高中数学 第一章 常用逻辑用语 1.1 命题及其关系教学案 新人教A版选修11
人教课标版高中数学选修1-1《命题及其关系》教案-新版
第一章常用逻辑用语1.1命题及其关系一、教学目标1.核心素养培养数学抽象,形成逻辑推理能力.2.学习目标(1)了解命题及其逆命题、否命题与逆否命题.(2)命题的四种形式.3.学习重点了解命题及其逆命题、否命题与逆否命题.4.学习难点明白四种命题之间的关系,会利用两个命题互为逆否命题的关系判别命题的真假.二、教学设计(一)课前设计1.预习任务任务:阅读教材P1-P4,思考:如何判断命题的真假?四种命题之间有什么关系?2.预习自测1.判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)对数函数是增函数吗?(3)2x<15;解:(1)真命题(2)疑问句,不是命题(3)不能判断真假,不是命题2.将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.解:(1)若两条直线相交,则有且只有一个交点;(2)若两个角是对顶角,则这两个角相等;(3)若两个三角形全等,则它们的面积相等.3.命题“若a>b,则a-1>b-1”的逆否命题是()A.若a-1≤b-1,则a≤bB.若a<b,则a-1<b-1C.若a-1>b-1,则a>bD.若a≤b,则a-1≤b-1答案:A解析:命题“若p,则q”的逆否命题为“若q,则p”.(二)课堂设计1.知识回顾在生活中,我们接触了哪些具体的命题?请大家阅读教材P2中所列举的6个命题例子,并试着列举生活与学习中的命题例子.2.问题探究问题探究一命题的含义1.什么是命题?思考:三位科学家由伦敦去苏格兰参加会议,越过边境不久发现了一只黑羊.“真有意思,苏格兰的羊都是黑的”天文学家谈论道.“这种推断不可靠”数学家应道.我们只能得出”在苏格兰有一些羊是黑色的”这样的结论.逻辑学家马上接着说我们真正有把握的不过是”在苏格兰至少有一个地方有至少一只黑羊”如何判断这些话的真假呢?阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3>12;(3)3>12吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.探究:学生自我举出一些命题,并判断它们的真假.想一想:请大家根据以上结论,思考什么叫做命题?一般地,在数学中用语言、符号或式子表达的,可以__________________叫做命题(proposition),其中判断为真的语句叫做__________(true proposition),判断为假的语句叫做__________(false proposition).说明:(1)并不是任何语句都是命题,只有那些能判断真假的语句才是命题.一般来说,疑问句、祈使句、感叹句都不是命题;也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.(2)一个命题要么为真,要么为假.但不能同时既真又假,也不能模棱两可,无法判断其真假.(3)一个命题,一般可用一个小写英文字母表示,如:p 、q 、r 等. 问题探究二 命题的四种形式1.将一个命题改写成“若p ,则q ”的形式:在数学中,具有“若p 则q ”这种形式的命题是常见的,我们把这种形式命题中的p 叫做命题的 ,q 叫做命题的 .数学中有一些命题虽然表面上不是“若p 则q ”的形式,但是把它的表述作适当改变,也可以写成“若p 则q ”的形式.这样条件和结论就很清楚了. 2.四种命题的概念:原命题 逆命题 否命题 逆否命题若p 则q交换原命题的条件和结论,所得的命题是_______;同时否定原命题的条件和结论,所得的命题是_______;为了书写简便,常常把条件p 和结论q 的否定,分别记作“_______”和“_______”;交换原命题的条件和结论,并且同时否定,所得的命题是_______.这些结论用于写一个命题的逆命题、否命题与逆否命题十分方便. 问题探究三 四种命题的相互关系与真假四种命题的相互关系图:原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互一般地,四种命题的真假性,有且仅有下面四种情况:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假四种命题的真假关系:__________和__________互为逆否命题;__________和__________互为逆否命题 互为逆否的两个命题真假__________:互逆或互否的两个命题真假__________.3.