10厘米,高30厘米的圆锥形铁块,则将有立方厘米的水溢出。
8.新年联欢会共有8个节目,其中有3个非歌唱类节目。
排列节目单时规定,非歌唱类节目不相邻,而且第一个和最后一个节目都是歌唱类节目。
则节目单可有种不同的排法。
9.为了创建绿色学校,科学俱乐部的同学设计了一个回收食堂的洗菜水来浇花草的水池,要求单独打开进水管3小时可以把水池注满,单独打开出水管4小时可以排完满池水。
水池建成后,发现水池漏水。
这时,若同时打开进水管与出水管14小时才能把水池注满。
则当池水注满,并且关闭进水管与出水管时,经过小时池水就会漏完。
10.甲、乙两人分别从A、B两地同时出发,相向而行。
六年级数学竞赛试题及参考答案
班级:姓名:学号:线封密实验小学学年度第学期六年级数学竞赛试题(卷)(试题总分98分卷面2分共100分时间40分钟)题号一二三四五卷面分总分复核得分评卷一、填空(24分)(每空2分)1.43=15÷()=()﹕162.把 1.606、132和 1.6按从大到小的顺序排列为()。
3.一张半圆形纸片半径是1分米,它的周长是(),要剪成这样的半圆形,至少要一张面积是()平方分米的长方形纸片。
4. 一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都及已经就座的某个人相邻。
原来至少有_ _人已经就座。
5.75吨煤平均7次运完,每次运这些煤的()(填分数),每次运煤()吨。
6. 十几辆卡车运送315桶汽油,每辆卡车运的桶数一样多,且一次运完.那么, 每辆卡车运()桶。
7. 五个数的平均数是30,若把其中一个数改为40,则平均数是35,这个改动的数是( )。
8.两个圆的直径比是 2 :5,周长比是(),面积比是()。
二、判断(10分)1.某班男生人数比女生人数多31,那么女生人数就比男生少21。
()2.半圆的周长就是圆周长的一半。
( )3.把圆分成若干份,分的份数越多,拼成的图形越接近于长方形。
()4.把10克糖放入100克水中,糖是糖水的101。
()5.7吨的91和1吨的97一样重。
()三、选择(18分)1.下面图形中,()是正方体的表面展开图.A. B. C.2.一种商品先降价81,又提价81,现价及原价相比()。
A.现价高;B.原价高;C.相等。
3.一个三角形,三个内角度数的比是1:3:6,这个三角形是( )。
A.锐角三角形;B.直角三角形;C.钝角三角形 4.甲数是m ,比乙数的8倍多n ,表示乙数的式子是( ) A.8m+n B.m+8+n C.(m-n)÷8 5.正方形和圆的周长相等,那么面积谁大?( )A.同样大;B.正方形大;C.圆大;D.无法比较。
第28届WMO数学竞赛地方初测六年级试卷含答案
姓名 年级 学校 测评编号 、 ---------------------------------------装-----------------------------订---------------------------线----------------------------------第28届 WMO 融合创新讨论大会(初测)---------------------------------------------------------------------------------须知:1. 测评期间,不得使用计算工具或手机。
2. 本卷共120分,选择题为单选,每小题5分,共80分;解答题每小题10分,共40分。
3.请将答案写在本卷上。
测评结束时,本卷及草稿纸会被收回。
4.若计算结果是分数,请化至最简。
六年级(满分120分 ,时间90分钟)一、选择题(每小题5分,共80分) 1.取一段麻绳子长度的15,与另一段长15米的草绳子比较长度,请判断其中长度较长的一段绳子是 ( )。
A. 一样长B. 麻绳长C. 草绳长D. 无法判断长短2.下列计算结果的数值最大的是( )。
A. 2022+20232021B. 2022-20232021C. 2022× 20232021D. 2022÷202320213. 如果一个真分数的分母扩大到原来的10倍,分子同时缩小到原来的110,所得到的分数同原分数比较,分数的值的变化是( )。
A. 不变B. 扩大到原来的10倍C. 缩小到原来的100倍D.扩大到原来的100倍4. 有11个分数: 123456789152423456789101625、、、、、、、、、、,其中不能化成有限小数的分数有( )个。
A.3B.4C.5D.65. 计算的结果是( )。
A .2021 B. 2022 C. 2023 D. 20246.在一批国际旅客中,有34的人懂法语,有45的人懂英语,这两种语言都懂的有22人,已知这批旅客至少懂英语或法语中的一种,这批国际旅客共有( )人。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、计算题1.若表示,求的值。
2.如果1※2=1+112※3=2+22+2223※4=3+33+333+333+3333计算(3※2)×5。
二、解答题1.定义新运算为a△b=(a+1)÷b,求值:6△(3△4).2.、表示数,表示,求3(68) .3.表示.4.对于任意的整数x与y定义新运算“△”:,求2△9。
