海淀区2010-2011学年度高三年级第一学期期末数学理

合集下载

北京市海淀区高三数学上学期期末考试试题 理 北师大版

北京市海淀区高三数学上学期期末考试试题 理 北师大版

北京市海淀区2013届高三第一学期期末考试数学(理)试题2013.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数21i-化简的结果为 A.1i + B.1i -+ C. 1i - D.1i --2.已知直线2,:2x t l y t =+⎧⎨=--⎩(t 为参数)与圆2cos 1,:2sin x C y θθ=+⎧⎨=⎩(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是A.π,(1,0)4 B.π,(1,0)4- C.3π,(1,0)4 D.3π,(1,0)4- 3.向量(3,4),(,2)x ==a b , 若||⋅=a b a ,则实数x 的值为 A.1- B.12-C.13- D.1 4.某程序的框图如图所示, 执行该程序,若输入的p 为24,则输出 的,n S 的值分别为A.4,30n S ==B.5,30n S ==C.4,45n S ==D.5,45n S ==5.如图,PC 与圆O 相切于点C ,直线PO 交圆O 于,A B 两点,弦CD 垂直AB 于E . 则下面结论中,错误..的结论是 A.BEC ∆∽DEA ∆ B.ACE ACP ∠=∠ C.2DE OE EP =⋅ D.2PC PA AB =⋅6.数列{}n a 满足111,n n a a r a r +==⋅+(*,n r ∈∈N R 且0r ≠),则“1r =”是“数列{}n a 成等差数列”的A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件7. 用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为A. 144B.120C. 108D.72B8. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是A.12(,)33B.1(,1)2C. 2(,1)3D.111(,)(,1)322二、填空题:本大题共6小题,每小题5分,共30分.9. 以y x =±为渐近线且经过点(2,0)的双曲线方程为______.10.数列{}n a 满足12,a =且对任意的*,N m n ∈,都有n mn ma a a +=,则3_____;a ={}n a 的前n 项和n S =_____.11. 在261(3)x x+的展开式中,常数项为______.(用数字作答) 12. 三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.13. 点(,)P x y 在不等式组 0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y 到直线1y kx =-的最大距离为___.k =14. 已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且PA r =(0r <<,记点P 的轨迹的长度为()f r ,则1()2f =______________;关于r 的方程()f r k =的解的个数可以为________.(填上所有可能的值).三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题满分13分)已知函数21()cos cos 2222x x x f x +-,ABC ∆三个内角,,A B C 的对边分别为,,a b c .(I )求()f x 的单调递增区间;(Ⅱ)若()1,f B C +=1a b ==,求角C 的大小.DABC左视图16.(本小题满分13分)汽车租赁公司为了调查A,B 两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:(I )从出租天数为3天的汽车(仅限A,B 两种车型)中随机抽取一辆,估计这辆汽车恰好是A 型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A ,B 两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.17. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,12,AB AC AA ===E 是BC 中点.(I )求证:1//A B 平面1AEC ;(II )若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长; (Ⅲ)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.18. (本小题满分13分)EC 1B 1A 1CBA已知函数e ().1axf x x =- (I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.19. (本小题满分14分)已知()2,2E 是抛物线2:2C y px =上一点,经过点(2,0)的直线l 与抛物线C 交于,A B 两点(不同于点E ),直线,EA EB 分别交直线2x =-于点,M N . (Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O 为原点,求证:MON ∠为定值.20. (本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x =在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”. 我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准 2013.1说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分) 三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为21()cos cos 2222x x x f x +-cos 122cos 121x x x x =+-=++ πsin()6x =+ ………………6分又sin y x =的单调递增区间为ππ2π,2π 22k k -+(),()Z k ∈ 所以令πππ2π2π262k x k -<+<+ 解得2ππ2π2π 33k x k -<<+ 所以函数()f x 的单调增区间为2ππ(2π,2π) 33k k -+,()Z k ∈ ………………8分 (Ⅱ) 因为()1,f B C +=所以πsin()16B C ++=,又(0,π)B C +∈,ππ7π(,)666B C ++∈所以πππ,623B C B C ++=+=,所以2π3A =………………10分由正弦定理sin sin B Ab a=把1a b ==代入,得到1s i n 2B =………………12分又,b a <B A <,所以π6B =,所以π6C =………………13分16.(本小题满分13分) 解:(I )这辆汽车是A 型车的概率约为3A 3A,B =出租天数为天的型车辆数出租天数为天的型车辆数总和300.63020=+这辆汽车是A 型车的概率为0.6 (3)分(II )设“事件i A 表示一辆A型车在一周内出租天数恰好为i 天”,“事件j B 表示一辆B型车在一周内出租天数恰好为j 天”,其中,1,2,3,...,7i j = 则该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为132231132231()()()()P A B A B A B P A B P A B P A B ++=++ ………………5分132231()()()()()()P A P B P A P B P A P B =++ ………………7分520102030141001001001001001009125=⋅+⋅+⋅=该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为9125………………9分设Y 为B 型车出租的天数,则Y 的分布列为()10.0520.1030.3040.3550.1560.0370.02=3.62E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯()10.1420.2030.2040.1650.1560.1070.05E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=3.48………………12分一辆A 类型的出租车一个星期出租天数的平均值为3.62天,B 类车型一个星期出租天数的平均值为3.48天. 从出租天数的数据来看,A 型车出租天数的方差小于B 型车出租天数的方差,综合分析,选择A 类型的出租车更加合理 . ………………13分17.(本小题满分14分)(I) 连接A C 1交AC 1于点O ,连接EO因为1ACC A 1为正方形,所以O 为A C 1中点, 又E 为CB 中点,所以EO 为1A BC ∆的中位线, 所以1//EO A B………………2分又EO ⊂平面1AEC ,1A B ⊄平面1AEC 所以1//A B 平面1AEC………………4分(Ⅱ)以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴建立空间直角坐标系 所以111(0,0,0),(0,0,2),(2,0,0),(2,0,2),(0,2,0),(0,2,2),(1,1,0),A A B B C C E 设(0,0,)(02)M m m ≤≤,所以11(2,0,2),(1,1,2)B M m C E =--=--,因为11B M C E ⊥,所以 110B M C E ⋅=,解得1m =,所以1AM = ………………8分(Ⅲ)因为1(1,1,0),(0,2,2)AE AC ==, 设平面1AEC 的法向量为(,,)n x y z =,则有10AE n AC n ⎧⋅=⎪⎨⋅=⎪⎩,得00x y y z +=⎧⎨+=⎩,令1,y =-则1,1x z ==,所以可以取(1,1,1)n =-, ………………10分因为AC ⊥平面1A B B A 1,取平面1ABB A 1的法向量为(0,2,0)AC = ………………11分所以c o||A CAC A C ⋅<>………………13分平面1AEC 与平面1A B B A 1所成锐二面角的余弦值为………………14分 18. (本小题满分13分)解:当1a =时,e ()1axf x x =-,2e (2)'()(1)x x f x x -=- ………………2分 又(0)1f =-,'(0)2f =-, 所以()f x 在(0,(0))f 处的切线方程为21y x =-- ………………4分(II )2e [(1)]'()(1)ax ax a f x x -+=-当0a =时,21'()0(1)f x x -=<-又函数的定义域为{|1}x x ≠ 所以()f x 的单调递减区间为(,1-∞+∞ ………………6分当 0a ≠时,令'()0f x =,即(1)0ax a -+=,解得1a x a+= ………………7分当0a >时,11a x a+=>, 所以()f x ',()f x 随x 的变化情况如下表所以()f x 的单调递减区间为(,1)-∞,1(1,)a a+, 单调递增区间为1(,)a a++∞ ………………10分 当0a <时,11a x a+=< 所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(,)a a+-∞, 单调递减区间为1(,1)a a+,(1,)+∞ ………………13分 19. (本小题满分14分)解:(Ⅰ)将()2,2E 代入22y px =,得1p =所以抛物线方程为22y x=,焦点坐标为1(,0)2………………3分(Ⅱ)设211(,)2y A y ,222(,)2y B y ,(,),(,)M M N N M x y N x y ,法一:因为直线l 不经过点E ,所以直线l 一定有斜率 设直线l 方程为(2)y k x =-与抛物线方程联立得到 2(2)2y k x y x=-⎧⎨=⎩,消去x ,得:2240ky y k --=则由韦达定理得:121224,y y y y k=-+=………………6分 直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++, 令2x =-,得11242M y y y -=+………………9分 同理可得:22242N y y y -=+………………10分 又 4(2,),(2,)m mOM y ON y -=-=-, 所以121224244422M N y y OM ON y y y y --⋅=+=+⋅++ 121212124[2()4]4[2()4]y y y y y y y y -++=++++44(44)444(44)k k--+=+-++0= ………………13分 所以OM ON ⊥,即MON ∠为定值π2………………14分 法二:设直线l 方程为2x my =+与抛物线方程联立得到 222x my y x=+⎧⎨=⎩,消去x ,得:2240y my --=则由韦达定理得:12124,2y y y y m=-+=………………6分 直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++, 令2x =-,得11242M y y y -=+………………9分 同理可得:22242N y y y -=+………………10分 又 4(2,),(2,)m mOM y ON y -=-=-, 12124(2)(2)44(2)(2)M N y y OM ON y y y y --⋅=+=+++121212124[2()4]4[2()4]y y y y y y y y -++=++++4(424)44(424)m m --+=+-++=………………12分所以OM ON ⊥,即MON ∠为定值π2………………13分20. (本小题满分14分)解:(I )因为1(),f x ∈Ω且2()f x ∉Ω, 即2()()2f x g x x hx h x==--在(0,)+∞是增函数,所以0h ≤ ………………1分 而2()()2f x h h x x h x x ==--在(0,)+∞不是增函数,而2'()1hh x x =+ 当()h x 是增函数时,有0h ≥,所以当()h x 不是增函数时,0h < 综上,得h <………………4分(Ⅱ) 因为1()f x ∈Ω,且0a b c a b c <<<<++ 所以()()4=f a f a b c a a b c a b c++<++++, 所以4()af a d a b c=<++,同理可证4()b f b d a b c =<++,4()cf c t a b c=<++三式相加得4()()()()24,a b c f a f b f c d t a b c++++=+<=++所以2d t +-<………………6分 因为,d d a b <所以()0,b a d ab-< 而0a b <<, 所以0d < 所以(d d +-………………8分(Ⅲ) 因为集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取, 所以()f x ∀∈ψ,存在常数k ,使得 ()f x k < 对(0,)x ∈+∞成立我们先证明()0f x ≤对(0,)x ∈+∞成立 假设0(0,),x ∃∈+∞使得0()0f x >, 记020()0f x m x => 因为()f x 是二阶比增函数,即2()f x x 是增函数. 所以当0x x >时,022()()f x f x m x x >=,所以2()f x mx > 所以一定可以找到一个10x x >,使得211()f x mx k >> 这与()f x k< 对(0,)x ∈+∞成立矛盾 ………………11分()0f x ≤对(0,)x ∈+∞成立所以()f x ∀∈ψ,()0f x ≤对(0,)x ∈+∞成立 下面我们证明()0f x =在(0,)+∞上无解 假设存在20x >,使得2()0f x =,则因为()f x 是二阶增函数,即2()f x x 是增函数 一定存在320x x >>,322232()()0f x f x x x >=,这与上面证明的结果矛盾 所以()0f x =在(0,)+∞上无解综上,我们得到()f x ∀∈ψ,()0f x <对(0,)x ∈+∞成立所以存在常数0M ≥,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立又令1()(0)f x x x=->,则()0f x <对(0,)x ∈+∞成立,又有23()1f x x x-=在(0,)+∞上是增函数 ,所以()f x ∈ψ, 而任取常数0k <,总可以找到一个00x >,使得0x x >时,有()f x k >所以M的最小值 为0 ………………13分。