课堂总结【知识梳理】命题真假的判定:对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.【重难点突破】掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题直接判断真假性不容易进行时,可以转而判断其逆否命题的真假.4.随堂检测1.命题“若a>b,则2a>2b-1”的逆否命题是________【知识点:四种命题】答案:若2a≤2b-1,则a≤b互换条件与结论,并进行否定,得其逆否命题“若2a≤2b-1,则a≤b”.2.给定下列命题:①“若k>0,则方程x2+2x-k=0有实数根”的逆否命题;②若f(x)=cos x,则f(x)为周期函数;③“若A=B,则sin A=sin B”的逆命题;④“若xy=0,则x,y中至少有一个为零”的否命题.其中真命题的序号是________.【知识点:四种命题】答案:①②④解析:对于①,因为Δ=4-4(-k)=4+4k>0,所以原命题为真.所以①是真命题.显然②是真命题.③的逆命题:“若sin A=sin B,则A=B”.是假命题.④的否命题:“若xy≠0,则x,y都不为零”.是真命题.3.“在△ABC中,若∠C=90°,则∠A,∠B全是锐角”的否命题为()A.在△ABC中,若∠C≠90°,则∠A,∠B全不是锐角B.在△ABC中,若∠C≠90°,则∠A,∠B不全是锐角C.在△ABC中,若∠C≠90°,则∠A,∠B中必有一个钝角D.以上均不对【知识点:四种命题】答案:B解析:否命题条件与结论分别是原命题的条件与结论的否定,故选B.【误区警示】解答本题易出现选A 的错误,导致出现这种错误的原因是混淆了“全是”的否定是“不全是”,而非“全不是”.4.写出命题“若a,b 都是奇数,则a +b 是偶数”的逆命题,否命题及逆否命题,并判断它们的真假. 【知识点:命题真假的判断】解:逆命题:若a +b 是偶数,则a,b 都是奇数,是假命题; 否命题:若a,b 不都是奇数,则a +b 不是偶数,是假命题; 逆否命题:若a +b 不是偶数,则a,b 不都是奇数,是真命题. (三)课后作业 ★基础型自主突破1.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .若a +b +c ≠3,则a 2+b 2+c 2<3 B .若a +b +c =3,则a 2+b 2+c 2<3 C .若a +b +c ≠3,则a 2+b 2+c 2³3 D .若a 2+b 2+c 2³3,则a +b +c =3【知识点:四种命题】 答案:A.解析:由于一个命题的否命题既否定条件又否定结论,因此原命题的否命题为“若a +b +c ≠3,则a 2+b 2+c 2<3”.2.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4 D .若tan α≠1,则α=π4 【知识点:四种命题】 答案:C解析:命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为________. 【知识点:命题真假的判断】 答案:2个解析:由a >-3⇒a >-6,但由a >-6 a >-3,故真命题为原命题及原命题的逆否命题. 4.对于命题“若数列{a n }是等比数列,则a n ≠0”,下列说法正确的是________.(填序号) ①它的逆命题是真命题;②它的否命题是真命题; ③它的逆否命题是假命题;④它的否命题是假命题. 【知识点:命题真假的判断】 答案:④5.命题“若m >1,则mx 2-2x +1=0无实根”的等价命题是________________. 【知识点:四种命题】答案:若mx 2-2x +1=0有实根,则m ≤16.在命题“若数列{n a }是等比数列,则n a ≠0”与它的逆命题、否命题、逆否命题中,真命题的个数为________.【知识点:命题真假的判断】 答案:2个解析:原命题为真命题,故其逆否命题为真命题,它的逆命题与否命题均为假命题. 7.写出命题“已知集合A ,B ,若A ∪B ≠B ,则A 不是B 的子集.”的逆命题、否命题和逆否命题,并判断它们的真假. 