5.“*”表示一种运算符号,它的含义是:,已知,求。
6.我们规定:符号表示选择两数中较大数的运算,例如:53=35=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:的结果是多少?7.对于数a、b、c、d,规定,< a、b、c、d >=2ab-c+d,已知< 1、3、5、x >=7,求x的值。
8.定义新运算为,⑴求的值;⑵若则x的值为多少?9.对于任意的两个自然数和,规定新运算:,其中、表示自然数.如果,那么等于几?10.定义为与之间(包含、)所有与奇偶性相同的自然数的平均数,例如:,.在算术的方格中填入恰当的自然数后可使等式成立,那么所填的数是多少?11.有一个数学运算符号,使下列算式成立:,,,,求12.如果、、是3个整数,则它们满足加法交换律和结合律,即⑴a+b=b+a;⑵。
现在规定一种运算"*",它对于整数a、 b、c 、d 满足:(a,b)*(c,d)=(a×c+b×d,a×c-b×d)。
例:请你举例说明,"*"运算是否满足交换律、结合律。
13.x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.14.对于任意的两个自然数和,规定新运算:,其中、表示自然数.⑴求1100的值;⑵已知1075,求为多少?⑶如果(3)2121,那么等于几?15.两个不等的自然数a和b,较大的数除以较小的数,余数记为a☉b,比如5☉2=1,7☉25=4,6☉8="2." (8级)(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;(2)已知11☉x=2,而x小于20,求x;(3)已知(19☉x)☉19=5,而x小于50,求x.16.设a,b是两个非零的数,定义a※b.(1)计算(2※3)※4与2※(3※4).(2)如果已知a是一个自然数,且a※3=2,试求出a的值.17.定义运算“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a和a⊙b,则c也整除b;(3)已知6⊙x=27,求x的值.18.国际统一书号ISBN由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用。
小学数学六年级竞赛试题及答案
六年级数学竞赛试题姓名_________ 成绩_______一、填空。
(27分)1、一个数由32个百、56个百分之一组成,这个数是(),它含有()个0.01,这个数保留到十分位是()。
2、填上合适的单位名称:一间教室面积是54()汽车每小时行90()一瓶矿泉水容积是255()3、5.02吨=()吨()千克 1.75小时=()小时()分4、2÷()=0.4=():15=8()=()%5、215:0.6化成最简整数比是(),比值是()。
6、桌子每张a元,椅子每把b元,买20套桌椅共需()元。
(一张桌子配两把椅子)7、小丽和小红同时从学校出发,小丽向东走80米,记作+80米,小红向西走60米,记作()米,此时两人相距()米。
8、一个圆柱形木块削去18.84立方分米加工成最大的圆锥体,这个圆柱形木块体积是()立方分米。
9、三角形三个内角度数比是1:3:5,这个三角形是()三角形。
10、29的分子增加6,要使分数大小保持不变,分母应为()。
11、王奶奶5月1日去银行存了一年定期储蓄2万元,年利率1.98%,利息税20%,她到期可得本金和税后利息共()元。
12、一个圆的周长是12.56厘米,以它的一条直径为底边,在圆内画一个最大的三角形,这个三角形面积是()平方厘米。
13、一张精密零件图纸的比例是5:1,在图上量得某个零件长度是48毫米,这个零件实际长度是()。
14、自来水管的内直径是2厘米,水管内水的流速是每秒8厘米,一位同学去水池洗手,走时忘记关掉水龙头,5分钟会浪费()升水。
15、九张卡片上分别写着1-9九个数字。
甲、乙、丙、丁四人每人拿两张。
甲的数字之和是9,乙的两张数字之差是6,丙的两张数字之积是12,丁的两张数字之商是3,剩下一张的数字是()。
二、判断题。
(8分)1、10克盐放入100克水中,含盐率是10%。
( )2、分子一定,分母和分数值成正比例。
( )3、已知圆的半径是r ,半圆的周长是(2+π)r 。
六年级数学数学竞赛试题答案及解析
六年级数学数学竞赛试题答案及解析1.瓶子里有同样大小的红球和黄球各5个.要想摸出的球一定有2个同色的,最少要摸出个球.【答案】3【解析】红、黄两种颜色相当于两个抽屉,要保证摸到的球有2个同色,摸的次数比颜色数多1,即假设第一次摸出绿色的,第二次摸出黄色的,第三次无论摸到哪一种都会有两个是同色的,所以至少要摸出三个球.解:2+1=3(个);答:最少要摸3球;故答案为:3.【点评】此题做题的关键是弄清把哪个量看作“抽屉”,把哪个量看作物体个数,进而结合题意进行分析,得出结论.2. 5本书放进4个抽屉,至少有本书要放进同一个抽屉里.【答案】2【解析】把5本书放进4个抽屉,从最不利的情况去考虑,尽量平均分,所以5÷4=1(本) (1)(本),即平均每个抽屉放1本后,还余1本,所以有一个抽屉至少要放1+1=2本.据此即可解答.