平方差公式(北师大课标)最新版

合集下载

平方差公式--北师大版

平方差公式--北师大版

一提二套三彻底
课本:P50 习题2.4 1,2 练习 30 分 16页
; / DNF公益服
chl564vgw
等到司空阳宇快要走近的时候,莫艳艳不容分说的将孤独晓寂一把推向了司空阳宇的身上,孤独晓寂尴尬到脸颊红透, 挠了挠头轻声的说了句“真是不好意思”,便往后退了一步。 司空阳宇不在意的笑了笑“你今天又在跑步么?” 孤独晓寂没反应过来的“啊?”了声。
分解因式:

2 a -
1 b2 25
★ 1.99² -2.99²
★ (a-b) - (a-b)
n+2 n
② 0.36a2b2 - 1 ③
2 9a 2 4b
④(2x+y)2 - (x+3y)2
请同学们设计两个能用平方差 公式分解因式的多项式,并请 同桌互相作出解答。 2 2 =
(
+
)(
-
)
分解因式要注意:
司空阳宇笑着提醒“我看你好像经常在这条路上跑步。”
孤独晓寂的脸一下子涨得越发的红了起来“哦、哦,我今天是要赶着去报到,所以有点着急!”未了又真诚的补上一句 “刚刚真是十分抱歉!” 司空阳宇笑得很和煦“没关系的,你不用一直道歉!” 孤独晓寂深深的吸了一口气,努力的抑制着已然狂奔不已的心跳,可惜她发现自己根本控制不了,她回头看了一眼还在 角落不曾离去的莫艳艳,莫艳艳对她比了个加油的手势,接着又比了个抹脖子的手势。孤独晓寂便索性不去管那依然超 出负荷的心跳,闭上眼睛再深深地吸了口气,加快脚步追上司空阳宇,在他的身边轻声的开口道“司空学长,我是孤独 晓寂,今天是去你所在的地方报到,以后就麻烦你多多指教!” 司空阳宇停下脚步打量着她看了看,念叨了句“孤独晓寂”若有所思的继续抬步说了句“这名字很好!”忽然觉得自己 这句话很是耳熟,貌似很久以前也说过一般。 孤独晓寂跟上他的步伐双手交叉在背后开口道“是呀,十年前,我刚到学校报到的时候,学长也是这样说的!”孤独晓 寂觉得自己的手心应该是在滴汗的! 司空阳宇好奇的看向她“这么说,我们还是学友咯!”说完便爽朗的笑了,他似乎想起了十年前有那么一个女孩子,也 是如她这般念出自己的名字“我叫孤独晓寂,请学长多多指教!”

北师大版七年级下(新教材)1.5 平方差公式(二)

北师大版七年级下(新教材)1.5 平方差公式(二)
ห้องสมุดไป่ตู้
练一练
计算: (1)704×696 ; (2)9.9 ×10.1
例4
计算: (1)a2(a+b)(a-b)+a2b2 (2)(2x-5)(2x+5)-2x(2x-3)
练一练
计算: (1)(x+2y)(x-2y)+(x+1)(x-1) (2)x(x-1)- (x 1) (x 1)
33
自我检测
图1-4
(3)比较(1)(2)的结果,你能验证 平方差公式吗?
活动探究二
1、计算下列各组算式,并观察它们的共同
特点
7×9=
11×13=
79×81=
8×8=
12×12=
80×80=
2、从以上过程中,你发现了什么规律?
3、请用字母表示这一规律,你能说明它的 正确性吗?
例3
用平方差公式进行计算: (1)103×97 ; (2)118×122 (100+3)(100-3) (120-2)(120+2)
5 平方差公式(第2课时)
1、平方差公式: (a+b)(a-b)=a2-b2
2、公式的结构特点: 左边是两个二项式的乘积,即两数和与
这两数差的积;右边是两数的平方差。
3、应用平方差公式的注意事项:
1)注意平方差公式的适用范围
2)字母a、b可以是数,也可以是整式
3)注意计算过程中的符号和括号
活动探究一
计算: 1) 2001×1999 -20002
2)(3mn+1)(3mn-1)-8m2n2
3) (1 x 2) (1 x 2) - 1 x(x+8)
2
2
4

北师大版七年级下册数学教学设计:1.5.1《平方差公式》

北师大版七年级下册数学教学设计:1.5.1《平方差公式》

北师大版七年级下册数学教学设计:1.5.1《平方差公式》一. 教材分析《平方差公式》是北师大版七年级下册数学的第二章第三节的内容,本节内容是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。