【知识点:命题真假的判断】答案:逆命题:已知集合A ,B ,若A 不是B 的子集,则A ∪B ≠B ,真命题; 否命题:已知集合A ,B ,若A ∪B =B ,则A ⊆B ,真命题. 逆否命题:已知集合A ,B ,若A ⊆B ,则A ∪B =B ,真命题. 8.将下列命题改写成“若p ,则q ”的形式,并判断真假. (1)等腰梯形的两条对角线相等; (2)平行四边形的两条对角线互相垂直.答案:(1)若一个梯形是等腰梯形,则它的两条对角线相等.真命题. (2)若一个四边形是平行四边形,则它的两条对角线互相垂直.假命题. 【知识点:命题真假的判断】 ★★能力型师生共研9.若命题p的逆命题是q,命题q的否命题是x,则x是p的()A.逆命题B.否命题C.逆否命题D.以上判断都不正确【知识点:四种命题之间的关系】答案:C 根据四种命题的关系,结合具体的例子可知,命题p与命题x是互为逆否命题10.若a,b∈R,且220a b+≠,则下列命题:①a,b全为0;②a,b不全为0;③a,b全不为0;④a,b至少有一个不为0.其中真命题的个数为()A.0B.1C.2D.3【知识点:四种命题的真假】答案:C解析:②④为真命题.11.命题“对于正数a,若a>1,则lg a>0”及其逆命题、否命题、逆否命题四种命题中真命题的个数为()A.0B.1C.2D.4【知识点:四种命题的真假】解:D.原命题“对于正数a,若a>1,则lg a>0”是真命题;逆命题“对于正数a,若lg a>0,则a>1”是真命题;否命题”对于正数a,若a≤1,则lg a≤0”是真命题;逆否命题“对于正数a,若lg a≤0,则a≤1”是真命题.12.下列四个命题:①“若xy=0,则x=0且y=0”的逆命题;②“正方形是矩形”的否命题;③若“ac2>bc2,则a>b”的逆命题;④若m>2,则不等式x2-2x+m>0.其中真命题的个数为()A.0B.1C.2D.3【知识点:四种命题的真假】答案:C 命题①的逆命题是“若x=0且y=0,则xy=0”,为真命题;命题②的否命题是“若一个四边形不是正方形,则它不是矩形”,为假命题;命题③的逆命题是“若a>b,则ac2>bc2”,为假命题;命题④为真命题,当m>2时,方程x2-2x+m=0的判别式Δ<0,对应二次函数图象开口向上且与x轴无交点,所以函数值恒大于0.13.命题“若函数f(x)=loga x(a>0,a≠1)在其定义域内是减函数,则loga2<0”的逆否命题是__________________.【知识点:四种命题】答案:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.14.已知命题“若m-1<x<m+1,则1<x<2”的逆命题为真命题,则m的取值范围是________.【知识点:四种命题之间的关系】答案:[1,2]解析:由已知得,若1<x<2成立,则m-1<x<m+1也成立.∴1112mm≤⎧⎨≥⎩-+∴1≤m≤2.15.给出下列语句:①空集是任何集合的真子集;②函数y=ax+1是指数函数吗?③一个数不是正数就是负数;④老师写的粉笔字真漂亮!⑤若x∈R,则x2+4x+5>0;⑥作△ABC≌△A1B1C1.其中为命题的序号是________,为真命题的序号是________.【知识点:四种命题的真假】答案:①③⑤解析:①是命题,且是假命题,因为空集是任何非空集合的真子集;②该语句是疑问句,不是命题;③是命题,且是假命题,因为数0既不是正数,也不是负数;④该语句是感叹句,不是命题;⑤是命题,因为x2+4x+5=(x+2)2+1>0恒成立,所以是真命题;⑥该语句是祈使句,不是命题.16.给出以下命题:①“正多边形都相似”的逆命题;②“若m>0,则x2+x-m=0有实根”的逆否命题.其中为真命题的是________.【知识点:四种命题的真假】 答案:②解析:①逆命题是“若两个多边形相似,则这两个多边形为正多边形”.假命题. ②∵Δ=1+4m ,若m >0,则Δ>0, ∴x 2+x -m =0有实根,即原命题为真命题. ∴逆否命题也为真命题. ★★★探究型多维突破 17.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ; ②函数y =x 3在R 上既是奇函数又是增函数; ③函数y =f (x )的图象与直线x =a 至多有一个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象.其中正确命题的序号是( ) A .①② B .①②③ C .①③④ D .