解:5÷4=1(本)…1(本)1+1=2(本)答:至少有2本书放进同一个抽屉里.故答案为:2.【点评】在此类抽屉问题中,至少数=物体数除以抽屉数的商+1(有余数的情况下).3.一个不透明的盒子里装了红、黑、白玻璃球各2个,要保证取出的玻璃球三种颜色都有,他应保证至少取出个;要使取出的玻璃球中至少有两种颜色,至少应取出个.【答案】5,3.【解析】从最极端的情况进行分析:(1)假设把白球和黑球都取完,就是四个,这时,只要取出一个红球就可以符合题意,进而得出结论.(2)假设两次取出的都是同色(取完),然后再取一个,只能是其它的颜色;解:(1)2×2+1=5(个);(2)2+1=3(个);答:要保证取出的玻璃球三种颜色都有,他应保证至少取出5个,要使取出的玻璃球中至少有两种颜色,至少应取出3个.故答案为:5,3.【点评】此题做题的关键是从最极端情况进行分析,进而通过分析得出问题答案.4.李叔叔要给房间的四面墙壁涂上不同的颜色,但结果是至少有两面的颜色是一致的,颜料的颜色种数是()种.A.2B.3C.4D.5【答案】B【解析】本题可以用抽屉原理的最不利原则;故意在3个墙面上涂上甲、乙、丙3种颜色,没有重复,但第4面墙只能选甲、乙、丙中的一种,至少有两面的颜色是一致的;所以得出颜料的种数是3种.解:4﹣1=3(种);故答案应选:B.【点评】此题属于抽屉原理的习题,做题时应确定哪个是抽屉,哪个相当于物体个数,然后可利用抽屉原理的最不利原则进行分析即可.5.幼儿园买来了很多白兔、熊猫、长颈鹿塑料玩具,每个小朋友可以任意选择两件,那么不管怎样挑选,在任意7个小朋友中总有两个小朋友的玩具相同,请说明道理.【答案】见解析【解析】已知共有三种玩具,每个小朋友任意选择两件相同的玩具有3种情况;选择两件不同的玩具一共有3种不同的情况,所以一共有6种不同的拿法,最差情况是6个小朋友选择的玩具各不相同,此时只要有一个要朋友再任意选择两个玩具,就能保证有两人选的玩具是相同的,所以在任意7个小朋友中总有两个小朋友的玩具相同;据此解答.解:每个小朋友可以任意选择两件,选择情况有:2个白兔、2个熊猫、2个长颈鹿、白兔和熊猫、白兔和长颈鹿、熊猫和长颈鹿,一共有6种拿法;最差情况是6个小朋友选择的玩具各不相同,分别是上面的6种情况;此时只要有一个要朋友再任意选择两个玩具,就能保证有两人选的玩具是相同的;6+1=7(个);所以,在任意7个小朋友中总有两个小朋友的玩具相同.【点评】完成本题要注意先要找出从三种玩具中选择两件共有几种组合方法,再据最差原理进行分析解答.6.盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个是同色的,至少要摸出5个球.(判断对错)【答案】×【解析】根据题意可知,盒子里的球共有两种颜色,摸出2个时,有可能一个红的,一个蓝的,所以只要再摸出一个就能保证有2个同色的,即至少要摸出2+1=3个球.解:2+1=3(个)答:要想摸出的球一定有2个是同色的,至少要摸出3个球.故答案为:×.【点评】在此类问题中,只要摸出的球出它们的颜色数多1,即能保证出的球一定有2个同色的.7.鸡兔同笼,共32个头,102只脚,有只鸡,只兔.【答案】鸡有13只,免有19只【解析】此题用方程解,设鸡有x只,由题意“共32个头”,则兔有(32﹣x)只,又由“共102只脚”,得等量关系:鸡的只数×2+兔的只数×4=102,据此等量关系式列方程求解.解:设鸡有x只,则兔有(32﹣x)只,由题意列方程得:2x+4×(32﹣x)=102,2x+128﹣4x=102,2x=26,x=13,32﹣x=32﹣13=19,答:鸡有13只,免有19只.【点评】鸡免同笼问题,一般根据头数表示另一个未知量,根据脚数来列方程.8.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号表示,羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。
传奇第六题的答案
传奇第六题的答案玩过奥数或者其他数学竞赛的朋友大概都会听过”传奇的第6题”。
这条题目出自1988年国际数学奥林匹克竞赛(International Mathematical Olympiad,简称IMO)的第6题,是公认的史上最精彩、也是最困难的其中一道竞赛题目。
题目如下:设正整数a, b满足ab+1可以整除a2+b2,证明(a2+b2)/(ab+1) 是某个整数的平方。
例如代入a = 1,b = 1,我们得到 k = (12+12)/(1x1+1) = 1,显然这是一个平方数。
正如很多数论问题一样,这题目很容易理解,初中生都可以明白,但解答起来却出奇地困难。
这题目究竟有多困难呢?我们先简介一下IMO的题目来源,好让大家对这比赛有更多的认识。
IMO竞赛是让全世界不同国家的中学生参与的数学比赛,共有6道题目,比赛分两天,每天做三题,总共时间为9小时。
题目基本上都是证明类题目,每题值7分,共42分。
试题大致上会分为简单、中等与困难三个等级,第1与第4题属简单,第2与第5题属中等,第3与第6题属困难。
题目由主办国外的各参赛国提供,由主办国组成拟题委员会,从提交题目中挑选候选题目。
各国领队先于队员提前数天抵达,共同商议问题及官方答案。
