北京市海淀区2019-2020学年高二上学期期末考试数学(理)试题含答案

合集下载

北京市海淀区2023-2024学年高二下学期期末数学试卷(含答案)

北京市海淀区2023-2024学年高二下学期期末数学试卷(含答案)

北京市海淀区2023-2024学年高二下学期期末考试数学试卷本试卷共6页,共两部分。

19道题,共100分。

考试时长90分钟。

试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

考试结束后,请将答题卡交回。

第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.5(1)x -的展开式中,所有二项式的系数和为A.0B.52C.1D.622.已知函数sin (),cos xf x x=则(0)f '的值为A.0B.1C.1- D.π3.若等比数列{}n a 的前n 项和21n n S =-,则公比q =A.12B.12-C.2D.2-4.下列函数中,在区间[]1,0-上的平均变化率最大的时A.2y x = B.3y x = C.12xy ⎛⎫= ⎪⎝⎭D.2xy =5.将分别写有2,0,2,4的四章卡片,按一定次序排成一行组成一个四位数(首位不为0),则组成的不同四位数的个数为A.9B.12C.18D.246.小明投篮3次,每次投中的概率为0.8,且每次投篮互不影响,若投中一次的2分,没投中得0分,总得分为X ,则A.() 2.4E X = B.() 4.8E X = C.()0.48D X = D.()0.96D X =7.已知一批产品中,A 项指标合格的比例为80%,B 项指标合格的比例为90%,A 、B 两项指标都合格的比例为60%,从这批产品中随机抽取一个产品,若A 项指标合格,则该产品的B 项指标也合格的概率是A.37B.23C.34D.568.已知等差数列n a 的前n 项和为n S ,若10a <、则“n S 有最大值”是“公差0d <”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设函数()()ln 1sin f x x a x =-+.若()()0f x f ≤在()1,1-上恒成立,则A.0a =B.1a ≥C.01a <≤ D.1a =10.在经济学中,将产品销量为x 件时的总收益称为收益函数,记为()R x ,相应地把()R x '称为边际收益函数,它可以帮助企业决定最优的生产或销售水平.假设一个企业的边际收益函数()1000R x x '=-(注:经济学中涉及的函数有时是离散型函数,但仍将其看成连续函数来分析).给出下列三个结论:①当销量为1000件时,总收益最大;②若销量为800件时,总收益为T ,则当销量增加400件时,总收益仍为T ;③当销量从500件增加到501件时,总收益改变量的近似值为500.其中正确结论的个数为A.0B.1C.2D.3第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分。

2023-2024学年北京市海淀区高二(上)期末数学试卷【答案版】

2023-2024学年北京市海淀区高二(上)期末数学试卷【答案版】

2023-2024学年北京市海淀区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.椭圆y 22+x 2=1的焦点坐标为( ) A .(﹣1,0),(1,0)B .(0,﹣1),(0,1)C .(−√3,0),(√3,0)D .(0,−√3),(0,√3) 2.抛物线y 2=x 的准线方程是( )A .x =−12B .x =−14C .y =−12D .y =−143.直线3x +√3y +1=0的倾斜角为( )A .150°B .120°C .60°D .30°4.已知点P 与A (0,2),B (﹣1,0)共线,则点P 的坐标可以为( )A .(1,﹣1)B .(1,4)C .(−12,−1)D .(﹣2,1) 5.已知P 为椭圆C :x 24+y 2b 2=1上的动点,A (﹣1,0),B (1,0),且|P A |+|PB |=4,则b 2=( ) A .1 B .2 C .3 D .46.已知三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1⊥底面ABC ,则“CB ⊥BB 1”是“CB ⊥AB “的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.在空间直角坐标系O ﹣xyz 中,点P (﹣2,3,1)到x 轴的距离为( )A .2B .3C .√5D .√10 8.已知双曲线C :x 2−y 2b 2=1的左右顶点分别为A 1,A 2,右焦点为F ,以A 1F 为直径作圆,与双曲线C 的右支交于两点P ,Q .若线段PF 的垂直平分线过A 2,则b 2的数值为( )A .3B .4C .8D .910.如图,已知菱形ABCD 的边长为2,且∠A =60°,E ,F 分别为棱AB ,DC 中点.将△BCF 和△ADE 分别沿BF ,DE 折叠,若满足AC ∥平面DEBF ,则线段AC 的取值范围为( )A .[√3,2√3)B .[√3,2√3]C .[2,2√3)D .[2,2√3]二、填空题共5小题,每小题4分,共20分。

北京市海淀区2023-2024学年高二上学期期末练习数学试卷含答案

北京市海淀区2023-2024学年高二上学期期末练习数学试卷含答案

海淀区高二年级练习数学(答案在最后)2024.01考生须知1.本试卷共7页,共3道大题,19道小题.满分100分.考试时间90分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.椭圆C :2222x y +=的焦点坐标为()A.(1,0)-,(1,0) B.(0,1)-,(0,1)C.(),)D.(0,,(【答案】B 【解析】【分析】先化为标准方程2212y x +=,求得222,1,1a b c ====,判断焦点位置,写焦点坐标.【详解】因为椭圆C :2222x y +=,所以标准方程为2212y x +=,解得222,1,1a b c ===,因为焦点在y 轴上,所以焦点坐标为(0,1)-,(0,1).故选:B【点睛】本题主要考查椭圆的几何性质,还考查了理解辨析的能力,属于基础题.2.抛物线2y x =的准线方程是()A.12x =-B.14x =-C.12y =-D.14y =-【答案】B 【解析】【分析】由抛物线的标准方程及性质,直接求解.【详解】由抛物线方程2y x =可知1212p p ==,,故准线方程为:124p x =-=-.故选:B.3.直线310x ++=的倾斜角是()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】先求解出直线的斜率,然后根据倾斜角与斜率的关系求解出倾斜角的大小.【详解】因为直线方程为310x +=,所以斜率k ==设倾斜角为θ,所以tan θ=,所以120θ=°,故选:C.4.已知点P 与(0,2),(1,0)A B -共线,则点P 的坐标可以为()A.(1,1)- B.(1,4)C.1,12⎛⎫-- ⎪⎝⎭D.(2,1)-【答案】B 【解析】【分析】三点共线转化为向量共线,利用共线条件逐个判断即可.【详解】设(,)P x y ,则(,2),(1,2)AP x y AB =-=--,由,,P A B 三点共线,则//AP AB,所以2(2)0x y -+-=,则220x y -+=.选项A ,21(1)250⨯--+=≠,不满足220x y -+=,故A 错误;选项B ,21420⨯-+=,满足220x y -+=,故B 正确;选项C ,12(1)2202⎛⎫⨯---+=≠ ⎪⎝⎭,不满足220x y -+=,故C 错误;选项D ,2(2)1230⨯--+=-≠,不满足220x y -+=,故D 错误.故选:B.5.已知P 为椭圆222:14x y C b+=上的动点.(1,0),(1,0)A B -,且||||4PA PB +=,则2b =()A.1B.2C.3D.4【答案】C 【解析】【分析】根据题意,结合椭圆的定义,得到点P 的轨迹表示以,A B 为焦点的椭圆,进而求得2b 的值.【详解】因为(1,0),(1,0)A B -,可得2AB =,则||||42A PA PB B +>==,由椭圆的定义,可得点P 的轨迹表示以,A B 为焦点的椭圆,其中24,21a c ==,可得2,1a c ==,所以2223b a c =-=,又因为点P 在椭圆222:14x y C b+=,所以23b =.故选:C.6.已知三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,则“1CB BB ⊥”是“CB AB ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由面面垂直的性质定理可证明“1CB BB ⊥”是“CB AB ⊥”的必要条件,由底面为正三角形的直三棱柱模型,可知“1CB BB ⊥”不是“CB AB ⊥”的充分条件.【详解】①已知侧面11ABB A ⊥底面ABC ,且侧面11ABB A 底面ABC AB =,又BC ⊂平面ABC ,若BC AB ⊥,则由面面垂直的性质定理可得BC ⊥平面11ABB A ,1BB ⊂平面11ABB A ,则1CB BB ⊥,所以则“1CB BB ⊥”是“CB AB ⊥”的必要条件;②若三棱柱111ABC A B C -是直三棱柱,底面ABC 是正三角形,则1BB ⊥底面ABC ,1BB ⊂平面11ABB A ,则满足条件侧面11ABB A ⊥底面ABC .又BC ⊂平面ABC ,则1CB BB ⊥,但BC 与AB 不垂直.所以“1CB BB ⊥”不是“CB AB ⊥”的充分条件.综上所述,“1CB BB ⊥”是“CB AB ⊥”的必要不充分条件.故选:B.7.在空间直角坐标系O xyz -中,点(2,3,1)-P 到x 轴的距离为()A.2B.3C.D.【答案】D 【解析】【分析】结合空间直角坐标系,数形结合利用勾股定理求解点(2,3,1)-P 到x 轴的距离.【详解】在空间直角坐标系O xyz -中,过P 作PH ⊥平面xOy ,垂足为H ,则PH x ⊥轴,在坐标平面xOy 内,过H 作1HP x ⊥轴,与x 轴交于1P ,由(2,3,1)-P ,则1(2,0,0)P -,(2,3,0)H -,由1PH HP H = ,PH ⊂平面1PHP ,1HP ⊂平面1PHP ,则x 轴⊥平面1PHP ,1PP ⊂平面1PHP ,则x 轴1PP ⊥,故1PP即点(2,3,1)-P 到x 轴的距离,则1PP ==故选:D.8.已知双曲线222:1y C x b-=的左右顶点分别为12,A A ,右焦点为F ,以1A F 为直径作圆,与双曲线C 的右支交于两点,P Q .若线段PF 的垂直平分线过2A ,则2b 的数值为()A.3B.4C.8D.9【答案】C 【解析】【分析】由双曲线方程得1a =,结合圆的性质及线段垂直平分线的性质得2A 是1A F 的中点,得到,a c 关系求c ,进而求出2b .【详解】由双曲线222:1y C x b-=,得1a =,12(1,0),(1,0),(,0)A A F c -,由题意,点P 在以1A F 为直径的圆上,则1A P PF ⊥,取PF 的中点M ,由线段PF 的垂直平分线过2A ,则2A M PF ⊥,则12//A P A M ,故2A 是1A F 的中点,122A A A F=且12222,1A A a A F c a c ===-=-,所以12c -=,解得3c =,故222918b c a =-=-=.故选:C.9.设动直线l 与()22:15C x y ++= 交于,A B 两点.若弦长AB 既存在最大值又存在最小值,则在下列所给的方程中,直线l 的方程可以是()A.2x y a +=B.2ax y a +=C.2ax y +=D.x ay a+=【答案】D 【解析】【分析】由动直线恒与圆相交得直线过圆内一定点,再验证弦长取最值即可.【详解】()22:15C x y ++= ,圆心(1,0)C -,半径5r =,选项A ,由直线2x y a +=斜率为12-,可得动直线为为平行直线系,圆心(1,0)C -到直线20x y a +-=的距离15a d --=当6a ≤-或4a ≥时,5d ≥A 错误;选项B ,由直线2ax y a +=可化为(2)0a x y -+=,则直线恒过(2,0),因为()2215+>,点(2,0)在圆外,故直线不一定与圆相交,故B 错误;选项C ,由直线2ax y +=恒过(0,2),点(0,2)在圆上,当12a =时,直线方程可化为240x y +-=,此时圆心(1,0)C -到直线240x y +-=的距离1455d r --===,圆与直线相切,不满足题意,故C 错误;选项D ,由直线方程x ay a +=可化为(1)0x a y +-=,则直线恒过(0,1)M ,且点M 在圆C 内,故直线恒与圆C 相交,当直线过圆心C 时,弦长最长,由(1,0)-在直线(1)0x a y +-=上,可得1a =-,AB 取到最大值;如图,取AB 中点T ,则CT AB ⊥,圆心到直线的距离d CT CM=≤AB ==,当d 取最大值CM 时,弦长最短,即当直线与CM 垂直时,弦长最短,由CM 的斜率为01110CM k -==--此时直线斜率为11k a==,即当1a =时,AB 取到最小值.故D 正确.故选:D.10.如图,已知菱形ABCD 的边长为2,且60,,A E F ∠=︒分别为棱,AB DC 中点.将BCF △和ADE V 分别沿,BF DE 折叠,若满足//AC 平面DEBF ,则线段AC 的取值范围为()A. B. C.2,⎡⎣ D.2,⎡⎣【答案】A 【解析】【分析】借助空间直观想象,折叠前在平面图形中求出AC 的长度,折叠过程中证明平面//EAB 平面FDC ,面面距离即为AC 的最小值,由此得到AC 的范围.【详解】折叠前,连接,AC BD .由题意,在菱形ABCD 中,2AB BC ==,18060120ABC ∠=-= ,则由余弦定理得,22212cos 44222122AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯⨯⨯-= ⎪⎝⎭,所以,AC =,故在折叠过程中,AC ≤.折叠后,若//AC 平面DEBF ,则AC ⊄平面DEBF ,则AC <BD 项错误;折叠前,在菱形ABCD 中,2BA BD ==,60DAB ∠= ,则ABD △是正三角形,由,E F 分别为棱,AB DC 中点,则,,//DE AB BF DC AB DC ⊥⊥,所以//DE BF .折叠后,,,DE AE DE EB AE EB E ⊥⊥= ,又AE ⊂平面EAB ,且EB ⊂平面EAB ,则DE ⊥平面EAB ,同理BF ⊥平面FDC ,所以平面//EAB 平面FDC ,则平面EAB 与平面FDC 的距离即为22DE =⨯=,由点A ∈平面EAB ,点C ∈平面FDC ,则AC ≥.在折叠过程中,当60DFC AEB ∠=∠= 时,由,AE EB DF FC ==,则,EBA DFC 均为正三角形,可构成如图所示的正三棱柱DFC EBA -,满足//AC 平面DEBF ,此时AC DE ==.所以AC A 正确,C 项错误.故选:A.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.双曲线22:14y C x -=的渐近线方程为_________.【答案】2y x =±【解析】【分析】利用双曲线的性质即可求得渐近线方程.【详解】由双曲线的相关知识可知:1a =,2b =所以焦点在x 轴双曲线的渐近线方程为:2by x x a=±=±故答案为:2y x=±12.如图,已知E ,F 分别为三棱锥D ABC -的棱,AB DC 的中点,则直线DE 与BF 的位置关系是__________(填“平行”,“异面”,“相交”).【答案】异面【解析】【分析】假设共面推出矛盾.【详解】假设直线,DE BF 共面,EB ⊂平面DEBF ,由A EB ∈,则AB ⊂平面DEBF ,同理,DC ⊂平面DEBF ,故,AB CD 共面,这与D ABC -是三棱锥矛盾,故假设错误,故直线,DE BF 异面.故答案为:异面.13.经过点(0,1)A 且与直线:210l x y +-=垂直的直线方程为_______________.【答案】210x y -+=【解析】【分析】求出所求直线的斜率,利用点斜式方程可得出所求直线的方程.【详解】直线:210l x y +-=的斜率为12-,则与直线:210l x y +-=垂直的直线的斜率为2,则直线方程为12(0)y x -=-,即210x y -+=.故答案为:210x y -+=14.作为我国古代称量粮食的量器,米斗有着吉祥的寓意,是丰饶富足的象征,带有浓郁的民间文化韵味.右图是一件清代老木米斗,可以近似看作正四棱台,测量得其内高为12cm ,两个底面内棱长分别为18cm 和9cm ,则估计该米斗的容积为__________3cm .【答案】2268【解析】【分析】先画出正四棱台的直观图,再利用台体的体积公式即可求解.【详解】根据题意,正四棱台的直观图如下:由题意可知,高112cm OO h ==,下底面正方形的变长9cm AB =,其面积()219981cmS =⨯=,上底面正方形的变长18cm AB =,其面积()221818324cm S =⨯=,由台体的体积公式可得,该正四面体的体积:()()()3121181324122268cm 33V S S h =++=⨯++⨯=.故该米斗的容积为32268cm .故答案为:2268.15.已知四边形ABCD 是椭圆22:12x M y +=的内接四边形,其对角线AC 和BD 交于原点O ,且斜率之积为13-.给出下列四个结论:①四边形ABCD 是平行四边形;②存在四边形ABCD 是菱形;③存在四边形ABCD 使得91AOD ∠=︒;④存在四边形ABCD 使得2264||||5AC BD +=.其中所有正确结论的序号为__________.【答案】①③④【解析】【分析】利用椭圆的对称性判断①;利用菱形的对角线互相垂直可判断②;利用正切函数的和差公式与性质判断③;利用斜率关系得到22||||OA OB +的表达式,然后利用基本不等式求22||||AC BD +的最大值,可判断④.【详解】因为四边形ABCD 是椭圆22:12x M y +=的内接四边形,AC 和BD 交于原点O ,由椭圆的对称性可知OA OC =且OB OD =,所以四边形ABCD 是平行四边形,故①正确;假设对角线AC 和BD 的斜率分别为12,k k ,若四边形ABCD 是菱形,则其对角线互相垂直,即121k k ×=-,而这与1213k k ⋅=-矛盾,所以不存在四边形ABCD 是菱形,故②错误;不妨设直线AC 的倾斜角为α,直线BD 的倾斜角为β,且αβ>,则12tan ,tan 0k k αβ==>,又1213k k ⋅=-,则1213k k =-,则()122122tan tan 31tan tan 1tan tan 123k k AOD k k k k αβαβαβ⎛⎫--∠=-===-- ⎪++⎝⎭3tan1202≤-⨯=︒,又0180AOD ︒<∠<︒,则90120AOD ︒<∠<︒,所以存在四边形ABCD 使得91AOD ∠=︒,故③正确;直线AC 的方程1y k x =,直线BD 的方程2y k x =,由12212y k xx y =⎧⎪⎨+=⎪⎩,得()22122x k x +=,即122122k x =+,可得1222212A C x k x =+=,同理可得2222212B D x k x =+=,则()()22122222221212212111||221212121k kOA OB k k k k +++=+=++++++,由1213k k ⋅=-,得222119k k =,令()22121,09k t k t t==>,则22211119||||222221199t t t ttOA OB +=+++++=+++()()()92221123321922192t t t t t t +-+-=++=+++++2552181321813116333355t t t t t ++++=+=+≤++=,当且仅当218t t =,即221211,33t k k ===时,等号成立;于是()()()22222264||224||5AC BD OA OB OA OB +=+=+≤,当且仅当221213k k ==,即四边形ABCD 矩形时,等号成立,所以存在四边形ABCD 使得2264||||5AC BD +=,故④正确.故答案为:①③④.【点睛】关键点睛:本题结论④的解决关键是利用弦长公式得到22||||AC BD +关于t 的表达式,从而利用基本不等式即可得解.三、解答题共4小题,共40分.解答应写出文字说明、演算步骤或证明过程.16.已知圆222:(2)(0)C x y r r -+=>与y 轴相切.(1)直接写出圆心C 的坐标及r 的值;(2)直线:3410l x y --=与圆C 交于两点,A B ,求||AB .【答案】(1)圆心(2,0)C ,2r =(2)【解析】【分析】(1)由圆的方程得圆心坐标,结合图形,圆与y 轴相切得半径;(2)法一由弦长公式求解;法二利用几何法勾股定理求解.【小问1详解】圆222:(2)(0)C x y r r -+=>,则圆心(2,0)C ,因为圆222:(2)(0)C x y r r -+=>与y 轴相切,则半径2r =.【小问2详解】由(1)知,圆的方程为22:(2)4C x y -+=,圆心(2,0)C ,半径为2.法一:设()()1122,,,A x y B x y ,联立()22341024x y x y --=⎧⎪⎨-+=⎪⎩,得2257010x x -+=,2(70)42548000∆=--⨯=>,则1212141,525x x x x +==,所以12AB x=-===法二:圆心(2,0)C到直线:3410l x y--=的距离12d==<,则AB===故AB=.17.已知直线:1l y kx=+经过抛物线2:2C x py=的焦点F,且与C的两个交点为P,Q.(1)求C的方程;(2)将l向上平移5个单位得到,l l''与C交于两点M,N.若24MN=,求k值.【答案】(1)24x y=(2)k=【解析】【分析】(1)由直线l与y轴交点得焦点F,待定p可得方程;(2)联立直线l'与抛物线C的方程,由已知弦长利用弦长公式建立关于k的方程,求解可得.【小问1详解】抛物线2:2C x py=的焦点F在y轴上,直线:1l y kx=+,令0x=,得1y=,则焦点(1,0)F,所以12p=,即2p=,所以抛物线C的方程为24x y=;【小问2详解】直线:1l y kx=+向上平移5个单位得到:6l y kx'=+,由246x y y kx ⎧=⎨=+⎩,消y 得24240x kx --=,设直线l '与C 交于两点1122(,),(,)M x y N x y ,则216960k ∆=+>,且12124,24x x k x x +==-,MN =====,由24MN =,化简整理得427300k k +-=,解得210k =-(舍)或23k =,所以k =.18.如图,四棱锥E ABCD -中,⊥AE 平面,,,2,1ABCD AD AB AD BC AE AB BC AD ⊥====∥,过AD 的平面分别与棱,EB EC 交于点M ,N .(1)求证:AD MN ∥;(2)记二面角A DN E --的大小为θ,求cos θ的最大值.【答案】(1)证明见解析(2)33【解析】【分析】(1)由线面平行判定定理与性质定理可证;(2)建立空间直角坐标系,设[],0,1BM BE λλ=∈,利用法向量方法,用λ表示两平面法向量夹角的余弦,再由向量夹角与二面角大小关系求cos θ最大值.【小问1详解】因为//AD BC ,AD ⊄平面BCE ,BC ⊂平面BCE ,所以//AD 平面BCE .因为过AD 的平面分别与棱,EB EC 交于,M N ,所以//AD MN ;【小问2详解】因为⊥AE 平面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以,AE AB AE AD ⊥⊥,又因为AB AD ⊥,如图,建立空间直角坐标系A xyz -,则(2,0,0),(2,0,2),(0,2,0),(0,0,1)B C E D ,所以(0,2,1),(2,2,2),(2,2,0),(0,0,1)ED EC BE AD =-=-=-=,设[],0,1BM BE λλ=∈,则(2,0,0)(2,2,0)(22,2,0)AM AB BM λλλ=+=+-=-,设平面AND 即平面AMND 的法向量为111(,,)m x y z =,则1110(22)20m AD z m AM x y λλ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1x λ=,则11y λ=-,于是(,1,0)m λλ=-;设平面END 即平面ECD 的法向量为222(,,)n x y z =,则22222202220n ED y z n EC x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21y =,则222,1z x ==-,于是(1,1,2)n =-,所以cos ,m nm n m n ⋅===⋅,因为[]0,1λ∈,所以cos ,,36m n ⎡∈--⎢⎣⎦,由二面角A DN E --的大小为θ,根据(,1,0),(1,1,2)m n λλ=-=- 的方向判断可得π,m n θ=-,所以,当12λ=时,cos θ的最大值为33.19.已知椭圆2222:1(0)x y E a b a b +=>>的两个顶点分别为(2,0),(2,0)A B -,离心率()()0001,,02e P x y y =≠为椭圆上的动点,直线,PA PB 分别交动直线x t =于点C ,D ,过点C 作PB 的垂线交x 轴于点H .(1)求椭圆E 的方程;(2)HC HD ⋅是否存在最大值?若存在,求出最大值;若不存在,说明理由.【答案】19.22143x y +=20.存在;12【解析】【分析】(1)由离心率及顶点坐标结合222b c a +=即可求解;(2)结合两点式得直线,PA PB 方程,进而得到点,C D 坐标,由直线CH 与直线PB 垂直得到直线CH 的斜率,结合点斜式得直线CH 的方程,进而的到点H 坐标,结合数量积的坐标运算及二次函数的最值即可求解.【小问1详解】由12ce a==,又两个顶点分别为(2,0),(2,0)A B -,则2,1a c ==,2223b a c =-=,故椭圆E 的方程为22143x y +=;【小问2详解】()()000,0P x y y ≠为椭圆上的动点,则02x ≠±,故直线,PA PB 的斜率存在且不为0,则直线PA :0022y x y x +=+,即00(2)2y y x x =++,则点00(,(2))2y C t t x ++,则直线PB :0022y x y x -=-,即00(2)2y y x x =--,则点00(,(2))2y D t t x --,则直线CH 的斜率为002x y -,故直线CH :00002(2)()2y x y t x t x y --+=-+,令0y =,得2020(2)4H t y x t x +=+-,又()00,P x y 在椭圆上,则2200143x y +=,整理得()2020344x y -=,所以36(2)44H t x t t -=-+=,则6,04t H -⎛⎫⎪⎝⎭,所以()22200020004(2)(2)3636(36),,4242164t y t y t y t t t HC HD x x x -⎛⎫⎛⎫+-+++⋅=⋅=+ ⎪ ⎪+--⎝⎭⎝⎭ ()22234(36)3(6)1216416t t t -+-=-=-+综上,存在6t =,使得HC HD ⋅有最大值12.确,运算要细心,是中档题.。