①②③④【知识点:命题的真假】 答案:B解析:①②③正确.18.命题“若a >0,则二元一次不等式x +ay -1≥0表示直线x +ay -1=0的右上方区域(包含边界)”的条件p :________,结论q :_________.它是________命题(填“真”或“假”) 【知识点:命题 命题真假判断】答案:二元一次不等式x +ay -1≥0;表示直线x +ay -1=0的右上方区域(包含边界);真 19.命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是________. 【知识点:命题的真假;数学思想:转化与化归】 答案:[3,0]-解析:2230ax ax --≤恒成立,当0a =时,30-≤成立;当0a ≠时,24120a a a <⎧⎨∆=+≤⎩得30a -≤<;30a ∴-≤≤ 20.若方程x 2+2px -q =0(p ,q 是实数)没有实数根,则p +q <14. (1)判断上述命题的真假,并说明理由.(2)试写出上述命题的逆命题,并判断真假,说明理由. 【知识点:命题的真假;数学思想:转化与化归】 解:(1)上述命题是真命题.由题意,得方程的判别式Δ=4p 2+4q <0,得q <-p 2,∴p +q <p -p 2=-(p -12)2+14≤14,∴p +q <14.(2)逆命题:如果p ,q 是实数,p +q <14,则方程x 2+2px -q =0没有实数根.逆命题是假命题,如当p =1,q =-1时,p +q <14,但原方程有实数根x =-1. (四)自助餐1.下列语句中命题的个数为________. ①空集是任何非空集合的真子集. ②三角函数是周期函数吗? ③若x ÎR .,则x 2+4x +7>0. ④指数函数的图象真漂亮!【知识点:命题的判断;数学思想:逻辑推理】 答案:2个解析:①是命题;②是疑问句,故不是命题;③是命题;④是感叹句,所以不是命题. 2.在空间中,下列命题正确的是________.(填序号) ①平行直线的平行投影重合; ②平行于同一直线的两个平面平行; ③垂直于同一平面的两个平面平行; ④垂直于同一平面的两条直线平行.【知识点:命题真假的判断;数学思想:转化与化归】 解:④3.命题“若a ,b 都是奇数,则a +b 是偶数”的逆否命题是 .解:若a+b不是偶数,则a,b不都是奇数4.有下列四个命题,其中真命题有________.(填序号)①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.【知识点:命题真假的判断;数学思想:转化与化归】答案:①③解析:①的逆命题显然成立;②的否命题为“如果三角形不全等,则它们的面积不相等”,由三角形的面积公式可知②的否命题为假命题;③的逆命题中,因方程x2+2x+q=0有实根,则Δ=4-4q≥0,即q≤1,故③的逆命题为真命题;④的逆否命题与命题④同真假,④是假命题.5.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是________________;逆命题是____________;否命题是_______________.【知识点:四种命题;数学思想:逻辑推理】答案:不能被3整除的正整数,其各位数字之和不是3的倍数;能被3整除的正整数,它的各位数字之和是3的倍数;各位数字之和不是3的倍数的正整数,不能被3整除6.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中真命题有________.(填序号)【知识点:四种命题及其关系;数学思想:转化与化归】答案:①③7.给出下列命题:(1)命题“若b2﹣4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题(2)命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题(3)命题“若a>b>0,则>>0”的逆否命题(4)“若m>1,则mx2﹣2(m+1)x+(m﹣3)>0的解集为R”的逆命题其中真命题的序号为.