话说当年西德是奥数的超级强队,曾经于1982与1983年获得总分第一。
但之后几年却被苏联、罗马尼亚及美国超越了,抢夺了第一的宝座。
有人认为也许是出于复仇心态,西德数学家就出了这道精心设计、极尽困难的题目。
澳大利亚数学奥林匹克议题委员会的六个成员都未能解决这道由西德数学家提供的问题,于是他们只好向主办国澳大利亚的4位最好的数论专家求肋,委员会希望专家能于6小时内解决问题,令人尴尬的是,专家经过一轮苦战都未能解出题目。
于是,议题委员竟然够勇气把问题寄往国际数学奥林匹克委员会,不过他们特意在问题旁加上两颗星,代表这是超难题目——也许难到不应用作竞赛题目。
委员会作了长时间的考虑后,又竟然真的斗胆敢采用此题,结果这个题目就成了第29届国际数学奥林匹克竞赛的第6题。
高中数学六年级奥数竞赛试题及答案详解
高中数学六年级奥数竞赛试题及答案详解题目一题目:计算下列各数之积的数值。
$$3 \times 4 \times 5 \times 6$$解答:$$3 \times 4 \times 5 \times 6 = 360$$题目二题目:已知一个三角形的底边长为7cm,高为4cm,求其面积。
解答:三角形的面积可以通过底边长和高的乘积除以2来计算。
$$\text{面积} = \frac{{\text{底边长} \times \text{高}}}{2} =\frac{{7 \times 4}}{2} = 14 \, \text{cm}^2$$题目三题目:求解下列方程。
$$5x + 2 = 17$$解答:为了求解方程,我们将方程两边减去常数项2,得到$$5x = 17 - 2$$简化得$$5x = 15$$最后,将方程两边除以5$$x = \frac{15}{5}$$得到解$$x = 3$$题目四题目:从10个不同的数字中任意取出3个数字,求取出的3个数字的和。
解答:给定10个不同的数字,任意取出3个数字的和可以通过进行求和计算而得。
假设这10个数字分别为1、2、3、4、5、6、7、8、9、10,选出的3个数字为1、4、7,它们的和为$$1 + 4 + 7 = 12$$题目五题目:计算下列各式的值。
$$\frac{(2 + 3)^2}{2}$$解答:首先计算括号内的表达式,有$$(2 + 3)^2 = 5^2 = 25$$然后将该结果除以2,得到计算式的值$$\frac{25}{2} = 12.5$$题目六题目:已知正方形的边长为10cm,求其周长和面积。
解答:正方形的边长是相等的,所以可以将周长和面积之间的关系进行求解。
正方形的周长可以通过边长乘以4来计算。
$$\text{周长} = 10 \times 4 = 40 \, \text{cm}$$正方形的面积可以通过边长的平方来计算。
$$\text{面积} = 10^2 = 100 \, \text{cm}^2$$题目七题目:求解下列方程组。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.请在4×8方格表的每个方格内填入数1,2或3,使得任何排列成如图所示形状的4个方格中所填数的和都是7。
2.如图,有一个11位数,它的每3个相邻数字之和都是20。
问标有*的那个数位上的数字应是几?3.如图,横、竖各有12个方格,每个方格内都有一个数。
已知横行上任意3个相邻数之和为20,竖列上任意3个相邻数之和为21,并且其中4个方格内的数分别是3,5,8和x。
那么x所代表的数是多少?4.把l,2,3,…,13这13个数分别填在如图所示的3个圆圈内,使得同一个圆圈内任意两个数相减,所得的差不在这个圆圈内.现在已经把l,4,7填在第一个圆圈内,3填在第三个圆圈内,请将其余9个数填好。
5.请在图的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和。
6.在图的7个圆圈内各填一个数,要求对于每一条直线上的3个数,居中的数是旁边两个数的平均数。
现在已经填好了两个数,那么x等于多少?7.请在图所示的8个小圆圈内,分别填入1,2,3,4,5,6,7,8这8个数字,使得图中用线段连接的两个小圆圈内所填的数的差(大减小)恰好分别是l,2,3,4,5,6,7。
全国六年级小学数学竞赛测试答案及解析一、解答题1.请在4×8方格表的每个方格内填入数1,2或3,使得任何排列成如图所示形状的4个方格中所填数的和都是7。
【答案】【解析】我们先考虑3×3的表格情况,按要求填好后,有:a+b+e+f=b+e+f+i=7.所以a=i,同理,c=g。
又因为a+b+e+f=c+b+e+d=7,从而:a+f=c+d,同理,g+f=d+i,两式相加,得到a+g+2×f=c+i+2×d。
其中a=i,c=g,所以f=d,也就是说中间隔一个方格的两个方格所填入的数相同,我们可以借助上面方法来填写,只用先将一格2×2的小方格填号,使它们的和为7,再将其复制平移知其他的方格内即可。
六年级数学竞赛试题(六)及答案
小学数学六年级竞赛(六)姓名: 班级: 分数: 1、添括号,使算式35×4÷10+3-1=84成立。
2、在下列数的数字上直接加上循环点,使排列顺序符合要求。
0.6162>0.6162>0.6162>0.6162 3、21、31、52、83、135、218、( )、( )4、有一个分数,把它的分母加上2,约简后得97,若把它的分母加上3,约简后得43。