海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知=-=αα2cos ,53cos 则( )A .257 B .257-C .2524D .2524-2.已知抛物线的方程为y 2=4x ,则此抛物线的焦点坐标为( )A .(-1,0)B .(0,-1)C .(1,0)D .(0,1)3.设集合1,,},4,3,2,1{22=+∈=nym xA n m A 则方程表示焦点位于x 轴上的椭圆有( )A .6个B .8个C .12个D .16个4.已知三条不同直线m 、n 、l ,两个不同平面βα,,有下列命题: ①βαββαα////,//,,⇒⊂⊂n m n m②ααα⊥⇒⊥⊥⊂⊂l n l m l n m ,,, ③αββαβα⊥⇒⊥⊂=⋂⊥n m n n m ,,, ④αα//,//m n n m ⇒⊂ 其中正确的命题是( )A .①③B .②④C .①②④D .③5.某台机器上安装甲乙两个元件,这两个元件的使用寿命互不影响.已知甲元件的使用寿命超过1年的概率为0.6,要使两个元件中至少有一个的使用寿命超过1年的概率至少为0.9,则乙元件的使用寿命超过1年的概率至少为 ( )A .0.3B .0.6C .0.75D .0.96.已知函数),20,0)(sin(πϕωϕω≤<>+=x y且此函数的图象如图所示,则点P (),ϕω的坐标是 ( ) A .)2,2(πB .)4,2(πC .)2,4(πD .)4,4(π7.已知向量),sin 3,cos 3(),sin ,cos 2(ββαα==b a 若向量a 与b 的夹角为60°,则直线 21)s i n ()c o s (021s i n c o s 22=++-=+-ββααy x y x 与圆的位置关系是 ( )A .相交B .相切C .相离D .相交且过圆心8.动点P 为椭圆)0(12222>>=+b a by ax 上异于椭圆顶点(±a ,0)的一点,F 1、F 2为椭圆的两个焦点,动圆C 与线段F 1、P 、F 1F 2的延长线及线段PF 2相切,则圆心C 的轨迹为除去坐标轴上的点的( )A .一条直线B .双曲线的右支C .抛物线D .椭圆二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知双曲线1422=-xy,则其渐近线方程是 ,离心率e= .10.在复平面内,复数i z i z 32,121+=+=对应的点分别为A 、B 、O 为坐标原点,OB OA OP λ+=.若点P 在第四象限内,则实数λ的取值范围是 .11.等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=. 12.已知正四棱锥P —ABCD 中,PA=2,AB=2,M 是侧棱PC 的中点,则异面直线PA 与BM 所成角大小为 .13.动点P 在平面区域|)||(|2:221y x y x C +≤+内,动点Q 在曲线1)4()4(:222=-+-y x C上,则平面区域C 1的面积为 ,|PQ|的最小值为 . 14.已知每条棱长都为3的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD=60°, 长为2的线段MN 的一个端点M 在 DD 1上运动,另一个端点N 在底面ABCD上运动.则MN 中点P 的轨迹与直平行 六面体表面所围成的几何体中较小体积值 为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题共13分)在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若B c a C b c o s )2(c o s -=. (Ⅰ)求∠B 的大小; (Ⅱ)若,4,7=+=c a b 求三角形ABC 的面积.16.(本小题共13分)已知圆C 的方程为:.422=+y x(Ⅰ)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若,32||=AB 求直线l 的方程;(Ⅱ)过圆C 上一动点M 作平行与x 轴的直线m ,设m 与y 轴的交点为N ,若向量 ON OM OQ +=,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.17.(本小题共13分)如图,在直三棱柱ABC —A 1B 1C 1中,,6,3,1,901===︒=∠AA CA CB ACB M 为侧棱CC 1上一点,AM ⊥BA 1 (Ⅰ)求证:AM ⊥平面A 1BC ; (Ⅱ)求二面角B —AM —C 的大小; (Ⅲ)求点C 到平面ABM 的距离.18.(本小题共14分)设函数)1ln(2)1()(2x x x f +-+=. (Ⅰ)求函数f (x )的单调区间;(Ⅱ)当0<a <2时,求函数]30[1)()(2,在区间---=ax x x f x g 的最小值.19.(本小题共14分)设椭圆)0(12222>>=+b a by ax 的焦点分别为F 1(-1,0)、F 2(1,0),右准线l 交x 轴于点A ,且.221AF AF =(Ⅰ)试求椭圆的方程; (Ⅱ)过F 1、F 2分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.20.(本小题共13分)已知函数f (x )的定义域为[0,1],且满足下列条件: ①对于任意;4)1(,3)(],1,0[=≥∈f x f x ,且总有②若.3)()()(,1,0,021212121-+≥+≤+≥≥x f x f x x f x x x x 则有 (Ⅰ)求f (0)的值; (Ⅱ)求证:4)(≤x f ; (Ⅲ)当33)(,...)3,2,1](31,31(1+<=∈-x x f n x n n时,试证明:.参考答案一、选择题(本大题共8小题,每小题5分,共40分)题号1 2 3 4 5 6 7 8答案B C A D C B C A二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)9.x y 2±=,(缺一扣1分)25 10.3121-<<-λ 11.-912.4π13.π48+,122- 14.92π三、解答题(本大题共6小题,共80分) 15.(共13分)解:(Ⅰ)由已知及正弦定理可得sin B cos C = 2sin A cos B -cos B sin C …………………………………………………2分 ∴2sin A cos B = sin B cos C +cos B sin C = sin(B +C )又在三角形ABC 中,sin (B +C ) = sin A ≠0 ………………………………………3分 ∴2sinAcosB = sinA ,即在△ABC 中,cosB=21,………………………………5分3π=B ………………………………………………………………………………6分(Ⅱ)B ac c a b cos 27222-+==ac c a -+=∴227………………………………………………………………8分又ac c a c a 216)(222++==+3=∴ac …………………………………………………………………………10分 B ac S ABC sin 21=∴∆43323321=⨯⨯=∴∆ABC S …………………………………………………13分16.(共13分)解:(Ⅰ)①直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为32 满足题意………………………………………1分 ②若直线l 不垂直于x 轴,设其方和为)1(2-=-x k y ,即02=+--k y kx …………………………………………………………2分 设圆心到此直线的距离为d ,则24232d -=,得d =1…………………3分 1|2|12++-=∴kk ,43=k ,………………………………………………………4分故所求直线方程为0543=+-y x ………………………………………………5分 综上所述,所求直线方程为0543=+-y x 或x =1……………………………6分(Ⅱ)设点M 的坐标为)0)(,(000≠y y x ,Q 点坐标为(x ,y )则N 点坐标是),0(0y …7分,ON OM OQ +=2,)2,(),(0000y y x x y x y x ===∴即………………………………………………9分又)0(44,4222020≠=+∴=+y yx y x ……………………………………………11分∴Q 点的轨迹方程是)0(,116422≠=+y yx…………………………………………12分轨迹是一个焦点在y 轴上的椭圆,除去短轴端点. …………………………………13分注:多端点时,合计扣1分.17.(共13分)证明:(Ⅰ)在直三棱柱111C B A ABC -中,易知面⊥11A ACC 面ABC , ︒=∠90ACB ,11A A C C BC 面⊥∴,……………………………………………………………2分 11A A C C AM 面⊆ AM BC ⊥∴B BA BC BA AM =⊥11 ,且BC A AM 1平面⊥∴……………………………………………………………4分解:(Ⅱ)设AM 与A 1C 的交点为O ,连结BO ,由(Ⅰ)可 知AM ⊥OB ,且AM ⊥OC ,所以∠BOC 为二面角 B -AM -C 的平面角,…………………………5分在Rt △ACM 和Rt △A 1AC 中,∠OAC+∠ACO=90°, ∴∠AA 1C=∠MAC ∴Rt △ACM~ Rt △A 1AC ∴AC 2= MC ²AA 1 ∴26=MC ……………………………………7分∴在Rt △ACM 中,223=AMCO AM MC AC ⋅=⋅21211=∴CO∴在Rt △BCO 中,1tan ==COBC BOC .︒=∠∴45BOC ,故所求二面角的大小 为45°………………………………9分 (Ⅲ)设点C 到平面ABM 的距离为h ,易知2=BO ,可知2322232121=⨯⨯=⋅⋅=∆BO AM S ABM ……………………………10分A B C M A B M C V V --= ………………………………………………………………11分 A B C A B MS MC hS∆∆⋅=∴313122232326=⨯=⋅=∴∆∆A B MA B CS S MC h∴点C 到平面ABM 的距离为22………………………………………………13分解法二:(Ⅰ)同解法一…………………………4分 (Ⅱ)如图以C 为原点,CA ,CB ,CC 1所在直线 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则)0,1,0(),6,0,3(),0,0,3(1B A A ,设 M (0,0,z 1) 1BA AM ⊥ .01=⋅∴BA AM 即06031=++-z ,故261=z ,所以)26,0,0(M …………………6分设向量m =(x ,y ,z )为平面AMB 的法向量,则m ⊥AM ,m ⊥AB ,则 ⎪⎩⎪⎨⎧=⋅=⋅00AB m AM m 即,030263⎪⎩⎪⎨⎧=+-=+-y x z x 令x =1,平面AMB 的一个法向量为m =)2,3,1(,……………………………………………………………………8分 显然向量CB 是平面AMC 的一个法向量22||||,cos =⋅⋅>=<CB m CB m CB m易知,m 与CB 所夹的角等于二面角B -AM -C 的大小,故所求二面角的大小为 45°. ………………………………………………………………………………9分 (Ⅲ)所求距离为:2263||==⋅m CB m即点C 到平面ABM 的距离为22………………………………………………13分18.(共14分)解:(Ⅰ).1)2(212)1(2)('++=+-+=x x x x x x f …………………………2分由0)('>x f 得012>-<<-x x 或;由0)('<x f ,得.012<<--<x x 或 又)(x f 定义域为(-1,+∞)∴所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0)…5分 (Ⅱ))1(212)(x n ax x x g +--=,定义域为(-1,+∞) 1)2(122)('+--=+--=x ax a x a x g ……………………………………………7分0202,20>->-∴<<aa a a 且由0)('>x g 得aa x ->2,即)(x g 在⎪⎭⎫⎝⎛+∞-,2a a上单调递增;由0)('<x g 得aa x -<<-21,即)(x g 在⎪⎭⎫⎝⎛--a a2,1上单调递减…………8分 ①时 )(,320x g a a<-<在⎪⎭⎫ ⎝⎛-a a 2,0上单调递减,在⎪⎭⎫⎝⎛-3,2a a 上单调递增; ∴在区间[0,3]上,ana aa g x g --=-=2221)2()(min ; (2)30<<a …10分②当)(,32,223x g aa a ≥-<≤时在(0,3)上单调递减,∴在区间[0,3]上,42136)3()(min n a g x g --==…………………………13分 综上可知,当230<<a 时,在区间[0,3]上,ana aa g x g --=-=2221)2()(min ;当223<≤a 时,在区间[0,3]上42136)3()(min n a g x g --==.…14分19.(共14分)解:(Ⅰ)由题意,),0,(,22||221a A C F F ∴==…………………………………2分212AF AF = 2F ∴为AF 1的中点……………………………………………3分2,322==∴b a即:椭圆方程为.12322=+yx……………………………………………………5分(Ⅱ)当直线DE 与x 轴垂直时,342||2==abDE ,此时322||==a MN ,四边形DMEN 的面积为42||||=⋅MN DE .同理当MN 与x 轴垂直时,也有四边形DMEN 的面积为42||||=⋅MN DE .…7 分当直线DE ,MN 均与x 轴不垂直时,设DE ∶)1(+=x k y ,代入椭圆方程,消去 y 得:.0)63(6)32(2222=-+++k x k x k设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x kkx x y x E y x D 则…………………………………8分所以,231344)(||222122121++⋅=-+=-kkx x x x x x ,所以,2221232)1(34||1||kk x x kDE ++=-+=,同理,.32)11(34)1(32)1)1((34||2222kkkkMN ++=-++-=………………………………10分所以,四边形的面积222232)11(3432)1(34212||||kkkk MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=kkkk ,…………………………………12分 令uuu S kk u 61344613)2(24,122+-=++=+=得因为,2122≥+=kk u当2596,2,1==±=S u k 时,且S 是以u 为自变量的增函数,所以42596<≤S .综上可知,四边形DMEN 面积的最大值为4,最小值为2596.…………………14分20.(共13分)解:(Ⅰ)令021==x x ,由①对于任意]1,0[∈x ,总有3)0(,3)(≥∴≥f x f ……………………………1分 又由②得 3)0(,3)0(2)0(≤-≥f f f 即;……………………………………2分 .3)0(=∴f …………………………………………………………………………3分证明:(Ⅱ)任取2121]1,0[,x x x x <∈且设,则3)()()]([)(1211212--+≥-+=x x f x f x x x f x f , 因为1012≤-<x x ,所以03)(,3)(1212≥--≥-x x f x x f 即,).()(21x f x f ≤∴………………………………………………………………5分 .4)1()(,]1,0[=≤∈∴f x f x 时当……………………………………………7分(Ⅲ)先用数学归纳法证明:)(331)31(*11N n f n n ∈+≤-- (1)当n =1时,331314)1()31(+=+===f f ,不等式成立;(2)假设当n=k 时,)(331)31(*11N k f k k ∈+≤--由6)31()31()31(3)3131()31()]3131(31[)31(1-++≥-++≥++=-kkkkkkkkkk f f f f f f f得≤)31(3kf 9316)31(11+≤+--k k f331)31(+≤∴kkf即当n=k+1时,不等式成立. 由(1)(2)可知,不等式331)31(+≤∴kkf 对一切正整数都成立.于是,当)31(331331333,...)3,2,1](31,31(111---≥+=+⨯>+=∈n n nn nf x n x 时,,而x ∈[0,1],f (x )单调递增)31()31(1-<∴n nf f 所以33)31()31(1+<<∴-x f f n n……………………………………13分。

北京四中2010-2011学年度第一学期高三年级试卷以及答案

北京四中2010-2011学年度第一学期高三年级试卷以及答案

北京四中2010-2011学年度第一学期高三年级开学测试数学试卷(理)(试卷满分150分,考试时间为120分钟)一、选择题(每小题5分,共40分)1. 设{}|22M x x =-≤≤,{}|02N y y =≤≤,给出四个图形,其中以集合M 为定义域,N 为值域的函数关系的是( )DCBA2. 已知a ,b ,c 为非零的平面向量,甲:a b a c ⋅=⋅ ,乙:b c =,则甲是乙的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3. 已知ππ2α⎛⎫∈ ⎪⎝⎭,,3sin 5α=,则πtan 4α⎛⎫+ ⎪⎝⎭等于( )A .7B .7-C .17 D .17- 4. 函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,则下列论断中,正确论断的个数是( )⑴ 图象C 关于直线11π12x =对称; ⑵ 函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,内是增函数;⑶ 由函数3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . A .0 B .1 C .2 D .35. 已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+,且A 、B 、C 三点共线(该直线不过原点O ),则200S =( )A .100B .101C .200D .2016. 已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≥( )A .0.16B .0.32C .0.68D .0.847. 一组抛物线2112y ax bx =++,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线1x =交点处的切线相互平行的概率是( )A .112 B .760 C .625 D .5258. 函数()f x 的定义域为(1)(1)-∞+∞ ,,,且(1)f x +为奇函数,当1x >时,2()21216f x x x =-+,则直线2y =与函数()f x 图象的所有交点的横坐标之和是( )A .1B .2C .4D .5 二、填空题(每题5分,共30分) 9. sin 243sin x y x-=-的值域为___________.10.(10x 的展开式中,6x 的系数是___________.11.由一条曲线1y x=(其中0x ≥)与直线1y =,2y =以及y 轴所围成的曲边梯形的面积是______. 12.已知:定义在(22)-,上的偶函数()f x ,当0x >时为减函数,若(1)()f a f a -<恒成立,则实数a 的取值范围是___________.13.在ABC △中,D 为边BC 上一点,12BD DC =,120ADB ∠=︒,2AD =,若ADC △的面积为3,则BAC ∠=___________.14.定义映射:f A B →,其中{}()|A m n m n =∈R ,,,B =R . 已知对所有的有序正整数对()m n ,满足下述条件:① (1)1f m =,;② 若m n <,()0f m n =,;③ (1)[()(1)]f m n n f m n f m n +=+-,,,. 则(32)f ,的值是___________;()f n n ,的表达式为___________.(用含n 的代数式表示). 三、解答题(共6题,共80分)15.(本小题满分13分)解关于x 的不等式(1)(1)0()ax x a -+>∈R .16.(本小题满分13分)甲和乙参加智力答题活动,活动规则:①答题过程中,若答对则继续答题;若答错则停止答题;②每人最多答3个题;③答对第一题得10分,第二题得20分,第三题得30分,答错得0分.已知甲答对每个题的概率为34,乙答对每个题的概率为13. ⑴ 求甲恰好得30分的概率;⑵ 设乙的得分为ξ,求ξ的分布列和数学期望; ⑶ 求甲恰好比乙多30分的概率.17.(本小题满分13分)已知:向量sin 2m A 1⎛⎫= ⎪⎝⎭,与()3sin n A A =,共线,其中A 是ABC △的内角.⑴ 求:角A 的大小;⑵ 若2BC =,求ABC △面积S 的最大值,并判断S 取得最大值时ABC △的形状.18.(本小题满分13分)已知:如图,长方体1111ABCD A B C D -中,E 、F 分别是棱BC ,1CC 上的点,2CF AB CE ==,1::1:2:4AB AD AA =.⑴ 求异面直线EF 与1A D 所成角的余弦值; ⑵ 证明AF ⊥平面1A ED ; ⑶ 求二面角1A ED F --的正弦值.19.(本小题满分14分)已知:函数()f x 是定义在[)(]1001- ,,上的偶函数,当[)10x ∈-,时,3()f x x ax =-(a 为实数).⑴ 当(]01x ∈,时,求()f x 的解析式;⑵ 若3a >,试判断()f x 在(]01,上的单调性,并证明你的结论;⑶ 是否存在a ,使得当(]01x ∈,时,()f x 有最大值1?若存在,求出a 的值;若不存在,请说明理由.FE D CBA A 1B 1C 1D 120.(本小题满分14分)已知:函数22()(0)f x a x a =>,()ln g x b x =.⑴ 若函数()y f x =图象上的点到直线30x y --=a 的值; ⑵ 关于x 的不等式2(1)()x f x ->的解集中的整数恰有3个,求实数a 的取值范围;⑶ 对于函数()f x 与()g x 定义域上的任意实数x ,若存在常数k ,m ,使得不等式()f x kx m +≥和()g x kx m +≤都成立,则称直线y kx m =+为函数()f x 与()g x 的“分界线”.设a =,b e =,试探究()f x 与()g x 是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.参考答案一、二、 填空题:9.317⎡⎤--⎢⎥⎣⎦, 10.1890 11.ln 212.112a -<< 13.60︒ 14.6;!n三、解答题(共6题,共80分) 15.解:⑴ 当0a =时 ,(1)0x -+>,即:1x <-;⑵ 当0a >时 ,1(1)0x x a ⎛⎫-+> ⎪⎝⎭,即:1x <-或1x a >;⑶ 当0a <时 ,1(1)0x x a ⎛⎫-+< ⎪⎝⎭,若10a -<<,则11x a <<-;若1a =-,则无解;若1a <-,则11x a-<<.综上:原不等式的解集分别为当1a <-时,1|1x x a ⎧⎫-<<⎨⎬⎩⎭;若1a =-时,∅;当10a -<<时,1|1x x a ⎧⎫<<-⎨⎬⎩⎭当0a =时,{}|1x x <-; 当0a >时,{|1x x <-或1x a ⎫>⎬⎭.16.解:⑴ 甲恰好得30分,说明甲前两题都答对,而第三题答错,其概率为233914464⎛⎫⎛⎫-=⎪⎪⎝⎭⎝⎭, ⑵ ξ的取值为0,10, 30,60.12(0)133P ξ==-=,112(10)1339P ξ⎛⎫⎛⎫==-⋅= ⎪ ⎪⎝⎭⎝⎭1112(30)133327P ξ⎛⎫==⋅⋅-= ⎪⎝⎭,311(60)327P ξ⎛⎫=== ⎪⎝⎭ξ的概率分布如下表:()01030603927273E ξ=⨯+⨯+⨯+⨯=⑶ 设甲恰好比乙多30分为事件A ,甲恰好得30分且乙恰好得0分为事件1B , 甲恰好得60分且乙恰好得30分为事件2B ,则12A B B = ,1B ,2B 为互斥事件. 231231232()()()4434278P A P B P B 1⎛⎫⎛⎫=+=⋅⋅+⋅= ⎪ ⎪⎝⎭⎝⎭.所以,甲恰好比乙多30分的概率为1817.解:⑴ 因为m n ∥,所以()3sin sin 02A A A ⋅-=.所以1cos 232022A A -+-=12cos 212A A -=,即πsin 216A ⎛⎫-= ⎪⎝⎭. 因为(0π)A ∈, , 所以ππ11π2666A ⎛⎫-∈- ⎪⎝⎭,. 故ππ262A -=,π3A =.⑵ 由余弦定理,得224b c bc =+-又1sin 2ABC S bc A =△, 而222424b c bc bc bc bc +⇒+⇒≥≥≤,(当且仅当b c =时等号成立)所以1sin 42ABC S bc A ===△ 当ABC △的面积取最大值时,b c =.又π3A =,故此时ABC △为等边三角形.18.解: 法一:如图所示,以点A 为坐标原点,建立空间直角坐标系, 设1AB =,依题意得(020)D ,,,(121)F ,,,1(004)A ,,,3102E ⎛⎫⎪⎝⎭,, ⑴ 易得1012EF ⎛⎫= ⎪⎝⎭ ,,,1(024)A D =-,,, 于是1113cos 5EF A D EF A D EF A D⋅==-,所以异面直线EF 与1A D 所成角的余弦值为35⑵ 已知(121)AF =,,,13142EA ⎛⎫=-- ⎪⎝⎭ ,,,1102ED ⎛⎫=- ⎪⎝⎭,, 于是10AF EA ⋅=,0AF ED ⋅= .因此,1AF EA ⊥,AF ED ⊥,又1EA ED E = 所以AF ⊥平面1A ED⑵ 设平面EFD 的法向量()u x y z = ,,,则0u EF u ED ⎧⋅=⎪⎨⋅=⎪⎩,即102102y z x y ⎧+=⎪⎪⎨⎪-+=⎪⎩ 不妨令1X =,可得(121)u =-,,.由⑵可知,AF为平面1A ED 的一个法向量.于是2cos 3||||u AF u AF u AF ⋅==⋅,,从而sin u AF = ,,所以二面角1A ED F --法二:⑴ 设1AB =,可得2AD =,14AA =,1CF =.12CE =连接1B C ,1BC ,设1B C 与1BC 交于点M ,易知11A D B C ∥,由114CE CF CB CC ==,可知1EF BC ∥. 故BMC ∠是异面直线EF 与1A D 所成的角,易知112BM CM B C ===,所以2223cos 25BM CM BC BMC BM CM +-∠==⋅,所以异面直线FE 与1A D 所成角的余弦值为35⑵ 连接AC ,设AC 与DE 交点N 因为12CD BC BC AB ==,所以Rt ~Rt DCE CBA △△,从而CDE BCA ∠=∠,又由于90CDE CED ∠+∠=︒,所以90BCA CED ∠+∠=︒,故AC DE ⊥,又因为1CC DE ⊥且1CC AC C = ,所以DE ⊥平面ACF ,从而AF DE ⊥. 连接BF ,同理可证1B C ⊥平面ABF ,从而1AF B C ⊥, 所以1AF A D ⊥因为1DE A D D = ,所以AF ⊥平面1A ED . ⑶ 连接1A N .FN ,由⑵可知DE ⊥平面ACF ,又NF ⊂平面ACF ,1A N ⊂平面ACF ,所以DE NF ⊥,1DE A N ⊥, 故1A NF ∠为二面角1A ED F --的平面角.易知Rt ~Rt CNE CBA △△,所以CN ECBC AC=,又AC =CN =,在Rt NCF △中,1NA ==连接11AC ,1A F 在11Rt AC△中,22211112cos 23A N FN A F A NF A N FN +-∠==⋅.所以1sin A NF ∠ F E D CB A A 1B 1C 1D 1所以二面角1A DE F --.19.解:⑴ 设(]01x ∈,,则[)10x -∈-,,3()f x x ax -=-+,()f x 为偶函数,3()f x x ax -+,(]01x ∈,.⑵ 2()3f x x a '=-+,∵(][)201330x x ∈⇒-∈-,,,又3a >,∴230a x ->,即()0f x '>,∴()f x 在(]01,上为增函数.⑶ 当3a >时,()f x 在(]01,上是增函数,max ()(1)112f x f a a ==-=⇒=.(不合题意,舍去)当03a ≤≤时,2()3f x a x '=-,令()0f x '=,x =∴()f x 在x =131a x -+=⇒=⇒=<. 当0a <时,2()30f x a x '=-<,()f x 在(]01,上单调递减,()f x 在(]01,无最大值.∴存在a =()f x 在(]01,上有最大值1.20.解:⑴ 因为22()f x a x =,所以2()2f x a x '=,令2()21f x a x '==得:212x a =,此时214y a=,则点221124a a ⎛⎫ ⎪⎝⎭,到直线30x y --=即12a =或a =经检验知,a =12a = ⑵ 法一:不等式2(1)()x f x ->的解集中的整数恰有3个,等价于22(1)210a x x --+>恰有三个整数解,故210a -<, 令22()(1)21h x a x x =--+,由(0)10h =>且2(1)0(0)h a a =-<>, 所以函数22()(1)21h x a x x =--+的一个零点在区间(01),, 则另一个零点一定在区间(32)--,,故(2)0(3)0h h ->⎧⎨-⎩,≤,解之得4332a <≤.法二:22(1)210a x x --+>恰有三个整数解,故210a -<,即1a >,22(1)21[(1)1][(1)1]0a x x a x a x --+=--+->,所以1111x a a <<-+,又因为1011a<<+,所以1321a -<--≤,解之得4332a <≤.⑶ 设21()()()ln 2F x f x g x x e x =-=-,则(2()x x e x e F x x x x x -'=-==.所以当0x <<时,()0F x '>;当x ()0F x '<.因此x =()F x 取得最小值0,则()f x 与()g x 的图象在x 2e ⎫⎪⎭,.设()f x 与()g x 存在 “分界线”,方程为(2ey k k -=,即2ey kx =+-由()2ef x kx +-≥在x ∈R 恒成立,则2220x kx e --+在x ∈R 恒成立 .所以()(22244248440k e k e k ∆=-=-=≤成立,因此k =下面证明()(0)2eg x x ->恒成立.设()ln eG x e x w=-,则)()x e G x x x '=-=.所以当0x <<时,()0G x '>;当x >()0G x '<.因此x =()G x 取得最大值0,则()(0)2ef x x ->成立.故所求“分界线”方程为:2ey =-.。