【知识点:命题及其关系;数学思想:转化与化归】答案:(1)(2)(3)解析:命题“若b2﹣4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为“若b2﹣4ac≥0,则方程ax2+bx+c=0(a≠0)有实根”为真命题;命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题为“若△ABC为等边三角形,那么AB=BC=CA”为真命题;命题“若a>b>0,则>>0”为真命题,故其逆否命题也为真;由于“mx2﹣2(m+1)x+(m﹣3)>0的解集为R”⇔m<﹣,故“若m>1,则mx2﹣2(m+1)x+(m﹣3)>0的解集为R”的逆命题为“若mx2﹣2(m+1)x+(m﹣3)>0的解集为R,则m >1”为假命题8.把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)当m>14时,方程mx2-x+1=0无实根;(2)平行于同一平面的两条直线平行.【知识点:命题的形式,命题真假判断;数学思想:转化与化归】解:(1)命题可改写为:若m>14,则mx2-x+1=0无实根.因为当m>14时,Δ=1-4m<0,所以是真命题.(2)命题可改写为:若两条直线平行于同一平面,则它们互相平行.因为平行于同一平面的两条直线可能平行、相交或异面,所以是假命题9.写出下列命题的逆命题、否命题和逆否命题.(1)若四边形的对角互补,则该四边形是圆的内接四边形;(2)若在二次函数y=ax2+bx+c中,b2﹣4ac<0,则该函数图象与x轴有公共点.【知识点:四种命题;数学思想:逻辑推理】解:(1)逆命题:若四边形是圆的内接四边形,则该四边形的对角互补;否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形;逆否命题:若四边形不是圆的内接四边形,则该四边形的对角不互补.(2)逆命题:若二次函数y=axx2+bx+c的图象与x轴有公共点,则b2﹣4ac<0;否命题:若在二次函数y=ax2+bx+c中,b2﹣4ac≥0,则该函数图象与x轴无公共点;逆否命题:若二次函数y=ax2+bx+c的图象与x轴无公共点,则b2﹣4ac≥0.10.命题:已知a、b为实数,若关于x的不等式x2+ax+b£0有非空解集,则a2-4b³0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.【知识点:命题真假的判断;数学思想:逻辑推理】解:逆命题:已知a 、b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集. 否命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b <0. 逆否命题:已知a 、b 为实数,若a 2-4b <0,则关于x 的不等式x 2+ax +b ≤0没有非空解集. 原命题、逆命题、否命题、逆否命题均为真命题.11.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【知识点:命题真假的判断;数学思想:转化与化归】解:若命题p 为真命题,则m ≤1;若命题q 为真命题,则7-3m >1,即m <2。
高中数学_选修2-1_第一章_常用逻辑用语教案_人教A版
织金二中高二年级数学组集体备课教案执笔人:李武松 田海斌参加人:陈元凤 方健 吕招贵 周越 余平 李承华 朱枝涛 程佳 班银 教学内容:选修2-1 第一章 常用逻辑用语 课时安排:8课时 课时内容:1.1命题及其关系 第1课时 1.1.1 命题一、教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p ,则q ”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假三、教学过程<一>复习引入 1.回顾初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线b a //,则直线a 与直线b 没有公共点 . (2)2+4=7.(3)垂直于同一条直线的两个平面平行. (4)若12=x ,则1=x .(5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
<二>探讨新知4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.例题解析(P例1)2判断下列语句是否为命题?(解略)(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(-=-2.(6)15x.>让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。