平方差公式是代数中的一个重要公式,它不仅涉及到平方差公式的推导,还涉及到平方差公式的应用,以及在此基础上进一步推导出完全平方公式的过程。

二. 学情分析学生在学习本节内容之前,已经掌握了有理数的乘法、完全平方公式等基础知识,具备了一定的代数运算能力。

但是,对于平方差公式的推导过程,以及如何灵活运用平方差公式解决实际问题,对学生来说还是有一定的挑战性的。

因此,在教学过程中,需要关注学生的学习情况,引导学生积极参与,突破重难点。

三. 教学目标1.知识与技能:使学生掌握平方差公式的推导过程,理解平方差公式的含义,能够灵活运用平方差公式解决实际问题。

2.过程与方法:通过小组合作、探究学习,培养学生的合作意识,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受到数学的乐趣。

四. 教学重难点1.重点:平方差公式的推导过程,以及平方差公式的应用。

2.难点:平方差公式的灵活运用,以及在此基础上推导出完全平方公式。

五. 教学方法1.采用问题驱动法,引导学生主动探究,发现规律。

2.运用小组合作学习,培养学生的团队协作能力。

3.通过实例讲解,使学生能够将理论知识与实际问题相结合,提高学生的应用能力。

六. 教学准备1.准备相关的教学PPT,包括平方差公式的推导过程、应用实例等。

2.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生复习有理数的乘法,为新课的学习做好铺垫。

2.呈现(10分钟)呈现平方差公式的推导过程,引导学生观察、分析,发现其中的规律。

3.操练(10分钟)让学生独立完成一些平方差公式的练习题,巩固所学知识。

2024北师大版数学七年级下册1.5.1《平方差公式》教案1

2024北师大版数学七年级下册1.5.1《平方差公式》教案1

2024北师大版数学七年级下册1.5.1《平方差公式》教案1一. 教材分析《平方差公式》是北师大版数学七年级下册第1章第5节的内容,本节课主要让学生掌握平方差公式的推导过程和应用。

平方差公式是初中学历阶段非常重要的一个公式,它不仅在数学计算中有着广泛的应用,而且为学生以后学习更高深的数学知识打下基础。

二. 学情分析七年级的学生已经具备了一定的代数基础,对因式分解、有理数运算等概念有一定的了解。

但学生在学习新知识时,往往还依赖于死记硬背,对于公式的推导和证明过程缺乏理解。

因此,在教学过程中,需要引导学生主动探索,理解平方差公式的推导过程,提高学生的逻辑思维能力。

三. 教学目标1.知识与技能目标:让学生掌握平方差公式的推导过程,理解并熟练运用平方差公式进行计算。

2.过程与方法目标:通过合作交流、探究学习,培养学生的团队协作能力和问题解决能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.教学重点:平方差公式的推导过程和运用。

2.教学难点:平方差公式的灵活运用,以及理解公式背后的数学思想。

五. 教学方法采用问题驱动法、合作交流法、探究学习法等,引导学生主动探索,提高学生的逻辑思维能力和团队协作能力。

六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。

2.学具准备:笔记本、笔。

七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的一些实际问题,引导学生思考如何用数学知识解决这些问题。

例如,一块正方形的土地,如果每边减少3米,新的土地面积是多少?让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

2.呈现(10分钟)引导学生列出正方形土地面积的计算公式,然后展示平方差公式的推导过程。

通过示例,让学生理解平方差公式的含义,并学会如何运用。

3.操练(10分钟)让学生独立完成一些关于平方差公式的练习题,巩固所学知识。

教师及时给予解答和指导,帮助学生掌握平方差公式的运用。

北师大版七年级下册第一章平方差公式和完全平方公式复习和拓展练习课件

北师大版七年级下册第一章平方差公式和完全平方公式复习和拓展练习课件

(A) 3
(B)-6
(C) 6
(D)6或-6
(3)下列计算正确的是( C )
A.(x-2y)(2y-x) =4y2-x2 B.(-x-1)(x+1)=x2-1
C.(m-n)(-m-n) =-m2+n2
D.(x2+2y)(x-2y)=x3-4y2
5、化简求值:
(a+2b)2-(a+2b)(a-2b),其中a=-2,b=
(4)(2-y)2
(6) (2x 3)2
ห้องสมุดไป่ตู้
(7) (2x + y)2 (9)1032
(8) (a -2b)2
2.利用公式进行计算:
(1)(x 2 y)(x 2 y) (2)(a 2b)(2b a) (3)(2a 3b)2 (4)(2x y)2
3.在横线上添上适当的代数式,使等 式成立
1 2
知识拓展
能力提高
5. x
1 x
m, 则x2
1 x2
____;
x
1 x
m, 则x2
1 x2
__;
6.
x
2
y
2
x
2
y
2
_____;
7.已知a2
3a
1
0,
求:a
1 a
,
a2
1 a2
,
(a
1 a
)2
.
拓展与迁移 1、若不论x取何值,多项式 x3-2x2- 4x-1
与 (x+1)(x2+mx+n)都相等, 求m、n的值。
(2) (x-6)2=x2+_(-_1_2_x_) +36
(3)x2-4x+__4__=(x-__2__)2