2010届北京海淀区第一学期高三年级期末练习文

2010届北京海淀区第一学期高三年级期末练习文

2010届北京市海淀区第一学期高三年级期末练习数学试卷(文科)1.225sin =( )A .1B .—1C .22D .—22 2.下面给出四个点中,位于⎩⎨⎧>+-<-+0101y x y x 所表示的平面区域内的点是( )A .(0,2)B .(—2,0)C .(0,—2)D .(2,0) 3.双曲线222=-x y 的渐近线方程是( )A .x y ±=B .x y 2±=C .x y 3±=D .x y 2±=4.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样, 系统抽样5.已知n m ,是两条不同直线,βα,是两个不同平面.下列命题中不.正确的是 ( )A .若n m n m //,,//则=βααB .若αα⊥⊥n m n m 则,,//C .若βαβα//,,则⊥⊥m mD .若βαβα⊥⊂⊥则,,m m6.如图,向量b a -等于( )A .2142e e --B .2124e e --C .213e e -D .2133e e +7.若直线l 与直线7,1==x y 分别交于点P ,Q ,且线段PQ 的中点坐标为(1,—1),则直线l 的斜率为 ( )A .31B .—31 C .—23 D .32 8.已知椭圆C :1422=+y x 的焦点为F 1,F 2,若点P 在椭圆上,且满足|PO|2=|PF 1|·|PF 2| (其中O 为坐标原点),则称点P 为“★点”.那么下列结论正确的是 ( )A .椭圆C 上的所有点都是“★点”B .椭圆C 上仅有有限个点是“★点” C .椭圆C 上的所有点都不是“★点”D .椭圆C 上有无穷多个点(但不是所有的点)是“★点”第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.抛物线x y 42=的准线方程是____________10.某程序的框图如图所示,则执行该程序,输出的S=11.一个几何体的三视图如图所示,则该几何体的表面积为__________________.12.在区间[—2,2]上,随机地取一个数x ,则2x 位于0到1之间的概率是____________.13.已知F 1为椭圆12:22=+y x C 的左焦点,直线1:-=x y l 椭圆C 交于A 、B 两点,那么|F 1A|的+|F 1B|值为_______.14.对于函数)(x f ,若存在区间M M x x f y y b a b a M =∈=<=}),(|{),(],,[使得,则称区间M 为函数)(x f 的一个“稳定区间”.请你写出一个具有“稳定区间”的函数__________;(只要写出一个即可) 给出下列4个函数:①xe xf =)(;②3)(x x f =,③x x f 2cos)(π= ④1ln )(+=x x f其中存在“稳定区间”的函数有_______(填上正确的序号) 15.(本小题共12分)已知集合}1521|{},052|{+<<+=<-+=a x a x P x x x S (I )求集合S ;(II )若P S ⊆,求实数a 的取值范围. 16.(本小题共13分)某校高三年级进行了一次数学测验,随机从甲乙两班各抽取6名同学,所得分数的茎叶图如下图所示:(I )根据茎叶图判断哪个班的平均分数较高,并说明理由;(II )现从甲班这6名同学中随机抽取两名同学,求他们的分数之和大于165分的概率.17.(本小题共14分)长方体ABCD —A 1B 1C 1D 1中AB=1,AA 1=AD=2.点E 为AB 中点. (I )求三棱锥A 1—ADE 的体积; (II )求证:A 1D ⊥平面ABC 1D 1;(III )求证:BD 1//平面A 1DE.18.(本小题共13分)函数).(1)(2R a x ax x f ∈++=. (I )若))1(,1()(f x f 在点处的切线斜率为21,求实数a 的值; (II )若1)(=x x f 在处取得极值,求函数)(x f 的单调区间. 19.(本小题共14分)已知圆C 经过点)2,0(),0,2(B A -,且圆心在直线x y =上,且,又直线l :1+=kx y 与圆C 相交于P 、Q 两点. (I )求圆C 的方程;(II )若⋅=—2,求实数k 的值;(III )过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN面积的最大值.20.(本小题共14分)已知函数.),(,0:}{.,)(*112N n a f a a a R m m x x f n n n ∈==∈+=+如下定义数列其中 (I )当m=1时,求432,,a a a 的值;(II )是否存在实数m ,使432,,a a a 构成公差不为0的等差数列?若存在,请求出实数m 的值,若不存在,请说明理由;(III )求证:当41>m 时,总能找到.2010,>∈k a N k 使得。

2010届海淀区高三年级数学(理科)一模试题及答案

2010届海淀区高三年级数学(理科)一模试题及答案

海淀区高三年级第二学期期中练习数 学 (理科) 2010.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.在复平面内,复数1iiz =-(i 是虚数单位)对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.在同一坐标系中画出函数log a y x =,x y a =,y x a =+的图象,可能正确的是( )3.在四边形ABCD 中,AB DC =,且AC ·BD =0,则四边形ABCD 是()A.矩形B. 菱形C. 直角梯形D. 等腰梯形4.在平面直角坐标系xOy 中,点P 的直角坐标为(1,.若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是( )A .1,3π⎛⎫- ⎪⎝⎭B .42,3π⎛⎫⎪⎝⎭C .2,3π⎛⎫- ⎪⎝⎭D .42,3π⎛⎫-⎪⎝⎭5.一个体积为 则这个三棱柱的左视图的面积为 ( )A .B .8C .D .126.已知等差数列1,,a b ,等比数列3,2,5a b ++, 则该等差数列的公差为 ( ) A .3或3- B .3或1- C .3 D .3-7.已知某程序框图如图所示,则执行该程序后输出 的结果是 ( ) A .1- B .1C .2D .12B ACD8.已知数列()1212:,,,0,3n n A a a a a a a n ≤<<<≥具有性质P :对任意(),1i j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项. 现给出以下四个命题: ①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则10a =;④若数列()123123,,0a a a a a a ≤<<具有性质P ,则1322a a a +=. 其中真命题有( )A .4个B .3个C .2个D .1个第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.某校为了解高三同学寒假期间学习情况,抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图).则这100名同学中学习时间在6~8小时内的人数为 _______ .10.如图,AB 为O 的直径,且8AB = ,P 为OA 的中点,过P 作O 的弦CD ,且:3:4CP PD =,则弦CD 的长度为 . 11.给定下列四个命题:①“6x π=”是“1sin 2x =”的充分不必要条件; ②若“p q ∨”为真,则“p q ∧”为真; ③若a b <,则22am bm <; ④若集合AB A =,则A B ⊆.其中为真命题的是 (填上所有正确命题的序号).12.在二项式25()ax x-的展开式中,x 的系数是10-,则实数a 的值为 .13.已知有公共焦点的椭圆与双曲线中心为原点,焦点在x 轴上,左右焦点分别为12,F F ,且它们在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形.双曲线的离心率的取值范围为(1,2).则该椭圆B的离心率的取值范围是 .14.在平面直角坐标系中,点集22{(,)|1}A x y x y =+≤,{(,)|4,0,,340}B x y x y x y =≤≥-≥,则(1)点集1111{(,)3,1,(,)}P x y x x y y x y A ==+=+∈所表示的区域的面积为_____; (2)点集12121122{(,),,(,),(,)}Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示. (Ⅰ)求,ωϕ的值; (Ⅱ)设()()()4g x f x f x π=-,求函数()g x16.(本小题满分13分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元).求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AA AC AC AB BC ====,且AB BC ⊥, O 为AC 中点.(Ⅰ)证明:1AO ⊥平面ABC ; (Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值;(Ⅲ)在1BC 上是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在,确定点E 的位置.18.(本小题满分13分)已知函数()ln ,f x x a x =+其中a 为常数,且1a ≤-.(Ⅰ)当1a =-时,求()f x 在2[e,e ](e=2.718 28…)上的值域; (Ⅱ)若()e 1f x ≤-对任意2[e,e ]x ∈恒成立,求实数a 的取值范围. 19.(本小题满分13分)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为12,F F ,且12||2F F =,点(1,32)在椭圆C 上.(Ⅰ)求椭圆C 的方程; (Ⅱ)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆2F 为圆心且与直线l 相切的圆的方程.1A BCO A 1B 1C20.(本小题满分14分)已知数列{}n a 满足:10a =,21221,,12,,2n n n n a n n a a -+⎧⎪⎪=⎨++⎪⎪⎩为偶数为奇数2,3,4,.n =(Ⅰ)求567,,a a a 的值; (Ⅱ)设212n n na b -=,试求数列{}n b 的通项公式;(Ⅲ)对于任意的正整数n ,试讨论n a 与1n a +的大小关系.海淀区高三年级第二学期期中练习数 学 (理)参考答案及评分标准 2010.4说明: 合理答案均可酌情给分,但不得超过原题分数.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.30 10.7 11.①,④ 12.1 13.12(,)35 14.π;18π+.三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(Ⅰ)由图可知πππ=-=)42(4T ,22==Tπω, ………………2分又由1)2(=πf 得,1)sin(=+ϕπ,又(0)1f =-,得sin 1ϕ=-πϕ<||2πϕ-=∴, ………………4分(Ⅱ)由(Ⅰ)知:x x x f 2cos )22sin()(-=-=π………………6分因为()(cos 2)[cos(2)]cos 2sin 22g x x x x x π=---=1sin 42x =………………9分 所以,24222k x k ππππ-≤≤+,即(Z)2828k k x k ππππ-≤≤+∈.……………12分 故函数()g x 的单调增区间为[,] (Z)2828k k k ππππ-+∈.……………13分16.(本小题满分13分)解:设指针落在A ,B ,C 区域分别记为事件A ,B ,C .则111(),(),()632P A P B P C ===. ………………3分(Ⅰ)若返券金额不低于30元,则指针落在A 或B 区域.111()()632P P A P B ∴=+=+=………………6分即消费128元的顾客,返券金额不低于30元的概率是12. (Ⅱ)由题意得,该顾客可转动转盘2次.随机变量X 的可能值为0,30,60,90,120.………………7分111(0);224111(30)2;23311115(60)2;263318111(90)2;369111(120).6636P X P X P X P X P X ==⨯===⨯⨯===⨯⨯+⨯===⨯⨯===⨯= ………………10分………………12分其数学期望115110306090120404318936EX =⨯+⨯+⨯+⨯+⨯= .………13分 17. (本小题满分14分)解:(Ⅰ)证明:因为11A A AC =,且O 为AC 的中点, 所以1AO AC ⊥. ………………1分又由题意可知,平面11AA C C ⊥平面ABC ,交线为AC ,且1AO ⊂平面11AA C C , 所以1AO ⊥平面ABC .………………4分(Ⅱ)如图,以O 为原点,1,,OB OC OA 所在直线分别为x ,y ,z 轴建立空间直角坐标系. 由题意可知,112,A A AC AC ===又,AB BC AB BC =⊥1,1,2OB AC ∴== 所以得:11(0,0,0),(0,1,0),(0,1,0),(1,0,0)O A A C C B - 则有:11(0,1,3),(0,1,3),(1,1,0).AC AA AB =-==………………6分设平面1AA B 的一个法向量为(,,)x y z =n ,则有10000AA y x y AB ⎧⎧⋅==⎪⎪⇔⎨⎨+=⎪⋅=⎪⎩⎩n n ,令1y =,得1,x z =-=所以(1,1,=-n . ………………7分 11121cos ,|||A C A C A C ⋅<>==n n |n ………………9分因为直线1A C 与平面1A AB 所成角θ和向量n 与1A C 所成锐角互余,所以sin θ=………………10分(Ⅲ)设0001(,,),,E x y z BE BC λ==………………11分即000(1,,)(1x y z λ-=-,得00012x y z λλ⎧=-⎪=⎨⎪=⎩所以(1,2),E λλ=-得(1,2),OE λλ=- ………………12分 令//OE 平面1A AB ,得=0OE ⋅n ,………………13分即120,λλλ-++-=得1,2λ=即存在这样的点E ,E 为1BC 的中点.………………14分118.(本小题满分13分) 解:(Ⅰ)当1a =-时,()ln ,f x x x =-得1()1,f x x '=-………………2分令()0f x '>,即110x->,解得1x >,所以函数()f x 在(1,)+∞上为增函数, 据此,函数()f x 在2[e,e ]上为增函数,………………4分而(e)e 1f =-,22(e )e 2f =-,所以函数()f x 在2[e,e ]上的值域为2[e 1,e 2]--………………6分(Ⅱ)由()1,a f x x '=+令()0f x '=,得10,ax+=即,x a =-当(0,)x a ∈-时,()0f x '<,函数()f x 在(0,)a -上单调递减;当(,)x a ∈-+∞时,()0f x '>,函数()f x 在(,)a -+∞上单调递增; ……………7分 若1e a ≤-≤,即e 1a -≤≤-,易得函数()f x 在2[e,e ]上为增函数,此时,2max ()(e )f x f =,要使()e 1f x ≤-对2[e,e ]x ∈恒成立,只需2(e )e 1f ≤-即可,所以有2e 2e 1a +≤-,即2e e 12a -+-≤而22e e 1(e 3e 1)(e)022-+---+--=<,即2e e 1e 2-+-<-,所以此时无解.………………8分若2e e a <-<,即2e e a ->>-,易知函数()f x 在[e,]a -上为减函数,在2[,e ]a -上为增函数, 要使()e 1f x ≤-对2[e,e ]x ∈恒成立,只需2(e)e 1(e )e 1f f ≤-⎧⎨≤-⎩,即21e e 12a a ≤-⎧⎪⎨-+-≤⎪⎩, 由22e e 1e e 1(1)022-+--++--=<和222e e 1e e 1(e )022-+-+---=>得22e e 1e 2a -+--<≤. ………………10分若2e a -≥,即2e a ≤-,易得函数()f x 在2[e,e ]上为减函数,此时,max ()(e)f x f =,要使()e 1f x ≤-对2[e,e ]x ∈恒成立,只需(e)e 1f ≤-即可, 所以有e e 1a +≤-,即1a ≤-,又因为2e a ≤-,所以2e a ≤-.……………12分 综合上述,实数a 的取值范围是2e e 1(,]2-+--∞.……………13分(Ⅱ)另解:分离参变量 19.(本小题满分13分)解:(Ⅰ)设椭圆的方程为22221,(0)x y a b a b+=>>,由题意可得:椭圆C 两焦点坐标分别为1(1,0)F -,2(1,0)F ..……………1分532422a ∴=+=..……………3分2,a ∴=又1c = 2413b =-=,……………4分故椭圆的方程为22143x y +=. .……………5分(Ⅱ)当直线l x ⊥轴,计算得到:33(1,),(1,)22A B ---,21211||||32322AF B S AB F F ∆=⋅⋅=⨯⨯=,不符合题意..……………6分当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得 2222(34)84120k x k x k +++-=, .……………7分 显然0∆>成立,设1122(,),(,)A x y B x y ,则221212228412,,3434k k x x x x k k-+=-⋅=++ .……………8分又||AB ==即2212(1)||34k AB k +==+, .……………9分 又圆2F的半径r ==.……………10分所以22221112(1)12|||2234347AF Bk k S AB r k k ∆+==⨯==++ 化简,得4217180k k +-=,即22(1)(1718)0k k -+=,解得1k =±所以,r ==.……………12分故圆2F 的方程为:22(1)2x y -+=. .……………13分(Ⅱ)另解:设直线l 的方程为 1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 得 22(43)690t y ty +--=,0∆>恒成立,设1122(,),(,)A x y B x y ,则12122269,,4343t y y y y t t +=⋅=-++ ……………8分所以12||y y -==243t =+.……………9分又圆2F的半径为r ==,.……………10分所以212121221||||||2437AF BS F F y y y y t ∆=⋅⋅-=-==+,解得21t =,所以r ==……………12分故圆2F 的方程为:22(1)2x y -+=. .……………13分20.(本小题满分14分)解:(Ⅰ)∵ 10a =,21121a a =+=,31222a a =+=,42123a a =+=, ∴ 52325a a =+=;63125a a =+=;73428a a =+=. ………………3分 (Ⅱ)由题设,对于任意的正整数n ,都有:12121111221222n n n n n n n a a b b +--++++===+, ∴ 112n n b b +-=.∴ 数列{}n b 是以1211102a b -==为首项,12为公差的等差数列. ∴ 12n n b -=. …………………………………………………………7分(Ⅲ)对于任意的正整数k ,当2n k =或1,3n =时,1n n a a +<; 当41n k =+时,1n n a a +=;当43n k =+时,1n n a a +>. ……………………………………8分证明如下:首先,由12340,1,2,3a a a a ====可知1,3n =时,1n n a a +<; 其次,对于任意的正整数k ,2n k =时,()()122112120n n k k k k a a a a a k a k ++-=-=+-++=-<;…………………9分41n k =+时,14142n n k k a a a a +++-=-()()()()2212212121222222122120k k k k k k k a a k a a k a k a ++=++-+=+-=++-++=所以,1n n a a +=.…………………10分43n k =+时,14344n n k k a a a a +++-=-()()()()()21222122112221221222121221241k k k k k k k k k a a k a a k k a a k a a ++++++=++-+=++-=++++-+=+-+事实上,我们可以证明:对于任意正整数k ,1k k k a a ++≥(*)(证明见后),所以,此时,1n n a a +>. 综上可知:结论得证.…………………12分对于任意正整数k ,1k k k a a ++≥(*)的证明如下: 1)当2k m =(*m ∈N )时,()()12212212120k k m m m m k a a m a a m a m a m +++-=+-=++-++=>,满足(*)式。