人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.3 四种命题间的相互关系》优质课教案_3
1.1.3四种命题间的相互关系学习目标 1.了解四种命题的概念,会写出所给命题的逆命题、否命题和逆否命题2.认识四种命题之间的关系以及真假性之间的联系.3.会利用命题的等价性解决问题.一、知识点梳理思考给出以下四个命题:(1)当x=2时,x2-3x+2=0;(2)若x2-3x+2=0,则x=2;(3)若x≠2,则x2-3x+2≠0;(4)若x2-3x+2≠0,则x≠2.你能说出命题(1)与其他三个命题的条件与结论有什么关系吗?答案命题(1)的条件和结论与命题(2)的条件和结论恰好互换了.命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定.命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.一般地,对于两个命题,如果一个命题的条件与结论分别是另一个命题的结论和条件,那么把这两个命题叫做互逆命题.如果是另一个命题条件的否定和结论的否定,那么把这两个命题叫做互否命题.如果是另一个命题结论的否定和条件的否定,那么把这两个命题叫做互为逆否命题.把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.知识点二四种命题的关系思考1为了书写方便常把p与q的否定分别记作“綈p”和“綈q”,如果原命题是“若p,则q”,那么它的逆命题、否命题、逆否命题该如何表示?答案逆命题:若q,则p.否命题:若綈p,则綈q.逆否命题:若綈q,则綈p.思考2原命题的否命题与原命题的逆否命题之间是什么关系?原命题的逆命题与其逆否命题之间是什么关系?原命题的逆命题与其否命题呢?答案互逆、互否、互为逆否.四种命题的相互关系知识点三四种命题的真假关系思考1知识点一的“思考1”中四个命题的真假性是怎样的?答案(1)真命题,(2)假命题,(3)假命题,(4)真命题.思考2如果原命题是真命题,它的逆命题是真命题吗?它的否命题呢?它的逆否命题呢?答案原命题为真,其逆命题不一定为真,其否命题不一定为真,其逆否命题一定是真命题.(1)在原命题的逆命题、否命题、逆否命题中,一定与原命题真假性相同的是逆否命题.(2)两个命题互为逆命题或互为否命题时,它们的真假性没有关系.(3)一般地,四种命题的真假性有且仅有下面四种情况:(4).二、典型例题类型一原命题的其他三种命题例1写出以下命题的逆命题、否命题和逆否命题.(1)如果一条直线垂直于平面内的两条相交直线,那么这条直线垂直于平面;(2)如果x>10,那么x>0;(3)当x=2时,x2+x-6=0.解(1)逆命题:如果一条直线垂直于平面,那么该直线垂直于平面内的两条相交直线;否命题:如果一条直线不垂直于平面内的两条相交直线,那么该直线不垂直于平面;逆否命题:如果一条直线不垂直于平面,那么该直线不垂直于平面内的两条相交直线. (2)逆命题:如果x>0,那么x>10;否命题:如果x≤10,那么x≤0;逆否命题:如果x≤0,那么x≤10.(3)逆命题:如果x2+x-6=0,那么x=2;否命题:如果x≠2,那么x2+x-6≠0;逆否命题:如果x2+x-6≠0,那么x≠2.反思与感悟由原命题写出其他三种命题的关键是找到原命题的条件和结论,根据其他三种命题的定义,确定所写命题的条件和结论.跟踪训练1分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)实数的平方是非负数;(2)若x、y都是奇数,则x+y是偶数.解(1)原命题是真命题.逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)原命题是真命题.逆命题:若x+y是偶数,则x、y都是奇数,是假命题;否命题:若x、y不都是奇数,则x+y不是偶数,是假命题;逆否命题:若x+y不是偶数,则x、y不都是奇数,是真命题.类型二四种命题的关系例2(1)命题“若函数y=f(x)是幂函数,则它的图象不过第四象限”与命题“若函数y=f(x)不是幂函数,则它的图象过第四象限”的关系是________.(2) 命题“等底等高的两个三角形是全等三角形”与命题“全等三角形是等底等高的两个三角形”的关系是______________.