2024年北师大版七下数学1.5平方差公式第1课时平方差公式的认识教学设计

2024年北师大版七下数学1.5平方差公式第1课时平方差公式的认识教学设计

2024年北师大版七下数学1.5平方差公式第1课时平方差公式的认识教学设计一. 教材分析平方差公式是初中数学中的重要内容,对于学生来说,掌握平方差公式对于理解和掌握后续的代数知识有着重要的意义。

本节课的内容是在学生已经掌握了有理数的乘法、平方的知识基础上进行讲解的,通过平方差公式的学习,使学生能够掌握两个数的平方差可以表示为它们的和与差的乘积的两倍,并能够运用平方差公式解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法、平方的知识,对于新的知识有一定的接受能力。

但部分学生在理解上可能还存在一定的困难,因此,在教学过程中,需要关注这部分学生的学习情况,引导他们理解和掌握平方差公式。

三. 教学目标1.知识与技能:使学生理解和掌握平方差公式,能够运用平方差公式解决实际问题。

2.过程与方法:通过小组合作、探究的学习方式,培养学生的合作意识和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。

四. 教学重难点1.重点:平方差公式的理解和运用。

2.难点:理解平方差公式的推导过程和背后的数学思想。

五. 教学方法采用问题驱动法、小组合作学习法、引导发现法等,激发学生的学习兴趣,引导学生主动探究,培养学生的合作意识和解决问题的能力。

六. 教学准备1.准备相关课件和教学素材。

2.准备平方差公式的推导过程的动画或视频。

3.准备一些实际问题,用于引导学生运用平方差公式解决。

七. 教学过程1.导入(5分钟)利用问题驱动法,引导学生回顾有理数的乘法和平方的知识,为新课的学习做好铺垫。

2.呈现(10分钟)利用课件呈现平方差公式,引导学生观察和思考,引导学生发现平方差公式的规律。

3.操练(10分钟)利用平方差公式的推导过程的动画或视频,引导学生直观地理解平方差公式的推导过程,使学生能够理解和掌握平方差公式。

4.巩固(10分钟)设计一些练习题,让学生运用平方差公式进行计算,巩固所学知识。

平方差公式(一)(新北师大)

平方差公式(一)(新北师大)