北京市海淀区高三数学上学期期末考试试题 理(扫描版)新人教A版

北京市海淀区高三数学上学期期末考试试题 理(扫描版)新人教A版

北京市海淀区2014届高三数学上学期期末考试试题理(扫描版)新人教A版海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)由sin cos 0x x +≠得ππ,4x k k≠-∈Z . 因为cos2()2sin sin cos xf x x x x =++22cos sin 2sin sin cos x x x x x-=++-----------------------------------2分cos sin x x =+π)4x+,-------------------------------------4分因为在ABC ∆中,3cos 05A =-<,所以ππ2A <<,-------------------------------------5分 所以4sin 5A ==,------------------------------------7分所以431()sin cos 555f A A A =+=-=.-----------------------------------8分9. 2 10.4511. (0,1);412. 13 14.43;①②③(Ⅱ)由(Ⅰ)可得π())4f x x +,所以()f x 的最小正周期2πT =. -----------------------------------10分 因为函数sin y x =的对称轴为ππ+,2x k k =∈Z,-----------------------------------11分又由πππ+,42x k k +=∈Z ,得ππ+,4x k k =∈Z , 所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =.--------------------------------3分(Ⅱ)由图可得队员甲击中目标靶的环数不低于8环的概率为0.450.290.010.75++=----------------------------------4分由题意可知随机变量X 的取值为:0,1,2,3.----------------------------------5分事件“X k =”的含义是在3次射击中,恰有k 次击中目标靶的环数不低于8环.3333()1(0,1,2,3)44kkk P X k C k -⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭----------------------------------8分 即X 的分布列为所以X 的期望是1927279()0123646464644E X =⨯+⨯+⨯+⨯=.------------------------10分 (Ⅲ)甲队员的射击成绩更稳定.---------------------------------13分17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,AC BD O =,所以O 为,AC BD 中点.-------------------------------------1分又因为,PA PC PB PD ==,所以,P O A ⊥⊥,---------------------------------------3分所以PO ⊥底面A.----------------------------------------4分 (Ⅱ)由底面ABCD 是菱形可得AC BD ⊥,又由(Ⅰ)可知,PO AC PO BD ⊥⊥. 如图,以O 为原点建立空间直角坐标系O xyz -.由PAC ∆是边长为2的等边三角形,PB PD ==,可得PO OB OD ===所以(1A C-.---------------------------------------5分所以(1CP =,(1AP =-.由已知可得13(,0,44O FOA A =+= -----------------------------------------6分设平面BDF 的法向量为(,,)x y z =n ,则0,0,OB OF ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.4x ⎧=⎪⎨+=⎪⎩ 令1x =,则z =,所以(1,0,=n .----------------------------------------8分因为1cos 2||||CP CP CP ⋅<⋅>==-⋅n n n ,----------------------------------------9分所以直线CP 与平面BDF 所成角的正弦值为12, 所以直线CP 与平面BDF 所成角的大小为30.-----------------------------------------10分 (Ⅲ)设BMBPλ=(01)λ≤≤,则(1)CM CB BM CB BP λλ=+=+=-.---------------------------------11分若使CM ∥平面B D F ,需且仅需0CM ⋅=n 且CM ⊄平面B D F ,---------------------12分解得1[0,1]3λ=∈,----------------------------------------13分 所以在线段PB 上存在一点M ,使得CM ∥平面BDF .此时BMBP=13.-----------------------------------14分 18.(本小题共13分) 解:(Ⅰ)2e (2)(2)'()(e )e x x xa x a x f x ----==,x ∈R .------------------------------------------2分当1a =-时,()f x ,'()f x 的情况如下表:所以,当1a =-时,函数()f x 的极小值为2e --.-----------------------------------------6分 (Ⅱ)(2)'()'()e xa x F x f x --==. ①当0a <时,(),'()F x F x 的情况如下表:--------------------------------7分因为(F =>,------------------------------8分若使函数()F x 没有零点,需且仅需2(2)10eaF =+>,解得2e a >-,-------------------9分所以此时2e 0a -<<;-----------------------------------------------10分 ②当0a >时,(),'()F x F x 的情况如下表:--------11分 因为(2F F >>,且10110101110e 10e 10(1)0eea aaF a------=<<,---------------------------12分所以此时函数()F x 总存在零点.--------------------------------------------13分 综上所述,所求实数a 的取值范围是2e 0a -<<. 19.(本小题共14分)解:(Ⅰ)由题意得1c =,---------------------------------------1分 由12c a =可得2a =,------------------------------------------2分 所以23b a c =-=,-------------------------------------------3分所以椭圆的方程为22143x y +=. ---------------------------------------------4分 (Ⅱ)由题意可得点3(2,0),(1,)2A M -, ------------------------------------------6分 所以由题意可设直线1:2l y x n =+,1n ≠.------------------------------------------7分 设1122(,),(,)B x y C x y , 由221,4312x y y x n ⎧+=⎪⎪⎨⎪=+⎪⎩得2230x nx n ++-=.由题意可得2224(3)1230n n n ∆=--=->,即(2,2)n ∈-且1n ≠.-------------------------8分21212,3x x n x x n +=-=-.-------------------------------------9分 因为1212332211MB MCy y k k x x --+=+-------------------------------------10分 121212121212131311222211111(1)(2)1()1x n x n n n x x x x n x x x x x x +-+---=+=++-----+-=+-++2(1)(2)102n n n n -+=-=+-, ---------------------------------13分 所以直线,MB MC 关于直线m 对称. ---------------------------------14分20.(本小题共13分)解:(Ⅰ)①②③都是等比源函数. -----------------------------------3分(Ⅱ)函数()2x f x =+不是等比源函数. ------------------------------------4分证明如下:假设存在正整数,,m n k 且m n k <<,使得(),(),()f m f n f k 成等比数列, 2(21)(21)(21)n m k +=++,整理得2122222n n m k m k +++=++,-------------------------5分等式两边同除以2,m 得2122221n m n m k k m --+-+=++.因为1,2n m k m -≥-≥,所以等式左边为偶数,等式右边为奇数,所以等式2122221n m n m k k m --+-+=++不可能成立,所以假设不成立,说明函数()21x f x =+不是等比源函数.-----------------------------8分(Ⅲ)法1:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列. *,d b ∀∈N ,2(1),(1)(1),(1)(1)g g d g d ++成等比数列,因为(1)(1)(1)((1)11)[(1)1]g d g g d g g +=++-=+,2(1)(1)(1)(2(1)(1)11)[2(1)(1)1]g d g g g d d g g g d +=+++-=++,所以(1),[(1)1],[2(1)(1)1]g g g g g g d +++*{()|}g n n ∈∈N ,所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分(Ⅲ)法2:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列. 由2()(1)()g m g g k =⋅,(其中1m k <<)可得2[(1)(1)](1)[(1)(1)]g m d g g k d +-=⋅+-,整理得(1)[2(1)(1)](1)(1)m g m d g k -+-=-,令(1)1m g =+,则(1)[2(1)(1)](1)(1)g g g d g k +=-,所以2(1)(1)1k g g d =++,所以*,d b ∀∈N ,数列{()}g n 中总存在三项(1),[(1)1],[2(1)(1)1]g g g g g g d +++成等比数列.所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分。