北京市海淀区2021-2022学年高二上学期期末考试数学(理)试题 Word版含答案

北京市海淀区2021-2022学年高二上学期期末考试数学(理)试题 Word版含答案

海淀区高二班级第一学期期末练习 数学(理科)学校: 班级: 姓名: 成果: 本试卷共100分,考试时间90分钟.一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线210x y +-=在y 轴上的截距为( )A .2-B .1-C .12-D .12.在空间直角坐标系中,已知点(1,0,1)A ,(3,2,1)B ,则线段AB 的中点的坐标是( ) A .(1,1,1) B .(2,1,1) C .(1,1,2) D .(1,2,3)3.已知圆22310x y x m +-++=经过原点,则实数m 等于( )A .32-B .1-C .1D .324.鲁班锁是曾广泛流传与民间的智力玩具,它起源于中国古代建筑中首创的榫卯结构,不用钉子和绳子,完全靠自身机构的连接支撑,它看似简洁,却分散着不平凡的才智.下图为鲁班锁的其中一个零件的三视图,则该零件的体积为( )A .32B .34 C.36 D .405.已知平面α,β,直线m ,n ,下列命题中假命题...是( ) A.若m α⊥,m β⊥,则//αβ B .若//m n ,m α⊥,则n α⊥ C.若m α⊥,m β⊂,则αβ⊥ D .若//m α,//αβ,n β⊂,则//m n6.椭圆C :2211612x y +=的焦点为1F ,2F,若点M 在C 上且满足122MF MF -=,则12F MF ∆中最大角为( )A .90︒B .105︒ C.120︒ D .150︒7.“0m <”是“方程22x my m +=表示双曲线”的( ) A .充分而不必要条件 B .必要而不充分条件 C.充分必要条件 D .既不充分也不必要条件8.平面α,β,γ两两相互垂直,在平面α内有一点A 到平面β,平面γ的距离都等于1.则在平面α内与点A ,平面β,平面γ距离都相等的点的个数为( )A .1B .2 C.3 D .4 二、填空题:本大题共6小题,每小题4分,共24分.9.直线l :10x y +-=的倾斜角为 ,经过点(1,1)且与直线l 平行的直线方程为 .10.310x y +-=被圆221x y +=所截得的弦长为 . 11.请从正方体1111ABCD A B C D -的8个顶点中,找出4个点构成一个三棱锥,使得这个三棱锥的4个面都是直角三角形,则这4个点可以是 .(只需写出一组)12.在平面直角坐标系中,已知点(1,2,0)A ,(,3,1)B x -,(4,,2)C y ,若A 、B 、C 三点共线,则x y += .13.已知椭圆1C 和双曲线2C 的中点均为原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中,则双曲线的离心率为 .x4 26y222-2214.曲线W 的方程为22322()8x y x y +=. ①请写出曲线W 的两条对称轴方程 ; ②请写出曲线W 上的两个点的坐标 ;③曲线W 上的点到原点的距离的取值范围是 .三、解答题 :本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤. 15.在平面直角坐标系xOy 中,圆C 的半径为1,其圆心在射线(0)y x x =≥上,且22OC =.(I )求圆C 的方程;(II )若直线l 过点(1,0)P 且与圆C 相切,求直线l 的方程.16.如图,在三棱锥P ABC -中,PB PC =,AB AC =,且点D 、E 分别是BC ,PB 的中点.(I )求证://DE 平面PAC ; (II )求证:平面ABC ⊥平面PAD .17.如图,平面ABCF ⊥平面FCDE ,四边形ABCF 和FCDE 是全等的等腰梯形,其中////AB FC ED ,且122AB BC FC ===,点O 为FC 的中点,点G 是AB 的中点.(I )请在图中所给的点中找出两个点,使得这两个点所在直线与平面EGO 垂直,并给出证明..; (II )求二面角O EG F --的余弦值;(III )在线段CD 上是否存在点H ,使得//BH 平面EGO ?假如存在,求出DH 的长度,假如不存在,请说明理由.18.已知抛物线W :24y x =,直线4x =与抛物线W 交于A ,B 两点.点00(,)P x y 00(4,0)x y <≥为抛物线上一动点,直线PA ,PB 分别与x 轴交于M ,N .(I )若PAB ∆的面积为4,求点P 的坐标; (II )当直线PA PB ⊥时,求线段PA 的长;(III )若PMN ∆与PAB ∆面积相等,求PMN ∆的面积.海淀区高二班级第一学期期末练习 数学(理科) 参考答案及评分标准 一、选择题1-5:DBBCD 6、7、8、:ACB 二、填空题9.34π,20x y +-=11.1,,,A A B C(此答案不唯一) 12.12-13.14.①0x =,0y =,y x =,y x =-中的任意两条都对 ②(0,0),(1,1)此答案不唯一③说明:9题每空2分,14题中①②空 各给1分,③给2分 三、解答题15.解:(I )设圆心(,)C a a,则OC ==解得2a =,2a =-所以圆C :22(2)(2)1x y -+-= (II )①若直线l 的斜率不存在,直线l :1x =,符合题意 ②若直线l 的斜率存在,设直线l 为(1)y k x =-, 即0kx y k --=由题意,圆心到直线的距离1d ==解得34k =所以直线l 的方程为3430x y --=综上所述,所求直线l 的方程为1x =或3430x y --=. 16.解:(I )证明:在PBC ∆中, 由于D ,E 分别是BC ,PB 的中点, 所以//DE PC由于DE ∉平面PAC ,PC ⊂平面PAC 所以//DE 平面PAC .(II )证明:由于PB PC =,AB AC =,D 是BC 的中点, 所以PD BC ⊥,AD BC ⊥ 由于PDAD D =,PD ,AD ⊂平面PAD所以BC ⊥平面PAD 由于BC ⊂平面ABC 所以平面ABC ⊥平面PAD 17.解:法一:向量法 (I )F ,D 点为所求的点. 证明如下:由于四边形ABCF 是等腰梯形,点O 为FC 的中点,点G 是AB 的中点, 所以OG FC ⊥.又平面ABCF ⊥平面FCDE ,平面ABCF 平面FCDE =FC ,所以OG ⊥平面FCDE同理取DE 的中点H ,则OH ⊥平面ABCF .分别以边OG ,OC ,OH 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系. 由2AB =,得(3,0,0)G ,(0,1,3)D ,(0,1,3)E -,(0,2,0)F -, 则(0,3,3)FD =,(3,0,0)OG =,(0,1,3)OE =-. 所以0FD OG ⋅=,0FD OE ⋅= 又EOOG O =,所以FD ⊥平面EGO(II )由(I )知平面EGO 的一个法向量为(0,3,3)FD =. 设平面EFG 的法向量为(,,)m x y z =,则0,0,m FE m FG ⎧⋅=⎪⎨⋅=⎪⎩即30320y z x y ⎧+=⎪⎨+=⎪⎩令3y =,则1z =-,2x =-所以(2,3,1)m =--所以cos ,FD m <>=(2,3,1)(0,3,3)24431093--⋅=++⋅++ 所以二面角O EG F --的余弦值为24-(III )假设存在点H ,使得BH //平面EOG . 设DH DC λ=所以BH BD DH =+BD DC λ=+,所以0FD BH ⋅= 而计算可得3FD BH ⋅= 这与0FD BH ⋅=冲突所以在线段CD 上不存在点H ,使得BH //平面EOG 法二:(I )证明如下:由于四边形ABCF 是等腰梯形,点O 为FC 的中点,点G 是AB 的中点, 所以OG FC ⊥又平面ABCF ⊥平面FCDE ,平面ABCF 平面FCDE FC =,所以OG ⊥平面FCDE由于FD ⊂平面FCDE ,所以OG FD ⊥, 又//ED FO ,且EF ED =, 所以EFOD 为菱形,所以FD EO ⊥ 由于EOOG O =,所以FD ⊥平面EGO .(III )假设存在点H ,使得//BH 平面EOG 由//ED OC ,所以EOCD 为平行四边形, 所以//EO DC 由于EO ⊂平面EOG 所以//DC 平面EOG 又BHDC H =,所以平面//EOG 平面BCD ,所以//BC 平面EOG ,所以//BC OG , 所以GBCO 为平行四边形,所以GB CO =,冲突所以不存在点H ,使得//BH 平面EOG18.(I )把4x =代入抛物线方程,得到4y =± 所以不妨设(4,4)A ,(4,4)B -, 所以8AB =由于12PAB S AB d ∆=⋅1842d =⋅⋅=,所以点P 到直线AB 的距离1d = 所以点P 的横坐标03x =代入抛物线方程得(3,P(II )由于PA PB ⊥,所以0AP BP ⋅= 所以0000(4)(4)(4)(4)0x x y y --+-+=,所以22000816160x x y -++-=, 把2004y x =代入得到20040x x -=所以00x =,04x =(舍)所以00y =,PA =(III )直线PA 的方程为0044(4)4y y x x --=--04(4)4x y =-+,点M 横坐标0004(4)44M x x y y --=+=-- 同理PB 的方程为0044(4)4y y x x ++=--04(4)4x y =-+,点N 横坐标0004(4)44N x x y y -=+=+由于PMNPABS S ∆∆=,所以0011422MN y AB x ⋅=⋅-所以2004(4)y x =-,解得02x =所以8PMN PAB S S ∆∆==。