平方差公式(一)一、教学目标(一)知识目标1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.(二)能力目标1.在探索平方差公式的过程中,发展学生的符号感和推理能力.2.培养学生观察、归纳、概括等能力.(三)情感目标在计算的过程中发现规律,并能用符号表达,从而体会数学语言的简捷美.二、教学重难点(一)教学重点平方差公式的推导和应用.(二)教学难点用平方差公式的结构特征判断题目能否使用公式.三、教具准备投影片四张第一张:做一做,记作(§1.7.1 A)第二张:例1,记作(§1.7.1 B)第三张:例2,记作(§1.7.1 C)第四张:练一练,记作(§1.7.1 D)四、教学过程Ⅰ.创设情景,引入新课[师]你能用简便方法计算下列各题吗?(1)2001×1999;(2)992-1[生]可以.在(1)中2001×1999=(2000+1)(2000-1)=20002-2000+2000-1×1=20002-12=4000000-1=3999999,在(2)中992-1=(100-1)2-1=(100-1)(100-1)-1=1002-100-100+1-1=10000-200=9800.[师]很好!我们利用多项式与多项式相乘的法则,将(1)(2)中的2001,1999,99化成为整千整百的运算,从而使运算很简便.我们不妨观察第(1)题,2001和1999,一个比2000大1,于是可写成2000与1的和,一个比2000小1,于是可写成2000与1的差,所以2001×1999就是2000与1这两个数的和与差的积,即(2000+1)(2000-1);再观察利用多项式与多项式相乘的法则算出来的结果为:20002-12,恰为这两个数2000与1的平方差.即(2000+1)(2000-1)=20002-12.那么其他满足这个特点的运算是否也有类似的结果呢?我们不妨看下面的做一做.Ⅱ.使学生在计算的过程中,通过观察、归纳发现规律,并用自己的语言和符号表示其规律[师]出示投影片(§1.7.1 A)做一做:计算下列各题:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(y+3z)(y-3z).观察以上算式,你发现什么规律?运算出结果,你又发现什么规律?再举两例验证你的发现?[生]上面四个算式都是多项式与多项式的乘法.[生]上面四个算式每个因式都是两项.[生]除上面两个同学说的以外,更重要的是:它们都是两个数的和与差的积.例如:算式(1)是“x”与“2”这两个数的和与差的积;算式(2)是“1”与“3a”这两个数的和与差的积;算式(3)是“x”与“5y”的和与差的积;算式(4)是“y”与“3z”这两个数的和与差的积.[师]我们观察出了算式的结构特点.像这样的多项式与多项式相乘,它们的结果如何呢?只要你肯动笔、动脑,相信你一定会探寻到答案.[生]解:(1)(x+2)(x-2)=x2-2x+2x-4=x2-4;(2)(1+3a)(1-3a)=1-3a+3a-9a2=1-9a2;(3)(x+5y)(x-5y)=x2-5xy+5xy-25y2=x2-25y2;(4)(y+3z)(y-3z)=y2-3yz+3zy-9z2=y2-9z2(如有必要的话可以让学生利用乘法分配律将多项式与多项式相乘转化成单项式与多项式相乘,进一步体会乘法分配律的重要作用以及转化的思想) [生]从刚才这位同学的运算,我发现:即两个数的和与差的积等于这两个数的平方差.这和我们前面的一个简便运算得出同样的结果.即[师]你还能举两个例子验证你的发现吗?[生]可以.例如:(1)101×99=(100+1)(100-1)=1002-100+100-12=1002-12=10000-1=9999;(2)(-x+y)(-x-y)=(-x)(-x)+xy-xy-y2=(-x)2-y2=x2-y2.即上面两个例子,同样可以验证:两个数的和与差的积,等于它们的平方差.[师]为什么会有这样的特点呢?[生]因为利用多项式与多项式相乘的运算法则展开后,中间两项是同类项且系数互为相反数,所以相加后为零.只剩下这个数的平方差.[师]很好!你能用一般形式表示上述规律,并对规律进行证明吗? [生]可以.上述规律用符号表示为: (a +b )(a -b )=a 2-b 2①其中a ,b 可以表示任意的数,也可以表示代表数的单项式、多项式. 利用多项式与多项式相乘的运算法则可以对规律进行证明,即(a +b )(a -b )=a 2-ab +ab -b 2=a 2-b 2[师]同.你能给我们发现的规律(a +b )(a -b )=a 2-b 2起一个名字吗?能形象直观地反映出此规律的.[生]我们可以把(a +b )(a -b )=a 2-b 2叫做平方差公式. [师]大家同意吗? [生]同意.[师]好了!这节课我们主要就是学习讨论这个公式的.你能用语言描述这个公式吗?[生]可以.这个公式表示两数和与差的积,等于它们的平方差.[师]平方差公式是多项式乘法运算中一个重要的公式.用它直接运算会很简单,但要注意必须符合公式的结构特点才能利用它进行运算.Ⅲ.体会平方差公式的应用,感受平方差公式给多项式乘法运算带来的方便,进一步熟悉平方差公式.出示投影片(§1.7.1 B)[例1](1)下列多项式乘法中,能用平方差公式计算的是( ) A.(x +1)(1+x )B.(21a +b )(b -21a ) C.(-a +b )(a -b ) D.(x 2-y )(x +y 2) E.(-a -b )(a -b )F.(c 2-d 2)(d 2+c 2)(2)利用平方差公式计算:(5+6x )(5-6x );(x -2y )(x +2y ); (-m +n )(-m -n ).[生](1)中只有B 、E 、F 能用平方差公式.因为B.(21a +b )(b -21a )利用加法交换律可得(21a +b )(b -21a )=(b +21a )(b -21a ),表示b 与21a 这两个数的和与差的积,符合平方差公式的特点;E.(-a -b )(a -b ),同样可利用加法交换律得(-a -b )(a -b )=(-b -a )(-b +a ),表示-b 与a 这两个数和与差的积,也符合平方差公式的特点;F.(c 2-d 2)(d 2+c 2)利用加法和乘法交换律得(c 2-d 2)(d 2+c 2)=(c 2+d 2)(c 2-d 2),表示c 2与d 2这两个数和与差的积,同样符合平方差公式的特点.