(3)命题“若a>b,则c-2a<c-2b”与命题“若c-2a≥c-2b,则a≤b”的关系是________________.(4)若命题p的否命题是q,命题q的逆命题是r,则p的逆命题是r的________(填“逆命题”“否命题”或“逆否命题”).答案(1)互否命题(2)互逆命题(3)互为逆否命题(4)否命题解析(1)已知两命题的条件和结论分别否定,故它们是互否命题.(2)已知两命题的条件和结论正好互换,故它们是互逆命题.(3)已知两命题的条件和结论分别否定且正好交换,故它们是互为逆否命题.(4)由四种命题的关系可知,命题p的逆命题是r的否命题.反思与感悟四种命题关系判断的两个要领(1)在判断四种命题之间的关系时,首先要分清命题的条件和结论,再比较每个命题的条件和结论之间的关系.(2)原命题与逆否命题互为逆否命题,逆命题与否命题也互为逆否命题.跟踪训练2有下列四个命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2-x-6>0”的否命题;④“同位角相等”的逆命题.其中真命题的个数是________.答案 1解析①“若x+y≠0,则x,y不是相反数”,是真命题.②“若a2≤b2,则a≤b”,取a=0,b=-1,a2≤b2,但a>b,故是假命题.③“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,故是假命题.④“相等的角是同位角”是假命题.类型三等价命题的应用例3判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.解方法一原命题的逆否命题:已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.真假判断如下:因为抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7,若a<1,则4a-7<0.即抛物线y=x2+(2a+1)x+a2+2与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真.方法二先判断原命题的真假.因为a,x为实数,且关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,所以Δ=(2a+1)2-4(a2+2)≥0,即4a-7≥0,所以a≥1.所以原命题成立.又因为原命题与其逆否命题等价,所以逆否命题为真.反思与感悟由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.跟踪训练3证明:若a2-4b2-2a+1≠0,则a≠2b+1.证明 “若a 2-4b 2-2a +1≠0,则a ≠2b +1”的逆否命题为“若a =2b +1,则a 2-4b 2-2a +1=0”. ∵a =2b +1,∴a 2-4b 2-2a +1=(2b +1)2-4b 2-2(2b +1)+1 =4b 2+1+4b -4b 2-4b -2+1 =0.∴命题“若a =2b +1,则a 2-4b 2-2a +1=0”为真命题. 由原命题与逆否命题具有相同的真假性可知,结论正确. 三、课堂检测1.命题“实数的平方是非负数”的逆命题是___________。
【数学】1.1 命题及其关系 课件1(人教A版选修1-1)
否命题 若 p,则 q
逆否命题 若 q,则 p
相互关系
若p,则q 原命题 互 否 互逆 若q,则p 逆命题
否命题 若 p,则 q
逆否命题 若 q,则 p
相互关系
若p,则q 原命题 互 否 互逆 若q,则p 逆命题
互
为 逆
否 逆否命题 若 q,则 p
否命题 若 p,则 q
相互关系
解:(1)(3)(6)为真命题, (2)(4)(8)为假命题, (5)(7)不是命题 例1中的命题(2)(4),具有 “若P, 则q” 的形式 的形式 的形式
也可写成 “如果P,那么q” 也可写成 “只要P,就有q”
通常,我们把这种形式的命题中的P叫做命题 的条件,q叫做结论.
记做:
pq
观察与思考
2 2
x y 0,所以x y 0
2 2 2 2
综上可知,原命题成立。
小结 (1)四种命题的概念与表示形式,即如果 原命题为:若p,则q,则它的:
逆命题为:若q,则p,即交换原命题的条件和结 论即得其逆命题. 否命题为:若┐p,则┐q,即同时否定原命题的 条件和结论,即得其否命题. 逆否命题为:若┐q,则┐p,即交换原命题的条 件和结论,并且同时否定,则得其逆否命题.