原来这个分数是( )。
5、有两列火车,一列长102米,每秒行20米;另一列长83米,每秒行17米。
两列火车在双轨线上相向而行,从两车相遇到车尾离开一共用了( )秒。
6、把一个圆分成若干等份,拼成一个近似长方形。
已知长方形的长比宽多6.42厘米,圆的面积是( )平方厘米。
7、一个长方体的高减少2厘米,表面积减少了48平方厘米,成为一个正方体,正方体的体积是( )立方厘米。
8、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,要使往返的平均速度为每小时40千米。
返回时每小时应航行( )千米。
9、小明骑自行车从甲地去乙地郊游,原计划8小时到达,当行到全程的90千米处时,自行车出现了故障,速度比计划慢了51,结果比原计划推迟30分钟到达。
原计划每小时行( )千米。
10、用一张边长是4分米的正方形纸剪一个面积尽可能大的圆,这个圆的面积是( )平方分米。
11、计算=-⨯⨯+12008200720082006200712、一个长方形的周长是130厘米。
如果长增加72,宽减少31,得到的新的长方形的周长不变。
原来长方形的长是( )厘米,宽是( )厘米。
13、一项工程,甲先独做2天,然后与乙合做7天,这样才完成全工程的一半。
已知甲、乙工作效率的比是2:3。
如果由乙单独做,需要( )天才能完成。
14、张先生向商店订购某一商品,每件定价100元,共定购60件。
张先生对商店经理说:“如果你肯减价,每减价1元,我就多订购3件。
”商店经理算了一下,如果减价4%,由于张先生多订购,仍可获得原来一样多的总利润。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.把8个苹果放入3个抽屉里,总有一个抽屉至少放()个苹果.A.2B.3C.42.下面现象中属于平移现象的是()A.开关抽屉B.拧开瓶盖C.转动的风车3.下列运动的方式一定不是平移的是()A.乘电梯B.拉开抽屉C.旋开瓶盖二、判断题1.拉开抽屉..2.拉抽屉是一种平移现象..3.把7支铅笔放到3个抽屉里,总有一个抽屉里至少放3支..4.26本书放进5个抽屉中,有一个抽屉至少放6本书..(判断对错)5.(2010•慈利县)把9本书放在两个抽屉里,不管怎么放,有一个抽屉至少要放5本书..6.拉抽屉是旋转现象,拧水龙头是平移现象..7.拉抽屉是平移现象,拧螺丝是旋转现象..8.(2012•称多县模拟)把5本书放进2个抽屉,不管怎样放,总有一个抽屉至少得放进2本书..三、填空题1.推抽屉是现象,直升机的螺旋桨转动是现象.2.时针运动是现象,拉抽屉是现象.3.风扇转动是现象,推拉抽屉是现象.4.计算做一个抽屉要用多少木板,要算个面的面积.5.(2012•城厢区)把5本书放进2个抽屉中,至少有本书放进同一个抽屉.6.把7本书放进3个抽屉,总有一个抽屉至少放本书.7.(2011•泗阳县)把9本书放进两个抽屉里,至少有本书要放在同一个抽屉中.8.(2012•成都模拟)在3个抽屉里放入10个文具盒,至少有一个抽屉里要放进个文具盒.9.把一些苹果平均放在3个抽屉中,总有一个抽屉至少放几个呢?请填表.10.一个抽屉长60厘米,宽30厘米,高15厘米,做这样的抽屉至少需要木板平方厘米.11.在横线里填上合适的计量单位.课桌抽屉的容积大约是15.教室的占地面积大约是70.12.抽屉里有红、黄、蓝三种颜色的球各7个,至少摸出个球,才能保证有3个颜色相同的球.四、解答题1.(2007•沂水县)做如图规格的一个抽屉至少需要多少木板?它的容积是多少?(木板厚度忽略不计)2.做一个抽屉,长60厘米,宽70厘米,高12厘米,至少需要木板多少平方厘米?3.把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什么?4.有一个抽屉,长54厘米、宽42厘米、高12厘米,做这个抽屉至少用木板多少平方厘米?5.木工做一个长50厘米、宽40厘米、深12厘米的抽屉,至少要用木板多少平方厘米?6.要做一个长6分米,宽40厘米,高3分米的长方体木制抽屉,至少需要多少平方米的木板?7.佳佳的写字台的抽屉长45cm,宽35cm,高14cm,做这样一个抽屉至少需要木板多少平方分米?全国六年级小学数学竞赛测试答案及解析一、选择题1.把8个苹果放入3个抽屉里,总有一个抽屉至少放()个苹果.A.2B.3C.4【答案】B【解析】根据m÷n=a…b(m>n>1)把m个物体放在n个抽屉里(m>n>1),不管怎样放总有一个抽屉至少放进(a+1)个物体.据此解答.解:8÷3=2(个)…2(个)2+1=3(个)答:至少有一个抽屉里的苹果不少于3个.故选:B.点评:本题主要考查了学生对抽屉原理的知识来解答实际问题的能力.2.下面现象中属于平移现象的是()A.开关抽屉B.拧开瓶盖C.转动的风车【答案】A【解析】根据物体平移和旋转的特征,平移是将一个图形从一个位置变换到另一个位置,旋转是一个图形绕着一个定点旋转一定的角度,开关抽屉是抽屉来回运动,是平移现象;拧开瓶盖,是将瓶盖绕瓶盖圆心旋转一定的角度,属于旋转现象;电风扇转动,是风叶绕电风扇的轴旋转,是旋转现象.