[师]为什么A 、C 、D 不能用平方差公式呢? [生]A 、C 、D 表示的不是两个数的和与差的积的形式.[师]下面我们就来做第(2)题,首先分析它们分别是哪两个数和与差的积的形式.[生](5+6x )(5-6x )是5与6x 这两个数的和与差的形式;(x -2y )(x +2y )是x 与2y 这两个数的和与差的形式;(-m +n )(-m -n )是-m 与n 这两个数的和与差的形式.[师]很好!下面我们就来用平方差公式计算上面各式. [生](5+6x )(5-6x )=52-(6x )2=25-36x 2; (x -2y )(x +2y )=x 2-(2y )2=x 2-4y 2; (-m +n )(-m -n )=(-m )2-n 2=m 2-n 2.[师]这位同学的思路非常清楚.下面我们再来看一个例题. 出示投影片(记作§1.7.1 C) [例2]利用平方差公式计算: (1)(-41x -y )(-41x +y );(2)(ab +8)(ab -8); (3)(m +n )(m -n )+3n 2.[师]同学们可先交流、讨论,然后各小组派一代表到黑板上演示.然后再派一位同学讲评.[生]解:(1)(-41x -y )(-41x +y )——(-41x )与y 的和与差的积=(-41x )2-y 2——利用平方差公式得(-41x )与y 的平方差=161x 2-y 2——运算至最后结果 (2)(ab +8)(ab -8)——ab 与8的和与差的积 =(ab )2-82——利用平方差公式得ab 与8的平方差 =a 2b 2-64——运算至最后结果(3)(m +n )(m -n )+3n 2——据运算顺序先计算m 与n 的和与差的积 =(m 2-n 2)+3n 2——利用平方差公式 =m 2-n 2+3n 2——去括号=m 2+2n 2——合并同类项至最简结果[生]刚才这位同学的运算有条有理,有根有据,我觉得利用平方差公式计算必须注意以下几点:(1)公式中的字母a 、b 可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.[生]还需注意最后的结果必须最简.[师]同学们总结的很好!下面我们再来练习一组题. 投影片(§1.7.1 D) 1.计算: (1)(a +2)(a -2); (2)(3a +2b )(3a -2b ); (3)(-x +1)(-x -1); (4)(-4k +3)(-4k -3).2.把下图左框里的整式分别乘(a +b ),所得的积写在右框相应的位置上.解:1.(1)(a+2)(a-2)=a2-22=a2-4;(2)(3a+2b)(3a-2b)=(3a)2-(2b)2=9a2-4b2;(3)(-x+1)(-x-1)=(-x)2-12=x2-1;(4)(-4k+3)(-4k-3)=(-4k)2-32=16k2-9.2.(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2;(a-b)(a+b)=a2-b2;(-a+b)(a+b)=(b+a)(b-a)=b2-a2;(-a-b)(a+b)=-a(a+b)-b(a+b)=-a2-ab-ab-b2=-a2-2ab-b2(教师在让学生做练习,可巡视练习的情况,对确实有困难的学生要给以指导)Ⅳ.课时小结[师]同学们有何体会和收获呢?[生]今天我们学习了多项式乘法运算中的一个重要公式——平方差公式即(a+b)(a-b)=a2-b2.[生]应用这个公式要明白公式的特征:(1)左边为两个数的和与差的积;(2)右边为两个数的平方差.[生]公式中的a、b可以是数,也可以是代表数的整式.[生]有些式子表面上不能用公式,但通过适当变形实质上能用公式.[师]同学们总结的很好!还记得刚上课的一个问题吗?计算992-1,现在想一想,能使它运算更简便吗?[生]可以.992-1可以看成99与1的平方差,从右往左用平方差公式可得:992-1=992-12=(99+1)(99-1)=100×98=9800.[师]我们发现平方差公式的应用是很灵活的,只要你准确地把握它的结构特征,一定能使你的运算简捷明了.Ⅴ.课后作业课本P30,习题1.11,第1题.Ⅵ.活动与探究有10位乒乓球选手进行单循环赛(每两人间均赛一场),用x1,y1顺次表示第1号选手胜与负的场数,用x2,y2顺次表示第2号选手胜与负的场数,……用x10,y10顺次表示第10号选手胜与负的场数.则10名选手胜的场数的平方和与他们负的场数的平方和相等,即x12+x22+…+x102=y12+y22+…+y102,为什么?经过:由于是单循环赛,每名运动员恰好参加9局比赛,即x i+y i=9(其中i=1、2、3、…10),在比赛中一人胜了,另一人自然败了,则x1+x2+…+x10=y1+y2+…+y10,这两个隐含条件是解题的关键,从作差比较入手.[结果]由题意知x i+y i=9(i=1、2、3、…10)且x1+x2+…+x10=y1+y2+…+y10 (x12+x22+…+x102)-(y12+y22+…+y102)=(x12-y12)+(x22-y22)+…+(x102-y102)=(x1+y1)(x1-y1)+(x2+y2)(x2-y2)+…+(x10+y10)(x10-y10)=9[(x1-y1)+(x2-y2)+(x3-y3)+…+(x10-y10)]=9[(x1+x2+…+x10)-(y1+y2+…+y10)]=0所以,x12+x22+…+x102=y12+y22+…+y102.五、板书设计§1.7.1 平方差公式(一)解:(1)(x+2)(x-2)=x2-2x+2x-4=x2-4;(2)(1+3a)(1-3a)=1-3a+3a-9a2=1-9a2;(3)(x+5y)(x-5y)=x2-5xy+5xy-25y2=x2-25y2;(4)(y+3z)(y-3z)=y2-3yz+3zy-9z2=y2-9z2.(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差.(a+b)(a-b)=a2-ab+ab-b2=a2-b2.例1.(抓住平方差公式的特征,准确地利用平方差公式计算)例2.(对公式中a、b含义的理解,既可以是具体的数也可以是整数) 随堂练习(熟悉平方差公式).。