北京市海淀区2011届高三一模考试 数学理

北京市海淀区2011届高三一模考试  数学理

海淀区高三年级第二学期期中练习数 学 (理科) 2011.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B A A. {}32<<x x B. {}32<≤x x C. {}322<≤-≤x x x 或 D. R2.已知数列{}n a 为等差数列,n S 是它的前n 项和.若21=a ,123=S ,则=4S A .10 B .16 C .20 D .243. 在极坐标系下,已知圆C 的方程为2cos ρθ=,则下列各点在圆C 上的是 A .1,3π⎛⎫- ⎪⎝⎭B .1,6π⎛⎫⎪⎝⎭C .34π⎫⎪⎭D . 54π⎫⎪⎭4.执行如图所示的程序框图,若输出x 的值为23,则输入的x 值为A .0B .1 C .2 D .11 5.已知平面l =αβ,m 是α内不同于l 的直线,那么下列命题中错误..的是 A .若β//m ,则l m // B .若l m //,则β//m C .若β⊥m ,则l m ⊥ D .若l m ⊥,则β⊥m 6. 已知非零向量,,a b c 满足++=a b c 0,向量,a b 的夹角为120,且||2||=b a ,则向量a 与c 的夹角为A .︒60B .︒90C .︒120D . ︒1507.如果存在正整数ω和实数ϕ使得函数)(cos )(2ϕω+=x x f (ω,ϕ为常数)的图象如图所示(图象经过点(1,0)),那么ω的值为A .1B .2C . 3 D. 48.已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l 交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 只有三条的必要条件是A .(0,1]r ∈B .(1,2]r ∈C .3(,4)2r ∈D .3[,)2r ∈+∞非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.复数3i1i-+= . 10.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3s ,则它们的大小关系为 .(用“>”连接)11.如图,A ,B ,C 是⊙O 上的三点,BE 切⊙O 于点B , D 是CE 与⊙O 的交点.若︒=∠70BAC ,则=∠CBE ______;若2=BE ,4=CE , 则=CD .12.已知平面区域}11,11|),{(≤≤-≤≤-=y x y x D ,在区域D 内任取一点,则取到的点位于直线y kx =(k R ∈)下方的概率为____________ .13.若直线l 被圆22:2C x y +=所截的弦长不小于2,则在下列曲线中:①22-=x y ② 22(1)1x y -+= ③ 2212x y += ④ 221x y -=与直线l 一定有公共点的曲线的序号是 . (写出你认为正确的所有序号)14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕乙丙O元频率组距0.00020.00040.00080.0006甲点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x ,△CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ; (Ⅱ)求ABC ∆的面积. 16. (本小题共14分)在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==, G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ;(Ⅱ) 求证:BD EG ⊥;(Ⅲ) 求二面角C DF E --的余弦值.17. (本小题共13分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率. 18. (本小题共13分)已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ (Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.ADF E BG C19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1:(||)2l y kx m k =+≤与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围. 20. (本小题共13分)已知每项均是正整数的数列A :123,,,,n a a a a ,其中等于i 的项有i k 个(1,2,3)i =⋅⋅⋅,设jj k k k b +++= 21 (1,2,3)j =,12()m g m b b b nm=+++-(1,2,3)m =⋅⋅⋅.(Ⅰ)设数列:1,2,1,4A ,求(1),(2),(3),(4),(5)g g g g g ; (Ⅱ)若数列A 满足12100n a a a n +++-=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(理)答案及评分参考 2011.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)非选择题 (共110分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.12i - 10. s 1>s 2>s 3 11. 70; 3 12.1213. ① ③ 14. (2,4); 3 三、解答题(本大题共6小题,共80分) 15.(共13分)解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, (1)分代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =-- , …………………4分所以t A B=-. …………………5分(II )因为0180A <<,由(I )结论可得:135A = . …………………7分因为11tan tan 023B C =>=>,所以090C B <<< . …………8分所以sin ,5B =sin 10C =. (9)分由sin sin a cA C=得a = …………………11分所以ABC∆的面积为:11sin 22ac B =. ………………13分16. (共14分)解:(Ⅰ)证明:∵//,//AD EF EF BC , ∴//AD BC .又∵2BC AD =,G 是BC 的中点, ∴//AD BG ,HA DFEBGC∴四边形ADGB 是平行四边形,∴ //AB DG . ……………2分 ∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴//AB 平面DEG . …………………4分 (Ⅱ) 解法1证明:∵EF ⊥平面AEB ,AE ⊂平面AEB ,∴EF AE ⊥,又,AE EB EBEF E ⊥=,,EB EF ⊂平面BCFE ,∴AE ⊥平面BCFE . ………………………5分过D 作//DH AE 交EF 于H ,则DH ⊥平面BCFE . ∵EG ⊂平面BCFE , ∴DH EG ⊥. ………………………6分∵//,//AD EF DH AE ,∴四边形AEHD 平行四边形, ∴2EH AD ==,∴2EH BG ==,又//,EH BG EH BE ⊥,∴四边形BGHE 为正方形,∴BH EG ⊥, ………………………7分又,BHDH H BH =⊂平面BHD ,DH ⊂平面BHD ,∴EG ⊥平面BHD . ………………………8分∵BD ⊂平面BHD ,∴BD EG ⊥. ………………………9分解法2∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB ,∴EF AE ⊥,EF BE ⊥,又AE EB ⊥,∴,,EB EF EA 两两垂直. ……………………5分 以点E 为坐标原点,,,EB EF EA 分别为,,x y z 轴建立如图的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2), G (2,2,0). …………………………6分 ∴(2,2,0)EG =,(2,2,2)BD =-,………7分 ∴22220BD EG ⋅=-⨯+⨯=, ………8分 ∴BD EG ⊥. …………………………9分(Ⅲ)由已知得(2,0,0)EB =是平面EFDA 的法向量. …………………………10分设平面DCF 的法向量为(,,)x y z =n ,∵(0,1,2),(2,1,0)FD FC =-=, ∴00FD n FC n ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y -+=⎧⎨+=⎩,令1z =,得(1,2,1)=-n . (12)分设二面角C DF E --的大小为θ, 则cos cos ,EB =<>==θn…………………………13分∴二面角C DF E --的余弦值为 …………………………14分17. (共13分)解:(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分(Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. (8)分……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分18. (共13分)解:(Ⅰ)()f x 的定义域为(0,)+∞, ………………………1分 当1a =时,()ln f x x x =-,11()1x f x x x-'=-=, ………………………2分 (3)分所以()f x 在1x =处取得极小值1. ………………………4分 (Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==………………………6分 ①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>, 所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ………………………7分 ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>, 所以,函数()h x 在(0,)+∞上单调递增. ………………………8分 (III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ………………………9分 由(Ⅱ)可知 ①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0eah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ………………………10分②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ………………………11分 ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+< 故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立. ………………………12分综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-. (13)分19. (共14分)解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① ……………1分 又点3(1,)2M 在椭圆C 上,所以221914a b += ② ……………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)当0k =时,(0,2)P m 在椭圆C上,解得2m =±,所以||OP =……6分 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->③ ……………8分设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++. ……………9分由于点P在椭圆C上,所以2200143x y +=. ……………10分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. (11)分又||OP===== ………………………12分因为102k <≤,得23434k <+≤,有2331443k ≤<+, 2OP <≤. ………………………13分综上,所求OP 的取值范围是. ………………………14分(Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、, 由,A B在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①②………………………6分 ①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ ………………………7分由已知可得OP OA OB=+,所以120120x x x y y y +=⎧⎨+=⎩④⑤……………………8分 由已知当1212y y k x x -=- ,即1212()y y k x x -=-⑥ ………………………9分把④⑤⑥代入③整理得0034x ky =- ………………………10分与22003412x y +=联立消0x 整理得202943y k =+ ……………………11分 由22003412x y +=得2200443x y =-, 所以220024||3O P k =++ ……………………12分因为12k ≤,得23434k ≤+≤,有2331443k ≤≤+, 故2OP ≤≤. ………………………13分所求OP 的取值范围是. ………………………14分20. (共13分) 解:(1)根据题设中有关字母的定义,12342,1,0,1,0(5,6,7)j k k k k k j ======12342,213,2103,4,4(5,6,7,)m b b b b b m ==+==++==== 112123123412345(1)412(2)423,(3)434,(4)444,(5)45 4.g b g b b g b b b g b b b b g b b b b b =-⨯=-=+-⨯=-=++-⨯=-=+++-⨯=-=++++-⨯=-(2)一方面,1(1)()m g m g m b n ++-=-,根据“数列A 含有n 项”及j b 的含义知1m b n +≤, 故0)()1(≤-+m g m g ,即)1()(+≥m g m g ① …………………7分 另一方面,设整数{}12max ,,,n M a a a =,则当m M ≥时必有m b n =, 所以(1)(2)(1)()(1)g g g M g M g M ≥≥≥-==+=所以()g m 的最小值为(1)g M -. …………………9分下面计算(1)g M -的值:1231(1)(1)M g M b b b b n M --=++++--1231()()()()M b n b n b n b n -=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++ 123()n M a a a a b =-+++++ 123()n a a a a n =-+++++ …………………12分∵123100n a a a a n ++++-= , ∴(1)100,g M -=-∴()g m 最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。

2011届高三数学上学期期末考试 理

2011届高三数学上学期期末考试 理

北京市西城区2010 — 2011学年度第一学期期末试卷高三数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知全集U =R ,集合{10}A x x =+<,{30}B x x =-<,那么集合()U C A B =(A ){13}x x -≤<(B ){13}x x -<<(C ){1}x x <- (D ){3}x x > 2. 已知点(1,1)A -,点(2,)B y ,向量=(1,2)a ,若//AB a ,则实数y 的值为 (A )5(B )6(C )7(D )8 3.已知ABC ∆中,1,a b ==45B =,则角A 等于(A )150(B )90(C )60(D )304.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是 (A )cos ρθ=(B )sin ρθ=(C )cos 1ρθ=(D )sin 1ρθ= 5. 阅读右面程序框图,如果输出的函数值在区间11[,]42内,则输入的实数x 的取值范围是 (A )(,2]-∞-(B )[2,1]-- (C )[1,2]-(D )[2,)+∞6.设等比数列{}n a 的前n 项和为n S ,若0852=+a a ,则下列式子中数值不能确定的是 (A )35a a (B )35S S (C )nn a a1+(D )n n S S 1+7.如图,四边形ABCD 中,1AB AD CD ===,BD =BD CD ⊥.将四边形ABCD 沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,则下列结论正确的是(A )A C BD '⊥ (B )90BA C '∠=(C )CA '与平面A BD '所成的角为30(D )四面体A BCD '-的体积为138.对于函数①1()45f x x x =+-,②21()log ()2xf x x =-,③()cos(2)cos f x x x =+-,ABCD判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <. 能使命题甲、乙均为真的函数的序号是 (A )① (B )② (C )①③ (D )①②第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.i 为虚数单位,则22(1i)=+______.10.在5(2)x +的展开式中,2x 的系数为_____.11. 若实数,x y 满足条件10,2,1,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为_____.12.如图所示,过圆C 外一点P 做一条直线与圆C 交于A B ,两点,2BA AP =,PT 与圆C 相切于T 点.已知圆C 的半径为2,30CAB ∠=,则PT =_____.13.双曲线22:1C x y -=的渐近线方程为_____;若双曲线C 的右顶点为A ,过A 的直线l 与双曲线C 的两条渐近线交于,P Q 两点,且2PA AQ =,则直线l 的斜率为_____.14.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”. 则坐标原点O与直线20x y +-=上一点的“折线距离”的最小值是____;圆221x y +=上一点与直线20x y +-=上一点的“折线距离”的最小值是____.三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2()22sin f x x x =-.(Ⅰ)若点(1,P 在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域.16.(本小题满分13分)如图,在三棱柱111ABC A B C -中,侧面11ABB A ,11ACC A 均为正方形,∠=90BAC ,点D 是棱11B C 的中点.(Ⅰ)求证:1A D ⊥平面11BB C C ; (Ⅱ)求证:1//AB 平面1A DC ; (Ⅲ)求二面角1D A C A --的余弦值.17.(本小题满分13分)一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6.(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率; (Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X ,求随机变量X 的分布列.18.(本小题满分13分)已知椭圆12222=+by a x (0>>b a )的右焦点为2(3,0)F ,离心率为e .(Ⅰ)若e =(Ⅱ)设直线y kx =与椭圆相交于A ,B 两点,,M N 分别为线段22,AF BF 的中点. 若坐标原点O 在以MN 为直径的圆上,且2322≤<e ,求k 的取值范围. ABCC 11B 1A 1D19.(本小题满分14分)已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.20.(本小题满分14分)已知数列}{n a ,{}n b 满足n n n a a b -=+1,其中1,2,3,n =.(Ⅰ)若11,n a b n ==,求数列}{n a 的通项公式; (Ⅱ)若11(2)n n n b b b n +-=≥,且121,2b b ==.(ⅰ)记)1(16≥=-n a c n n ,求证:数列}{n c 为等差数列; (ⅱ)若数列}{na n中任意一项的值均未在该数列中重复出现无数次. 求首项1a 应满足的条件.北京市西城区2010 — 2011学年度第一学期期末高三数学参考答案及评分标准(理科) 2011.1一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.9.i - 10. 80 11. 412.3 13. 0x y ±=,3± 14.2注:13、14题第一问2分,第二问3分. 三、解答题:(本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.)15.(本小题满分13分)解:(Ⅰ)因为点(1,P 在角α的终边上,所以sin 2α=-,1cos 2α=, ………………2分所以22()22sin cos 2sin f αααααα=-=- ………………4分21(2()3222=-⨯-⨯-=-. ………………5分(Ⅱ)2()22sin f x x x =-cos 21x x =+- ………………6分2sin(2)16x π=+-, ………………8分因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分16.(本小题满分13分)(Ⅰ)证明:因为侧面11ABB A ,11ACC A 均为正方形,所以11,AA AC AA AB ⊥⊥,所以1AA ⊥平面ABC ,三棱柱111ABC A B C -是直三棱柱. ………………1分 因为1A D ⊂平面111A B C ,所以11CC A D ⊥, ………………2分 又因为1111A B AC =,D 为11B C 中点,所以111A D B C ⊥. ……………3分 因为1111CC B C C =,所以1A D ⊥平面11BB C C . ……………4分 (Ⅱ)证明:连结1AC ,交1A C 于点O ,连结OD ,因为11ACC A 为正方形,所以O 为1AC 中点, 又D 为11B C 中点,所以OD 为11AB C ∆中位线, 所以1//AB OD , ………………6分 因为OD ⊂平面1A DC ,1AB ⊄平面1A DC , 所以1//AB 平面1A DC . ………………8分(Ⅲ)解: 因为侧面11ABB A ,11ACC A 均为正方形, 90BAC ∠=,所以1,,AB AC AA 两两互相垂直,如图所示建立直角坐标系A xyz -. 设1AB =,则111(0,10),(1,0,0),(0,0,1),(,,1)22C B AD ,.1111(,,0),(0,11)22A D AC ==-,, ………………9分 设平面1A DC 的法向量为=()x,y,z n ,则有1100A D AC ⋅=⎧⎨⋅=⎩n n ,00x y y z +=⎧⎨-=⎩, x y z =-=-, 取1x =,得(1,1,1)=--n . ………………10分又因为AB ⊥平面11ACC A ,所以平面11ACC A 的法向量为(1,00)AB =,,………11分1cos ,33AB AB AB⋅〈〉===n n n , ………………12分 因为二面角1D A C A --是钝角, 所以,二面角1D A C A --的余弦值为3-………………13分 17.(本小题满分13分)解:(Ⅰ)设先后两次从袋中取出球的编号为,m n ,则两次取球的编号的一切可能结果),(n m 有6636⨯=种, ………………2分其中和为6的结果有(1,5),(5,1),(2,4),(4,2),(3,3),共5种, 则所求概率为536. ………………4分 (Ⅱ)每次从袋中随机抽取2个球,抽到编号为6的球的概率152613C p C ==.………………6分所以,3次抽取中,恰有2次抽到6号球的概率为2223122(1)3()()339C p p -=⨯=. ………………8分(Ⅲ)随机变量X 所有可能的取值为3,4,5,6. ………………9分33361(3)20C P X C ===, 23363(4)20C P X C ===, 243663(5)2010C P X C ====,2536101(6)202C P X C ====. ………………12分所以,随机变量X………………13分18、(本小题满分13分)解:(Ⅰ)由题意得32c c a=⎧⎪⎨=⎪⎩,得a =………………2分结合222a b c =+,解得212a =,23b =. ………………3分所以,椭圆的方程为131222=+y x . ………………4分(Ⅱ)由22221,,x y a b y kx ⎧+=⎪⎨⎪=⎩得222222()0b a k x a b +-=.设1122(,),(,)A x y B x y .所以2212122220,a b x x x x b a k-+==+, ………………6分 依题意,OM ON ⊥,易知,四边形2OMF N 为平行四边形,所以22AF BF ⊥, ………………7分 因为211(3,)F A x y =-,222(3,)F B x y =-,所以222121212(3)(3)(1)90F A F B x x y y k x x ⋅=--+=++=. ………………8分即222222(9)(1)90(9)a a k a k a --++=+-, ………………9分 将其整理为 4222424218818111818a a k a a a a -+==---+-. ………………10分因为2322≤<e,所以a ≤<21218a ≤<. ………………11分 所以218k ≥,即2(,(,]4k ∈-∞+∞. ………………13分19.(本小题满分14分) 解:2()(21)f x ax a x'=-++(0)x >. ………………2分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………………3分 (Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………………5分①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………………6分②当102a <<时,12a >, 在区间(0,2)和1(,)a+∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. …………7分③当12a =时,2(2)()2x f x x -'=, 故()f x 的单调递增区间是(0,)+∞. ………8分④当12a >时,102a <<, 在区间1(0,)a和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a. ………9分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………………10分 由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤. ……………11分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a aa==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<, 所以,22ln 0a --<,max ()0f x <, ………………13分 综上所述,ln 21a >-. ………………14分20.(本小题满分14分)解:(Ⅰ)当2≥n 时,有121321()()()n n n a a a a a a a a -=+-+-++-1121n a b b b -=++++ …………2分2(1)11222n n n n-⨯=+=-+. ………………3分又因为11=a 也满足上式,所以数列}{n a 的通项为2122n n na =-+.………………4分 (Ⅱ)(ⅰ)因为对任意的n ∈*N 有5164321n n n n n n n b b b b b b b ++++++====, ………………5分 所以 1656161661626364n n n n n n n n n n c c a a b b b b b b ++--++++-=-=+++++111221722=+++++=(1)n ≥,所以数列}{n c 为等差数列. ………………7分(ⅱ)设)0(6≥=+n a c i n n ,(其中i 为常数且}6,5,4,3,2,1{∈i ),所以1666661626364657(0)n n n i n i n i n i n i n i n i n i c c a a b b b b b b n +++++++++++++++-=-=+++++=≥所以数列}{6i n a +均为以7为公差的等差数列. ………………9分设6777(6)7766666666i i k i i k i ii k a a a a k f k i i k i k i k+++--+====+++++, (其中i k n +=6)0(≥k ,i 为}6,5,4,3,2,1{中的一个常数),当76i i a =时,对任意的i k n +=6有n a n 76=; ………………10分当76i i a ≠时,17771166()()6(1)666(1)6i i k k ii i a a i f f a k i k i k i k i+---=-=--++++++ 76()()6[6(1)](6)i i a k i k i -=-+++………………11分①若76i ia >,则对任意的k ∈N 有k k f f <+1,所以数列}6{6i k a i k ++为单调减数列;②若76i ia <,则对任意的k ∈N 有k k f f >+1,所以数列}6{6i k a i k ++为单调增数列;………………12分综上:设集合741111{}{}{}{}{}{}632362B =--74111{,,,,}63236=--, 当B a ∈1时,数列}{n an 中必有某数重复出现无数次.当B a ∉1时,}6{6i k ai k ++ )6,5,4,3,2,1(=i 均为单调数列,任意一个数在这6个数列中最多出现一次,所以数列}{nan 中任意一项的值均未在该数列中重复出现无数次. ………14分。