北京市海淀区2024-2025学年高二上学期统练二数学试题含答案

北京市海淀区2024-2025学年高二上学期统练二数学试题含答案

2024-2025学年北京市海淀区高二上学期统练二数学试题(答案在最后)一、单选题:本题共10小题,每小题5分,共50分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知直线过点()1,1P -,且倾斜角是45︒,则直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据题意,求出直线方程,画出图象,结合图象得到答案.【详解】直线过点()1,1P -,且倾斜角是45︒,所以直线斜率tan 451k =︒=,所以直线方程为11y x -=+,即20x y -+=,画出直线图象为结合图象可知,直线不过第四象限,故选:D.2.已知圆1C :222880x y x y +++-=,圆2C :()()222210x y -+-=,则圆1C 与圆2C 的位置关系是()A.外离B.外切C.相交D.内含【答案】C 【解析】【分析】依题意将圆的一般方程化为标准方程求出两圆圆心和半径,比较圆心距与两半径之差、之和的关系即可得出结论.【详解】根据题意将1C 化为标准方程可得()()221425x y +++=,即圆心()11,4C --,半径15r =;由()()222210x y -+-=可知圆心()22,2C ,半径2r =;此时圆心距为12C C ==,121255r r r r +=-=;显然1212122r r C C r r -+<<,即两圆相交.故选:C3.若1l 与2l 为两条不重合的直线,它们的倾斜角分别为1α,2α,斜率分别为1k ,2k ,则下列命题①若12l l ∥,则斜率12k k =;②若斜率12k k =,则12l l ∥;③若12l l ∥,则倾斜角12αα=;④若倾斜角12αα=,则12l l ∥,其中正确命题的个数是().A.1 B.2C.3D.4【答案】D 【解析】【分析】根据两条直线平行的判定方法与结论即可判断.【详解】由于1l 与2l 为两条不重合的直线且斜率分别为1k ,2k ,所以1212l l k k ⇔= ,故①②正确;由于1l 与2l 为两条不重合的直线且倾斜角分别为1α,2α,所以12l l ∥⇔12αα=,故③④正确,所以正确的命题个数是4.故选:D .4.过直线10x y ++=与240x y --=的交点,且一个方向向量为()1,3y =-的直线方程为()A.310x y +-=B.350x y +-=C.330x y +-=D.350x y ++=【答案】A 【解析】【分析】求出两条直线的交点坐标,再结合方向向量求出直线方程.【详解】由10240x y x y ++=⎧⎨--=⎩,解得12x y =⎧⎨=-⎩,即直线10x y ++=与240x y --=的交点坐标为(1,2)-,而该直线的斜率为3-,所以所求直线的方程为23(1)y x +=--,即310x y +-=.故选:A5.“1a =-”是“直线1:10l x ay -+=和直线2:(2)10()+++=∈l ax a y a R 垂直”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两直线互相垂直求出a 的值,从而结合充分条件与必要条件的概念判断结论.【详解】当直线1:10l x ay -+=和直线2:(2)10()+++=∈l ax a y a R 垂直时,有()()120a a a ⨯+-+=,即20a a +=,解得1a =-或0a =,所以“1a =-”是“直线1:10l x ay -+=和直线2:(2)10()+++=∈l ax a y a R 垂直”的充分而不必要条件,故选:A.6.已知椭圆22137x y m m+=--的焦点在x 轴上,则m 的取值范围是()A.37m <<B.35m << C.57m << D.3m >【答案】C 【解析】【分析】根据椭圆的标准方程,列出不等式组,即可求解.【详解】由椭圆22137x ym m +=--的焦点在x 轴上,则满足307037m m m m->⎧⎪->⎨⎪->-⎩,解得57m <<.故选:C.7.若圆22860x x y y m ++-+=与x 轴,y 轴均有公共点,则实数m 的取值范围是()A.(],9-∞ B.(],16-∞ C.[)9,25 D.[)16,25【答案】A 【解析】【分析】利用圆的一般方程满足的条件得到25m <,再分别令0,0y x ==,利用0∆≥,即可求出结果.【详解】因为22860x x y y m ++-+=表示圆,所以643640m +->,得到25m <,令0y =,得到280x x m ++=,则6440m ∆=-≥,得到16m ≤,令0x =,得到260y y m -+=,则3640m ∆=-≥,得到9m ≤,所以9m ≤,故选:A.8.在平面直角坐标系xOy 中,若点(),P a b 在直线430ax by a +++=上,则当a ,b 变化时,直线OP 的斜率的取值范围是()A.,33⎛⎫-∞-+∞ ⎪ ⎪⎝⎦⎣⎭B.33⎡-⎢⎣⎦C.,,22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭D.,22⎡-⎢⎣⎦【答案】B 【解析】【分析】将点P 代入直线方程中得出点P 为圆上的动点,结合图像分析即可求出直线OP 的斜率的取值范围.【详解】因为点(),P a b 在直线430ax by a +++=上,所以430a a b b a ⋅+⋅++=,即()222243021a b a a b +++=⇔++=,则(),P a b 表示圆心为()2,0-,半径为1的圆上的点,如图:由图可知当直线OP 与圆相切时,直线OP 的斜率得到最值,设:OP l y kx =,由圆与直线相切,故有圆心()2,0-到直线OP l 的距离为半径1,即1d ==,解得:3k =±,由图分析得:直线OP 的斜率的取值范围是33⎡-⎢⎣⎦.故选:B.9.若点(,)P x y 在直线12x y +=+的最小值为()A.+ B.+ C.13D.1+【答案】C 【解析】x 轴上某动点Q 到两定点A B 、的距离之和,利用QA QB AB +≥的性质,即可得出所求最小值.【详解】因为点(,)P x y 在直线12x y +=上运动,所以12y x =-,==+,表示x 轴上一点(,0)Q x 到两定点(0,1)(12,4)A B -、的距离之和.,A B 在x 轴两侧,因为QAB 中,两边之和大于第三边,所以QA QB AB +>,当Q A B 、、三点共线时,QA QB AB +=,此时QA QB +最小值为AB ,的最小值为13AB ==.故选:C.10.已知m ∈R ,过定点A 的动直线0mx y +=和过定点B 的动直线30x my m --+=交于点P ,则PA 的取值范围是()A.B.C. D.【答案】D 【解析】【分析】动直线0mx y +=过定点()0,0A ,动直线30x my m --+=过定点()3,1B --,且此两条直线垂直,因此点P 在以AB 为直径的圆上,||AB =设∠ABP =θ,则||,||PA PB θθ==,θ∈[0,2π],代入PA 中利用正弦函数的性质可得结果.【详解】动直线0mx y +=过定点()0,0A ,动直线30x my m --+=即()310x m y +-+=过定点()3,1B --,且此两条直线垂直.∴点P 在以AB 为直径的圆上,||AB ==,设∠ABP =θ,则||,||PA PB θθ==,θ∈[0,2π]|||o 3s PA PB πθθθ⎛⎫∴=+=+ ⎪⎝⎭,∵θ∈[0,2π],∴θ+3π∈[3π,56π],∴sin (θ+3π)∈[12,1],∴3πθ⎛⎫+ ⎪⎝⎭∈,],故选:D .【点睛】本题考查直线过定点、相互垂直的直线斜率之间的关系,考查正弦函数的性质,考查推理能力与计算能力,属于中档题.二、填空题:本题共6小题,每小题5分,共30分.11.经过点()1,3且在两坐标轴上的截距互为相反数的直线方程是______.【答案】30x y -=或20x y -+=.【解析】【分析】当直线过原点时,由点斜式求出直线的方程.当直线不过原点时,设方程为1x ya a+=-,把点()2,3P 代入可得a 的值,从而得到直线方程.综合以上可得答案.【详解】当直线过原点时,由于斜率为30310-=-,故直线方程为3y x =,即30x y -=.当直线不过原点时,设方程为1x y a a+=-,把点()1,3代入可得2a =-,故直线的方程为20x y -+=,故答案为:30x y -=或20x y -+=.12.已知入射光线经过点(0,1)M 被x 轴反射,反射光线经过点(2,1)N ,则反射光线所在直线的方程为________.【答案】10x y --=【解析】【分析】先求出(0,1)M 关于x 轴对称的点M '的坐标,反射光线必过M '点,又反射光线经过点(2,1)N ,即可求出直线方程.【详解】由题意,(0,1)M 关于x 轴对称的点为()0,1M '-,反射光线必过()0,1M '-点,又反射光线经过点(2,1)N ,故直线的斜率11102k --==-,故直线方程为12y x -=-,化成一般式得10x y --=,故答案为:10x y --=13.已知椭圆的中心在原点,焦点在x 轴上,离心率为5,且过点P (-5,4),则椭圆的方程为________.【答案】2214536x y +=【解析】【分析】根据待定系数法求解,先设出椭圆的标准方程,根据题意求出参数,a b 后可得椭圆的标准方程.【详解】设椭圆的方程为22221(0)x y a b a b+=>>,由题意得5c e a ==,∴c =,∴222245a b a c =-=,∴椭圆的方程为2222514x y a a +=.又点P (-5,4)在椭圆上,∴22225804514a a a+==,解得245a =,∴236b =,∴椭圆的方程为2214536x y +=.故答案为2214536x y +=.【点睛】求椭圆标准方程的基本方法是待定系数法,具体步骤为:先定形,再定量,即先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组,求出a ,b 后即可得到椭圆的标准方程.14.已知m R ∈,则直线1:(1)(3)40l m x m y +---=与直线2:(1)(3)l m x m y +--0=的距离的最大值为__________【解析】【分析】由平行线间的距离公式得d =化简求最值即可.【详解】因为直线()()1l :m 1x m 3y 40+---=与直线()()2l :m 1x m 3y +--0=平行,所以由平行线间的距离公式得d =,所以当m=1时,d max .故答案为.【点睛】本题考查的是平行线间的距离公式和二次函数求最值的问题,属于基础题.15.已知曲线2230x y ax +--=关于直线10x y +-=对称,若直线(1)y k x =+被曲线截得的弦长为k =______.【答案】33±【解析】【分析】曲线方程化为桂圆的标准方程后得出圆心坐标,代入对称直线方程得a 值,由弦长得出圆心到直线的距离,利用点到直线距离公式可求得k .【详解】曲线2230x y ax +--=的标准方程是222()324a a x y -+=+,它表示圆,圆心坐标为(,0)2a ,由题意0102a +-=,解得2a =,即圆心为(1,0)2=,直线(1)y k x =+被圆截得的弦长为1d ==,1=,解得3k =±.故答案为:33±.16.在平面直角坐标系xOy 中,点(2,0)A -,(4,0)B ,点P 满足12PA PB=.设点P 的轨迹为C ,给出下列四个结论:(1)当,,A B P 三点不共线时,ABP 面积的最大值为12;(2)在x 轴上存在异于,A B 的两定点,D E 使得12PD PE=;(3)当,,A B P 三点不共线时,射线PO 是APB ∠的平分线;(4)在C 上存在点M ,使得2MO MA =.其中所有正确结论的序号是______.【答案】(1)(2)(3)【解析】【分析】设(,)P x y ,根据题目条件可得点P 的轨迹方程,轨迹为以(4,0)-为圆心,4为半径的圆.根据点P 在圆上可得点P 到直线AB 的最大距离,即可求出ABP 面积的最大值,得到(1)正确;设,D E 两点坐标结合C 的方程可判断(2)正确;根据角平分定理逆定理可得(3)正确;设点M 坐标,根据条件列关系式,结合C 的方程可判断(4)错误.【详解】设(,)P x y ,由12PAPB =12=,化简得22(4)16x y ++=,点P 的轨迹C 为以(4,0)-为圆心,4为半径的圆.(1)如图,6AB =,点P 在C 上运动时,点P 到直线AB 的最大距离为4,∴ABP 面积的最大值为164122⨯⨯=,(1)正确.(2)设(,0),(,0)D m E n ,由12PDPE =12=,化简得2222284033n m m n x y x --+++=,∵点P 的轨迹方程为22(4)16x y ++=,即2280x y x ++=,∴222848,033n m m n --==,解得612m n =-⎧⎨=-⎩或24m n =-⎧⎨=⎩(舍去),∴存在(6,0),(12,0)D E --使得12PD PE=,(2)正确.(3)∵||2,||4OA OB ==,∴12OA PA OBPB==,由角平分线定理的逆定理得射线PO 是APB ∠的平分线,(3)正确.(4)设在C 上存在点00(,)M x y ,则2200(4)16x y ++=,2200080x y x ++=,由2MO MA ==化简得220001616033x y x +++=,联立2200080x y x ++=与220001616033x y x +++=,方程组无解,∴不存在点M ,使得2MO MA =,(4)错误.故答案为:(1)(2)(3).三、解答题:本题共2小题,共24分.解答应写出文字说明,证明过程或演算步骤.17.如图,在三棱柱111ABC A B C -中,侧面11A ACC 为正方形,AB AC ⊥,2AB AC ==,D 为BC 的中点.(1)求证:1//A C 平面1AB D ;(2)若1A C AB ⊥,求二面角11D AB A --的余弦值.【答案】(1)证明见解析(2)33-【解析】【分析】(1)根据线线平行证明面面平行;(2)向量法求二面角.【小问1详解】如图,连接1A B ,设11A B AB E = ,连接DE .因为在三棱柱111ABC A B C -中,四边形11A ABB 是平行四边形,所以E 为1A B 的中点.因为D 为BC 的中点,所以1//DE AC .又因为1A C ⊄平面1AB D ,DE ⊂平面1AB D ,所以1AC ∥平面1AB D .【小问2详解】因为1AB A C ⊥,AB AC ⊥,又1AC AC C ⋂=,1A C ⊂平面11A ACC ,AC ⊂平面11A ACC ,所以AB ⊥平面11A ACC ,又因1AA ⊂平面11A ACC ,所以1AB AA ⊥.又1AA AC ⊥,所以AB ,AC ,1AA 两两相互垂直.如图建立空间直角坐标系A xyz -,则0,0,0,()12,0,2B ,()1,1,0D ,()0,2,0C .所以()12,0,2AB = ,()1,1,0AD =.设平面1AB D 的法间量为(),,m x y z = ,则100m AB m AD ⎧⋅=⎪⎨⋅=⎪⎩ 即2200x z x y +=⎧⎨+=⎩,令=1x -,则1y =,1z =于是()1,1,1m =- .因为AC ⊥平面11A ABB ,所以()0,2,0AC =是平面11A ABB 的一个法向量.所以3cos ,3m AC m AC m AC ⋅== .由题设,二面角11D AB A --的平面角为钝角,所以二面角11D AB A --的余弦值为33-.18.已知圆O :222(0)x y r r +=>与直线250x y +-=相切.(1)求圆O 的方程;(2)若过点()13-,的直线l 被圆O 所截得的弦长为4,求直线l 的方程;(3)若过点(0A 作两条斜率分别为1k ,2k 的直线交圆O 于B 、C 两点,且1212k k =-,求证:直线BC 恒过定点.并求出该定点的坐标.【答案】(1)225x y +=;(2)4350x y +-=或1x =-;(3)证明详见解析,该点坐标为503⎛⎫ ⎪ ⎪⎝⎭,.【解析】【分析】(1)利用圆心到直线的距离等于半径即可求出.(2)根据题意可得圆心到直线的距离1d ==,分类讨论,当斜率不存在时,1x =-,满足题意;当直线的斜率存在,利用点斜式求出直线方程,再利用点到直线的距离公式即可求解.(3)设直线AB:1y k x =+AC:2y k x =+,分别与圆的方程联立,求出点B 、C ,进而求出直线BC 方程,根据直线方程即可求解.【详解】解:(1) 圆O :222(0)x y r r +=>与直线250x y +-=相切,圆心()00,到直线250x y +-=r =,r ∴==,∴圆O 的方程为225x y +=;(2) 直线l 被圆O 所截得的弦长为4,∴圆心到直线的距离1d ==,斜率不存在时,1x =-,满足题意;斜率存在时,设方程为()31y k x -=+,即30kx y k -++=,圆心到直线的距离1d ==,43k ∴=-,∴直线l 的方程为4350x y +-=,综上所述,直线l 的方程为4350x y +-=或1x =-;(3)由题意知,设直线AB:1y k x =与圆方程联立,消去y 得:()221110k x x ++=,1211B x k ∴=-+,21211B y k -=+,即2112211255511B k k ⎛⎫- ⎪ ⎪++⎝⎭,,设直线AC:2y k x =,与圆的方程联立,消去y 得:()222210k x x ++=,2221C x k ∴=-+,22221C y k =+,1212k k =- ,用112k -代替2k 得:2112211454551414C k k ⎛- ++⎝⎭,,22112221111114213BC k k k k k ---==∴直线BC方程为221112*********k y x k k k ⎛⎫--=+ ⎪ ⎪++⎝⎭,令0x =,可得()()2121212211133k y k k ⎡⎤-=+-=⎢⎥+⎢⎥⎣⎦,则直线BC 定点03⎛⎫ ⎪ ⎪⎝⎭,.【点睛】本题考查直线与圆的位置关系、点斜式方程,考查了考生的基本运算能力,属于基础题.。

北京市海淀区2024-2025学年高三上学期10月考试数学试卷含答案

北京市海淀区2024-2025学年高三上学期10月考试数学试卷含答案

数学试题(答案在最后)2024.10.06本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.第一部分(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分)1.设集合{}21,3M m m =--,若3M -∈,则实数m =()A.0B.1- C.0或1- D.0或1【答案】C 【解析】【分析】根据元素与集合的关系,分别讨论213-=-m 和33m -=-两种情况,求解m 并检验集合的互异性,可得到答案.【详解】设集合{}21,3M m m =--,若3M -∈,3M -∈ ,213m ∴-=-或33m -=-,当213-=-m 时,1m =-,此时{}3,4M =--;当33m -=-时,0m =,此时{}3,1M =--;所以1m =-或0.故选:C2.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A.25n a n =- B. 310n a n =- C.228n S n n=- D.2122n S n n =-【答案】A 【解析】【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.3.已知 1.50.31.50.3,log 0.3, 1.5a b c ===,则()A.a b c <<B.b a c <<C.a c b <<D.b c a<<【答案】B 【解析】【分析】根据指对数的性质,分别求三个数的范围,再比较大小.【详解】由条件可知,()1.50.30,1a =∈, 1.5log 0.30b =<,0.31.51>,所以b a c <<.故选:B4.设()()1i 21i z -=+,则z =()A.B.1C.D.2【答案】D 【解析】【分析】利用复数除法法则计算出()21i 2i 1iz +==-,求出模长.【详解】()()22221i 21i 12i i 2i 1i1i z ++===++=--,故2z =.故选:D5.下列函数中,既是偶函数又是区间(0,)+∞上的增函数的是()A.y =B.21y x =C.lg y x= D.332x xy --=【答案】C 【解析】【分析】根据幂函数和指对函数的奇偶性和单调性,逐一检验选项,得出答案.【详解】选项A ,y =(0,)+∞上的增函数,错误;选项B ,21y x =是偶函数,是区间(0,)+∞上的减函数,错误;选项C ,lg y x =是偶函数,是区间(0,)+∞上的增函数,正确;选项D ,332x xy --=是奇函数,是区间(0,)+∞上的增函数,错误;故选:C6.已知向量()3,4a = ,()1,0b = ,c a tb =+ ,若,,a c b c = 则实数t =()A.6- B.5- C.5D.6【答案】C 【解析】【分析】由向量坐标的运算求出向量c的坐标,再根据,,a c b c = ,利用向量夹角余弦公式列方程,求出实数t 的值.【详解】由()3,4a = ,()1,0b = ,则()3,4c a tb t =+=+,又,,a c b c = ,则cos ,cos ,a c b c =,则a c b c a c b c ⋅⋅=⋅⋅ ,即a b a b c c⋅⋅=,31t+=,解得5t =,故选:C.7.函数()()()cos sin f x x a x b =+++,则()A.若0a b +=,则()f x 为奇函数B.若π2a b +=,则()f x 为偶函数C.若π2b a -=,则()f x 为偶函数 D.若πa b -=,则()f x 为奇函数【答案】B 【解析】【分析】根据选项中,a b 的关系,代入()f x 的解析式,对AD 用特值说明()f x 不是奇函数,对BC 用奇偶性的定义验证即可.【详解】()f x 的定义域为R ,对A :若0a b +=,()()()cos sin f x x a x a =++-,若()f x 为奇函数,则()00f =,而()0cos sin 0f a a =-=不恒成立,故()f x 不是奇函数;对B :若π2a b +=,()()()()πcos sin cos cos 2f x x a x a x a x a ⎛⎫=+++-=++- ⎪⎝⎭,()()()()()cos cos cos cos ()f x x a x a x a x a f x -=-++--=-++=,故()f x 为偶函数,B 正确;对C :若π2b a -=,()()()πcos sin 2cos 2f x x a x a x a ⎛⎫=++++=+ ⎪⎝⎭,()()2cos ()f x x a f x -=-+≠,故()f x 不是偶函数,故C 错误;对D :若πa b -=,()()()()()cos πsin cos sin f x x b x b x b x b =++++=-+++,若()f x 为奇函数,则()00f =,而()0cos sin 0f b b =-+=不恒成立,故()f x 不是奇函数;故选:B8.已知函数()0x f x x <=≥⎪⎩,若对任意的1x ≤有()()20f x m f x ++>恒成立,则实数m 的取值范围是()A.(),1∞-- B.(],1-∞- C.(),2-∞- D.(],2-∞-【答案】A 【解析】【分析】根据奇函数的定义证明()f x 为奇函数,再判断函数的单调性,利用函数的性质化简不等式可得m 的取值范围.【详解】当0x <时,0x ->,()f x =()()f x f x -==-,当0x >时,0x -<,()f x =()()f x f x -==-,当0x =时,()00f =,所以对任意的R x ∈,()()f x f x -=-,函数()f x 为奇函数,又当0x >时,()f x =为单调递减函数,所以函数()f x 在(),-∞+∞上为单调递减函数,所以不等式()()20f x m f x ++>可化为()()2f x m f x +>-,所以2x m x +<-,所以x m <-,由已知对任意的1x ≤有x m <-恒成立,所以1m <-,即1m <-,故m 的取值范围是(),1∞--.故选:A.9.已知a 、b 、e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -⋅+= ,则a b -的最小值是A.1B.1+ C.2D.2-【答案】A 【解析】【分析】先确定向量a、b所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【详解】设()()(),,1,0,,a x y e b m n ===r r r,则由π,3a e =r r得πcos ,3a e e x y a ⋅=⋅=∴=r r r r ,由2430b e b -⋅+=r r r 得()2222430,21,m n m m n +-+=-+=因此,a b -r r 的最小值为圆心()2,0到直线y =的距离211.选A.【点睛】以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10.已知函数()f x k =+,若存在区间[,]a b ,使得函数()f x 在区间[,]a b 上的值域为[1,1]a b ++则实数k 的取值范围为()A.(1,)-+∞ B.(1,0]- C.1,4⎛⎫-+∞ ⎪⎝⎭D.1,04⎛⎤- ⎥⎝⎦【答案】D 【解析】【分析】根据函数的单调性可知,()()11f a a f b b ⎧=+⎪⎨=+⎪⎩,即得1010a kb k ⎧+--=⎪⎨+--=⎪⎩方程20x x k --=的两个不同非负实根,由根与系数的关系即可求出.【详解】根据函数的单调性可知,()()11f a a f b b ⎧=+⎪⎨=+⎪⎩,即可得到1010a kb k ⎧+--=⎪⎨+--=⎪⎩,20x x k --=的两个不同非负实根,所以1400k k ∆=+>⎧⎪=-≥,解得104k -<≤.故选:D .【点睛】关键点睛:利用函数的单调性以及一元二次方程的根与系数的关系是解决本题的关键.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知角α的终边与单位圆交于点1,2⎛⎫⎪⎝⎭y P ,则πsin 2α⎛⎫+= ⎪⎝⎭__________.【答案】12##0.5【解析】【分析】由三角函数定义得到1cos 2α=,再由诱导公式求出答案.【详解】由三角函数定义得1cos 2α=,由诱导公式得1cos 2πsin 2αα⎛⎫= ⎪⎭=+⎝.故答案为:1212.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.【答案】63-【解析】【分析】首先根据题中所给的21nn S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21nn S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以-1为首项,以2为公比的等比数列,所以66(12)6312S --==--,故答案是63-.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.13.若命题“对任意2R,20x ax x a ∈++≥为假命题的a 的取值范围是______【答案】1a <【解析】【分析】写出全称量词命题的否定,2R,20x ax x a ∃∈++<为真命题,分0a =,0a <和0a >三种情况,得到不等式,求出答案.【详解】由题意得2R,20x ax x a ∃∈++<为真命题,当0a =时,不等式为20x <,有解,满足要求,当0a ≠时,若0a <,此时220ax x a ++<必有解,满足要求,若0a >,则2440a ∆=->,解得01a <<,综上,a 的取值范围为1a <.故答案为:1a <14.若函数()()cos sin 0f x A x x A =->的最大值为2,则A =________,()f x 的一个对称中心为_______【答案】①.②.π,03⎛⎫⎪⎝⎭(答案不唯一)【解析】【分析】根据辅助角公式对函数()f x 进行化简,再根据最大值求出A ,最后利用余弦型函数求出对称中心.【详解】由()cos sin f x A x x x ϕ=-=+(),其中1tan Aϕ=,又函数()f x 的最大值为2,则2=,又0A >,则A =,3tan 3ϕ=,不妨取π6ϕ=,故()π2cos 6f x x ⎛⎫=+⎪⎝⎭,则()f x 的对称中心满足πππ62x k +=+,k ∈Z ,解得ππ3x k =+,k ∈Z ,即()f x 的对称中心为ππ,03k ⎛⎫+⎪⎝⎭,k ∈Z ,则()f x 的一个对称中心可为:π,03⎛⎫⎪⎝⎭,π,03⎛⎫⎪⎝⎭(答案不唯一)15.对于函数()y f x =,若在其定义域内存在0x ,使得()001x f x =成立,则称函数()f x 具有性质P .(1)下列函数中具有性质P 的有___________.①()2f x x =-+②()[]()sin 0,2πf x x x =∈③()1f x x x=+,(∈0,+∞)④()()ln 1f x x =+(2)若函数()ln f x a x =具有性质P ,则实数a 的取值范围是___________.【答案】①.①②④②.0a >或 a e ≤-.【解析】【分析】(1)令12x x -=,由0∆=,可判断;由sin x =1x 有解,可判断是否具有性质P ;令1+x x =1x,此方程无解,由此可判断;由()1ln 1,x xy y =+=两图象在()1,-+∞有交点可判断;(2)问题转化为方程 1ln x x a=有根,令()ln g x x x =,求导函数,分析导函数的符号,得所令函数的单调性及最值,由此可求得实数a 的取值范围.【详解】解:(1)在 0x ≠时,()1f x x=有解,即函数具有性质P ,令12x x-=,即2210x -+-=,∵880∆=-=,故方程有一个非0实根,故()2f x x =-+具有性质P ;()()sin ]02[f x x x π=∈,的图象与1y x=有交点,故sin x =1x 有解,故()()sin ]02[f x x x π=∈,具有性质P ;令1+x x =1x ,此方程无解,故()1f x x x=+,(∈0,+∞)不具有性质P ;令()1ln 1x x +=,则由()1ln 1,x x y y =+=两图象在()1,-+∞有交点,所以()1ln 1x x+=有根,所以()()ln 1f x x =+具有性质P ;综上所述,具有性质P 的函数有:①②④;(2)()ln f x a x =具有性质P ,显然0a ≠,方程 1ln x x a=有根,令()ln g x x x =,则()'ln +1g x x =,令()'ln +10g x x ==,解得1=x e,当11x e -<<时,()'0g x <,所以()g x 在11e ⎛⎫- ⎪⎝⎭,上单调递减,当1>x e 时,()'>0g x ,所以()g x 在1e ⎛⎫+∞ ⎪⎝⎭,上单调递增,所以()1111ln g x g e e e e⎛⎫≥==- ⎪⎝⎭,所以()ln g x x x =的值域[1e-,+∞),∴11a e ≥-,解之可得:0a >或 a e ≤-.故答案为:①②④;0a >或 a e ≤-.【点睛】方法点评:解决本题的关键是审清题意,把方程的解转化为两个图象有交点,本题考查的是方程的根,新定义,函数的值域,是方程和函数的综合应用,难度比较大.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,sin A B =,b =.再从条件①,条件②、条件③这三个条件中选择一个作为已知,使ABC V 存在且唯一确定,并解决下面的问题:(1)求角B 的大小;(2)求ABC V 的面积.条件①:4c =;条件②:222b a c -=;条件③:cos sin a B b A =.【答案】(1)选②或③,4B π=;(2)ABC V 的面积为1.【解析】【分析】(1)选①,利用三边关系可判断ABC V 不存在;选②:利用余弦定理可求得角B 的值;选③:利用正弦定理可求得tan B 的值,结合角B 的取值范围可求得角B 的值;(2)利用余弦定理可求得c 的值,再利用三角形的面积公式可求得ABC V 的面积.【小问1详解】解:因为sin A B =,b =,则2a ==.选①:因为4c =,则a b c +<,则ABC V 不存在;选②:因为222b a c -=,则222a c b +-=,由余弦定理可得222cos 22a cb B ac +-==,()0,B π∈ ,则4B π=;选③:cos sin a B b A = ,则sin cos sin sin A B A B =,A 、()0,B π∈,则sin 0A >,sin cos 0B B =>,故tan 1B =,从而4B π=.【小问2详解】解:因为4B π=,2a =,b =,由余弦定理可得2222cos b a c ac B =+-,即220c -+=,解得c =,因此,11sin 21222ABC S ac B ==⨯⨯=△.17.已知n S 是等差数列的前n 项和,51120S a ==,数列是公比大于1的等比数列,且236b b =,4212b b -=.(1)求数列和的通项公式;(2)设nn nS c b =,求使n c 取得最大值时n 的值.【答案】(1)22n a n =-,2nn b =(2)3或4【解析】【分析】(1)根据等差数列的通项及前n 项和公式求出首项与公差,即可求出数列的通项公式,再求出数列的首项与公比,即可得的通项公式;(2)先求出{}n c 的通项,再利用作差法判断数列的单调性,根据单调性即可得出答案.【小问1详解】设等差数列的公差为d ,则511115452021020S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩,解得10,2a d ==,所以22n a n =-,设等比数列的公比为()1q q >,则()2251131112b q b q b q b q ⎧=⎪⎨-=⎪⎩,解得122b q =⎧⎨=⎩,所以2n n b =;【小问2详解】由(1)得()()2212n n nS n n -==-,则()12n n nn n n S c b -==,()()2111113222n n n n n n n n n n n c c ++++---=-=,当1,2n =时,11230,n n c c c c c +-><<,当3n =时,1340,n n c c c c +-==,当4n ≥时,1450,n n n c c c c c +->> ,所以当3n =或4时,n c 取得最大值.18.已知函数π3()6sin(62cos f x x x =-+.(1)求()f x 的最小正周期和单调增区间;(2)若函数()y f x a =-在π5π[,]1212x ∈存在零点,求实数a 的取值范围.【答案】(1)π,()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)[]0,3【解析】【分析】(1)化简函数()π3sin 26f x x ⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质,即可求解;(2)根据题意转化为方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,以π26x -为整体,结合正弦函数图象运算求解.【小问1详解】对于函数π3313()6cos sin 6cos sin cos 62222f x x x x x x ⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭()231cos 231π3sin cos 3cos 2332cos 23sin 22222226x f x x x x x x x x ⎛⎫+⎛⎫=-+=-⨯+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的最小正周期为2ππ2T ==,令πππ2π22π,Z 262k x k k -+£-£+Î,则ππππ,Z 63k x k k -+#+,∴函数()f x 的单调递增区间为()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】令()0y f x a =-=,即π3sin 206x a ⎛⎫--= ⎪⎝⎭,则πsin 263a x ⎛⎫-= ⎪⎝⎭,∵()y f x a =-在π5π,1212x ⎡⎤∈⎢⎥⎣⎦存在零点,则方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,若π5π,1212x ⎡⎤∈⎢⎥⎣⎦时,则π2π20,63x ⎡⎤-∈⎢⎣⎦,可得πsin 2[0,1]6x ⎛⎫-∈ ⎪⎝⎭,∴013a ≤≤,得03a ≤≤故实数a 的取值范围是[]0,3.19.1.已知函数()21ex ax x f x +-=,0a ≥.(1)讨论函数()f x 的单调性;(2)当0a >时,求证:函数()f x 在区间()0,1上有且仅有一个零点.【答案】(1)当0a =时,()f x 的单调递减区间为()2,∞+,单调递增区间为(),2∞-;当0a >时,()f x 的单调递减区间为1,a ⎛⎫-∞-⎪⎝⎭,()2,∞+,单调递增区间为1,2a ⎛⎫- ⎪⎝⎭.(2)证明过程见解析【解析】【分析】(1)求出导数,然后通过对a 分情况讨论,研究导数的符号研究函数的单调性;(2)结合第一问的结果,判断出函数在()0,1上的单调性,然后结合端点处的函数值的符合证明【小问1详解】()()()()221212e e x x ax a x ax x f x -+-+-+-'==,当0a =时,()()2e x x f x --'=,由()0f x '>得:2x <,由()0f x '<,得:2x >,故此时()f x 的单调递减区间为()2,∞+,单调递增区间为(),2∞-当0a >时,令()()()120g x ax x =-+-=得:=−1<0或2x =由()0g x >得:12x a -<<,此时()0f x '>由()0g x <得:1x a <-或2x >,此时()0f x '<故此时()f x 的单调递减区间为1,a ⎛⎫-∞- ⎪⎝⎭,()2,∞+,单调递增区间为1,2a ⎛⎫- ⎪⎝⎭综上:当0a =时,()f x 的单调递减区间为()2,∞+,单调递增区间为(),2∞-;当0a >时,()f x 的单调递减区间为1,a ⎛⎫-∞-⎪⎝⎭,()2,∞+,单调递增区间为1,2a ⎛⎫- ⎪⎝⎭.【小问2详解】由(1)可知,当0a >时,()f x 的单调递增区间为1,2a ⎛⎫- ⎪⎝⎭,而()1,20,1a ⎛-⊂⎫ ⎪⎝⎭,所以()f x 在()0,1上单调递增,又()010f =-<,()10ea f =>所以()()010f f ⋅<,由零点存在性定理可得::函数()f x 在区间()0,1上有且仅有一个零点20.已知函数()e sin 2xf x x x =-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求()f x 在区间[1,1]-上的最大值;(3)设实数a 使得()e xf x x a +>对R x ∈恒成立,写出a 的最大整数值,并说明理由.【答案】(1)y x=-(2)()max sin12ef x =-(3)2-,理由见解析【解析】【分析】(1)求出函数在0x =处的导数,即切线斜率,求出(0)f ,即可得出切线方程;(2)求出函数在区间[1,1]-上的单调性,求出最值即可;(3)将不等式等价转化为sin e x x a x <-在R x ∈上恒成立.构造函数()sin e xx x x ϕ=-,利用导数求出函数的单调性和最小值,进而得证.【小问1详解】因为()e sin 2x f x x x =-,所以()()e sin cos 2x f x x x =+-',则(0)1f '=-,又(0)0f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.【小问2详解】令()()()esin cos 2x g x f x x x +'==-,则()2e cos x g x x '=,当[1,1]x ∈-时,()0g x '>,()g x 在[1,1]-上单调递增.因为(0)10g =-<,()()1e sin1cos120g =+->,所以0(0,1)x ∃∈,使得0()0g x =.所以当0(1,)x x ∈-时,()0f x '<,()f x 单调递减;当0(,1)x x ∈时,()0f x '>,()f x 单调递增,又()1esin12e 21f =-<-<,()sin1121ef -=->,所以()()max sin112e f x f =-=-.【小问3详解】满足条件的a 的最大整数值为2-.理由如下:不等式()e xf x x a +>恒成立等价于sin e x x a x <-恒成立.令()sin e x x x x ϕ=-,当0x ≤时,0e xx -≥,所以()1x ϕ>-恒成立.当0x >时,令()e x x h x =-,()0h x <,()1ex x h x '-=,()h x '与()h x 的情况如下:x(0,1)1(1,)+∞()h x '-0+()h x 1e - 所以()()min 11eh x h ==-,当x 趋近正无穷大时,()0h x <,且()h x 无限趋近于0,所以()h x 的值域为1,0e ⎡⎫-⎪⎢⎣⎭,因为sin [1,1]x ∈-,所以()ϕx 的最小值小于1-且大于2-.所以a 的最大整数值为2-.21.已知数列记集合()(){}*1,,,1,,i i j T S i j S i j a a a i j i j +==+++≤<∈N(1)对于数列:1,2,3,列出集合T 的所有元素;(2)若2n a n =是否存在*,i j ∈N ,使得(),1024S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若22n a n =-把集合T 中的元素从小到大排列,得到的新数列为12:,,,,.m B b b b 若2020m b ≤,求m 的最大值.【答案】(1){}3,5,6T =;(2)不存在,理由见解析;(3)1001.【解析】【分析】(1)根据题目给出的集合T 的定义求解即可;(2)假设存在*,i j ∈N ,使得(),1024S i j =,则有()()()1102422121i i j a a a i i j j i i j +=+++=++++=-++ ,则i j +与j i -奇偶性相同,所以i j +与1j i -+奇偶性不同,进行分析即可得解;(3)由22n a n =-,根据题意给出的集合T 新定义可对()()()()22221212j i j i j i j i -+--+=+--+进行计算分析,讨论元素的奇偶情况,即可得出答案.【小问1详解】由题意可得123a a +=,1236a a a ++=,235a a +=,所以{}3,5,6T =.【小问2详解】假设存在*,i j ∈N ,使得(),1024S i j =,则有()()()1102422121i i j a a a i i j j i i j +=+++=++++=-++ ,由于i j +与j i -奇偶性相同,所以i j +与1j i -+奇偶性不同,又因为3,12i j j i +≥-+≥,所以1024必有大于等于3的奇数因子,这与1024无1以外的奇数因子矛盾.故不存在*,i j ∈N ,使得(),1024S i j =成立.【小问3详解】由题意得()()()()22221212j i j i j i j i -+--+=+--+,当2j =,1i =时,12b =,除2j =,1i =外22j i +-≥,12j i -+≥,其中2j i +-与1j i -+一奇一偶,则n b 能拆成奇数与偶数之乘积,在正偶数中,只有2n 无法拆成一个大于2的奇数与一个不小于2的偶数之乘积,又T 中的元素均为偶数,故{}**2,2,k T n n n k =∈≠∈N N ,故2至2024偶数中除去4,8,16,32,64,128,256,512,1024,2020910012m ∴=-=,故m 的最大值为1001.【点睛】关键点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及运算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.对于新型集合,首先要了解集合的特性,抽象特性和计算特性,抽象特性是将集合可近似的当作数列或者函数分析.计算特性,将复杂的关系通过找规律即可利用已学相关知识求解.。