《平方差公式》导学案 2022年北师大版七下

《平方差公式》导学案 2022年北师大版七下

平方差公式教材分析《平方差公式》是义务教育课程标准实验教科书《数学》〔北师大版〕七年级下册的教学内容。

教材在上册中安排了《有理数及运算》、《字母表示数》等内容。

在本节内容前面又安排了平方差公式产生的背景,使学生经历过实际问题“符号化〞的过程,有了一定的符号感,为探索“平方差公式〞奠定了根底。

学生分析学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感。

经过一个学期的培养,学生已经具备了小组合作、交流的能力。

本节课的教学能培养学生的推理能力,使学生通过大胆而又合情合理的推理,有条理地表达自己的思考过程。

教学目标1、经历探索平方差公式的过程,进一步开展符号感和推理能力。

2、会推导平方差公式,并能运用公式进行简单的计算。

3、认识平方差公式及其几何背景。

4、在合作、交流和讨论中开掘知识,并体验学习的乐趣。

教学重点:体会公式的发现的推导过程,理解公式的本质,并会运用公式进行简单的计算。

教学难点:从广泛意义上理解公式中的字母含义。

课前准备1、为每位学生准备一张正方形纸片(边长为15cm)。

2、教师准备两张正方形(一大一小)纸板和三块矩形纸板。

3、多媒体课件。

教学流程一、创设问题情境,引导学生观察、设想。

教师发给每个学生一张正方形纸片(边长15cm)并用多媒体课件(或用正方形纸板)显示正方形。

师:在一块45的红色正方形纸板上,因为工作的需要,中间挖去一块边长为15的正方形(如图),请问剩下红色局部的面积有多少平方厘米?453015(刚开始小的正方形可以随意摆放在红色正方形的任何位置。

)小组讨论:1.可以用大正方形面积减去小正方形面积得到。

2.可以把剩下红色局部切割成几个矩形来计算。

师:从今天的问题来看,用哪一种方法比拟好?你们小组能列出算式吗?或许有学生能迅速列出算式,得出答案是1800平方厘米。

师:为了容易理解,我现在把小正方形放在大正方形的角落(如图)。

(同时也要求学生在他们手上的正方形纸的角落上画一个小正方形,可规定连长为3cm。

北师大版数学八年级下册4.3《平方差公式》(第1课时)教学设计

北师大版数学八年级下册4.3《平方差公式》(第1课时)教学设计

北师大版数学八年级下册4.3《平方差公式》(第1课时)教学设计一. 教材分析北师大版数学八年级下册4.3《平方差公式》(第1课时)是学生在学习了完全平方公式的基础上进行学习的,本节课的主要内容是平方差公式的探究和运用。

平方差公式是代数中的一个重要公式,它不仅在数学学习中有着广泛的应用,而且在日常生活和工作中也有着重要的作用。

二. 学情分析学生在学习本节课之前,已经学习了完全平方公式,对公式有一定的理解,同时学生的思维能力和探究能力也有了一定的发展。

但学生对平方差公式的理解和运用还需要进一步的提高。

因此,在教学过程中,需要教师引导学生通过探究、实践,加深对平方差公式的理解,提高运用公式解决问题的能力。

三. 教学目标1.理解平方差公式的含义,掌握公式的运用。

2.培养学生的思维能力和探究能力。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:平方差公式的理解和运用。

2.难点:平方差公式的推导和灵活运用。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生通过自主学习、合作探究,提高对平方差公式的理解和运用。

六. 教学准备1.准备相关的学习材料和案例。

2.准备教学课件和板书设计。

3.准备相关的问题和练习题。

七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回顾完全平方公式,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示平方差公式的推导过程,让学生理解和掌握公式的推导方法。