解:根据分析,拧开瓶盖、转运风车都属于旋转现象,开关抽屉属于平衡现象;故选:A.点评:本题是考查平移的意义.平移不改变图形的形状和大小,只是位置发生变化.3.下列运动的方式一定不是平移的是()A.乘电梯B.拉开抽屉C.旋开瓶盖【答案】C【解析】根据物体平移和旋转的特征,平移是将一个图形从一个位置变换到另一个位置,旋转是一个图形绕着一个定点旋转一定的角度;据此解答.解:A、乘电梯是平移;B、拉开抽屉是平移;C、旋开瓶盖是旋转;故选:C.点评:此题考查了学生对平移、旋转概念的区别:平移不改变图形的形状和大小,只是位置发生变化;旋转是一个图形绕着一个定点旋转一定的角度,位置不发生变化.二、判断题1.拉开抽屉..【答案】错误.【解析】把一个图形整体沿某一方向移动一定距离,图形的这种运动叫做平移,平移后图形的位置改变,形状、大小不变;拉开抽屉,只是抽屉沿一定的方向移动了一段距离,抽屉的形状、大小并没改变,是平移现象.解:拉开抽屉是平移现象;故答案为:错误.点评:本题主要是考查平移的意义.物体平移后图形的位置改变,形状、大小不变.2.拉抽屉是一种平移现象..【答案】正确.【解析】拉抽屉是将抽屉图形整体按照某个直线方向移动一定的距离,根据平移的意义,这样的图形运动叫作图形的平移现象.解:根据平移的意义,拉抽屉是一种平移现象;故答案为:正确.点评:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.3.把7支铅笔放到3个抽屉里,总有一个抽屉里至少放3支..【答案】正确.【解析】把7支铅笔放到3个抽屉里,7÷3=2(支)…1支,即平均每个抽屉放两支,还余一支,根据抽屉原理可知,总有一个抽屉里至少放2+1=3支.解:7÷3=2(支)…1支.2+1=3(支).答:总有一个抽屉里至少放3支.故答案为:正确.点评:把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体.4.26本书放进5个抽屉中,有一个抽屉至少放6本书..(判断对错)【答案】正确.【解析】把26本书放进5个抽屉,26÷5=5本…1本,即每平均每个抽屉放5本后,还余1本,所以至少有一个抽屉至少要放5+1=6本.据此即可判断.解:26÷5=5(本)…1本,5+1=6(本),答:有一个抽屉至少要放6本.故答案为:正确.点评:在此类抽屉问题中,至少数=物体数除以抽屉数的商+1(有余数的情况下).5.(2010•慈利县)把9本书放在两个抽屉里,不管怎么放,有一个抽屉至少要放5本书..【答案】正确.【解析】根据抽屉原理,即可解答问题进行判断.解:考虑最差情况:9本数平均分配给2个抽屉:9÷2=4…1,那么每个抽屉都有4本书,剩下的1本无论放到哪个抽屉,都会出现1个抽屉里面有5本书,即有一个抽屉至少要放:4+1=5(本),所以原题说法正确,故答案为:正确.点评:此题考查了抽屉原理的灵活应用,根据抽屉原理解答出正确结果,即可判断.6.拉抽屉是旋转现象,拧水龙头是平移现象..【答案】错误【解析】根据平移的意义,平移是将一个图形从一个位置变换到另一个位置,拉抽屉是平移现象;,根据旋转的意义,旋转是一个图形绕着一个定点旋转一定的角度,拧水龙头是旋转现象.解:拉抽屉是平移现象,拧水龙头是旋转现象;故答案为:错误点评:本题是考查平移与旋转的意义.旋转变换和平移都不改变图形的形状和大小和形状,只是位置的变化.7.拉抽屉是平移现象,拧螺丝是旋转现象..【答案】正确.【解析】根据平移的意义,平移是将一个图形从一个位置变换到另一个位置,拉抽屉是平移现象;根据旋转的意义,旋转是一个图形绕着一个定点旋转一定的角度,拧螺丝是旋转现象.解:拉抽屉是平移现象,拧螺丝是旋转现象,所以题干说法正确.故答案为:正确.点评:本题是考查平移与旋转的意义.旋转变换和平移都不改变图形的形状和大小,只是位置的变化.8.(2012•称多县模拟)把5本书放进2个抽屉,不管怎样放,总有一个抽屉至少得放进2本书..【答案】答:有一个抽屉至少要放3本.【解析】把5本书放进2个抽屉,5÷2=2(本)…1(本),即平均每个抽屉放2本后,还余1本,所以至少有一个抽屉至少要放:2+1=3本;据此判断即可.解:5÷2=2(本)…1(本).2+1=3(本).答:有一个抽屉至少要放3本.故答案为:错误.点评:在此类抽屉问题中,至少数=物体数除以抽屉数的商+1(有余数的情况下).三、填空题1.推抽屉是现象,直升机的螺旋桨转动是现象.【答案】平移,旋转.【解析】根据平移和旋转的意义,平移是将一个图形从一个位置变换到另一个位置,旋转是一个图形绕着一个定点旋转一定的角度.推抽屉是把抽屉来回移动,是平移现象;直升机的螺旋桨转动,是螺旋桨绕轴转动,是旋转现象.解:推抽屉是平移现象;直升机的螺旋桨转动是旋转现象;故答案为:平移,旋转.点评:本题主要是考查图形变换平移和旋转的意义.平移过程中,各对应点的“前进方向”保持平行,旋转变换和平移都不改变图形的形状和大小,各对应点之间的距离也保持不变.2.时针运动是现象,拉抽屉是现象.【答案】旋转;平移.【解析】根据旋转的意义,旋转是一个图形绕着一个定点旋转一定的角度,时针运动是旋转现象.根据平移的意义,平移是将一个图形从一个位置变换到另一个位置,拉抽屉是平移现象.解:时针运动是旋转现象,拉抽屉是平移现象.故答案为:旋转;平移.