北京市海淀区2023-2024学年高三上学期期末考试 数学含答案

北京市海淀区2023-2024学年高三上学期期末考试 数学含答案

海淀区2023—2024学年第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}1,2,3B =,则()U A B = ð()A .{}2,4,5,6B .{}4,6C .{}2,4,6D .{}2,5,62.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i-B .1-C .3i -D .3-3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则a =()A .1B .1-C .4D .4-4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A .B .4C .5D .5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为4π,则该四棱锥的体积为()A .4B .2C .43D .236.已知22:210C x x y ++-= ,直线()10mx n y +-=与C 交于A ,B 两点.若ABC △为直角三角形,则()A .0mn =B .0m n -=C .0m n +=D .2230m n -=7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A .10B .eC .2D .548.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0->αα”是“120k k >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知{}n a 是公比为q (1q ≠)的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A .{}n a 是递增数列B .{}n a 是递减数列C .{}n S 是递增数列D .{}n S 是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.下图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,GPI IPK ∠=∠KPG =∠=θ10928'≈︒,则上顶的面积为()(参考数据:1cos 3=-θ,tan2=θ)A .B .2C .2D .4第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x ⎫-⎪⎭的展开式中,x 的系数为______.12.已知双曲线221x my -=0y -=,则该双曲线的离心率为______.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=______;点C 到直线AB 的距离为______.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和(1n =,2,…)的一组1a ,d 的值为1a =______,d =______.15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2f x f x a +-=;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝+⎭≠;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意n ∈Z ,都有()()00f x f x nT =+.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(Ⅰ)求证:1C M ∥平面11ADD A ;(Ⅱ)求直线1AC 与平面11MB C 所成角的正弦值.17.(本小题14分)在ABC △中,2cos 2c A b a =-.(Ⅰ)求C ∠的大小;(Ⅱ)若c =ABC △存在,求AC 边上中线的长.条件①:ABC △的面积为条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(本小题13分)甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(Ⅰ)从上述10场比赛中随机选择一场,求甲获胜的概率;(Ⅱ)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(Ⅲ)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.19.(本小题15分)已知椭圆2222:1x y E a b+=(0a b >>)过点()3,0A ,焦距为(Ⅰ)求椭圆E 的方程,并求其短轴长;(Ⅱ)过点()1,0P 且不与x 轴重合的直线l 交椭圆E 于两点C ,D ,连接CO 并延长交椭圆E 于点M ,直线AM 与l 交于点N ,Q 为OD 的中点,其中O 为原点.设直线NQ 的斜率为k ,求k 的最大值.20.(本小题15分)已知函数()2sin f x ax x x b =-+.(Ⅰ)当1a =时,求证:①当0x >时,()f x b >;②函数()f x 有唯一极值点;(Ⅱ)若曲线1C 与曲线2C 在某公共点处的切线重合,则称该切线为1C 和2C 的“优切线”.若曲线()y f x =与曲线cos y x =-存在两条互相垂直的“优切线”,求a ,b 的值.21.(本小题15分)对于给定的奇数m (3m ≥),设A 是由m m ⨯个实数组成的m 行m 列的数表,且A 中所有数不全相同,A 中第i 行第j 列的数{}1,1ij a ∈-,记()r i 为A 的第i 行各数之和,()c j 为A 的第j 列各数之和,其中{},1,2,,i j m ∈⋅⋅⋅.记()()()()2212m r r m f r A -++⋅⋅⋅+=.设集合()()(){}{},00,,1,2,,ij ij H i j a r a c j i m i j =⋅<⋅<∈⋅⋅⋅或,记()H A 为集合H 所含元素的个数.(Ⅰ)对以下两个数表1A ,2A ,写出()1f A ,()1H A ,()2f A ,()2H A 的值;1A 2A (Ⅱ)若()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数.求证:()2H A mt ms ts ≥+-;(Ⅲ)当5m =时,求()()H A f A 的最小值.海淀区2023—2024学年第一学期期末练习高三数学参考答案一、选择题(共10小题,每小题4分,共40分)1.A 2.D 3.B 4.D 5.C 6.A7.D8.B9.B10.D二、填空题(共5小题,每小题5分,共25分)11.5-12.213.1-514.11(答案不唯一)15.②④三、解答题(共6小题,共85分)16.(共13分)解:(Ⅰ)连接1AD .在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =.因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =.所以11C D AM ∥,11C D AM =.所以四边形11MAD C 为平行四边形.所以11MC AD ∥.因为1C M ⊄平面11ADD A ,所以1C M ∥平面11ADD A .(Ⅱ)在正方形11ABB A 中,1AA AB ⊥.因为平面11ABB A ⊥平面ABCD ,所以1AA ⊥平面ABCD .所以1AA AD ⊥.因为1AD B M ⊥,1B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A .所以AD AB ⊥.如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z = ,则1110,0,n C B n MC ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20.x z x y -+=⎧⎨+=⎩令2x =,则1y =-,2z =.于是()2,1,2n =-.因为1116cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C 所成角的正弦值为69.17.(共14分)解:(Ⅰ)由正弦定理sin sin sin a b cA B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin sin sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.(Ⅱ)选条件②:1sin sin 2B A -=.由(Ⅰ)知,π2ππ33B A A ∠=--∠=-∠.所以2πsin sin sin sin 3B A A A -=--⎛⎫⎪⎝⎭31cos sin sin 22A A A =+-31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以ππ36A -=,即π6A =.所以ABC △是以AC 为斜边的直角三角形.因为c =2πsin sin 3AB AC C ===.所以AC 边上的中线的长为1.选条件③:2222b a -=.由余弦定理得223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.(共13分)解:(Ⅰ)根据三人投篮得分统计数据,在10场比赛中,甲共获胜3场,分别是第3场,第8场,第10场.设A 表示“从10场比赛中随机选择一场,甲获胜”,则()310P A =.(Ⅱ)根据三人投篮得分统计数据,在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场,其中乙得分大于丙得分的场次有4场,分别是第2场、第5场、第8场、第9场.所以X 的所有可能取值为0,1,2.()202426C C 10C 15P X ===,()112426C C 81C 15P X ⋅===,()022426C C 22C 5P X ===.所以X 的分布列为X 012P11581525所以()1824012151553E X =⨯+⨯+⨯=.(Ⅲ)()()()213D Y DY D Y >>.19.(共15分)解:(Ⅰ)由题意知3a =,2c =.所以c =,2224b a c =-=.所以椭圆E 的方程为22194x y +=,其短轴长为4.(Ⅱ)设直线CD 的方程为1x my =+,()11,C x y ,()22,D x y ,则()11,M x y --.由221941x y x my ⎧+=⎪⎨⎪=+⎩,得()22498320m y my ++-=.所以122849m y y m -+=+.由()3,0A 得直线AM 的方程为()1133y y x x =-+.由()11331y y x x x my ⎧=-⎪+⎨⎪=+⎩,得11123y y x my -=+-.因为111x my =+,所以12y y =-,112122y my x m ⎛⎫⎭-=⎪⎝- =+.所以112,22my y N --⎛⎫ ⎪⎝⎭.因为Q 为OD 的中点,所以221x my =+,所以221,22my y Q +⎛⎫⎪⎝⎭.所以直线NQ 的斜率()212212221212884922128112912249m y y y y m m k my my m m y y m m -+++====+--+-+--+.当0m ≤时,0k ≤.当0m >时,因为912m m+≥=,当且仅当2m =时,等号成立.所以281299m k m =≤+.所以当2m =时,k取得最大值9.20.(共15分)解:(Ⅰ)①当1a =时,()()2sin sin f x x x x b x x x b =-+=-+.记()sin g x x x =-(0x ≥),则()1cos 0g x x '=-≥.所以()g x 在[)0,+∞上是增函数.所以当0x >时,()()00g x g >=.所以当0x >时,()()sin f x x x x b b =-+>.②由()2sin f x x x x b =-+得()2sin cos f x x x x x '=--,且()00f '=.当0x >时,()()1cos sin f x x x x x '=-+-.因为1cos 0x -≥,sin 0x x ->,所以()0f x '>.因为()()f x f x ''-=-对任意x ∈R 恒成立,所以当0x <时,()0f x '<.所以0是()f x 的唯一极值点.(Ⅱ)设曲线()y f x =与曲线cos y x =-的两条互相垂直的“优切线”的切点的横坐标分别为1x ,2x ,其斜率分别为1k ,2k ,则121k k =-.因为()cos sin x x '-=,所以1212sin sin 1x x k k ⋅==-.所以{}{}12sin ,sin 1,1x x =-.不妨设1sin 1x =,则1π2π2x k =+,k ∈Z .因为()1111112sin cos k f x ax x x x '==--,由“优切线”的定义可知111112sin cos sin ax x x x x --=.所以1124ππa x k ==+,k ∈Z .由“优切线”的定义可知2111111sin cos x x x b x x ⋅-+=-,所以0b =.当24ππa k =+,k ∈Z ,0b =时,取1π2π2x k =+,2π2π2x k =--,则()11cos 0f x x =-=,()22cos 0f x x =-=,()11sin 1f x x ='=,()22sin 1f x x ='=-,符合题意.所以24ππa k =+,k ∈Z ,0b =.21.(共15分)解:(Ⅰ)()110f A =,()112H A =;()212f A ,()215H A =.由定义可知:将数表A 中的每个数变为其相反数,或交换两行(列),()H A ,()f A 的值不变.因为m 为奇数,{}1,1ij a ∈-,所以()1r ,()2r ,…,()r m ,()1c ,()2c ,…,()c m 均不为0.(Ⅱ)当{}0,s m ∈或{}0,t m ∈时,不妨设0s =,即()0r i <,1,2,,i m =⋅⋅⋅.若0t =,结论显然成立;若0t ≠,不妨设()0c j >,1,2,,j t =⋅⋅⋅,则(),i j H ∈,1,2,,i m =⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()H A mt ≥,结论成立.当{}0,s m ∉且{}0,t m ∉时,不妨设()0r i >,1,2,,i s =⋅⋅⋅,()0c j >,1,2,,j t =⋅⋅⋅,则当1s i m +≤≤时,()0r i <;当1t j m +≤≤时,()0c j <.因为当1,2,,i s =⋅⋅⋅,1,2,,j t t m =++⋅⋅⋅时,()0r i >,()0c j <,所以()()()()()()20ij ij ij a r i a c j a r i c j ⋅=⋅⋅⋅<⋅.所以(),i j H ∈.同理可得:(),i j H ∈,1,2,,m i s s =++⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()()()2H A s m t m s t mt ms st ≥-+-=+-.(Ⅲ)当5m =时,()()H A f A 的最小值为89.对于如下的数表A ,()()89H A f A =.下面证明:()()89H A f A ≥.设()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数,{},0,1,2,3,4,5s t ∈.①若{}0,5s ∈或{}0,5t ∈,不妨设0s =,即()0r i <,1,2,,5i =⋅⋅⋅.所以当1ij a =时,(),i j H ∈.由A 中所有数不全相同,记数表A 中1的个数为a ,则1a ≥,且()()()()251252r r r f A +++⋅⋅⋅+=()252252a a a +--==,()H A a ≥.所以()()819H A f A ≥>.②由①设{}0,5s ∉且{}0,5t ∉.若{}2,3s ∈或{}2,3t ∈,不妨设2s =,则由(Ⅱ)中结论知:()51041011H A t t t ≥+-=+≥.因为()()()()251250122r r r f A -++⋅⋅⋅+<=≤,所以()()118129H A f A ≥>.③由①②设{}0,2,3,5s ∉且{}0,2,3,5t ∉.若{}{},1,4s t =,则由(Ⅱ)中结论知:()25817H A ≥-=.因为()012f A <≤,所以()()178129H A f A ≥>.若s t =,{}1,4s ∈,不妨设1s t ==,()10r >,()10c >,且()()1H A f A<,由(Ⅱ)中结论知:()8H A ≥.所以()()8f A H A >≥.若数表A 中存在ij a ({},2,3,4,5i j ∈)为1,将其替换为1-后得到数表A '.因为()()1H A H A '=-,()()1f A f A '≥-,所以()()()()()()11H A H A H A f A f A f A '-≤<'-.所以将数表A 中第i 行第j 列(,2,3,4,5i j =)为1的数替换为1-后()()H A f A 值变小.所以不妨设1ij a =-(,2,3,4,5i j =).因为()5528H A ≥+-=,()9f A ≤,。