市海淀区高三第一学期期末数学理试题及答案

市海淀区高三第一学期期末数学理试题及答案

市海淀区高三第一学期期末数学理试题及答案集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]海淀区高三年级第一学期期末练习数学(理科)2018. 1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)复数12+=ii(A )2-i (B )2+i (C )2--i(D )2-+i(2)在极坐标系Ox 中,方程2sin ρθ=表示的圆为(A )(B )(C )(D )(3)执行如图所示的程序框图,输出的k 值为(A ) 4 (B ) 5 (C ) 6 (D ) 7(4)设m 是不为零的实数,则“0m >”是“方程221x y m m-=表示双曲线”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(5)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,且OAB ∆为正三角形,则实数m 的值为(A(B(C或(D(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为(A )15 (B )25 (C )35(D )45(7)某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形③所有正确的说法是(A )① (B )①② (C )②③ (D )①③(8)已知点F 为抛物线C :()220y px p =>的焦点,点K 为点F 关于原点的对称点,点M 在抛物线C 上,则下列说法错误..的是主视图左视图俯视图(A )使得MFK ∆为等腰三角形的点M 有且仅有4个 (B )使得MFK ∆为直角三角形的点M 有且仅有4个(C )使得4MKF π∠=的点M 有且仅有4个(D )使得6MKF π∠=的点M 有且仅有4个第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。

2010届海淀区高三年级数学(理科)第一学期期中试题及答案

2010届海淀区高三年级数学(理科)第一学期期中试题及答案

海淀区高三年级第一学期期中练习数 学 (理科) 2009.11本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题共40分)注意事项 :1.答卷前将学校、班级、姓名填写清楚.2.选择题的每小题选出答案后,用铅笔把答题卡上对应的题目的答案标号涂黑.其它小题用钢笔或圆珠笔将答案直接写在试卷上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U 为实数集,{}}{220,1A x x x Bx x =-<=≥,则U A B ð= ( )A .{|01}x x <<B .{|02}x x <<C .{|1}x x <D .∅ 2.命题“0>∀x ,都有02≤-x x ”的否定是( )A. 0>∃x ,使得02≤-x x B. 0>∃x ,使得02>-x x C. 0>∀x ,都有02>-x x D. 0≤∀x ,都有02>-x x3.已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值为 ( ) A .130B .260C .156D .1684.已知α是第四象限角,5tan()12πα-=,则sin α=( )A .15B .15-C .513D .513-5.已知向量a =(1,k ),=b (2,1),若a 与b 的夹角大小为︒90,则实数k 的值为( ) A .12-B .12C .2-D .26.函数1()()sin 2xf x x =-在区间[0,π2]上的零点个数为( )A .1个B .2个C .3个D .4个7.已知函数x x x f sin )(=,∈x R ,则)5(πf ,)1(f ,)(3π-f 的大小关系为 ( )A .)5()1()3(ππf f f >>- B .)5()3()1(ππf f f >->C .)3()1()5(ππ->>f f f D .)1()5()3(f f f >>-ππ8.对于定义域为R 的函数()f x ,给出下列命题:①若函数()f x 满足条件(1)(1)2f x f x -+-=,则函数()f x 的图象关于点(0,1)对称; ②若函数()f x 满足条件(1)(1)f x f x -=-,则函数()f x 的图象关于y 轴对称; ③在同一坐标系中,函数(1)y f x =-与(1)y f x =-其图象关于直线1x =对称; ④在同一坐标系中,函数(1)y f x =+与(1)y f x =-其图象关于y 轴对称. 其中,真命题的个数是( )A .1 B. 2 C. 3 D. 4第II 卷(共110分)注意事项 :1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.若点(2,在幂函数)(x f y =的图象上,则()f x = .10.计算=+⎰ex xx 1d )12( .11.在∆ABC 中,角A ,B ,C 的对边分别为,,,a b c 若a =4c =,60A =,则b =__________.12.把函数sin(2)6y x π=-的图象向左平移ϕ(0)ϕ>个单位,所得到的图象对应的函数为奇函数,则ϕ的最小值是 .13. 已知函数2 1()(2) 1ax bx c x f x f x x ⎧++≥-=⎨--<-⎩,其图象在点(1,(1)f )处的切线方程为21y x =+,则它在点(3,(3))f --处的切线方程为 .14.已知数列{}n b 满足11=b ,x b =2(*x ∈N ),*11||(2,)n n n b b b n n +-=-≥∈N . ①若2=x ,则该数列前10项和为 ;②若前100项中恰好含有30项为0,则x 的值为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数2()(sin cos )+cos 2f x x x x =+. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值,并写出x 相应的取值.16.(本小题满分14分)已知等比数列{}n a 中,13,a =481a =*()n ∈N .(Ⅰ)若{}n b 为等差数列,且满足2152,b a b a ==,求数列{}n b 的通项公式; (Ⅱ)若数列{}n b 满足3log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .17. (本小题满分13分)已知函数32()4f x ax bx x =++的极小值为-8,其导函数()y f x '=的图象经过点(2,0)-,如图所示.(Ⅰ)求()f x 的解析式;(Ⅱ)若函数()y f x k =-在区间[3,2]-上有两个不同的零点,求实数k 的取值范围.18.(本小题满分13分)图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.已知凹槽的强设AB =2x ,BC =y . (Ⅰ)写出y 关于x 函数表达式,并指出x 的取值范围; (Ⅱ)求当x 取何值时,凹槽的强度最大.19.(本小题满分14分)设数列{}na 的前n 项和为n S ,满足1n n S tS n --=(2n ≥,*n ∈N ,t 为常数) ,且11a =. (Ⅰ)当2t =时,求2a 和3a ;(Ⅱ)若{1}n a +是等比数列,求t 的值; (Ⅲ)求n S .图1 图220.(本小题满分13分)设函数()1(0)11[][[][x xf x x x x x x+=>⋅]++]+1,其中[x ]表示不超过x 的最大整数,如1[2]=2,[]0,[1.8]13==.(Ⅰ)求3()2f 的值;(Ⅱ)若在区间[2,3)上存在x ,使得()f x k ≤成立,求实数k 的取值范围; (Ⅲ)求函数()f x 的值域.海淀区2009-2010学年高三第一学期期中练习数 学 (理科) 2009.11 参考答案及评分标准一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9 10. 2e 11.1或3 12.12π13.23y x =-- 14. 9,6或7 (第一个空答对给2分,第二个空答对给3分) 三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15. (本小题满分13分)解:(Ⅰ)因为222()(sin cos )+cos 2sin 2sin cos cos cos 2 f x x x x x x x x x =+=+++1sin 2cos 2x x =++ -----------------------------------------2分)4x π+----------------------------------------4分所以,22T ππ==,即函数()f x 的最小正周期为π ---------------6分(Ⅱ)因为02x π≤≤,得52444x πππ≤+≤,所以有sin(2)124x π-≤+≤ ---------------------8分1)4x π-≤+≤,即01)14x π≤++≤+---------10分所以,函数()f x 的最大值为1+ ----------------12分此时,因为52444x πππ≤+≤,所以,242x ππ+=,即8x π=. -------13分16. (本小题满分14分)解:(Ⅰ)在等比数列{}n a 中,13,a =481a =.所以,由341a a q =得3813q =,即327q =,3q =. ---------------2分 因此,1333n n n a -=⨯=. ----------------4分在等差数列{}n b 中,根据题意,21523,9b a b a ==== --------------------6分 可得,52932523b b d --===- ---------------------7分所以,2(2)3(2)221n b b n d n n =+-=+-⨯=- ---------------------8分 (Ⅱ)若数列{}n b 满足3log n n b a =,则3log 3n n b n ==, ------------------10分因此有122311111111122334(1)n n b b b b b b n n ++++=++++⨯⨯⨯+1111111(1)()()()223341nn =-+-+-++-+ -----12分1111n n n =-=++ . ----------------------14分17.(本小题满分13分)解:(Ⅰ)2()324,()f x ax bx y f x ''=++=且的图象过点(2,0)-,所以2-为23240ax bx ++=的根,代入得:310a b -+= …① -----------2分由图象可知,()f x 在2x =-时取得极小值,即(2)8f -=-得 2b a =…② ---------------------- 4分 由①②解得 1,2a b =-=- ∴32()24.f x x x x =--+ ---------------------- 6分 (Ⅱ)由题意,方程()f x k =在区间[3,2]-上有两个不等实根,即方程3224x x x k --+=在区间[3,2]-上有两个不等实根.2()344f x x x '=--+,令()0f x '=,解得2x =-或23x =--------------- 8分可列表:----------------------11分由表可知,当8k =-或40327k -<<时,方程3224x x x k --+=在区间[3,2]-上有两个不等实根,即函数()y f x k =-在区间[3,2]-上有两个不同的零点. ------13分18.(本小题满分13分) 解:(Ⅰ)易知半圆CmD 的半径为x ,故半圆CmD 的弧长为x π. 所以 422x y xπ=++, 得4(2)2xy π-+=----------------------4分依题意知:0x y <<得404x π<<+所以,4(2)2xy π-+=(404x π<<+). ----------------------6分(Ⅱ)依题意,设凹槽的强度为T ,横截面的面积为S ,则有2(2)2xT S x y π=-----------------------8分24(2))22xxx ππ-+=⋅-23(2)]2x x π=-+24)24343x ππ=--+++ ----------------------11分因为440434ππ<<++,所以,当443x π=+时,凹槽的强度最大.答: 当443x π=+时,凹槽的强度最大. --------------13分19.(本小题满分14分)解法一:(Ⅰ)当2n ≥时,1n n S tS n --=,当3n ≥时,121n n S tS n ---=-, ----------------------1分两式相减得:11n n a ta --=(*)(3)n ≥ ----------------------2分2n =时,212S tS -= ,得 1212a a ta +-=因为11a =,得 211a ta -=故 11n n a ta --=(*) (2)n ≥----------------------3分 因为2t =,所以21213a a =+=,32217a a =+=----------------------4分(Ⅱ)由(*)可知112n n a ta -+=+(2n ≥),若{1}n a +是等比数列,则1231,1,1a a a +++成等比数列即2213(1)(1)(1)a a a +=++----------------------6分因为212312,12,12a a t a t t +=+=++=++所以22(2)2(2)t t t +=++ 即220t t -=所以0t =或2t =. 经检验,符合题意. ----------------------9分(Ⅲ)由(*)可知2121221(1)111n n n n n n a ta t ta t a t ttt -----=+=++=++==++++ (2n ≥)----------------------11分当1t =时,1111n n a n =+++=个 此时,12(1)122n n n n S a a a n +=+++=+++= --------------------12分当1t ≠时,11nn ta t-=-此时,12n n S a a a =+++211111ntttt--=+++--2(1)(1)(1)1nt t t t-+-++-=-(1)11nt t n t t---=-12(1)(1)n tt n t t ++--=-所以12(1)(1)2(1)(1)(1)n n n n t S tt n t t t ++⎧=⎪⎪=⎨+--⎪≠⎪-⎩----------------------14分解法二:(Ⅰ)因为 2t =及1n n S tS n --=,得12n n S S n --=所以 121()22a a a +-=且11a =,解得 23a = ----------------------2分 同理 12312()2()3a a a a a ++-+=,解得 37a = ----------------------4分(Ⅱ)当3n ≥时,1n n S tS n --=,得 121n n S tS n ---=-, ----------------------5分 两式相减得:11n n a ta --=(**) ----------------------6分 即 112n n a ta -+=+当t =0时,12n a +=,显然{1}n a +是等比数列----------------------7分 当0t ≠时,令112n n n b a ta -=+=+,可得12n n b tb t -=+- 因为 {1}n a +是等比数列,所以{}n b 为等比数列,当2n ≥时,211n n n b b b +-⋅=恒成立,----------------------8分即 2(2)[(2)]n n n b t tb t b t--+-⋅= 恒成立, 化简得 2(2)(1)(2)0nt t b t-+--=恒成立, 即2(2)(1)0(2)0t t t -+=⎧⎨-=⎩,解得2t =综合上述,0t =或2t =----------------------9分(Ⅲ)当1t =时,由(**)得11n n a a --=数列{}n a 是以1为首项,1为公差的等差数列,所以 (1)122n n n S n +=+++=--------------------10分当1t ≠时,由(**)得11n n a ta -=+ 设1()n n a k t a k -+=+(k 为常数) 整理得1(1)n n a ta t k -=+- 显然 11k t =---------------------12分所以111()11n n a t a t t -+=+--即数列1{}1n a t +-是以111t +-为首项,t 为公比的等比数列所以111(1)11n n a t t t -+=+--,即 1111n n t a tt t -=---所以122(1)(1)(1)111(1)1(1)nnn n tt n t t n t t n t t S tt t tt +--+---=-=+=-----所以12(1)(1)2(1)(1)(1)n n n n t S tt n t t t ++⎧=⎪⎪=⎨+--⎪≠⎪-⎩----------------------14分20.(本小题满分13分)解:(Ⅰ)因为32[]1,[]023==,所以3231323().3232212[][][][]12323f +==⋅+++-------------2分(Ⅱ)因为23x ≤<,所以1[]2,[]0x x==,----------------------3分则11()()3f x x x =+.求导得211()(1)3f x x'=-,当23x ≤<时,显然有()0f x '>, 所以()f x 在区间[2,3)上递增,----------------------5分即可得()f x 在区间[2,3)上的值域为510[,)69,在区间[2,3)上存在x ,使得()f x k ≤成立,所以56k ≥. --------------------7分(Ⅲ)由于()f x 的表达式关于x 与1x对称,且x >0,不妨设x ≥1. 当x =1时,1x=1,则()112f =;----------------------8分当x >1时,设x = n +α,n ∈N *,0≤α<1. 则[x ]= n ,10x⎡⎤=⎢⎥⎣⎦,所以()1()1n n f x f n n ααα+++=+=+.-----------------9分 ()1g x xx=+ 设,'21()10,g x x=->()g x 在[1,+∞)上是增函数,又1n n n α≤+<+,11n n n nn n αα1∴+≤++<+1+++1,当2x ≥时,()()1111,,211n n n n n f x I n n n n ⎡⎫+++⎪⎢+∈=∈≥⎪⎢++⎪⎢⎪⎣⎭*N当(1,2)x ∈时,()15(1,4f x I ∈)= ………… 11分故(1,)x ∈+∞时,()f x 的值域为I 1∪I 2∪…∪I n ∪…设()()22111111,11111n n n n n n n a b n n n n n +++++====+++++,则[),n n n I a b =. ()()1212n n n a a n n n +--=++ ,∴当n ≥2时,a 2= a 3< a 4<…< a n <…又b n 单调递减,∴ b 2> b 3>…> b n >…∴[ a 2,b 2)= I 2⊃≠I 3⊃≠I 4⊃≠…⊃≠I n ⊃≠…----------------------12分[)[)1112225510,1,,,,469I a b I a b ⎡⎫⎡⎫====⎪⎪⎢⎢⎣⎭⎣⎭, ∴ I 1∪I 2∪…∪I n ∪… = I 1∪I 2 =5510551,,,46964⎡⎫⎡⎫⎡⎫=⎪⎪⎪⎢⎢⎢⎣⎭⎣⎭⎣⎭.综上所述,()f x 的值域为155,264⎧⎫⎡⎫⎨⎬⎪⎢⎩⎭⎣⎭.----------------------13分说明:其他正确解法按相应步骤给分.。

2011年海淀区高三第一学期(理科)数学期末题word

2011年海淀区高三第一学期(理科)数学期末题word

北京市海淀区2011届高三年级第一学期期末练习数学试题(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.sin 600︒的值为 ( )AB.C .12-D .122.若0.32121,0.3,log 2,,,2a b c a b c -⎛⎫=== ⎪⎝⎭则的大小关系为( )A .a b c >>B .a c b >>C .c b a >>D .b a c >>3.一个空间几何体的三视图如图所示,则该 几何体的体积为 ( ) A .12 B .6 C .4 D .24.如图,半径为2的O 中,90AOB ∠=︒, D 为OB 的中点,AD 的延长线交O 于 点E ,则线段DE 的长为 ( )ABCD5.已知各项均不为零的数列{}n a ,定义向量*1(,),(,1),n n n n c a a b n n n N +==+∈,下列命题中真命题是( )A .若*n N ∀∈总有//n n c b 成立,则数列{}n a 是等差数列B .若*n N ∀∈总有//n n c b 成立,则数列{}n a 是等比数列C .若*n N ∀∈总有n n c b ⊥成立,则数列{}n a 是等差数列B .若*n N ∀∈总有n n c b ⊥成立,则数列{}n a 是等比数列6.由数字0,1,2,3,4,5组成的奇偶数字相间且无重复数字的六位数的个数是( ) A .72 B .60 C .48 D .127.已知椭圆22:14x y E m +=,对于任意实数k ,下列直线被椭圆E 截得的弦长与:1l y kx =+被椭圆E 截得的弦长不可能...相等的是( )A .0kx y k ++=B .10kx y --=C .0kx y k +-=D .20kx y +-=8.如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F//平面A 1BE ,则B 1F 与平面CDD 1C 1所成角的正切值构成的集合是( )A .{2}B .C .{}2t t ≤≤D .{|2}t t ≤≤第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上。