点评:本题是考查平移与旋转的意义.旋转变换和平移都不改变图形的形状和大小,只是位置的变化.3.风扇转动是现象,推拉抽屉是现象.【答案】旋转,平移.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的;依此根据平移与旋转定义判断即可.解:风扇转动是旋转现象,推拉抽屉是平移现象;故答案为:旋转,平移.点评:本题是考查平移、旋转的意义.图形的平移与旋转的相同点是大小、形状不变,平移不改变方向,旋转改变方向.4.计算做一个抽屉要用多少木板,要算个面的面积.【答案】5【解析】因为抽屉是一个没有盖的长方体,在计算面积时只能计算5个面的面积.解:6﹣1=5(个).故答案为:5.点评:此题考查学生对长方体的认识,同时渗透了生活常识.5.(2012•城厢区)把5本书放进2个抽屉中,至少有本书放进同一个抽屉.【答案】3.【解析】把5本书放进2个抽屉,5÷2=2(本)…1(本),即平均每个抽屉放2本后,还余1本,所以至少有一个抽屉至少要放:2+1=3本;据此判断即可.解:5÷2=2(本)…1(本).2+1=3(本).答:有一个抽屉至少要放3本.故答案为:3.点评:在此类抽屉问题中,至少数=物体数除以抽屉数的商+1(有余数的情况下).6.把7本书放进3个抽屉,总有一个抽屉至少放本书.【答案】3.【解析】把7本书放进3个抽屉,7÷3=2(本)…1(本),即无论怎么放,总有一个抽屉至少放2+1=3本.解:7÷3=2(本)…1(本)2+1=3(本)答:总有一个抽屉至少放3本书.故答案为:3.点评:在此类题目中,至少数=商+余数.7.(2011•泗阳县)把9本书放进两个抽屉里,至少有本书要放在同一个抽屉中.【答案】5.【解析】利用抽屉原理即可解答.解:考虑最差情况:把9本数平均放进2个抽屉,9÷2=4…1,剩下的1本,无论放到哪个抽屉都会出现一个抽屉里有5本书,所以4+1=5(本),每个抽屉至少有5本书.故答案为:5.点评:此题考查了抽屉原理的灵活应用.8.(2012•成都模拟)在3个抽屉里放入10个文具盒,至少有一个抽屉里要放进个文具盒.【答案】4.【解析】在3个抽屉里放入10个文具盒,10÷3=3个…1个,即平均每个抽屉放入3个后,还余一个文具盒没有放入,即至少有一个抽屉里要放进3+1=4个文具盒.解:10÷3=3(个)…1个,3+1=4(个).答:至少有一个抽屉里要放进4个文具盒.故答案为:4.点评:把多于m×n个元素放入n个抽屉中,那么,一定有一个抽屉里有m+1个或者m+1个以上的元素.9.把一些苹果平均放在3个抽屉中,总有一个抽屉至少放几个呢?请填表.【答案】【解析】把3个苹果放进3个抽屉,至少有3÷3=1(个),即至少有一个抽屉至少要放1个;把4个苹果放进3个抽屉,4÷3=1(个)…1个,即每平均每个抽屉放1个后,还余1个,所以至少有一个抽屉至少要放1+1=2个.以下同理.解:3÷3=1(个),4÷3=1(个)…1个,1+1=2(个),5÷3=1(个)…2个,1+1=2(个),6÷3=2(个),21÷3=7(个),100÷3=33(个)…1个,33+1=34(个),据此完成表格如下:点评:在此类抽屉问题中,至少数=物体数除以抽屉数的商+1(有余数的情况下).10.一个抽屉长60厘米,宽30厘米,高15厘米,做这样的抽屉至少需要木板平方厘米.【答案】4500.【解析】要求至少需要木板多少平方厘米,实际就是求抽屉的五个面(除了上面)的面积,根据长方体表面积公式解答即可.解:60×30+(60×15+30×15)×2=1800+(900+450)×2=1800+2700=4500(平方厘米)答:做这样的抽屉至少需要木板4500平方厘米.故答案为:4500.点评:把四周的面积加上一个底面积就是做一个这样抽屉需要的木板的面积.11.在横线里填上合适的计量单位.课桌抽屉的容积大约是15.教室的占地面积大约是70.【答案】立方分米,平方米.【解析】(1)我们根据实际生活假设课桌抽屉的长是50厘米即5分米,宽是30厘米即3分米,高是10厘米即1分米,所以课桌抽屉的容积=长×宽×高,由此求出课桌抽屉的容积.(2)我们依据实际生活假设教室的长是10米、宽7米,运用长方形的面积公式可以求出教室的占地面积.解:(1)5×3×1=15(立方分米);(2)10×7=70(平方米);故答案为:立方分米,平方米.点评:本题结合生活的实际进行解答,运用生活中的数据进行解答,即可正确求出答案.12.抽屉里有红、黄、蓝三种颜色的球各7个,至少摸出个球,才能保证有3个颜色相同的球.【答案】7.【解析】把三种颜色看做三个抽屉,从极端考虑:先摸出的是红色球、黄色球和蓝色球各2个,共6个球,则再摸第7个球,则一定有一种球是同色的,因此至少要摸出7个球.解:2×3+1=7(个);答:至少需要摸出7个小球.故答案为:7.点评:解答此类题的关键是找出把谁看作“抽屉个数”,把谁看作“物体个数”.四、解答题1.(2007•沂水县)做如图规格的一个抽屉至少需要多少木板?它的容积是多少?(木板厚度忽略不计)【答案】它的容积是12000立方厘米.【解析】(1)需要的木板的面积是长方体的表面面积,因为是抽屉没有上面的面,所以木板的面积=长×宽+长×高×2+宽×高×2,代数计算即可;(2)因为厚度不计,所以长方体的容积就等于体积,根据体积=长×宽×高,代数计算解:(1)木板面积:40×20+40×15×2+20×15×2,=800+1200+600,=2600(平方厘米).