北京市海淀区2023-2024学年高二上学期期末考试化学试题含答案

北京市海淀区2023-2024学年高二上学期期末考试化学试题含答案

海淀区高二年级练习化学(答案在最后)考生须知:1.本试卷共8页,共两部分,19道题。

满分100分。

考试时间90分钟。

2.在试卷和答题纸上准确填写学校名称、班级名称、姓名。

3.答案一律填涂或书写在答题纸上,在试卷上作答无效。

4.在答题纸上,选择题用2B 铅笔作答,其余题用黑色字迹签字笔作答。

5.考试结束,请将本试卷和答题纸一并交回。

可能用到的相对原子质量:H1C12O16Na23Cl35.5Cu64第一部分本部分共14题,每题3分,共42分。

在每题列出的四个选项中,选出最符合题目要求的一项。

1.下列物质属于弱电解质的是A.NaOH B.盐酸 C.32NH H O ⋅ D.3CH COONa【答案】C 【解析】【分析】弱电解质是在水溶液中不完全(少部分)电离的电解质,据此解答。

【详解】A .NaOH 是强碱,属于强电解质,A 不符合;B .盐酸属于混合物,不是电解质,B 不符合;C .32NH H O ⋅溶于水部分电离出铵根和氢氧根离子,属于弱电解质,C 符合;D .3CH COONa 溶于水完全电离,属于强电解质,D 不符合;答案选C 。

2.下列离子在指定的溶液中能够大量共存的是A.无色溶液中:Cu 2+、K +、OH -、2-4SO B.pH=1的溶液中:Na +、Fe 2+、Cl -、-3NO C.中性溶液中:K +、CI -、2-4SO 、-3NO D.加酚酞呈红色的溶液中:Na +、Fe 3+、Cl -、2-4SO 【答案】C【解析】【详解】A .含有Cu 2+的溶液呈蓝色,不满足溶液无色的条件,Cu 2+、OH -之间反应生成氢氧化铜沉淀,不能大量共存,故A 不选;B .H +、Fe 2+、-3NO 之间发生氧化还原反应,不能大量共存,故B 不选;C .K +、CI -、2-4SO 、-3NO 之间不发生反应,且都不发生水解反应,在中性溶液中能大量共存,故C 选;D .加酚酞呈红色的溶液呈碱性,Fe 3+、OH -之间反应生成氢氧化铁沉淀,不能大量共存,故D 不选;答案选C 。

北京市海淀区2024_2025学年高二物理上学期期末考试试题含解析

北京市海淀区2024_2025学年高二物理上学期期末考试试题含解析
【解析】
【分析】
楞次定律指出感应电流的效果,总是阻碍磁通量的变更,感应电流变更的结果总是阻碍引起磁通量变更的缘由,依据楞次定律可知电流的方向.
【详解】由于磁场是匀称变更的所以产生的电流应当是恒定电流,依据楞次定律可知,感应电流方向没有发生变更,故A对;BCD错误;
故选A
10.如图所示,右端开口的矩形导体轨道QPMN固定在水平面内,轨道的电阻忽视不计.电阻为R的金属导体棒ab垂直于MN、PQ放在轨道上.空间中存在与轨道所在平面垂直的匀强磁场,磁感应强度的大小为B.导体棒ab以恒定的速度向右运动,与导轨MN始终垂直并接触良好.当其运动到导轨MN和PQ的中点处起先计时,运动到NQ位置时将导体棒快速锁定(过程Ⅰ);再使磁感应强度的大小从B增加到B'(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过导体棒ab的电荷量相等,则 等于
故选D
2.如图所示,人造卫星A、B绕地球做匀速圆周运动.则这两颗卫星相比
A.卫星A的角速度较大B.卫星A的加速度较大
C.卫星A的周期较大D.卫星A的线速度较大
【答案】C
【解析】
【分析】
卫星绕地球做圆周运动时,万有引力供应向心力,可以依据牛顿其次定律求解本题.
详解】依据万有引力供应向心力
由公式可以随着高度的增大除了周期在增大以外,线速度、角速度、加速度都在减小,故C对;ABD错;
【详解】带电粒子带正电,依据左手定则可知受洛伦兹力的方向为向上,且洛伦兹力不做功,所以粒子应当做逆时针的匀速圆周运动,故D正确;ABC错误;
【点睛】洛伦兹力的方向与速度方向垂直,只变更速度的方向,不变更速度的大小.
匀变速运动是指的加速度不变的运动,当合力方向与速度方向不在一条直线上物体将做曲线运动.
A. 加磁场,磁场方向沿x轴正方向

北京市海淀区重点中学2023-2024学年高二上学期开学考试物理试题(含答案)

北京市海淀区重点中学2023-2024学年高二上学期开学考试物理试题(含答案)

北京市海淀区重点中学2023-2024学年高二上学期开学考试物理试题(含答案)北京市海淀区重点中学2023-2024学年高二上学期开学考试物理本试卷共8页,共100分.考试时长80分钟.考生务必将答案答在答题纸上,在试卷上作答无效.第一部分选择题一、单项选择题(本部分共10题,每题3分,共30分。

在每题列出的四个选项中,选出最符合题目要求的一项。

)1.冲量的单位是A.牛顿(N)B.牛秒(N·s)C:瓦特(W)D.焦耳(J)2.关于行星运动的规律,下列说法符合史实的是A.开普勒在天文观测数据的基础上,总结出了行星运动的规律B.开普勒在牛顿定律的基础上,导出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律3.物理课上,老师用如图所示的装置研究平抛运动。

A、B是质量相等的两个小球.用小锤击打弹性金属片,A球沿水平方向飞出,同时B球自由下落。

在两小球下落的空间中任意选取两个水平面1、2,不计空气阻力。

下列判断正确的是A.从平面1运动到平面2的过程中,小球A、B的速度变化量不同B.从平面1运动到平面2的过程中,小球A、B的动能变化量相同C.该实验可以验证平抛运动的水平分运动为匀速直线运动D.增大小锤击打弹性金属片的力度,可使A球先落地请阅读下述文字,完成第4题、第5题。

如图所示,质量为m的小球用轻质细线悬于B点,使小球在水平面内做匀速圆周运动.4.小球在水平面内做匀速圆周运动,其向心力的来源是A.小球受到的重力B.小球受到的重力与细线对小球拉力的合力C.细线对小球的拉力与小球所受离心力的合力D.小球受到的重力、细线对小球的拉力与小球所受离心力的合力5.调整细线长度使其伸长,使小球仍在水平面内做匀速圆周运动,且保持轨迹圆的圆心O到悬点B的距离不变。

下列说法正确的是A.线速度和角速度都将增大B.线速度增大、角速度减小C.线速度和向心加速度都将增大D.线速度增大、向心加速度减小6.“北斗卫星导航系统”是中国自行研制的全球卫星导航系统.同步卫星是其重要组成部分.如图所示,发射同步卫星时,可以先将卫星发射至近地圆轨道1,然后经过一系列的变轨过程,将卫星送入同步圆轨道2。

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷Word版含解析

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷Word版含解析

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y 2=2,则其圆心和半径分别为( )A .(1,0),2B .(﹣1,0),2C .D .2.抛物线x 2=4y 的焦点到准线的距离为( )A .B .1C .2D .43.双曲线4x 2﹣y 2=1的一条渐近线的方程为( )A .2x+y=0B .2x+y=1C .x+2y=0D .x+2y=14.在空间中,“直线a ,b 没有公共点”是“直线a ,b 互为异面直线”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知A ,B 为圆x 2+y 2=2ax 上的两点,若A ,B 关于直线y=2x+1对称,则实数a=( )A .B .0C .D .16.已知直线l 的方程为x ﹣my+2=0,则直线l ( )A .恒过点(﹣2,0)且不垂直x 轴B .恒过点(﹣2,0)且不垂直y 轴C .恒过点(2,0)且不垂直x 轴D .恒过点(2,0)且不垂直y 轴7.已知直线x+ay ﹣1=0和直线ax+4y+2=0互相平行,则a 的取值是( )A .2B .±2C .﹣2D .08.已知两直线a ,b 和两平面α,β,下列命题中正确的为( )A .若a ⊥b 且b ∥α,则a ⊥αB .若a ⊥b 且b ⊥α,则a ∥αC .若a ⊥α且b ∥α,则a ⊥bD .若a ⊥α且α⊥β,则a ∥β9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : . 12.椭圆x 2+9y 2=9的长轴长为 .13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 .14.如图,在四棱锥P ﹣ABCD 中,底面四边形ABCD 的两组对边均不平行.①在平面PAB 内不存在直线与DC 平行;②在平面PAB 内存在无数多条直线与平面PDC 平行;③平面PAB 与平面PDC 的交线与底面ABCD 不平行;上述命题中正确命题的序号为 .15.已知向量,则与平面BCD 所成角的正弦值为 .16.若某三棱锥的三视图如图所示,则该棱锥的体积为 ,表面积为 .三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC 的三个顶点坐标为A (0,0),B (8,4),C (﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.19.已知椭圆G:的离心率为,经过左焦点F1(﹣1,0)的直线l与椭圆G相交于A,B两点,与y轴相交于C点,且点C在线段AB上.(Ⅰ)求椭圆G的方程;(Ⅱ)若|AF1|=|CB|,求直线l的方程.北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y2=2,则其圆心和半径分别为()A.(1,0),2 B.(﹣1,0),2 C.D.【考点】圆的标准方程.【分析】利用圆的标准方程的性质求解.【解答】解:圆(x+1)2+y2=2的圆心为(﹣1,0),半径为.故选:D.2.抛物线x2=4y的焦点到准线的距离为()A.B.1 C.2 D.4【考点】抛物线的简单性质.【分析】直接利用抛物线方程求解即可.【解答】解:抛物线x2=4y的焦点到准线的距离为:P=2.故选:C.3.双曲线4x2﹣y2=1的一条渐近线的方程为()A.2x+y=0 B.2x+y=1 C.x+2y=0 D.x+2y=1【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由双曲线的渐近线方程y=±x,即可得到所求结论.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得a=,b=1,由双曲线的渐近线方程y=±x,可得所求渐近线方程为y=±2x.故选:A.4.在空间中,“直线a,b没有公共点”是“直线a,b互为异面直线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】空间中直线与直线之间的位置关系.【分析】利用空间中两直线的位置关系直接求解.【解答】解:“直线a,b没有公共点”⇒“直线a,b互为异面直线或直线a,b为平行线”,“直线a,b互为异面直线”⇒“直线a,b没有公共点”,∴“直线a,b没有公共点”是“直线a,b互为异面直线”的必要不充分条件.故选:B.5.已知A,B为圆x2+y2=2ax上的两点,若A,B关于直线y=2x+1对称,则实数a=()A.B.0 C.D.1【考点】直线与圆的位置关系.【分析】根据题意,圆心C(a,0)在直线y=2x+1上,C的坐标并代入直线2x+y+a=0,再解关于a的方程,即可得到实数a的值.【解答】解:∵A,B为圆x2+y2=2ax上的两点,A,B关于直线y=2x+1对称,∴圆心C(a,0)在直线y=2x+1上,∴2a+1=0,解之得a=﹣故选:A.6.已知直线l的方程为x﹣my+2=0,则直线l()A.恒过点(﹣2,0)且不垂直x轴 B.恒过点(﹣2,0)且不垂直y轴C.恒过点(2,0)且不垂直x轴D.恒过点(2,0)且不垂直y轴【考点】直线的一般式方程.【分析】由直线l的方程为x﹣my+2=0,令y=0,解得x即可得出定点,再利用斜率即可判断出与y轴位置关系.【解答】解:由直线l的方程为x﹣my+2=0,令y=0,解得x=﹣2.于是化为:y=﹣x﹣1,∴恒过点(﹣2,0)且不垂直y轴,故选:B.7.已知直线x+ay﹣1=0和直线ax+4y+2=0互相平行,则a的取值是()A.2 B.±2 C.﹣2 D.0【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可得1×4﹣a•a=0,解得a值排除重合可得.【解答】解:∵直线x+ay﹣1=0和直线ax+4y+2=0互相平行,∴1×4﹣a•a=0,解得a=2或a=﹣2,经验证当a=﹣2时两直线重合,应舍去故选:A8.已知两直线a,b和两平面α,β,下列命题中正确的为()A.若a⊥b且b∥α,则a⊥α B.若a⊥b且b⊥α,则a∥αC.若a⊥α且b∥α,则a⊥b D.若a⊥α且α⊥β,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】利用空间线面平行、线面垂直以及面面垂直的性质定理和判定定理对选项分别分析选择.【解答】解:对于A,若a⊥b且b∥α,则a与α位置关系不确定;故A错误;对于B,若a⊥b且b⊥α,则a与α位置关系不确定;可能平行、可能在平面内,也可能相交;故B 错误;对于C,若a⊥α且b∥α,根据线面垂直和线面平行的性质定理,可以得到a⊥b;故C正确;对于D ,若a ⊥α且α⊥β,则a ∥β或者a 在平面β内,故D 错误;故选:C .9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .【考点】抛物线的简单性质.【分析】求出P 的坐标,设P 在x 轴上的射影为C ,则tan ∠APC==,可得∠APB=120°,即可求出cos ∠APB .【解答】解:由题意,|PB|=|PF|=PA|,∴P 的横坐标为3,不妨取点P (3,2),设P 在x 轴上的射影为C ,则tan ∠APC==, ∴∠APC=30°,∴∠APB=120°,∴cos ∠APB=﹣. 故选:C .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3【考点】点、线、面间的距离计算.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1P 的长度的最大值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设P (a ,b ,0),则D 1(0,0,2),E (1,2,0),B 1(2,2,2),=(a ﹣2,b ﹣2,﹣2),=(1,2,﹣2), ∵B 1P ⊥D 1E ,∴=a ﹣2+2(b ﹣2)+4=0,∴a+2b ﹣2=0,∴点P 的轨迹是一条线段,当a=0时,b=1;当b=0时,a=2,设CD 中点F ,则点P 在线段AF 上,当A 与P 重合时,线段B 1P 的长度为:|AB 1|==2; 当P 与F 重合时,P (0,1,0),=(﹣2,﹣1,﹣2),线段B 1P 的长度||==3, 当P 在线段AF 的中点时,P (1,,0),=(﹣1,﹣,﹣2),线段B 1P 的长度||==. ∴线段B 1P 的长度的最大值为3.故选:D .二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : ∃x ∈R ,x 2<0 . 【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题p :“∀x ∈R ,x 2≥0”,则¬p :∃x ∈R ,x 2<0. 故答案为:∃x ∈R ,x 2<0.12.椭圆x 2+9y 2=9的长轴长为 6 .【考点】椭圆的简单性质.【分析】将椭圆化为标准方程,求得a=3,即可得到长轴长2a .【解答】解:椭圆x 2+9y 2=9即为+y 2=1,即有a=3,b=1,则长轴长为2a=6.故答案为:6.13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 (2,+∞) .【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,由题意可得m >0且m ﹣2>0,解不等式即可得到所求范围.【解答】解:曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,可得﹣=1,即有m>0,且m﹣2>0,解得m>2.故答案为:(2,+∞).14.如图,在四棱锥P﹣ABCD中,底面四边形ABCD的两组对边均不平行.①在平面PAB内不存在直线与DC平行;②在平面PAB内存在无数多条直线与平面PDC平行;③平面PAB与平面PDC的交线与底面ABCD不平行;上述命题中正确命题的序号为①②③.【考点】棱锥的结构特征.【分析】①用反证法利用线面平行的性质即可证明.②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,即可判断;③用反证法利用线面平行的性质即可证明.【解答】解:①用反证法.设在平面PAB内存在直线与DC平行,则CD∥平面PAB,又平面ABCD∩平面PAB=AB,平面ABCD∩平面PCD=CD,故CD∥AB,与已知矛盾,故原命题正确;②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,故在平面PAB内存在无数多条直线与平面PDC平行,命题正确;③用反证法.设平面PAB与平面PDC的交线l与底面ABCD平行,则l∥AB,l∥CD,可得:AB∥CD,与已知矛盾,故原命题正确.故答案为:①②③.15.已知向量,则与平面BCD所成角的正弦值为.【考点】直线与平面所成的角.【分析】求出平面BCD的法向量,利用向量法能求出与平面BCD所成角的正弦值.【解答】解:∵向量,∴==(﹣1,2,0),==(﹣1,0,3),设平面BCD的法向量为=(x,y,z),则,取x=6,得=(6,3,2),设与平面BCD所成角为θ,则sinθ===.∴与平面BCD所成角的正弦值为.故答案为:.16.若某三棱锥的三视图如图所示,则该棱锥的体积为,表面积为3.【考点】由三视图求面积、体积.【分析】几何体为三棱锥,棱锥底面为等腰三角形,底边为2,底边的高为1,棱锥的高为.棱锥顶点在底面的射影为底面等腰三角形的顶点.【解答】解:由三视图可知几何体为三棱锥,棱锥顶点在底面的射影为底面等腰三角形的顶点,棱锥底面等腰三角形的底边为2,底边的高为1,∴底面三角形的腰为,棱锥的高为.∴V==,S=+××2+=3.故答案为,三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.【考点】直线与圆的位置关系;直线的斜率;圆的一般方程.【分析】(1)证明•=﹣16+16=0,可得⊥,即可证明△ABC 是直角三角形;(2)求出△ABC 的外接圆的方程,利用△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,可得圆心到直线的距离d=4,即可求m 的值.【解答】(1)证明:∵A (0,0),B (8,4),C (﹣2,4),∴=(8,4),=(﹣2,4),∴•=﹣16+16=0,∴⊥,∴ABC 是直角三角形;(2)解:△ABC 的外接圆是以BC 为直径的圆,方程为(x ﹣3)2+(y ﹣4)2=25,∵△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,∴圆心到直线的距离d=4=,∴m=﹣4或﹣44.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)推导出CC 1∥AA 1,AD ∥BC ,从而平面AA 1D ∥平面CC 1B ,由此能证明AE ∥平面CC 1B . (Ⅱ)法1:推导出AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,以AB ,AD ,AA 1分别x ,y ,z 轴建立空间直角坐标系,利用向量法能证明A 1D ⊥平面ABE .法2:推导出AA 1⊥AB ,AB ⊥AD ,从而AB ⊥A 1D ,再由AE ⊥A 1D ,能证明A 1D ⊥平面ABE .(Ⅲ)推导出平面EFD ⊥平面ABE ,从而二面角D ﹣EF ﹣B 为90°,设,且λ∈[0,1],则G (2,2,3λ),再由A 1D ⊥BG ,能求出CG 的长.【解答】证明:(Ⅰ)因为CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,所以CC 1∥AA 1,因为ABCD 是正方形,所以AD∥BC,因为AA1∩AD=A,CC1∩BC=C,所以平面AA1D∥平面CC1B.因为AE⊂平面AA1D,所以AE∥平面CC1B.(Ⅱ)法1:因为AA1⊥平面ABCD,所以AA1⊥AB,AA1⊥AD,因为ABCD是正方形,所以AB⊥AD,以AB,AD,AA1分别x,y,z轴建立空间直角坐标系,则由已知可得B(2,0,0),D(0,2,0),A1(0,0,2),E(0,1,1),,,因为,所以,所以A1D⊥平面ABE.法2:因为AA1⊥平面ABCD,所以AA1⊥AB.因为ABCD是正方形,所以AB⊥AD,所以AB⊥平面AA1D,所以AB⊥A1D.因为E为棱A1D中点,且,所以AE⊥A1D,所以A1D⊥平面ABE.(Ⅲ)因为A1D⊥平面ABE,且A1D⊂平面EFD,所以平面EFD⊥平面ABE.因为平面ABE即平面BEF,所以二面角D﹣EF﹣B为90°.设,且λ∈[0,1],则G(2,2,3λ),因为A1D⊥平面ABE,BG⊂平面ABE,所以A1D⊥BG,所以,即,所以.19.已知椭圆G :的离心率为,经过左焦点F 1(﹣1,0)的直线l 与椭圆G 相交于A ,B 两点,与y 轴相交于C 点,且点C 在线段AB 上.(Ⅰ)求椭圆G 的方程;(Ⅱ)若|AF 1|=|CB|,求直线l 的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆焦距为2c ,运用离心率公式和a ,b ,c 的关系,即可得到椭圆方程;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),代入椭圆方程,运用韦达定理和向量共线的坐标表示,解方程即可得到所求方程.【解答】解:(Ⅰ)设椭圆焦距为2c ,由已知可得,且c=1,所以a=2,即有b 2=a 2﹣c 2=3,则椭圆G 的方程为;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),由消y ,并化简整理得(4k 2+3)x 2+8k 2x+4k 2﹣12=0,由题意可知△>0,设A (x 1,y 1),B (x 2,y 2),则,因为点C ,F 1都在线段AB 上,且|AF 1|=|CB|,所以,即(﹣1﹣x 1,﹣y 1)=(x 2,y 2﹣y C ),所以﹣1﹣x 1=x 2,即x 1+x 2=﹣1,所以,解得,即.所以直线l的方程为或.。

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。

2023-2024学年北京市海淀区高二上学期期中数学检测试卷(有解析)

2023-2024学年北京市海淀区高二上学期期中数学检测试卷(有解析)

k 值,利用弦长公式求解即可. 【详解】由题设,直线 l 的斜率必存在,设过 P(1, 2) 的直线 MN 为 y 2 k(x 1) ,联立双
曲线: (2 k 2 )x2 2k(k 2)x (k 4 4k 6) 0

M
(x1 ,
y1 ),
N (x2 ,
y2
)
,则
x1
x2
2k (k 2
则△PF1F2 的面积为
.
18.已知曲线 C 的方程为 x2 4 y 4 ,则下列说法正确的是

①曲线 C 关于坐标原点对称; ②y 的取值范围是[1,1];
③曲线 C 是一个椭圆; 面积.
E : x2 y2 1
④曲线 C 围成区域的面积小于椭圆 4
围成区域的
三、解答题,本题共 4 小题,共 40 分,解答应写出文字说明,演算步骤或证明过程.