北京市海淀区2011届高三数学上学期期末考试(扫描版) 文

北京市海淀区2011届高三数学上学期期末考试(扫描版) 文

海淀区高三年级第一学期期末练习数 学(文)答案及评分参考 2011.1第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第II 卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分)9.240x y +-= 10. 19 11.(3,0) 212y x =12. 25π13. 2 14. 4 3三、解答题(本大题共6小题,共80分)15.(共13分)解:(I ) x x x f cos 23sin 21)(+=)3sin(π+=x , ............................... 3分)(x f ∴的周期为π2 (或答:0,,2≠∈k Z k k π). ................................4分 因为x R ∈,所以3x R π+∈,所以)(x f 值域为]1,1[- . ...............................5分(II )由(I )可知,)3sin()(π+=A A f , ...............................6分23)3sin(=+∴πA , ...............................7分π<<A 0 ,3433πππ<+<∴A , ..................................8分 2,33A ππ∴+= 得到3A π= . ...............................9分 ,23b a = 且B bA a sin sin = , ....................................10分sin 2bbB =, ∴1sin =B , ....................................11分π<<B 0 , 2π=∴B . ....................................12分6ππ=--=∴B A C . ....................................13分16. (共13分)解:(I )围棋社共有60人, ...................................1分 由150301260=⨯可知三个社团一共有150人. ...................................3分(II )设初中的两名同学为21,a a ,高中的3名同学为321,,b b b , ...................................5分 随机选出2人参加书法展示所有可能的结果:1211121321{,},{,},{,},{,},{,},a a a b a b a b a b 2223121323{,}, {,},{,},{,},{,}a b a b b b b b b b ,共10个基本事件. ..................................8分 设事件A 表示“书法展示的同学中初、高中学生都有”, ..................................9分 则事件A 共有111213212223{,},{,},{,},{,},{,},{,}a b a b a b a b a b a b 6个基本事件....................................11分 ∴53106)(==A P .故参加书法展示的2人中初、高中学生都有的概率为35. ................................13分17. (共13分)解:(I ) 四边形ABCD 为菱形且AC BD O =,O ∴是BD 的中点 . ...................................2分又点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , ...................................4分 ⊄OF 平面11BCC B ,⊂1BC 平面11BCC B ,∴//OF 平面11BCC B . ...................................6分 (II ) 四边形ABCD 为菱形,AC BD ⊥∴, ...................................8分 又⊥BD 1AA ,1,AA AC A =且1,AA AC ⊂平面11ACC A ,.................................10分 ⊥∴BD 平面11ACC A , ................................11分 ⊂BD 平面1DBC ,∴平面1DBC ⊥平面11ACC A . ................................13分18. (共13分) 解:3332222()()2a x a f x x x x -'=-=,0x ≠. .........................................2分(I )由题意可得3(1)2(1)0f a '=-=,解得1a =, ........................................3分此时(1)4f =,在点(1,(1))f 处的切线为4y =,与直线1y =平行.故所求a 值为1. ........................................4分 (II )由()0f x '=可得x a =,0a >, ........................................ 5分 ①当01a <≤时,()0f x '>在(1,2]上恒成立 ,所以()y f x =在[1,2]上递增, .....................................6分 所以()f x 在[1,2]上的最小值为3(1)22f a =+ . ........................................7分 ②当12a <<时,....................................10分由上表可得()y f x =在[1,2]上的最小值为2()31f a a =+ . ......................................11分 ③当2a ≥时,()0f x '<在[1,2)上恒成立,所以()y f x =在[1,2]上递减 . ......................................12分 所以()f x 在[1,2]上的最小值为3(2)5f a =+ . .....................................13分 综上讨论,可知:当01a <≤时, ()y f x =在[1,2]上的最小值为3(1)22f a =+;当12a <<时,()y f x =在[1,2]上的最小值为2()31f a a =+;当2a ≥时,()y f x =在[1,2]上的最小值为3(2)5f a =+.19. (共14分)解:根据题意,设(4,)P t .(I)设两切点为,C D ,则,OC PC OD PD ⊥⊥,由题意可知222||||||,PO OC PC =+即222242t +=+ , ............................................2分 解得0t =,所以点P 坐标为(4,0). ...........................................3分 在Rt POC ∆中,易得60POC ∠=,所以120DOC ∠=. ............................................4分 所以两切线所夹劣弧长为24233ππ⨯=. ...........................................5分(II )设1122(,),(,)M x y N x y ,(1,0)Q ,依题意,直线PA 经过点(2,0),(4,)A P t -,可以设:(2)6tAP y x =+, ............................................6分和圆224x y +=联立,得到22(2)64ty x x y ⎧=+⎪⎨⎪+=⎩ ,代入消元得到,2222(36)441440t x t x t +++-= , ......................................7分因为直线AP 经过点11(2,0),(,)A M x y -,所以12,x -是方程的两个根, 所以有2124144236t x t --=+, 21272236t x t -=+ , ..................................... 8分 代入直线方程(2)6ty x =+得,212272224(2)63636t t ty t t -=+=++. ..................................9分 同理,设:(2)2tBP y x =-,联立方程有 22(2)24ty x x y ⎧=-⎪⎨⎪+=⎩,代入消元得到2222(4)44160t x t x t +-+-=,因为直线BP 经过点22(2,0),(,)B N x y ,所以22,x 是方程的两个根,22241624t x t -=+, 222284t x t -=+ , 代入(2)2ty x =-得到2222288(2)244t t ty t t --=-=++ . .....................11分若11x =,则212t =,此时2222814t x t -==+显然,,M Q N 三点在直线1x =上,即直线MN 经过定点Q (1,0)............................12分 若11x ≠,则212t ≠,21x ≠, 所以有212212240836722112136MQ t y t t k t x t t -+===----+, 22222280842811214NQ ty tt k tx t t ---+===----+................13分所以MQ NQ k k =, 所以,,M N Q 三点共线,即直线MN 经过定点Q (1,0).综上所述,直线MN 经过定点Q (1,0). .......................................14分20. (共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A =,{}{}910,11,12,,19,20B x A x =∈>=不具有性质P . ...................................1分因为对任意不大于10的正整数m ,都可以找到集合B 中两个元素110b =与210b m =+, 使得12b b m -=成立 . ...................................3分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ....................................4分 因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠ . ............................................6分 (Ⅱ)若集合S 具有性质P ,那么集合{}(21)T n x x S =+-∈一定具有性质P . ..........7分 首先因为{}(21)T n x x S =+-∈,任取0(21),t n x T =+-∈ 其中0x S ∈,因为S A ⊆,所以0{1,2,3,...,2}x n ∈,从而01(21)2n x n ≤+-≤,即,t A ∈所以T A ⊆ ...........................8分 由S 具有性质P ,可知存在不大于n 的正整数m ,使得对S 中的任意一对元素12,s s ,都有 12s s m -≠, ..................................9分 对上述取定的不大于n 的正整数m , 从集合{}(21)T n x x S =+-∈中任取元素112221,21t n x t n x =+-=+-,其中12,x x S ∈, 都有1212t t x x -=- ; 因为12,x x S ∈,所以有12x x m -≠,即 12t t m -≠ 所以集合{}(21)T n x x S =+-∈具有性质P . .............................14分说明:其它正确解法按相应步骤给分.。

北京市海淀区2010届高三年级第一学期期末练习

北京市海淀区2010届高三年级第一学期期末练习

北京市海淀区2010届高三年级第一学期期末练习化学试题第I卷(选择题共27分)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷4至8页共100分。

考试时间90分钟。

答题时请将第Ⅰ卷每小题的正确答案选出后,填在第4页答卷表格的相应空格中,若仅答在第Ⅰ卷上则不给分。

请将第Ⅱ卷各题的答案直接答在试卷的相应位置上。

可能用到的相对原子质量:H:1 C:12 N:14 O:16 Na:23 S:32 Cl:35.5 Fe:56本卷共14道小题,每小题3分,共42分。

在每小题列出的四个选项中,选出符合题目要求的一个选项。

1.化学与生活、社会密切相关。

下列说法正确的是()A.用NaOH溶液雕刻工艺玻璃上的纹饰B.Na2O可用于呼吸面具中作为氧气的来源C.工业上硝酸可用于制化肥、农药、炸药和染料等D.向煤中加入适量CaSO4,可大大减少燃烧产物中SO2的量2.以下四种标签,适合贴在无水乙醇试剂瓶上的是()3.下列有机物命名正确的是()4.下列生活中常见有机物的应用,不正确...的是()A.青霉素是重要的抗生素B.为提高运动员的兴奋程度服用麻黄碱C.为增强对传染病的抵抗力服用适量维生素CD.使用酚醛树脂做绝缘、隔热、难燃和隔音器材5.下列获取物质的方法,不正确...的是()A.用电石和饱和食盐水制取乙炔B.通过石油分馏得到甲烷、乙烯和苯C.用碳酸钠和氢氧化钙反应制氢氧化钠D.将氯气通入氢氧化钠溶液得到漂白液6.下列实验操作正确的是()7.实验室从海带灰中提取碘的操作过程,仪器选用不正确...的是()A.称取3g左右的干海带——托盘天平B.灼烧干海带至完全变成灰烬——蒸发皿C.过滤煮沸后的海带灰水混合液——漏斗D.用四氯化碳从氧化后的海带灰浸取液中提取碘——分液漏斗8.下列实验操作正确的是()A.制乙酸酯时,迅速将乙醇注入浓硫酸中B.手上沾有少量苯酚,立即用氢氧化钠溶液清洗C.少量浓硫酸沾在皮肤上,立即用大量清水冲洗D.用氢气还原氧化铜时,加热一段时间后再通入氢气9.某有机物的结构简式为,其不可能...发生的反应有()①加成反应②取代反应③消去反应④氧化反应⑤水解反应⑥与氢氧化钠反应⑦与稀盐酸反应A.②③④B.①④⑥C.③⑤⑦D.⑦10.下列做法正确的是()A.蒸干FeCl3溶液得到FeCl3固体B.用稀硝酸除去Cu粉中混有的CuOC.将工业乙醇蒸馏得到96.5%的乙醇D.用BaCl2除去NaOH溶液中混有的少量Na2SO411.已知:2CO(g)+O2(g)2CO2(g) △=-566kJ·mol-1N2(g)+O2(g)2NO(g) △=+180kJ·mol-1则2CO(g)+2NO(g)N2(g)+2CO2(g) 的△是A.-386 kJ·mol-1B.+386 kJ·mol-1C.-746 kJ·mol-1D.+746 kJ·mol-112.下列根据反应原理设计的应用,不正确...的是()A .CO -23+H 2O HCO 3-+OH -热的纯碱溶液清洗油污B .Al 3++3H2OAl(OH)3+3H +明矾净水 C .TiCl 4+(x+2)H 2O(过量) TiO 2·xH 2O ↓+4HCl D .SnCl 2+H 2O Sn(OH)Cl ↓+HCl 配制氯化亚锡溶液时加入氢氧化钠 13.上列在限定条件溶液中的各组离子,能够大量共存的是 () A .pH=3 的溶液:Na +、Cl -、Fe 2+、ClO - B .与Al 能产生氢气的溶液:K +、SO -24、CO -23、NH 4+C .使酚酞试液变红的溶液:Na +、Cl -、SO -24、Al 3+D .水电离的H +浓度为1×10-12mol ·L -1的溶液:K +、Ba 2+、Cl -、Br -14.高功率Ni/MH (M 表示储氢合金)电池已经用于混合动力汽车。

2011年海淀区高三上期中练习数学(理科)

2011年海淀区高三上期中练习数学(理科)

2011年海淀区高三年级第一学期期中练习数学(理科)2011.11选择题(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 设集合()(){}|2130A x x x =--<,{}|14B x x =≤≤,则A B =∩( )A .[)10,B .()23,C .142⎛⎤⎥⎝⎦,D .(]14,2. 若()()2lg 1f x x =-,则()f x 的定义域是( ) A .()1+∞,B .()()011+∞,∪,C .()()110-∞--,∪,D .()()001-∞,∪, 3. 已知等差数列{}n a 中,11a =,33a =-,则12345a a a a a ----=( )A .15B .17C .15-D .164.已知非零向量a,b,那么“0a b ⋅> ”是“向量a,b方向相同”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5. 下列四个函数中,以π为最小正周期,且在区间ππ2⎛⎫⎪⎝⎭,上为减函数的是( )A .sin 2y x =B .2cos y x =C .cos 2x y = D .()tan y x =-6. 函数()1xf x e =-的图象大致是( )AB C D7. 要得到函数sin cos y x x =-的图象,只需将函数cos sin y x x =-的图象( )A .向左平移π4个单位长度 B .向右平移π2个单位长度 C .向右平移π个单位长度D .向左平移3π4个单位长度8. 已知定义域为()0+∞,的单调函数()f x ,若对任意()0x ∈+∞,,都有()12log 3f f x x ⎛⎫+= ⎪⎝⎭则方程()2f x =+)A .3B .2C .1D .0非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分 9. 曲线1y x=在2x =处的切线的斜率为 .10. 在各项均为正数的等比数列{}n a 中,若22a =,则132a a +的最小值是 .11. 点A 是函数()sin f x x =的图象与x 轴的一个交点(如图所示).若图中阴影部分的面积等于矩形O ABC 的面积,那么边AB 的长等于 .12. 已知点()11A ,,()53B ,,向量AB 绕点A 逆时针旋转3π2到AC 的位置,那么点C 的坐标是 .13. 在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,8a =,10b =,ABC △的面积为,则ABC △中最大角的正切值是 . 14. 已知数列()12.3n A a a a n ,≥∶,令{}|1A k k T x x a a i j n ==+<,≤≤,()card A T 表示集合AT 中元素的个数.①若24816A ,,,∶,则()card A T = ;②若1i i a a c +-=(c 为常数,11i n -≤≤),则()card A T = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题共13分)已知函数()2sin 2cos 22f x x x x =-. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间π04⎡⎤⎢⎥⎣⎦,上的取值范围.16. (本小题共13分)已知数列{}n a 是公差不为零的等差数列,23a -,且5a 是4a ,5a 的等比中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,求使n n a S =成立的的有n 的值. 17. (本小题共13分)某工厂生产某种产品,每日的成本C (单位:C )与日产量x (单位:吨)满足函数关系式1000020C x =+,每日的销售额R (单位:元)与日产量x 满足函数关系式52129001203020400120.x ax x x R x ⎧-++<<⎪=⎨⎪⎩,,,≥ 已知每日的利润y R C =-,且当30x =时,100y =-.(Ⅰ)求a 的值; (Ⅱ)当日产量为多少吨时,每日的利润率可达到最大,并求出最大值. 18. (本小题共13分)已知函数()()22ln f x x ax a x a =+-∈R .(Ⅰ)若1x =是函数()y f x =的极值点,求a 的值; (Ⅱ)求函数()f x 的单调区间. 19. (本小题共14分)设n S 为数列{}n a 的前n 项和,1n n S a λ=-(λ为常数,123n = ,,,). (Ⅰ)若232a a =,求λ的值;(Ⅱ)是否存在实数λ,使得数列{}n a 是等差数列?若存在,求出λ的值;若不存在,请说明理由;(Ⅲ)当2λ=时,若数列{}n b 满足()1123n n n b a b n +=+= ,,,,且132b =,令()1nn n na c ab =+,求数列{}n c 的前n 项和n T . 20. (本小题共14分)已知函数()22x x P f x x x x M ⎧∈⎪=⎨-+∈⎪⎩,,,,其中P ,M 是非空数集,且P M =∅∩.设()(){}|f P y y f x x P ==∈,, ()(){}|f M y y f x x M ==∈,. (Ⅰ)若()0P =-∞,,[]04M =,,求()()f P f M ∪;(Ⅱ)是否存在实数3a >-,使得[]3P M a =-∪,,且()()[]323f P f M a =--∪,?若存在,请求出满足条件的实数a ;若不存在,请说明现由;(Ⅲ)若P M =R ∪,且0M ∈,1P ∈,()f x 是单调递增函数,求集合P ,M参考答案一、选择题对于任意()0,x ∈+∞,()12log 3f f x x ⎛⎫+= ⎪⎝⎭,意味着()12log f x x +的值不随x 的变化而变化,设其值为m ,则()()12log 3f x x mf m +=⎧⎪⎨⎪=⎩,即12log 3m m -=.方程左边的式子随着m 的增大而增大,且可以观察得知2m =是方程的解,于是2m =是其唯一解.于是方程()2f x =+122log2x -=+2log x =t =,0t >,有22t t =.画函数图象可知,方程22t t =在()0,+∞上有两解.于是选B .二、填空题9、14-10、 11、2π12、()3,3-13、314、6;1,023,0c n c =⎧⎨-≠⎩三、解答题15. (I )()11cos 4sin 422xf x x -=-1sin 44222x x=+-πsin 432x ⎛⎫=+- ⎪⎝⎭∴()f x 的最小正周期是2ππ42=.(II )∵π04x ≤≤,∴ππ4π4333x +≤≤,因此πsin 4123x ⎛⎫+ ⎪⎝⎭≤ ∴()12f x -≤,因此()f x 在区间π0,4⎡⎤⎢⎥⎣⎦上的取值范围是,12⎡-⎢⎣⎦. 16. (I )设数列{}n a 的公差为d ,则52333a a d d =+=+,42232a a d d =+=+,82636a a d d=+=+于是2548a a a =⋅即()()()2333236d d d +=++,解得2d =- 因此125a a d =-=,()1172n a a n d n =+-=-.(II )72n a n =-,∴26n S n n =-+,因此n n a S =,即2672n n n -+=-,解得1n =或7n =.17. (I )32127010000,0120301040020,120x ax x x y R C x x ⎧-++-<<⎪=-=⎨⎪-⎩≥,当30x =时,3213030270301000010030y a =-⋅+⋅+⋅-=-解得3a =.(II )主要研究函数()32132701000030f x x x x =-++-,利用导数()21627010f x x x '=-++()()1903010x x =--+根据边界点()0,10000-,()120,8000和极值点()90,14300,画函数草图如下:于是当日产量为90吨时,每日的利润可以达到最大,且此最大值为14300元. 18. (I )利用数列前n 项和与通项公式的关系:111111111n n n n n n n n n n n n n S a S S a a a a a a a S a λλλλλλλλ------=-⎫⇒-=-⇒=-⇒=⎬=--⎭ 而111S a λ=-,即111a a λ=-,解得111a λ=-于是()221a λλ=-,()2331a λλ=-,代入232a a =,得()()223411λλλλ=--,于是常数2λ=(0λ=舍去). (II )由(I )1λλ-0≠,于是{}n a 是等比数列,若{}n a 同时也为等差数列,则{}n a 为非零常数列. 此时11λλ=-,无解.因此不存在常数λ使得{}n a 是等差数列.(III )当2λ=时,12n n a -=,而112n n n n b b b -+=-=△,∴11111131221222n n n n n b b ----=+=+-=+∑于是()()()11111221121212121212122n nn n n n nn n c -----⎛⎫===- ⎪++⎛⎫++⎝⎭++ ⎪⎝⎭ 累加,有n T =1122122121n n⎛⎫-=-⎪++⎝⎭.20、(I )如图:若(),0P =-∞,则()()0,f P =+∞; 若[]0,4M =,则()[]8,1f M =-; 于是()()[)8,f P f M =-+∞ .(II )如图,画出直线3y =-,与22y x x =-+交于点()1,3--和()3,3-,于是可知[]1,3M ⊆-;∵[]3,P M a =- ,∴[]3,1--P ⊆,于是[][]1,33,23a ⊆--,因此233a -≥,即3a ≥; 当3a ≥时,∵22x x x >-+,∴函数的最大值为a ,因此23a a =-,解得3a =. 经检验,3a =时,取[][]3,01,3P =- ,()0,1M =即可. 于是满足条件的实数a 的值为3.(III )如图,()f x 是单调递增函数,于是(],0M -∞⊆,[)1,P +∞⊆ 当()0,1P ⊆时,P =()0,+∞,(],0M =-∞; 当()0,1M ⊆时,[)1,P =+∞,(),1M =-∞.。