答:至少需要2600平方厘米木板.(2)40×20×15,=800×15,=12000(立方厘米).答:它的容积是12000立方厘米.点评:(1)解决本题的关键是结合实际,明确木板的面积是长方体的表面面积,因为是抽屉没有上面的面.(2)考查了长方体的体积公式.2.做一个抽屉,长60厘米,宽70厘米,高12厘米,至少需要木板多少平方厘米?【答案】至少需要木板7320平方厘米.【解析】要求至少需要木板多少平方厘米,实际就是求抽屉的五个面(除了上面)的面积,即求长方体的底面、前、后、左、右5个面的面积.解:60×70+(60×12+70×12)×2=4200+3120,=7320(平方厘米);答:至少需要木板7320平方厘米.点评:此题主要考查长方体表面积的实际应用,关键要理解抽屉是没有上面的.3.把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什么?【答案】9÷2=4(本)…1(本).4+1=5(本).【解析】把9本书放进2个抽屉,9÷2=4(本)…1(本),即平均每个抽屉放4本后,还余1本,所以至少有一个抽屉至少要放:4+1=5本;据此即可解答.解:9÷2=4(本)…1(本).4+1=5(本).所以把9本书放进2个抽屉里,总有一个抽屉至少要放5本.点评:在此类抽屉问题中,至少数=物体数除以抽屉数的商+1(有余数的情况下).4.有一个抽屉,长54厘米、宽42厘米、高12厘米,做这个抽屉至少用木板多少平方厘米?【答案】答:至少需要木板4572平方厘米.【解析】要求至少需要木板多少平方厘米,实际就是求抽屉的五个面(除了上面)的面积,即求长方体的底面、前、后、左、右5个面的面积.解:54×42+(54×12+42×12)×2=2268+2304=4572(平方厘米);答:至少需要木板4572平方厘米.点评:此题主要考查长方体表面积的实际应用,关键要理解抽屉是没有上面的.5.木工做一个长50厘米、宽40厘米、深12厘米的抽屉,至少要用木板多少平方厘米?【答案】答:至少要用木板4160平方厘米.【解析】因为抽屉无盖,所以只求它的5个面的面积,根据长方体的表面积公式解答.解:50×40+50×12×2+40×12×2=2000+1200+960=4160(平方厘米)答:至少要用木板4160平方厘米.点评:此题主要考查长方体的表面积计算方法的实际应用.6.要做一个长6分米,宽40厘米,高3分米的长方体木制抽屉,至少需要多少平方米的木板?【答案】答:做一个这样抽屉至少需要0.84平方米的木板.【解析】首先要明确长方体木抽屉共有5个面,即四周的侧面加上一个底面就是本题要求的问题,注意单位不统一,先转化成统一单位再解答.解:40厘米=4分米(4×3+6×3)×2+6×4,=30×2+24,=84(平方分米)84平方分米=0.84平方米;答:做一个这样抽屉至少需要0.84平方米的木板.点评:把四周的面积加上一个底面积就是做一个这样抽屉需要的木板的面积.7.佳佳的写字台的抽屉长45cm,宽35cm,高14cm,做这样一个抽屉至少需要木板多少平方分米?【答案】答:做这样一个抽屉至少需要木板38.15平方分米.【解析】要求至少需要木板多少平方厘米,实际就是求抽屉的五个面(除了上面)的面积,根据长方体表面积公式解答即可.解:45×35+(45×14+35×14)×2,=1575+2240,=3815(平方厘米),=38.15平方分米;答:做这样一个抽屉至少需要木板38.15平方分米.点评:把四周的面积加上一个底面积就是做一个这样抽屉需要的木板的面积.。
2021年TI杯全国初中数学竞赛试卷及答案(六)
13.如图,给定锐角三角形ABC, ,AD,BE是它的两条高,过点 作△ABC的外接圆的切线 ,过点D,E分别作 的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.2JnJJMc8QO
解法1:结论是 .下面给出证明. ………………5分
由于 ,所以Rt△FCD∽ Rt△EAB.于是可得
【答】C.
解:由题设知a≥3,所以,题设的等式为 ,于是 ,从而 =1.
2.如图,菱形ABCD的边长为a,点O是对角线AC上的一点,且OA=a,OB=OC=OD=1,则a等于< ).2JnJJMc8QO
<A) <B) <C)1 <D)2
【答】A.
解:由于△BOC∽ △ABC,所以 ,即
,
所以, .
由 ,解得 .
(2> 由②式知 .
由于 在 ≤ ≤ 时是递增的,所以,当
时, . ………………20分
12.已知正整数 满足 ,且 ,求满足条件的所有可能的正整数 的和.
解:由 可得 . ,且
.
………………5分
由于 是奇数,所以 等价于 ,又由于 ,所以 等价于 .因此有 ,于是可得 .
………………15分
又 ,所以 .因此,满足条件的所有可能的正整数 的和为
,
ห้องสมุดไป่ตู้即 ,
解得 .所以 .
10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是.2JnJJMc8QO