由抛物线的性质可知:点 M (1, m) 到焦点的距离等于 M (1, m) 到准线的距离,
1 a 3 即 4 ,得a
8 ,抛物线方程为 y2
8x ,
-1-
则焦点坐标为 (2,0) ,焦点到 y 轴的距离为 2.
故选:C
5.D
b 2 【分析】由条件可得 a ,即可得离心率.
【详解】因为双曲线 C :
故选:A. 8.D
【分析】直线 y kx 过原点,且与双曲线 x2 y2 1的两支各有一个交点,则直线 y kx 在
两条渐近线之间,数形结合即可得到答案. 【详解】由双曲线 x2 y2 1,得渐近线方程为 y x , 由题意得,直线 y kx 应该在两条渐近线之间,如图得, k (1,1) . 故选:D.
D.3
x2 y2 12.已知椭圆 a2 b2

2022-2023学年北京市海淀区高二(上)期末数学试卷+答案解析(附后)

2022-2023学年北京市海淀区高二(上)期末数学试卷+答案解析(附后)

2022-2023学年北京市海淀区高二(上)期末数学试卷一、单选题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在复平面内,复数对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.经过点且倾斜角为的直线的方程是( )A. B.C.D. 3.已知直线l 经过点,,平面的一个法向量为,则( )A. B.C.D. l 与相交,但不垂直4.已知抛物线上的点到其焦点的距离是1,那么实数a 的值为( )A.B.C. 1D. 25.在平行六面体中,点M 满足若,,,则下列向量中与相等的是( )A.B. C. D.6.已知直线l :,:,则“”是“直线l 与相交”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.在正方体中,直线l 是底面ABCD 所在平面内的一条动直线,记直线与直线l所成的角为,则的最小值是( )A. B.C.D.8.已知A ,异于坐标原点是圆与坐标轴的两个交点,则下列点M 中,使得为钝角三角形的是( )A.B.C.D.9.“天问一号”是执行中国首次火星探测任务的探测器,该名称源于屈原长诗《天问》,寓意探求科学真理征途漫漫,追求科技创新永无止境.图是“天问一号”探测器环绕火星的椭圆轨道示意图,火星的球心是椭圆的一个焦点.过椭圆上的点P向火星被椭圆轨道平面截得的大圆作两条切线PM,PN,则就是“天问一号”在点P时对火星的观测角.图所示的Q,R,S,T四个点处,对火星的观测角最大的是( )A. QB. RC. SD. T10.如图,在棱长为1的正方体中,M,N分别为,的中点,P为正方体表面上的动点.下列叙述正确的是( )A. 当点P在侧面上运动时,直线CN与平面BMP所成角的最大值为B. 当点P为棱的中点时,平面BMPC. 当点P在棱上时,点P到平面CNM的距离的最小值为D. 当点时,满足平面NCP的点P共有2个二、填空题:本题共5小题,每小题4分,共20分。

2022-2023学年北京市北京市海淀区高二年级上册学期数学期末复习试题【含答案】

2022-2023学年北京市北京市海淀区高二年级上册学期数学期末复习试题【含答案】

2022-2023学年北京市北京市海淀区高二上学期数学期末复习试题一、单选题1.已知复数满足,若为纯虚数,则的值为( )z (34i)4i()z b b -=+∈R z b A .B .C .4D .34-3-【答案】D【分析】首先变形求出的表达式,再根据纯虚数的定义求解即可.z 【详解】∵,,()()34i 4i z b b -=+∈R ()()()()4i 34i 124316i 4i 34i 2525b b b b z ++-+++∴===-因为为纯虚数,z 124033160b b b -=⎧⇒=⎨+≠⎩故选:D2.已知平面两两垂直,直线满足:,则直线不可能满足αβγ、、a b c 、、,,a b c αβγ⊆⊆⊆a b c 、、以下哪种关系A .两两垂直B .两两平行C .两两相交D .两两异面【答案】B【分析】通过假设,可得平行于的交线,由此可得与交线相交或异面,由此不可能//a b ,a b ,αβc 存在,可得正确结果.////a b c 【详解】设,且与均不重合l αβ= l ,a b 假设:,由可得:,////a b c //a b //a β//b α又,可知,l αβ= //a l //b l 又,可得:////a b c //c l因为两两互相垂直,可知与相交,即与相交或异面,,αβγl γl c 若与或重合,同理可得与相交或异面l a b l c 可知假设错误,由此可知三条直线不能两两平行本题正确选项:B【点睛】本题考查空间中的直线、平面之间的位置关系,关键在于能够通过线面关系得到第三条直线与前两条线之间的位置关系,从而得到正确结果.3.“m =0是“直线与直线之间的距离为2”的( )()12110mx m l y +-+=:()22110l mx m y +--=:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据平行线间的距离公式可得或,进而根据充分与不必要条件的定义判断即可.0m =45m =【详解】两条平行线间的距离,即,解得或,2d ==2540m m -=0m =45m =即“”是“两直线间距离为2”的充分不必要条件.0m =故选:A.4.如图所示,在平行四边形中,,沿将折起,使平面平面ABCD AB BD ⊥BD ABD △ABD ⊥,连接,则在四面体的四个面中,互相垂直的平面的对数为( )BCD AC ABCDA .1B .2C .3D .4【答案】C【分析】利用线面垂直得到平面平面,平面平面,平面平面,ABD ⊥BCD ABC ⊥BCD ACD ⊥ABD 得到答案.【详解】平面平面,平面平面,ABD ⊥BCD ABD ⋂BCD BD =,平面,故平面,平面,故平面平面;AB BD ⊥AB ⊂ABD AB ⊥BCD AB ⊂ABC ABC ⊥BCD ,平面,故平面,平面,故平面平面;CD BD ⊥CD ⊂BCD CD ⊥ABD CD ⊂ACD ACD ⊥ABD 综上所述:平面平面;平面平面;平面平面;ABD ⊥BCD ABC ⊥BCD ACD ⊥ABD 故选:C5.直线被圆截得的弦长的最小值为( ):310l ax y a --+=22:(1)(2)25C x y ++-=A .B .C .D .【答案】B【分析】确定直线过定点,当时,直线被圆截得的弦长最短,计算即可.()3,1P PC l ⊥l C 【详解】直线,即,直线过定点,:310l ax y a --+=()310a x y --+=l ()3,1P 圆的圆心为,,当时,直线被圆截得的弦长最短.C ()1,2C -=5r PC l ⊥l C因为,所以弦长的最小值为.PC ===故选:B6.在平面内,,是两个定点,是动点,若,则点的轨迹为( )A B C 1AC BC ⋅=C A .圆B .椭圆C .双曲线D .抛物线【答案】A【分析】设出、、的坐标,利用已知条件,转化求解的轨迹方程,推出结果即可.A B C C 【详解】解:在平面内,,是两个定点,是动点,A B C 不妨设,,设,(,0)A a -(,0)B a (,)C x y 所以,(),AC x a y =+(),BC x a y =-因为,1AC BC ⋅= 所以,即,()()21x a x a y +-+=2221x y a +=+所以点的轨迹为圆.C 故选:A .7.与双曲线有共同渐近线,且经过点的双曲线的虚轴的长为( )22148x y -=()2,4A .B .C .2D .4【答案】D【分析】依题意,设双曲线的方程为,将点的坐标代入可求.即可求解.()22048x y λλ-=≠()2,4λ【详解】设与双曲线有共同的渐近线的双曲线的方程为,22148x y -=()22048x y λλ-=≠该双曲线经过点,()2,4.416148λ∴=-=-所求的双曲线方程为:,即.∴22148x y -=-22184y x -=所以,2b =所以虚轴长为4.故选:D8.已知,,动点满足,则动点的轨迹与圆的位置()0,0O ()3,0A (),P x y 2PAPO=P ()2221x y -+=关系是( )A .相交B .外切C .内切D .相离【答案】B【分析】由题意求出动点的轨迹方程,再由两圆圆心距与半径的关系判断.P 【详解】设,由题意可知,(,)P x y ()222222||4||,(3)4PA PO x y x y =∴-+=+ 整理得,点的轨迹方程为,P 22(1)4x y ++=其图形是以为圆心,以2为半径的圆,(1,0)-而圆的圆心坐标为,半径为1,22(2)1x y -+=(2,0)可得两圆的圆心距为3,等于,213+=则动点的轨迹与圆的位置关系是外切.P 22(2)1x y -+=故选:B.9.已知点是抛物线上的动点,点A 的坐标为,则点到点A 的距离与到轴的距P 24x y =()12,6P x 离之和的最小值为( )A .13B .12C .11D 【答案】B【分析】作出辅助线,利用抛物线定义得到点到点A 的距离与到轴的距离之和P x ,由两点之间,线段最短,得到距离之和的最小值为,求出答案.1PA PH PA PF +=+-1AF -【详解】如图,⊥轴,连接,PH x PF 由抛物线定义得:抛物线的准线方程为,焦点坐标为,24x y =1y =-()0,1故,1PH PF =-则点到点A 的距离与到轴的距离之和,P x 1PA PH PA PF +=+-连接,与抛物线交于点,此时,AF P '11P A P F AF ''+-=-故点到点A 的距离与到轴的距离之和的最小值为,P x 1AF -其中,故最小值为.13AF ==112AF -=故选:B10.设,分别为双曲线:的左、右焦点,为双曲线的左顶点,以1F 2F C ()222210,0x y a b a b -=>>A 为直径的圆交双曲线的某条渐近线于,两点,且,(如图),则该双曲线的12F FM N 135MAN ∠=︒离心率为( )ABC .2D【答案】D【分析】联立与求出,进而的正切可求,得出的关系,从222x y c +=by xa =(),M a b MAO ∠a b 与而进一步解出答案.【详解】依题意得, 以线段为直径的圆的方程为 ,12F F 222x y c +=双曲线 的一条渐近线的方程为.C b y x a =由 以及222,,b y x a x y c ⎧=⎪⎨⎪+=⎩222,a b c +=解得 或,x a y b =⎧⎨=⎩,.x a y b =-⎧⎨=-⎩不妨取 , 则.(),M a b (),N a b --因为,(),0,135A a MAN ∠-=所以 ,45MAO ∠=又,tan 2b MAO a ∠=所以,12b a =所以 ,2b a =所以该双曲线的离心率 e ==故选:D.二、填空题11.在复数范围内分解因式:___________.44x +=【答案】()()()()1i 1i 1i 1i x x x x +--+++--【分析】因式分解第一步将,第二步()()2422i 4i 2x x x =+-+=()()2222i 1i xx +=-- 综合起来即可得到答案.()()2222i 1i xx -=-+【详解】由题意知()()()()22222242i 2i 14i 1i x x x x x ⎡⎤⎡⎤=+-=+---+⎣⎦⎣⎦故答案为:.()()()()1i 1i 1i 1i x x x x +--+++--12化简后为______.10=【答案】2212516y x +=【分析】运用方程的几何意义得出结果.【详解】解:,10+=故令,,(),M x y ()10,3F -()20,3F ∴,1212106MF MF F F +=>=∴方程表示的曲线是以,为焦点,长轴长的椭圆,()10,3F -()20,3F 210a =即,,,5a =3c =4b =∴方程为.2212516y x +=故答案为:.2212516y x +=13.已知集合,,若集合中有2个元素,则实数(){,A x y x ==(){},B x y y x b ==+A B ⋂b 的取值范围是______【答案】(1⎤-⎦【分析】首先分析集合、的元素特征,再数形结合求出参数的取值范围.A B b 【详解】解:由,所以,x =0x ≥221x y +=()0x ≥所以表示以为圆心,为半径的圆在轴及右侧部分的点集,(){,A x y x ==()0,01y 集合表示直线上的点集,(){},B x y y x b ==+y x b =+集合与集合都是点集,集合中有个元素,A B A B ⋂2由,解得1d ==b =由图可知,即.1b <≤-(1b ⎤∈-⎦故答案为:(1⎤-⎦14.已知实数满足,则的最大值为__________.,x y 2222x y x y+=+4yx -【答案】1【分析】由曲线方程画出曲线所表示的图形,将看作曲线上的点与坐标为的点连线的斜4y x -()4,0率,求出最大值.【详解】由“”和“”代入方程仍成立,所以曲线关于x 轴和y 轴对称,故只x -y -2222xy x y+=+需考虑,的情形,0x ≥0y ≥此时方程为,即,所以的轨迹如下图,2222x y x y +=+()()22112x y -+-=(),x y,表示点和连线的斜率,由图可知,当曲线第四象限部分半圆(圆心为044y y x x -=--(),x y ()4,0l l.()1,1-设:,解得或(舍去),l ()4y k x =-1k =17-所以的最大值为1.4yx -故答案为:1.15.在正方体中,N 为底面的中心,为线段上的动点(不包括两个1111ABCD A B C D -ABCD P 11A D 端点),为线段的中点,则下列说法中正确的序号是________________.M AP①与是异面直线;CM PN ②;CM PN >③平面平面;PAN ⊥11BD B ④过三点的正方体的截面一定是等腰梯形.,,P A C 【答案】②③④【分析】连接NC ,根据平面几何知识可得CN ,PM 交于点A ,可判断①;分别在△MAC 中,和在△PAN 中,运用余弦定理求得CM 2和PN 2,比较大小可判断②;证明与平面后可得面AN 11BDD B 面垂直,可判断③;作出过三点的截面后可判断④.,,P A C 【详解】解:连接NC ,因为共线,即交于点,共面,,,C N A ,CN PM A因此共面,①错误;,CM PN 记,则,PAC θ∠=2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+-⋅,2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅又,AP AC <,,即.②正确;22223()04CM PN AC AP -=->22CM PN >CM PN >由于正方体中,,平面,平面,AN BD ⊥1BB ⊥ABCD AN ⊂ABCD 所以,因为,平面,1BB AN ⊥1BB BD B ⋂=1,BB BD ⊂11BB D D 所以平面,AN ⊥11BB D D 因为平面,AN ⊂PAN 所以平面平面,即平面平面,③正确;PAN ⊥11BDD B PAN ⊥11BD B过点作交于点,连接,由正方体性质知,,P 11//PK A C 11C D K 11,KC A C 11//A C AC 所以,共面,且,//PK AC ,PK AC 11A P C K =故四边形就是过P ,A ,C 三点的正方体的截面,PKCA 因为,为线段上的动点(不包括两个端点),P 11A D 所以,,PK AC ≠2222221111AP A P A A C K C C CK =+=+=故四边形是等腰梯形,故④正确.PKCA 故答案为:②③④.三、解答题16.已知直线():10l x m y m +--=(1)若直线的倾斜角,求实数m 的取值范围;ππ,42α⎡⎤∈⎢⎥⎣⎦(2)若直线l 分别与x 轴,y 轴的正半轴交于A ,B 两点,O 是坐标原点,求面积的最小值及此AOB 时直线l 的方程.【答案】(1)01m ≤≤(2)最小值为2,直线l 方程为:.AOB S 20x y +-=【分析】(1)由直线的斜率和倾斜角的范围可得的不等式,解不等式可得;m (2)由题意可得点和点,可得,由基本不0,1m B m ⎛⎫ ⎪-⎝⎭(),0A m 111[(1)2]221S OA OB m m ==-++-等式求最值可得.【详解】(1)解:由题意可知当时,倾斜角为,符合题意1m =2π当时,直线l 的斜率1m ≠11k m =-∵倾斜角,∴.[)ππ,tan 1,42k αα∞⎡⎫∈⇒=∈+⎪⎢⎣⎭11011m m ≥⇒≤<-故m 的范围:.01m ≤≤(2)解:在直线l 中:令x =0时,即,令y =0时x =m ,即1m y m =-0,1m B m ⎛⎫ ⎪-⎝⎭(),0A m 由题意可知:得001x m m y m =>⎧⎪⎨=>⎪-⎩1m >即()()()2212111112212121AOBm m m m S OA OB mm m m -+-+=⋅=⋅==---△()1111222212m m ⎡⎤⎡⎤=-++≥+=⎢⎥⎢⎥-⎣⎦⎣⎦当且仅当时取等号,()2111121m m m m -=⇒-=⇒=-故最小值为2,此时直线l 方程为:.AOB S 20x y +-=17.已知圆经过点,,且______.从下列3个条件中选取一个,补充在上面的横E ()0,0A ()2,2B 线处,并解答.①与轴相切;②圆恒被直线平分;③过直线与直线y E ()20R mx y m m --=∈440x y +-=的交点C .240x y --=(1)求圆的方程;E (2)求过点的圆的切线方程.()4,3P E 【答案】(1)任选一条件,方程都为22(2)4x y -+=(2)或4x =512160x y -+=【分析】(1) 选①,设圆的方程为,根据题意列出方程组,求解即可;E 222()()x a y b r -+-=选②,由题意可得直线恒过为圆的圆心,代入A 点坐标即可求解;20mx y m --=(2,0)E 选③,求出两直线的交点为,根据圆过A ,B ,C 三点求解即可;(4,0)C E (2)先判断出点P 在圆外,再分切线的斜率存在与不存在分别求解即可.E 【详解】(1)解:选①,设圆的方程为,E 222()()x a y b r -+-=由题意可得,解得,则圆的方程为;222222(2)(2)a ra b ra b r ⎧=⎪+=⎨⎪-+-=⎩202a b r =⎧⎪=⎨⎪=⎩E 22(2)4x y -+=选②,直线恒过,20mx y m --=(2,0)而圆恒被直线平分,E 20(R)mx y m m --=∈所以恒过圆心,因为直线过定点,20mx y m --=20mx y m --=(2,0)所以圆心为,可设圆的标准方程为,(2,0)222(2)x y r -+=由圆经过点,得,E (0,0)A 24r =则圆的方程为.E 22(2)4x y -+=选③,由条件易知,(4,0)C 设圆的方程为,2222(4)00x y Dx Ey F D E F ++++=+->由题意可得,解得,082201640F D E F D F =⎧⎪+++=⎨⎪++=⎩400D E F =-⎧⎪=⎨⎪=⎩则圆的方程为,即.E 2240x y x +-=22(2)4x y -+=综上所述,圆的方程为;E 22(2)4x y -+=(2)解:因为,所以点P 在圆外,22(42)3134-+=>E 若直线斜率存在,设切线的斜率为,k 则切线方程为,即3(4)y k x -=-430.kx y k --+=,解得.2512k =所以切线方程为,512160x y -+=若直线斜率不存在,直线方程为,满足题意.4x =综上过点的圆的切线方程为或.(4,3)P E 4x =512160x y -+=18.如图,在三棱一中,为等腰直角三角形,.-P ABC ABC π,2BAC ∠=π3PAC PAB ∠=∠=(1)求证:;PA BC ⊥(2)若,求平面与平面的夹角的余弦值.24PA AC ==PAB PBC 【答案】(1)证明见解析【分析】(1)取中点,连接以及,先证明,再根据线面垂直的判定证BC D AD PD ACP ABP ≌△△明平面,进而根据线面垂直的性质证明即可;BC ⊥PAD (2)根据角度关系,结合线面垂直的判定可得平面,再根据线线垂直,以为原点,AC ⊥CPE A 为轴,为轴,建立空间直角坐标系,再分别计算平面与平面的法向量求解即AB x AC y PAB PBC 可.【详解】(1)证明:取中点,连接以及,如图2,BC D AD PD图2在和中,,,,ACP △ABP AB AC =AP AP =PAC PAB ∠=∠所以ACP ABP ≌△△所以,所以CP BP =PD BC⊥又因为,平面,平面,,AD BC ⊥AD ⊂PAD PD ⊂PAD AD PD D = 所以平面BC ⊥PAD又因为平面,所以AP ⊂ADP PA BC⊥(2)在平面中,过点作,垂足为,连接,,,如图3,PAD P PE AD ⊥E CE BE PE图3由(1)平面,则,则平面BC ⊥PAD BC PE ⊥PE ⊥ABC 在中,,,同理PCA π3PAC ∠=π22AP AC PCA =⇒∠=π2PBA ∠=∵,,且,平面,则平面.AC PE ⊥AC CP ⊥PE CP P ⋂=,PE CP ⊂CPE AC ⊥CPE 又∵平面,∴,同理可得,CE ⊂CPE A C CE ⊥AB BE ⊥则四边形为正方形,ABCE,则在中,可求出2AB AC BE CE ====Rt PBE △PB =PE =则以为原点,为轴,为轴,如图建立空间直角坐标系,A AB x AC y则,,,,()0,0,0A ()2,0,0B ()0,2,0C (2,2,P设平面的法向量为,,,PAB (),,m x y z =()2,0,0AB =(0,2,BP =则,令,则,2020x y =⎧⎪⎨+=⎪⎩1y =0x=0,1,z m ⎛=⇒= ⎝ 设平面的法向量为,,,PBC (),,n x y z =()2,2,0CB =-(0,2,BP =则,令,则,22020x y y -=⎧⎪⎨+=⎪⎩1x =1y=1,1,z n ⎛=⇒= ⎝ 记二面角的平面角为,A PBC --θ则cos m nm n θ⋅===⋅又因为为锐角,则θcos θ=19.已知椭圆C :与椭圆的离心率相同,为椭圆C 上()222210x y a b b a +=>>22184x y +=P ⎫⎪⎪⎭一点.(1)求椭圆C 的方程.(2)若过点的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点?若1,03Q ⎛⎫⎪⎝⎭T 存在,求出的坐标;若不存在,请说明理由.T 【答案】(1)2212y x +=(2)存在的坐标为,理由见解析T (1,0)-【分析】(1)先求出椭圆,由此得到,将点的坐标代入椭22184x y +=222a b =P 圆,得到,再代入,解得,,则可得结果;C 221112b a +=222a b =21b =22a =(2)先用两个特殊圆求出交点,再猜想以AB 为直径的圆经过定点,再证明猜想,(1,0)-(1,0)T -设直线,并与联立,利用韦达定理得到,,进一步得到,1:3l x my =+2212y x +=12y y +12y y 12x x +,利用,,,证明即可.12x x 12y y +12y y 12x x +12x x 0TA TB ⋅=【详解】(1)在椭圆中,,,离心率22184x y +=1a =12b=12c ==e =11c a ==在椭圆C :中,()222210x y a b b a +=>>c e a ===,=222a b =因为在椭圆C :上,P ()222210x y a b b a +=>>所以,所以,所以,,221112b a +=2211122b b +=21b =22a =所以椭圆.22:12y C x +=(2)当直线的斜率为0时,线段是椭圆的短轴,以AB 为直径的圆的方程为,l AB 221x y +=当直线的斜率不存在时,直线的方程为,代入,得,以AB 为直径的圆的l l 13x =2212y x +=43y =±方程为,22116()39x y -+=联立,解得,2222111639x y x y ⎧+=⎪⎨⎛⎫-+=⎪ ⎪⎝⎭⎩10x y =-⎧⎨=⎩由此猜想存在,使得以AB 为直径的圆是经过定点,(1,0)T -(1,0)T -证明如下:当直线的斜率不为0且斜率存在时,设直线,l 1:3l x my =+联立,消去并整理得,221312x my y x ⎧=+⎪⎪⎨⎪+=⎪⎩x 22128(0239m y my ++-=,224184()0929m m ∆=++⋅>设、,11(,)A x y 22(,)B x y 则,,122213()2m y y m +=-+122819()2y y m =-+则,121212112()333x x my my m y y +=+++=++2222133()2m m =-++121211()()33x x my my =++2121211()39m y y m y y =+++22228211199()9()22m m m m =--+++,22101199()2m m =-++因为TA TB⋅1122(1,)(1,)x y x y =+⋅+1212(1)(1)x x y y =+++1212121x x x x y y =++++222221012281111939()3()9()222m m m m m =-+-++-+++2216816199()2m m +=-++,0=所以,所以点在以为直径的圆上,TA TB ⊥(1,0)T -AB 综上所述:以AB 为直径的圆是经过定点.(1,0)T -【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.。