3.操练(10分钟)教师通过出示一些例子,让学生运用平方差公式进行计算,巩固对公式的理解和运用。

4.巩固(10分钟)教师通过一些练习题,让学生进一步巩固对平方差公式的理解和运用。

5.拓展(5分钟)教师通过一些生活中的实际问题,让学生运用平方差公式进行解决,提高学生运用数学知识解决实际问题的能力。

6.小结(5分钟)教师引导学生对所学内容进行小结,总结平方差公式的理解和运用。

7.家庭作业(5分钟)教师布置一些练习题,让学生回家进行练习,巩固所学知识。

七年级数学下册1.5平方差公式1.5.1平方差公式课件新版北师大版

七年级数学下册1.5平方差公式1.5.1平方差公式课件新版北师大版
平方差公式: (a+b)(a−b)=a2−b2
( 1 x 1)
2 练一练
判断下面计算是否正确
(1) (1 x 1)(1 x 1) = 1 x2 1 (× )
2
2
2
(2)(3x-y)(-3x+y)=9x2-y2 (× )
(3)(m+n)(-m-n)=m2-n2 (× )
例1
利用平方差公式计算:
(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)
想一想
(a−b)(−a−b)=?你是怎样做的?
计算 1、 (5m-n)(-5m-n) 2、 (a+b)(a-b)(a2+b2)
自我检测
利用平方差公式计算:
(1)(-x-1)(1-x)
(2)(0.3x+2y)(0.3x-2y)
(3)(x
1) 2
(x
1) (x2 2
1) 4
课堂小结
分享你的收获, 交流你的困惑。
知识回顾
1、多项式乘多项式法则
多项式与多项式相乘,先用一个多项式 的每一项乘另一个多项式的每一项,再 把所得的积相加
(m+b)(n+a)=m两项式,结果可能是两项吗? 请你举例说明。
探究规律
计算下列各题: (1)(x+2)(x-2) (2)(1+3a)(1-3a) (3)(x+5y)(x-5y) (4)(2y+z)(2y-z) 观察以上算式及其运算结果, 你有什么发现? 再举两例验证你的发现。
练一练
利用平方差公式计算: (1) (a+2)(a-2)
(2)(3a+2b)(3a-2b)

1.5第1课时平方差公式的认识PPT课件(北师大版)

1.5第1课时平方差公式的认识PPT课件(北师大版)

填一填 (a-b)(a+b) (1+x)(1-x) (-3+a)(-3-a) (1+a)(-1+a)
(0.3x-1)(1+0.3x)
a
b
1x -3 a
a1
0.3x 1
a2-b2 12-x2 (-3)2-a2 a2-12 ( 0.3x)2-12
例1 利用平方差公式计算: (1) (5+6x )( 5-6x ) ; (2) (x-2y)(x+2y); (3) (-m+n)(-m-n) 解:(1)原式=52-(6x)2=25-36x2; (2)原式=x2-(2y)2=x2 - 4y2; (3)原式=(-m)2-n2=m2-n2.
3.利用平方差公式计算:
(1)(a+3b)(a- 3b);
解:原式=a2-(3b)2 =a2-9b2 ;
(2)(3+2a)(-3+2a);
解:原式=(2a+3)(2a-3)
=(2a)2-32 =4a2-9;
(3)(-2x2-y)(-2x2+y);
解:原式=(-2x2 )2-y2 =4x4-y2.
用自己的 语言叙述 你的发现.
③(2m+1)( 2m-1)=4m2-1 =(2m)2-12
④(5y+z)(5y-z)= 25y2 -z2 =(5y)2-z2 想一想 这些计算结果有什么特点?你发现了什么规
律? 两数和与这两数差的积,等于这两数的平方的差.
平方差公式: (a+b)(a−b)=a2−b2
方法总结:利用平方差公式先化简再求值,切忌代 入数值直接计算.
1.下列式子可用平方差公式计算吗? 为什么? 如 果能够,怎样计算?
(1) (a+b)(a−b) ; (不能)

北师大版七级下册数学平方差公式优选全文

北师大版七级下册数学平方差公式优选全文

下载温馨提示:该文档是学者精心编制而成,希望能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢! 并且,我们为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注! 平方差公式 知识点一:平方差公式 1.公式: ,文字叙述:两数 与这两数 的 ,等于它们的 . 注意:1.公式中的a 与b 可以是具体的数,也可以是 或 。