北京市海淀区高三上学期期末考试(2011-2013)

北京市海淀区高三上学期期末考试(2011-2013)
海淀区高三第一学期期末练习
物 理 说明:本试卷共 8 页,共 100 分。考试时间 90 分钟。 三 题号 一 二 16 17 18 分数 一、本题共 12 小题,每小题 3 分,共 36 分。在每小题给出的四个选项中,有的小题只有 一个选项是正确的,有的小题有多个选项是正确的。全部选对的得 3 分,选不全的得 2 分, 有选错或不答的得 0 分。把你认为正确答案的代表字母填写在题后的括号内。 1.某电场的电场线分布如图 1 所示,电场中有 A、B 两点,则以下判断正确的是 ( ) A.A 点的场强大于 B 点的场强,B 点的电势高于 A 点的电势 A B.若将一个电荷由 A 点移到 B 点,电荷克服电场力做功,则该电荷一 B 定为负电荷 C.一个负电荷处于 A 点的电势能大于它处于 B 点的电势能 图1 D.若将一个正电荷由 A 点释放,该电荷将在电场中做加速度减小的加 速运动 2.如图 2 所示,矩形导线框 abcd 与无限长通电直导线 MN 在同一平面内,直导线中的 电流方向由 M 到 N,导线框的 ab 边与直导线平行。若直导线中的电流增大, N 导线框中将产生感应电流,导线框会受到安培力的作用,则以下关于导线框 b c 受到的安培力的判断正确的是 ( ) 左 右 d a A.导线框有两条边所受安培力的方向相同 B.导线框有两条边所受安培力的大小相同 M C.导线框所受的安培力的合力向左 图2 D.导线框所受的安培力的合力向右 3.在图 3 所示的电路中,电源电动势为 E,电源内阻为 r,闭合开关 S E r S,待电流达到稳定后,将滑动变阻器的滑动触头 P 从图示位置向 a 端移 A V 动一些,待电流再次达到稳定后,则与 P 移动前相比( ) L P a A.电流表示数变小,电压表示数变大 R b B.小灯泡 L 变亮 C C.电容器 C 的电荷量减小 图3 D.电源的总功率变大 4.如图 4 所示,将一个半径为 r 的不带电的金属球放在绝缘支架上, 金属球的右侧放置一个电荷量为 Q 的带正电的点电荷,点电荷到金属球表 r Q 面的最近距离也为 r。由于静电感应在金属球上产生感应电荷。设静电力常 r 量为 k。则关于金属球内的电场以及感应电荷的分布情况,以下说法中正确 的是 ( ) A.电荷 Q 与感应电荷在金属球内任意位置激发的电场场强都是等大且 图4 反向的 Q B.感应电荷在金属球球心处激发的电场场强 E ′ = k 2 ,方向向右 2r C.感应电荷全部分布在金属球的表面上 D.金属球右侧表面的电势高于左侧表面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰台区2010—2011学年度第一学期期末统一练习高三物理 2011.1.说明:本试卷满分为120分。

考试时间120分钟。

注意事项:1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。

2. 本次考试所有答题均在答题卡上完成。

选择题必须使用2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。

非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。

3. 请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试题、草稿纸上答题无效。

4. 请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。

第Ⅰ卷(选择题 共48分)一、本题共12小题;每小题4分,共48分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 爱因斯坦是近代最著名的物理学家之一,曾提出许多重要理论,为物理学的发展做出过卓越贡献。

下列选项中不是..他的理论的是 A. 质能方程 B. 分子电流假说C. 光电效应方程D. 光速不变原理2.太阳内部持续不断地发生着热核反应, 质量减少。

核反应方程是2X He H 44211+→,这个核反应释放出大量核能。

已知质子、氦核、X 的质量分别为m 1、m 2、m 3,真空中的光速为c 。

下列说法中正确的是A .方程中的X 表示中子(n 10) B .方程中的X 表示电子(e 01-) C .这个核反应中质量亏损Δm=4m 1-m 2D .这个核反应中释放的核能ΔE =(4m 1-m 2-2m 3)c 2 3. 下列光学现象的说法中正确的是A .用光导纤维束传送图像信息,这是光的衍射的应用B .太阳光通过三棱镜形成彩色光谱,这是光的干涉的结果C .在照相机镜头前加装偏振滤光片拍摄日落时的景物,可使景象更清晰D .透过平行于日光灯的窄缝正常发光的日光灯时能观察到彩色条纹,这是光的色散现象4. 如图1所示,在空气中,一细光束以60°的入射角射到一平行玻璃板的上表面ab 上,已知该玻璃的折射率为3,下列说法正确的是A .光束可能在ab 面上发生全反射而不能进入玻璃板B .光束可能在cd 面上发生全反射而不能射出玻璃板C .光束一定能从ab 面进入玻璃板且折射角为30°D .光束一定能从cd 面射出玻璃板且折射角为30°5. 如图2所示,轻弹簧的一端与物块P 相连,另一端固定在木板上。

先将木板水平放图1 b d置,并使弹簧处于拉伸状态。

缓慢抬起木板的右端,使倾角逐渐增大,直至物块P 刚要沿木板向下滑动,在这个过程中,物块P 所受静摩擦力的大小变化情况是A . 先减小后增大B . 先增大后减小C . 一直增大D . 保持不变6.2010年10月1日19时整“嫦娥二号”成功发射。

其环月飞行的高度为100km ,所探测到的有关月球的数据将比环月飞行高度为200km 的“嫦娥一号”更加翔实。

若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图3所示。

则A .“嫦娥二号”环月运行的周期比“嫦娥一号”大B .“嫦娥二号”环月运行的线速度比“嫦娥一号”小C .“嫦娥二号”环月运行的向心加速度比“嫦娥一号”大D .“嫦娥二号”环月运行的向心力与“嫦娥一号”相等7. 如图4所示,,卷扬机的绳索通过定滑轮用力F 拉位于粗糙斜面上的木箱,使之沿斜面加速向上移动。

在移动过程中,下列说法正确的是 A. F 对木箱做的功等于木箱增加的机械能与木箱克服摩擦力所做的功之和B. F 对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和C. 木箱克服重力做的功大于木箱增加的重力势能D. F 对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和8. 一列横波沿x 轴传播,图5(甲)为t =0.5s 时的波动图像,图5(乙)为介质中质点P 的振动图像。

对该波的传播方向和传播波速度的说法正确的是A .沿-x 方向传播, 波速为4.0m/sB .沿+x 方向传播,波速为4.0m/sC .沿-x 方向传播,波速为8.0m/sD . 沿+x 方向传播,波速为8.0m/s9. 根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。

图6(乙)图5 图2图3图4中虚线表示原子核所形成的电场的等势线,实线表示一个α粒子的运动轨迹,a 、b 、c 为该α粒子运动过程中依次经过的三点。

下列说法中正确的是 A .三点的电场强度的关系为E b <E a =E c B .三点的电势的高低的关系为φb <φa =φcC .α粒子从a 运动到b 、再运动到c 的过程中电势能先减小后增大D .α粒子从a 运动到b 、再运动到c 的过程中电场力先做负功后做正功 10. 如图7所示为理想变压器原线圈所接交流电压的图象。

原、副线圈匝数比n 1∶n 2=10∶1,原线圈电路中电流为1A ,下列说法正确的是A .变压器输出端的交流电频率为100HzB .变压器输出端的电流为102AC .变压器输出端电压为22VD .变压器的输出功率为2002W11. 在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz (y 轴正方向竖直向上),如图8所示。

已知电场方向沿y 轴正方向,场强大小为E ;磁场方向沿z 轴正方向,磁感应强度的大小为B ;重力加速度为g 。

一质量为m 、带电量为+q 的带电微粒从原点以速度v 出发。

关于它在这一空间的运动的说法正确的是A. 一定能沿x 轴做匀速运动B. 一定沿y 轴做匀速运动C. 可能沿y 轴做匀速运动D. 可能沿z 轴做匀速运动12.如图所示,两块水平放置的金属板距离为d ,用导线、电键K 与一个n 匝的线圈连接,线圈置于方向竖直向上的均匀变化的磁场中。

两板间放一台小压力传感器,压力传感器上表面绝缘,在其上表面静止放置一个质量为m 、电量为+q 的小球。

电键K 闭合前传感器上有示数,电键K 闭合后传感器上的示数变为原来的一半。

则线圈中磁场的变化情况和磁通量变化率分别是 A .正在增强,q mgd t 2=∆∆ϕB .正在增强,nq mgd t 2=∆∆ϕC .正在减弱,q mgd t 2=∆∆ϕD .正在减弱,nqmgd t2=∆∆ϕ-zxyO图6图7图8B第Ⅱ卷(非选择题 共72分)二、本题共2小题,共18分,把答案填在题中的横线上或按题目要求作答。

13.如图10所示为“验证动量守恒定律”的实验装置。

(1)下列说法中符合本实验要求的是 。

(选填选项前面的字母) A .入射球比靶球质量大或者小均可,但二者的直径必须相同B .在同一组实验的不同碰撞中,每次入射球必须从同一高度由静止释放C .安装轨道时,轨道末端必须水平D .需要使用的测量仪器有天平、刻度尺和秒表 (2)实验中记录了轨道末端在记录纸上的竖直投影为O 点,经多次释放入射球,在记录纸上找到了两球平均落点位置为M 、P 、N ,并测得它们到O 点的距离分别为OM 、OP 和ON 。

已知入射球的质量为m 1,靶球的质量为m 2,如果测得12m OM m ON ⋅+⋅近似等于 ,则认为成功验证了碰撞中的动量守恒。

14.用伏安法测量电阻阻值R ,并求出电阻率ρ。

某同学电路如图13所示。

给定电压表、电流表、滑线变阻器、电源、电键、待测电阻及导线若干。

(1)待测电阻是一均匀材料制成的金属丝(横截面为圆形),用尺测量其长度,用螺旋测微器测量其直径,结果分别如图11和图12所示。

由图可知其长度为__________cm ,直径为________mm 。

(2)闭合电键后,发现电流表示数为零、电压表示数与电源电动势相同,则发生故障的是 (填“待测金属丝”“滑动变阻器”或“电键”)。

(3)对照电路的实物连接画出正确的电路图。

图10图12图11(4)图14中的6个点表示实验中测得的6组电流I 、电压U 的值,请在图中作出U -I 图线。

(5)求出的电阻值R =__________________Ω(保留3位有效数字)。

(6)请根据以上测得的物理量写出电阻率的表达式ρ =_______________。

三、本题共5小题,共54分,解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位。

15. (10分)莫公园里有一个斜面大滑梯,一位小同学从斜面的顶端由静止开始滑下,其运动可视为图14_/A0.51.0 1.52.0 2.5匀变速直线运动。

已知斜面大滑梯的高度为3m ,斜面的倾角为370,这位同学的质量为30Kg ,他与大滑梯斜面间的动摩擦因数为0.5。

不计空气阻力,取g=10 m/s 2,sin370=0.6,cos370=0.8。

求:(1)这位同学下滑过程中的加速度大小; (2)他滑到滑梯底端时的速度大小;(3)他滑到滑梯底端过程中重力的冲量大小。

16. (10分)如图15所示,宽度为L =0.40 m 的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R =2.0Ω的电阻。

导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B =0.40 T 。

一根质量为m =0.1kg 的导体棒MN 放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。

现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v =0.50 m/s ,在运动过程中保持导体棒与导轨垂直。

求:(1)在闭合回路中产生的感应电流的大小;(2)作用在导体棒上的拉力的大小及拉力的功率;(3)当导体棒移动50cm 时撤去拉力,求整个运动过程中电阻R 上产生的热量。

17. (10分)滑板运动是青少年喜爱的一项活动。

如图16所示,滑板运动员以某一初速度从A 点水平离开h =0.8m 高的平台,运动员(连同滑板)恰好能无碰撞的从B 点沿圆弧切线进入竖直B图15光滑圆弧轨道,然后经C点沿固定斜面向上运动至最高点D。

圆弧轨道的半径为1m,B、C 为圆弧的两端点,其连线水平,圆弧对应圆心角θ=106°,斜面与圆弧相切于C点。

已知滑板与斜面问的动摩擦因数为μ=31,g=10m/s2,sin37°=0.6,cos37°=0.8,不计空气阻力,运动员(连同滑板)质量为50kg,可视为质点。

试求:(1)运动员(连同滑板)离开平台时的初速度v0;(2)运动员(连同滑板)通过圆弧轨道最底点对轨道的压力;(3)运动员(连同滑板)在斜面上滑行的最大距离。

18. (12分)图17为汤姆生在1897年测量阴极射线(电子)的比荷时所用实验装置的示意图。

K为阴极,A1和A2为连接在一起的中心空透的阳极,电子从阴极发出后被电场加速,只有运动方向与A1和A2的狭缝方向相同的电子才能通过,电子被加速后沿00’方向垂直进图16人方向互相垂直的电场、磁场的叠加区域。

相关文档
最新文档