2024-2025学年北京市海淀区首都师大附中高二(上)第一次月考数学试卷(含答案)

2024-2025学年北京市海淀区首都师大附中高二(上)第一次月考数学试卷(含答案)

2024-2025学年北京市海淀区首都师大附中高二(上)第一次月考数学试卷一、单选题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知z i =i−1,则|z|=( )A. 0B. 1C. 2D. 22.如图,在平行六面体ABCD−A 1B 1C 1D 1中,AB −AD −AA 1=( )A. −AC 1B. A 1CC. D 1BD. −DB 13.已知A(2,−3,−1),B(−6,5,3),则AB 的坐标为( )A. (−8,8,−4)B. (−8,8,4)C. (8,−8,4)D. (8,−8,−4)4.如图,已知正方体ABCD−A′B′C′D′的棱长为1,AA′⋅DB′=( )A. 1B. 2C. 3D. −15.设n 1,n 2分别是平面α,β的法向量,其中n 1=(1,y,−2),n 2=(x,−2,1),若α//β,则x +y =( )A. −92B. −72C. 3D. 726.已知直线l 1的方向向量为u =(0,0,1),直线l 2的方向向量为v =(0, 3,−1),则直线l 1与l 2所成角的度数为( )A. 30°B. 60°C. 120°D. 150°7.已知n 为平面α的一个法向量,a 为直线l 的方向向量,则“a ⊥n ”是“l//α”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知点O 、A 、B 、C 为空间不共面的四点,且向量a =OA +OB +OC ,向量b =OA +OB−OC ,则与a 、b 不能构成空间基底的向量是( )A. OA B. OB C. OC D. OA 或OB9.在空间直角坐标系Oxyz 中,点A(2,1,1)在坐标平面Oxz 内的射影为点B ,且关于y 轴的对称点为点C ,则B ,C 两点间的距离为( )A. 17 B. 3 2 C. 2 5 D. 2110.如图,在棱长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,则直线AM和CN 夹角的余弦值为( )A. 23B. 34C. 12D. 23二、填空题:本题共5小题,每小题4分,共20分。

北京市海淀区2024-2025学年高二上学期10月月考数学试题含答案

北京市海淀区2024-2025学年高二上学期10月月考数学试题含答案

2024-2025学年度第一学期高二数学10月月考(答案在最后)(2024.10)班级______姓名______学号______一、选择题(本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知点()3,1,2P --,则点P 关于z 轴的对称点的坐标为()A.()3,1,2- B.()3,1,2- C.()3,1,2--- D.()3,1,2--【答案】D 【解析】【分析】关于z 轴对称,则z 坐标值不变,,x y 坐标变为互为相反数即可.【详解】解:因为关于z 轴对称,则z 坐标值不变,,x y 坐标变为互为相反数所以,点P 关于z 轴的对称点的坐标为()3,1,2--故选:D.2.已知向量()1,2,1a =- ,()3,,b x y =- ,且a b ∥,那么b = ()A. B.6C.9D.18【答案】A 【解析】【分析】根据空间向量共线的充要条件求出,x y 的值,然后代入模的计算公式即可求解.【详解】因为a b ∥,且向量()1,2,1a =- ,()3,,b x y =- ,所以3121x y-==-,解得:6,3x y ==,所以b == ,故选:A.3.如图,在三棱锥O -ABC 中,D 是BC 的中点,若OA a = ,OB b = ,OC c = ,则AD等于()A.a b c-++ B.a b c-+-C.1122a b c-++ D.1122a b c--- 【答案】C 【解析】【分析】利用空间向量的线性运算计算即可.【详解】因为D 为BC 的中点,所以()12AD AB AC =+,又,AB OB OA AC OC OA =-=- ,所以()()1111122222AD OB OA OC OA OA OB OC a b c ⎡⎤=-+-=-++=-++⎣⎦ .故选:C .4.已知正四棱锥S ABCD -,底面边长是2,体积是433,那么这个四棱锥的侧棱长为()A.3B.2C.5D.22【答案】C 【解析】【分析】设正四棱锥的高为h ,由体积是33,求出3h =.利用勾股定理求出侧棱长.【详解】因为正四棱锥S ABCD -,底面边长是2,所以底面积为224⨯=.设正四棱锥的高为h ,由31433V h =⨯=,所以3h =.所以侧棱长为()222325l h =+=+=.5.故选:C5.如图,在三棱锥D ABC -中,AC BD =,且AC BD ⊥,E ,F 分别是棱DC ,AB 的中点,则EF 和AC 所成的角等于A .30°B.45°C.60°D.90°【答案】B 【解析】【分析】取BC 的中点G ,连接FG 、EG ,则EFG ∠为EF 与AC 所成的角.解EFG .【详解】如图所示,取BC 的中点G ,连接FG ,EG .E ,F 分别是CD ,AB 的中点,FG AC ,EG BD ∥,且12FG AC =,12EG BD =.EFG ∴∠为EF 与AC 所成的角.又AC BD = ,FG EG ∴=.又AC BD ⊥ ,FG EG ∴⊥,90FGE ∴∠=︒,EFG ∴△为等腰直角三角形,45EFG ∴∠=︒,即EF 与AC 所成的角为45°.故选:B .【点睛】本题主要考查异面直线所成的角,找角证角求角,主要是通过平移将空间角转化为平面角,再解三角形,属于基础题.6.已知,m n 是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题:①若,,m m αβ⊥⊥则//αβ;②若,,αγβγ⊥⊥则//αβ;③若,,//,m n m n αβ⊂⊂则//αβ;④若,m n 是异面直线,,//,,//,m m n n αββα⊂⊂则//αβ.其中真命题是()A.①和②B.①和③C.③和④D.①和④【答案】D 【解析】【分析】由题意逐一考查所给命题的真假即可确定真命题的编号.【详解】逐一考查所给的命题:①由线面垂直的性质定理可得若,,m m αβ⊥⊥则v/,该命题正确;②如图所示的正方体1111ABCD A B C D -中,取平面,,αβγ分别为平面1111,,ABB A ADD A ABCD ,满足,,αγβγ⊥⊥但是不满足v/,该命题错误;③如图所示的正方体1111ABCD A B C D -中,取平面,αβ分别为平面1111,ABB A ADD A ,直线,m n 分别为11BB ,DD ,满足,,//,m n m n αβ⊂⊂但是不满足v/,该命题错误;④若,m n 是异面直线,,//,,//,m m n n αββα⊂⊂由面面平行的性质定理易知v/,该命题正确;综上可得,真命题是①和④本题选择D 选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.7.在正方体1111ABCD A B C D -中,直线l 是底面ABCD 所在平面内的一条动直线,记直线1AC 与直线l 所成的角为α,则sin α的最小值是()A.3B.12C.2D.63【答案】A 【解析】【分析】过C 作l 的平行线,过1A 作该平行线的垂线,垂足为P ,则1ACP α∠=,11||sin ||A P A C α=,根据11||||A P A A ≥可求出结果.【详解】如图:过C 作l 的平行线,过1A 作该平行线的垂线,垂足为P,则1ACP α∠=,所以11||sin ||A P A C α=,设正方体的棱长为1,则1||A C =,11||||1A P A A ≥=,所以11||sin ||A P A C α=≥3=,当且仅当P 与A 重合时,取得等号,所以sin α的最小值是3.故选:A .8.如图,在平行六面体1111ABCD A B C D -中,1AB AD ==,11145,60AA BAA DAA BAD ∠∠∠====,则1AC =uuu r()A.1B.C.9D.3【答案】D 【解析】【分析】根据图形,利用向量的加法法则得到11AC AB AD AA =++,再利用1AC =求1AC uuu r的模长.【详解】在平行六面体1111ABCD A B C D -中,有AC AB AD =+ ,111AC AC AA AB AD AA =+=++,由题知,1AB AD ==,1AA =,1145BAA DAA ∠∠== ,60BAD ∠= ,所以1AB AD == ,1AA = ,AB 与AD的夹角为60BAD ∠=︒,AB 与1AA的夹角为145BAA ∠=︒,AD 与1AA 的夹角为145A AD ∠=︒,所以21AC ()21AB AD AA =++ 222111222AB AD AA AB AD AB AA AD AA =+++⋅+⋅+⋅112211cos 6021cos 4521cos 45=+++⨯⨯⨯︒+⨯︒+⨯︒9=.所以13AC = .故选:D.9.如图,在长方体1111ABCD A B C D -中,13,4,AB BC CC E ===为棱11B C 的中点,P 为四边形11BCC B内(含边界)的一个动点.且DP BE ⊥,则动点P 的轨迹长度为()A.5B.C.D.【答案】B 【解析】【分析】利用正方体性质以及线面垂直判定定理可证明BE ⊥平面DCF ,由线面垂直的性质可得当DP BE ⊥时,动点P的轨迹为CF =.【详解】如下图所示:作CF BE ⊥交1BB 于点F ,易知四边形11BCC B 是边长为4的正方形,利用三角形相似可知1BCF B BE ,即可得11B EBF BC BB =,所以2BF =,由勾股定理可知CF =,利用正方体性质可知DC ⊥平面11BCC B ,BE ⊂平面11BCC B ,所以DC BE ⊥;又CF BE ⊥,CF DC C = ,,CF DC ⊂平面DCF ,可知BE ⊥平面DCF ;由DP BE ⊥可知DP ⊂平面DCF ,又P 为四边形11BCC B 内(含边界)的一个动点,所以动点P 的轨迹为平面DCF 与四边形11BCC B 的交线,即为CF ,因此可得动点P的轨迹长度为CF =.故选:B10.如图,在直三棱柱111ABC A B C -中,1,2,1,2AC BC AC BC AA ⊥===,点D 在棱AC 上,点E 在棱1BB 上,下列结论中不正确...的是()A.三棱锥E ABD -的体积的最大值为23B.点E 到平面11ACC A 的距离为1C.点D 到直线1C ED.1A D DB ++【答案】D 【解析】【分析】根据锥体的体积公式判断A ;根据直三棱柱的性质,结合AC BC ⊥,可得⊥BC 11ACC A ,进而判断B ;建立空间直角坐标系,利用空间向量法求出点到距离,再根据函数的性质即可判断C ;将ABC V 翻折到与矩形11ACC A 共面时连接1A B 交AC 于点D ,此时1A D DB +取得最小值,进而利用勾股定理求出距离最小值,即可判断D.【详解】在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,对于A :因为点E 在棱1BB 上,112A B A B ==,所以[]0,2BE ∈,又AC BC ⊥,2,1AC BC ==,点D 在棱AC 上,所以[]0,2AD ∈,[]110,122ABD S AD BC AD =⋅=∈ ,所以1233E ABD ABD V BE S -=⋅≤ ,当且仅当D 在C 点、E 在1B 点时取等号,故①正确;对于B :在直三棱柱111ABC A B C -中,AC BC ⊥,则⊥BC 11ACC A ,又点E 在棱1BB 上,所以点E 到平面11ACC A 的距离,即为1BC =,故B 正确;对于C :如图建立空间直角坐标系,设(),0,0D a ,()0,1,E c ,[],0,2a c ∈,()10,0,2C ,所以()1,0,2C D a =- ,()10,1,2C E c =-,所以点D 到直线1C E的距离为d ===,当2c =时,2d =≥,当02c ≤<时,()2024c <-≤,即()21142c ≥-,则()215142c +≥-,即()241601512c <≤+-,所以当()()224221c c --+取最大值165,且20a =时,min 5d ==,即当D 在C点,E 在B 点时,点D 到直线1CE 的距离的最小值为5,故C 正确;对于D :如图将ABC V 翻折到与矩形11ACC A 共面时连接1A B 交AC 于点D ,此时1A D DB +取得最小值,因为1112A C CC ==,1BC =,所以13BC =,所以1A B ==即1A D DB +D 错误.故选:D.二、填空题(本大题共5小题,每小题4分,共20分.)11.已知向量()2,5,4a =- ,()6,0,b x = ,若a b ⊥,则x =______.【答案】3【解析】【分析】根据空间向量数量积的坐标表示计算即可.【详解】因为()2,5,4a =- ,()6,0,b x = ,a b ⊥,所以265040a b x ⋅=-⨯+⨯+⨯=,解得3x =.故答案为:3.12.已知正方体1111ABCD A B C D -的棱长为1,则点1C 到直线1BD 的距离为______.【答案】3【解析】【分析】连接1BC ,利用等面积法可求点1C 到直线1BD 的距离.【详解】连接1BC ,由正方体1111ABCD A B C D -,可得11C D ⊥平面11CBB C ,因为1BC ⊂平面11CBB C ,所以111C D BC ^,因为正方体1111ABCD A B C D -的棱长为1,所以可得11BC BD ====,设点1C 到直线1BD 的距离为d ,由1111111122BC D S BD d BC C D =⨯=⨯ ,可得1132122d =,解得63d =,所以点1C 到直线1BD 的距离为63.故答案为:63.13.如图,60︒的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,则CD 的长为__________【答案】217【解析】【分析】由向量的线性表示,根据向量模长根式即可代入求解.【详解】解:由条件,知00CA AB AB BD ⋅=⋅= ,,CD CA AB BD =++ ,所以2222222222648268cos12068CD CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅=+++⨯⨯︒= ,所以17CD =故答案为:21714.在我国古代数学名著《九章算术》中,四个面都为直角三角形的三棱锥称为鳖臑.已知在鳖臑P ABC -中,PA ⊥平面ABC ,2PA AB BC ===.M 为PC 的中点,则点P 到平面MAB 的距离为______.2【解析】【分析】利用等体积法求得P 到平面MAB 的距离.【详解】因为PA ⊥平面ABC ,⊂BC 平面ABC ,所以BC PA ⊥,依题意可知,,,,BC AB BC PA AB PA A AB PA ⊥⊥⋂=⊂平面PAB ,所以⊥BC 平面PAB ,由于M 是PC 的中点,所以M 到平面PAB 的距离是C 到平面PAB 的距离的一半,即M 到平面PAB 的距离是1.22AC PB ==,()222223PC =+,所以3AM BM ==,由于2AB =,所以()22123122MAB S =⨯-= ,12222PAB S =⨯⨯= ,设P 到平面MAB 的距离为h ,则M PAB P MAB V V --=,即11212233h h ⨯⨯=⇒=.215.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是________.①直线1BD ⊥平面11A C D②三棱锥11D A C P -的体积为定值③异面直线AP 与1A D 所成角的取值范围是ππ,62⎡⎤⎢⎥⎣⎦④直线1C P 与平面11A C D 所成角的正弦值的最大值为3【答案】①②④【解析】【分析】对于①,利用线面垂直的判定定理及线面垂直的性质定理,即可进行判断;对于②,利用线面平行的判定定理,得出1B C ∥平面11A C D ,再根据三棱锥的体积的计算方法,即可进行判断;对于③,利用异面直线所成角的计算方法,即可进行判断;对于④,通过建立空间直角坐标系,利用坐标法求出直线与平面所成角的正弦值,然后借助二次函数,即可进行判断.【详解】对于①,连接11B D ,1111AC B D ⊥,111A C BB ⊥,1111B D BB B ⋂=,11B D ⊂平面11BB D ,1BB ⊂平面11BB D ,∴11A C ⊥平面11BB D ,1BD ⊂ 平面11BB D ,∴111A C BD ⊥,同理,11DC BD ⊥,1111A C DC C ⋂=,11AC ⊂平面11AC D ,1DC ⊂平面11A C D ,∴直线1BD ⊥平面11A C D ,故①正确;对于②, 1A D ∥1B C ,1A D ⊂平面11A C D ,1B C ⊄平面11A C D ,∴1B C ∥平面11A C D ,点P 在线段1B C 上运动,∴点P 到平面11A C D 的距离为定值,又11A C D 的面积为定值,利用等体积法知三棱锥11D A C P -的体积为定值,故②正确;对于③, 1A D ∥1B C ,∴异面直线AP 与1A D 所成的角即为AP 与1B C 所成的角,当点P 位于C 点时,AP 与1B C 所成的角为π3,当点P 位于1B C 的中点时,1AB AC = ,∴1AP B C ⊥,此时,AP 与1B C 所成的角为90︒,∴异面直线AP 与1A D 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦,故③错误;对于④,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为1,(),1,P a a ,则()0,0,0D ,()11,0,1A ,()10,1,1C ,()11,0,1DA = ,()10,1,1DC = ,()1,0,1C P a a =- ,设平面11A C D 的法向量(),,n x y z =r ,则1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩ ,即00x y y z +=⎧⎨+=⎩,令1x =,得()1,1,1n =-,所以,直线1C P 与平面11A C D 所成角的正弦值为:11C P n C P n ⋅==⋅ ,当12a =时,直线1C P 与平面11A CD3=,故④正确.故答案为:①②④三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、演算步骤或证明过程.)16.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,E ,F 分别为PC ,BD 的中点.(1)求证://EF 平面PAD ;(2)若PA AD ⊥,AB ⊥平面PAD ,求证:⊥EF 平面ABCD .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)连接AC ,进而根据线面平行的判定定理证明即可;(2)由AB ⊥平面PAD ,可得AB PA ⊥,进而结合PA AD ⊥可得PA ⊥面ABCD ,再结合//EF PA 即可求证.【小问1详解】证明:连接AC ,∵四边形ABCD 是平行四边形,且F 是BD 的中点,∴F 是AC 的中点,∵E 为PC 的中点,∴//EF PA ,∵PA ⊂平面PAD ,EF ⊄平面PAD ,∴//EF 平面PAD .【小问2详解】证明:∵AB ⊥平面PAD ,PA ⊂平面PAD ,∴AB PA ⊥,∵PA AD ⊥,AB AD A ⋂=,,AB AD ⊂平面ABCD ,∴PA ⊥面ABCD ,∵//EF PA ,∴⊥EF 平面ABCD .17.如图,在直三棱柱111ABC A B C -中,12AB BC AA ===,E 、F 分别为AC 、1CC 的中点,11BF A B ⊥.(1)求证:1BE AC ⊥;(2)求直线1AC 与平面11ABB A 所成角的正弦值;(3)求点1A 到平面BEF 的距离.【答案】(1)证明见解析(2)33(36【解析】【分析】(1)首先通过线面垂直的判定定理得证BE ⊥平面11A ACC ,从而得证1BE AC ⊥;(2)法一:首先通过线面垂直的判定定理得证⊥BC 平面11A ABB ,从而得到1CA B ∠即为所求角,求出该角的正弦值即可得到答案.法二:由已知可证AB BC ⊥,建立空间直角坐标系,利用向量的夹角公式可求1AC 与平面11ABB A 所成角的正弦值.(3)利用空间向量法的点到面的距离公式可求解.【小问1详解】因为三棱柱111ABC A B C -是直三棱柱,所以1A A ⊥平面ABC ,因为BE ⊂平面ABC ,所以1A A BE ⊥,又因为AB BC =,E 为AC 中点,所以BE AC ⊥,因为11,A A AC A A A AC =⊂、I 平面11A ACC ,所以BE ⊥平面11A ACC ,因为1A C ⊂平面11A ACC ,所以1BE AC ⊥.【小问2详解】方法一:因为直三棱柱111ABC A B C -,所以1B B ⊥平面ABC ,因为AB ⊂平面ABC ,所以1BB AB ⊥,因为11BF A B ⊥,11//AB A B ,所以AB BF ⊥,因为11BB BF B BB BF =⊂ 、,平面11CBB C ,所以AB ⊥平面11B BCC .因为⊂BC 平面11CBB C ,所以AB BC ⊥,因为1BB BC ⊥,11,BB AB B BB AB =⊂ 、平面11ABB A ,所以⊥BC 平面11A ABB ,连结1A B ,1CA B ∠即为直线1AC 与平面11ABB A 所成角,因为12AB BC AA ===,所以AC =,1AC =,11sin 3BC CA B A C ∠==.所以1AC 与平面11ABB A 所成角的正弦值为33.方法二:因为直三棱柱111ABC A B C -,所以1B B ⊥平面ABC ,因为AB ⊂平面ABC ,所以1BB AB ⊥,因为11BF A B ⊥,11//AB A B ,所以AB BF ⊥,因为11BB BF B BB BF =⊂ 、,平面11CBB C ,所以AB ⊥平面11B BCC .因为11BC B BCC ⊂平面,所以AB BC ⊥,如图所示,以B 为原点,以1,,BA BC BB所在直线为坐标轴建立如图所示的空间直角坐标系,因为()()()12,0,2,0,2,0,0,0,0A C B ,所以1(2,2,2)CA =- ,(0,2,0)BC = ,易知⊥BC 平面11ABB A ,所以BC 为平面11ABB A 的一个法向量,设1AC 与平面11ABB A 所成角为θ,所以111·sin cos ,3CA BC CA BC CA BCθ=<>= ,所以1AC 与平面11ABB A 所成角的正弦值为33.【小问3详解】设1A 到平面BEF 的距离为d ,因为()()()11,1,0,0,2,1,2,0,2E F A ,所以()()()11,1,0,0,2,1,2,0,2BE BF BA === ,设(,,)n x y z = 为平面BEF 的一个法向量,所以·0·0BE n BF n ⎧=⎪⎨=⎪⎩ ,即020x y y z +=⎧⎨+=⎩,令1x =,则1,2y z =-=,所以平面BEF 的一个法向量(1,1,2)n =- ,所以1·BA n d n=== ,因此点1A 到平面BEF.18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,侧面PAD 为等腰直角三角形,且π2PAD ∠=,点F 为棱PC 上的点,平面ADF 与棱PB 交于点E .(1)求证://EF AD ;(2)从条件①、条件②、条件③这三个条件中选择两个作为已知,求平面PCD 与平面ADFE 所成锐二面角的大小.条件①:AE =条件②:平面PAD ⊥平面ABCD ;条件③:PB FD ⊥.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)证明见解析(2)π3【解析】【分析】(1)根据条件可以证明//AD 平面PBC ,再利用线面平行的性质定理即可证明出结论;(2)选条件①②可以证明出,,AB AD AP 两两垂直,建立空间直角坐标系A xyz -,求出相应坐标,再求出两平面的法向量,进而求出结果;选条件①③或②③同样可以证明求解.【小问1详解】证明:因为底面ABCD 是正方形,所以//AD BC ,⊂BC 平面PBC ,AD ⊄平面PBC ,所以//AD 平面PBC ,又因为平面ADF 与PB 交于点E .AD ⊂平面ADFE ,平面PBC 平面,ADFE EF =所以//EF AD .【小问2详解】选条件①②侧面PAD 为等腰直角三角形,且π,2PAD ∠=即2PA AD ==,PA AD⊥平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PA ⊂平面PAD ,则PA ⊥平面ABCD ,又ABCD 为正方形,所以,,PA AB PA AD AB AD ⊥⊥⊥.以点A 为坐标原点,,,AB AD AP 分别为x 轴,y 轴,z 轴正方向,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(0,0,2),(2,2,0),(2,0,0),(0,2,0)A P CB D因为AE =,所以点E 为PB 的中点,则(1,0,1)E 从而:(2,2,2),(0,2,0),(1,0,1)PC AD AE =-==,设平面ADFE 的法向量为:(,,)n x y z = ,则020n AE x z n AD y ⎧⋅=+=⎪⎨⋅==⎪⎩ ,令1x =,可得(1,0,1)n =- 设平面PCD 的法向量为:(,,)n a b c =,则2202220n PD b c n PC a b c ⎧⋅=-=⎪⎨⋅=+-=⎪⎩ ,令1b =,可得(0,1,1)n = 所以1cos ,2PB n PB n PB n ⋅== 则两平面所成的锐二面角为π3选条件①③侧面PAD 为等腰直角三角形,且,2PAD π∠=即2,PA AD PA AD ==⊥,AD AB PA AB A ⊥⋂=,且两直线在平面内,可得AD ⊥平面PAB ,PB ⊂平面PAB ,则AD PB ⊥.又因为,,PB FD AD FD D ⊥⋂=且两直线在平面内,则PB ⊥平面ADFE ,AE ⊂平面,ADFE 则PB AE ⊥因为PA AB =,所以PAB 为等腰三角形,所以点E 为PB 的中点又因为AE =,所以PAB 为等腰直角三角形,下面同①②选条件②③侧面PAD 为等腰直角三角形,且2PAD π∠=,即2,PA AD PA AD==⊥平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PA ⊂平面PAD ,则PA ⊥平面,ABCD ABCD 为正方形,所以,,PA AB PA AD AB AD ⊥⊥⊥.又因为,,PB FD AD FD D ⊥⋂=且两直线在平面内,则PB ⊥平面ADFE ,AE ⊂平面,ADFE 则PB AE⊥因为PA AB =,所以PAB 为等腰三角形,所以点E 为PB 的中点.下面同①②19.在梯形ABCD 中,//AB CD ,π3BAD ∠=,224AB AD CD ===,P 为AB 的中点,线段AC 与DP 交于O 点(如图1).将△ACD 沿AC 折起到△ACD '位置,使得D O OP '⊥(如图2).(1)求证:平面D AC '⊥平面ABC ;(2)线段PD '上是否存在点Q ,使得CQ 与平面BCD '所成角的正弦值为8?若存在,求出PQ PD '的值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,13【解析】【分析】(1)先证明DPBC 四边形是菱形,从而证明D O '⊥平面ABC ,再根据面面垂直的判定定理即可得证;(2)以点为原点建立空间直角坐标系,利用向量法求解即可.【小问1详解】证明:∵在梯形ABCD 中,//AB CD ,224AB AD CD ===,π3BAD ∠=,P 为AB 的中点,∴//CD PB ,CD PB =,BC DP =,∴ADP △是正三角形,四边形DPBC 为菱形,∴AC BC ⊥,AC DP ⊥,∵,AC D O D O OP ''⊥⊥,又∵,,AC OP O AC OP ⋂=⊂平面ABC ,∴D O '⊥平面ABC ,∵D O '⊂平面D AC ',∴平面D AC '⊥平面ABC .【小问2详解】存在,13PQ PD '=,理由如下:∵'D O ⊥平面BAC ,OP ⊥AC ,∴OA ,OP ,'OD 两两互相垂直,如图,以点O 为坐标原点,OA ,OP ,'OD 所在直线为x ,y ,z 轴建立空间直角坐标系.则()C ,()2,0B ,()0,0,1D ',()0,1,0P ,∴)2,1BD -'= ,)CD '= ,设平面'CBD 的一个法向量为(),,n x y z = ,则00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'',即200y z z -+=+=⎪⎩,令1x =,则0y =,z =,(1,0,n ∴= ,设()01PQ PD λλ=≤'≤ ,∵)CP = ,()0,1,1PD -'= ,∴),CQ CP PQ CP PD λλλ'=+=+=- ,设CQ 与平面'BCD 所成角为θ,则sin cos ,8CQ n CQ n CQ n λθ⋅-==== ,即23720λλ-+=,01λ≤≤ ,解得13λ=,∴线段'PD 上存在点Q ,且'13PQ PD =,使得CQ与平面'BCD 所成角的正弦值为8.。