2.公式的特点:公式左边是两个 相乘,这两个二项式中的两项有一项 ,另一项 ;右边是左边两数的 (相同数的平方减去相反项的平方)1.计算:(1)(x +y)(x -y)= ;(2)(y +x)(x -y)= ;(3)(y -x)(y +x)= ;(4)(x +y)(-y +x)= ;(5)(-x -y)(-x +y)= ;(6)(x -y)(-x -y)= ;(7)(-y +x)(-x -y)= .2.利用平方差公式计算(1)(5+6x )(5-6x) (2)(x+2y)(x-2y) (3) (-m+n)(-m-n)(4))41)(41(y x y x +--- (5)(ab+8)(ab-8) (6)(x-2y)(-x-2y)3.计算(1) (x -y )(x 2+y 2)(x +y ); (2))1)(1)(1)(1)(1(842++++-x x x x x(3) (x +y +2z )(x -y -2z ) (4) (x -y +3)(x +y -3);2.几何意义例:如图所示,在边长为a 的正方形中挖掉一个边长为b的小正方形(a >b ),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是____ __.知识点二:逆用平方差公式公式: ,文字叙述:两数的 等于这两数 与这两数 的 ,1.已知3422=-y x ,x-y=2,求2x+2y 的值2.利用平方差公式进行简单计算:(1)1001×999+1; (2)20102 -2011×2009(3)224690123461234512347-⨯ . (4)28888123456123455123457-⨯提高练习:1.(1)已知a +b =2,求代数式a 2 -b 2+4b 的值.(2)已知(2a +2b +1)(2a +2b -1)=63,求代数式a +b 的值.2.计算(2+1)(22+1)(24+1)(28+1(216+1)3.计算:1002-992+982-972+…+22-1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算: (1)(x+2)(x-2)=_X__2-_4__=( x)2-( 2)2 (2)(1+3a)(1-3a)=__1_-9_a_2_=( 1 )2-(3a )2 (3)(x+5y)(x-5y)=_X_2_-_25_y_2=( x )2-(5y)2
问题:观察以上算式及其运算结果,你发现了什么规律?
学习目标
知识目标: 1:经历探索平方差公式的过程,进一步发展学生的
符号感和推理பைடு நூலகம்力。
2:会运用平方差公式进行简单的计算。
能力目标 1:培养学生观察、猜想、总结的能力。 2:培养学生的动手能力和实践能力。
情感目标 1:通过学生的观察、对比、发现规律,体验教学活动充满 探索性和创造性。 2:通过分组讨论学习,体会合作学习的兴趣。
怎样确定a与b?_______________准__确__确__定__a_和__b____ 符号相同的项是a,符号相反的项是b
(二)巩固公式
例2.抓住a和b的符号特征,确定a,b
然后计算 (1)(3a+2b)(3a-2b)
注意 确定a和b
(2)(-x+1)(-x-1)
(3)(-4k+3)(-4k-3)
(四)加深拓展
(1)(x-y)(x+y)(x2+y2) (2)已知 x2-y2=8 , x+y=-4 ,求x-y的值。
达标检测
(1)下列多项式的乘法中可以用平方差公式计算的是( ) A(x+B1)(1+x) B(2a+b)(b-2a) C(-a+b)(a-b) (2)下列各式计算正确的是( ) A(a+b)(a-b)=a2+b2 B(2x-3y)(C2x+3y)=2x2-9 C(5ab-1)(5ab+1)=25a2b2-1 D(3x+2)(3x-2)=3x2-4 (3)若m.(x+3)(x2+9)=x4-81,则m应是( )
(1)(5+6x)(5-6x)=( )2-( )2=__________ (2)(x-2y)(x+2y)=( 5 )2-( 6x )2=__2_5_-_3_6_x_2__ (3)(-m+n)(-m-n)=( x )2-( 2y)2=_x_2_-_4_y_2____ 问题:利用平方差-公m 式计n算的关m键2-是n2_________________
C
A x-3 B 3-x C 3+x D x-9
这节课我们学习的仍是多项式乘以
多项式,但它是特殊的多项式乘以多项
式,也就是可以用平方差公式计算。平 方差公式中,a表示符号相同的数,b表 示符号相反的数,在解题过程中要灵活运 用公式.准确确定a和b,是运用平方差公式 进行多项式乘法的关键。
谢谢同学们的精彩表现
等式左边:__两__数___和___与__这___两__数___差__的___积__________ 等式右边:__这___两__数___的___平__方___差_______________
a b a b a 2 b 2
巩固拓展
(一)应用公式:
例1. 利用平方差公式计算(先确定各题的a与b,再填空)
(三)灵活应用公式
阅读 体验 ☞
问题(1)a和b的位置可以变化吗?试试看。 (2)如果可以,请试着给公式变形,并将变形
后的公式转化为公式的基本形式。 (3)a和b的位置变化后,如何准确确定a和b呢?
发挥你的潜能!
准确计算下列各式: (1)(x2+4y)(x2-4y) (2)(ap2+q2)(q2-ap2) (3)(3a3-2b4)(2b4+3a3) (4)(-1-3m)(1-3m)
很高兴认识大家
山亭育才中学 翟夫连 2006年3月2日
王敏捷同学去逛商店
买了单价9.8元/千克的糖果10.2千克,售货员刚拿起计 算器。王敏捷就说出应付99.6元。结果与售货员计算出的 结果相吻合。
售货员很惊讶得说: “你好象是个神童,你怎么算得这么快?”
王敏捷同学说: “过奖了,我利用了在数学课上刚学过的一个公式。” 你知道王敏捷用的什么公式吗?
再见
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方
相关文档
最新文档