2020-2021学年北京市海淀区高二上学期期末考试地理试题(解析版)

2020-2021学年北京市海淀区高二上学期期末考试地理试题(解析版)

北京市海淀区2020-2021学年高二上学期期末地理试题一、单选题第24届冬季奥林匹克运动会,将在2022年2月4日至2022年2月20日在中华人民共和国北京市和河北省张家口市联合举行。

这是中国历史上第一次举办冬季奥运会,北京、张家口同为主办城市,也是中国继北京奥运会、南京青奥会之后的中国第三次举办的奥运赛事。

据此完成下面小题。

1. 在冬奥会举办期间,会出现下列哪些现象( )A. 太阳直射北半球,并向北运动B. 地球公转速度越来越快C. 太阳直射南半球,并向南运动D. 正值我国春节旅游旺季2. 在冬奥会举办期间,北京哪些现象不符合实际( )A. 北京日出时间越来越早B. 北京正午太阳高度角越来越大C. 北京昼长越来越短D. 北京温度逐渐升高〖答案〗1. D 2. C〖解析〗〖1题详解〗由材料可知,冬奥会举办期间为2月4日至20日,此时太阳直射南半球,并向北运动;地球公转到近日点1月初时,速度最快,冬奥会举办期间地球公转速度越来越慢,此时为春节期间,正值我国春节旅游旺季,D正确。

〖2题详解〗由材料可知,冬奥会举办期间为2月4日至20日,此时太阳直射南半球,并向北运动,北京日出时间越来越早、北京正午太阳高度越来越大、北京昼长越来越长,北京温度逐渐升高,C不符合实际。

下图为北半球某地热力环流模式图。

读图,完成下面小题。

3. 图中甲、乙、丙、丁四地( )A. 甲地气温低于丁地B. 丁地气温低于丙地C. 乙地气压高于丙地D. 甲地气压低于乙地4. 图中P、P′两点( )A. 风向、风速相同B. 大气受力状况相同C. 地转偏向力方向相反D. 水平气压梯度力方向相反〖答案〗3. C 4. D〖解析〗〖3题详解〗读图,近地面甲地受热空气上升,气压较低,丁地受冷空气收缩下沉,气压较高,在高空,乙地空气密度增大相对为高压,丙地空气密度减小为低压,垂直方向上,海拔越高,气压越低,气温越低。

故选C。

〖4题详解〗在近地面,丁为高压,甲为低压,P地水平气压梯度力指向甲方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高二年级第一学期期末练习数学(理科) 学校: 班级: 姓名: 成绩:本试卷共100分,考试时间90分钟.一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线210x y +-=在y 轴上的截距为( )A .2-B .1-C .12- D .1 2.在空间直角坐标系中,已知点(1,0,1)A ,(3,2,1)B ,则线段AB 的中点的坐标是( )A .(1,1,1)B .(2,1,1)C .(1,1,2)D .(1,2,3)3.已知圆22310x y x m +-++=经过原点,则实数m 等于( )A .32-B .1-C .1D .324.鲁班锁是曾广泛流传与民间的智力玩具,它起源于中国古代建筑中首创的榫卯结构,不用钉子和绳子,完全靠自身机构的连接支撑,它看似简单,却凝结着不平凡的智慧.下图为鲁班锁的其中一个零件的三视图,则该零件的体积为( )A .32B .34 C.36 D .405.已知平面α,β,直线m ,n ,下列命题中假命题...是( ) A.若m α⊥,m β⊥,则//αβ B .若//m n ,m α⊥,则n α⊥C.若m α⊥,m β⊂,则αβ⊥ D .若//m α,//αβ,n β⊂,则//m n6.椭圆C :2211612x y +=的焦点为1F ,2F ,若点M 在C 上且满足122MF MF -=,则12F MF ∆中最大角为( )A .90︒B .105︒ C.120︒ D .150︒7.“0m <”是“方程22x my m +=表示双曲线”的( )A .充分而不必要条件B .必要而不充分条件C.充分必要条件 D .既不充分也不必要条件8.平面α,β,γ两两互相垂直,在平面α内有一点A 到平面β,平面γ的距离都等于1.则在平面α内与点A ,平面β,平面γ距离都相等的点的个数为( )A .1B .2 C.3 D .4二、填空题:本大题共6小题,每小题4分,共24分.9.直线l :10x y +-=的倾斜角为 ,经过点(1,1)且与直线l 平行的直线方程为 .10.10y +-=被圆221x y +=所截得的弦长为 .11.请从正方体1111ABCD A B C D -的8个顶点中,找出4个点构成一个三棱锥,使得这个三棱锥的4个面都是直角三角形,则这4个点可以是 .(只需写出一组)12.在平面直角坐标系中,已知点(1,2,0)A ,(,3,1)B x -,(4,,2)C y ,若A 、B 、C 三点共线,则x y += .13.已知椭圆1C 和双曲线2C 的中点均为原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中,则双曲线的离心率为 .14.曲线W 的方程为22322()8x y x y +=.①请写出曲线W 的两条对称轴方程 ;②请写出曲线W 上的两个点的坐标 ;③曲线W 上的点到原点的距离的取值范围是 .三、解答题 :本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.15.在平面直角坐标系xOy 中,圆C 的半径为1,其圆心在射线(0)y x x =≥上,且22OC =. (I )求圆C 的方程;(II )若直线l 过点(1,0)P 且与圆C 相切,求直线l 的方程.16.如图,在三棱锥P ABC -中,PB PC =,AB AC =,且点D 、E 分别是BC ,PB 的中点.(I )求证://DE 平面PAC ;(II )求证:平面ABC ⊥平面PAD .17.如图,平面ABCF ⊥平面FCDE ,四边形ABCF 和FCDE 是全等的等腰梯形,其中////AB FC ED ,且122AB BC FC ===,点O 为FC 的中点,点G 是AB 的中点. (I )请在图中所给的点中找出两个点,使得这两个点所在直线与平面EGO 垂直,并给出证明..; (II )求二面角O EG F --的余弦值;(III )在线段CD 上是否存在点H ,使得//BH 平面EGO ?如果存在,求出DH 的长度,如果不存在,请说明理由.18.已知抛物线W :24y x =,直线4x =与抛物线W 交于A ,B 两点.点00(,)P x y 00(4,0)x y <≥为抛物线上一动点,直线PA ,PB 分别与x 轴交于M ,N . (I )若PAB ∆的面积为4,求点P 的坐标;(II )当直线PA PB ⊥时,求线段PA 的长;(III )若PMN ∆与PAB ∆面积相等,求PMN ∆的面积.海淀区高二年级第一学期期末练习数学(理科)参考答案及评分标准一、选择题1-5:DBBCD 6、7、8、:ACB二、填空题 9.34π,20x y +-=1,,,A A B C (此答案不唯一) 12.12-13.2 14.①0x =,0y =,y x =,y x =-中的任意两条都对②(0,0),(1,1)此答案不唯一③说明:9题每空2分,14题中①②空 各给1分,③给2分三、解答题15.解:(I )设圆心(,)C a a,则OC ==解得2a =,2a =-所以圆C :22(2)(2)1x y -+-=(II )①若直线l 的斜率不存在,直线l :1x =,符合题意②若直线l 的斜率存在,设直线l 为(1)y k x =-,即0kx y k --=由题意,圆心到直线的距离1d == 解得34k = 所以直线l 的方程为3430x y --=综上所述,所求直线l 的方程为1x =或3430x y --=.16.解:(I )证明:在PBC ∆中,因为D ,E 分别是BC ,PB 的中点,所以//DE PC因为DE ∉平面PAC ,PC ⊂平面PAC所以//DE 平面PAC .(II )证明:因为PB PC =,AB AC =,D 是BC 的中点,所以PD BC ⊥,AD BC ⊥因为PD AD D =,PD ,AD ⊂平面PAD所以BC ⊥平面PAD因为BC ⊂平面ABC所以平面ABC ⊥平面PAD17.解:法一:向量法(I )F ,D 点为所求的点.证明如下:因为四边形ABCF 是等腰梯形,点O 为FC 的中点,点G 是AB 的中点,所以OG FC ⊥.又平面ABCF ⊥平面FCDE ,平面ABCF平面FCDE =FC , 所以OG ⊥平面FCDE同理取DE 的中点H ,则OH ⊥平面ABCF .分别以边OG ,OC ,OH 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由2AB =,得G ,D ,(0,E -,(0,2,0)F -,则FD =,(3,0,0)OG =,(0,OE =-.所以0FD OG ⋅=,0FD OE ⋅=又EO OG O =,所以FD ⊥平面EGO(II )由(I )知平面EGO 的一个法向量为FD =.设平面EFG 的法向量为(,,)m x y z =,则0,0,m FE m FG ⎧⋅=⎪⎨⋅=⎪⎩即020y y ⎧+=⎪+=令y =1z =-,2x =-所以(1)m =--所以cos ,FD m <>=4= 所以二面角O EG F --的余弦值为(III )假设存在点H ,使得BH //平面EOG .设DH DC λ=所以BH BD DH =+BD DC λ=+,所以0FD BH ⋅=而计算可得3FD BH ⋅=这与0FD BH ⋅=矛盾所以在线段CD 上不存在点H ,使得BH //平面EOG法二:(I )证明如下:因为四边形ABCF 是等腰梯形,点O 为FC 的中点,点G 是AB 的中点, 所以OG FC ⊥又平面ABCF ⊥平面FCDE ,平面ABCF平面FCDE FC =, 所以OG ⊥平面FCDE因为FD ⊂平面FCDE ,所以OG FD ⊥,又//ED FO ,且EF ED =,所以EFOD 为菱形,所以FD EO ⊥因为EO OG O =,所以FD ⊥平面EGO .(III )假设存在点H ,使得//BH 平面EOG由//ED OC ,所以EOCD 为平行四边形,所以//EO DC因为EO ⊂平面EOG所以//DC 平面EOG又BH DC H =,所以平面//EOG 平面BCD ,所以//BC 平面EOG ,所以//BC OG ,所以GBCO 为平行四边形,所以GB CO =,矛盾所以不存在点H ,使得//BH 平面EOG18.(I )把4x =代入抛物线方程,得到4y =±所以不妨设(4,4)A ,(4,4)B -, 所以8AB = 因为12PAB S AB d ∆=⋅1842d =⋅⋅=, 所以点P 到直线AB 的距离1d =所以点P 的横坐标03x = 代入抛物线方程得(3,23)P(II )因为PA PB ⊥,所以0AP BP ⋅=所以0000(4)(4)(4)(4)0x x y y --+-+=,所以22000816160x x y -++-=,把2004y x =代入得到20040x x -=所以00x =,04x =(舍)所以00y =,42PA =(III )直线PA 的方程为0044(4)4y y x x --=--04(4)4x y =-+,点M 横坐标0004(4)44M x x y y --=+=-- 同理PB 的方程为0044(4)4y y x x ++=--04(4)4x y =-+, 点N 横坐标0004(4)44N x x y y -=+=+ 因为PMN PAB S S ∆∆=,所以0011422MN y AB x ⋅=⋅- 所以2004(4)y x =-,解得02x = 所以8PMN PAB S S ∆∆==。

相关文档
最新文档