若p,则q 原命题 互 否 互逆 若q,则p 逆命题 互 否
互
为 逆
否 逆否命题 若 q,则 p
否命题 若 p,则 q
相互关系
若p,则q 原命题 互 否 互逆 若q,则p 逆命题 互 否
互
为 逆
否 逆否命题 若 q,则 p
否命题 若 p,则 q
互逆
相互关系
若p,则q 原命题 互 否 互逆 若q,则p 逆命题
人教A版高中数学选修第一章命题及其关系教案新(1)
原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互第二课时 1. 1.2 命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.教学重点:四种命题的概念及相互关系.教学难点:四种命题的相互关系.教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分;(2)函数232y x x =-+有两个零点.二、讲授新课:1. 教学四种命题的概念:原命题 逆命题 否命题 逆否命题 若p ,则q 若q ,则p 若⌝p ,则⌝q 若⌝q ,则⌝p①写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假.(师生共析→学生说出答案→教师点评)②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)同位角相等,两直线平行;(2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等.(学生自练→个别回答→教师点评)2. 教学四种命题的相互关系:①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.②四种命题的相互关系图:③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系. ④结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.⑤例2 若222p q +=,则2p q +≤.(利用结论一来证明)(教师引导→学生板书→教师点评)3. 小结:四种命题的概念及相互关系.三、巩固练习:1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.(1)函数232y x x =-+有两个零点;(2)若a b >,则a c b c +>+;(3)若220x y +=,则,x y 全为0;(4)全等三角形一定是相似三角形;(5)相切两圆的连心线经过切点.2. 作业:教材P9页 第2(2)题 P10页 第3(1)题。
高中数学第一章常用逻辑用语1.1.1命题及其关系一教案新人教A版选修1
1.1.1 命题及其关系(一)教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式.教学重点:命题的改写.教学难点:命题概念的理解.教学过程:一、复习准备:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;>;(2)312>吗?(3)312(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、讲授新课:1. 教学命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?x<;(5)215(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练→个别回答→教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2. 将一个命题改写成“若p,则q”的形式:①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q 叫做命题的结论.②试将例1中的命题(6)改写成“若p,则q”的形式.③例2:将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练→个别回答→教师点评)3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式.三、巩固练习:1. 练习:教材 P4 1、2、32. 作业:教材P9 第1题精美句子1、善思则能“从无字句处读书”。
人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.1 命题》优质课教案_9
1.1.1命题一、教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题;能判断命题的真假;能把命题改写成“若p,则q”的形式。
2、过程与方法:多让学生举命题的例子,培养他们的辨析能力以及分析问题和解决问题的能力。
3、情感态度与价值观:通过学生参与,激发学生学习数学的兴趣。
二、教学重点与难点1、教学重点:命题的概念,命题的形成。
2、教学难点: 分析命题的条件和结论,判断命题的真假。
三、教学工具:多媒体、投影、黑板四、教学方法:合作探究式、启发引导式五、教学过程1.命题的定义用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.判断为真的语句叫做真命题.判断为假的语句叫做假命题.2.命题的结构从构成来看,所有的命题都由条件和结论两部分构成.在数学中,命题常写成“若p,则q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论.[情境导学]我们在初中已经学过许多数学命题,但还不适应我们今后学习的需要,本节开始我们深化对命题的研究.探究点一命题的定义思考1在初中,我们已学过许多数学命题,当时是如何定义命题的,你能举出一个例子吗?答判断一件事情的句子.例如,有两边相等的三角形是等腰三角形.思考2下面语句的表述形式有什么特点?(1)若直线a∥b,则直线a和直线b无公共点;(2)2+4=7;(3)平面内垂直于同一条直线的两条直线平行;(4)若x2=1,则x=1;(5)两个全等三角形的面积相等;(6)3能被2整除.答都是陈述句,都能判断真假.思考3数学中的定义、公理、定理、推论是命题吗?答是.小结用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.例1判断下面的语句是不是命题.(1)空集是任何集合的子集.(2)若整数a是素数,则a是奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)(-2)2=2.(6)x>15.解(1)(2)(4)(5)是命题.(3)(6)不是命题.反思与感悟并不是所有的语句都是命题,只有能判断真假的陈述句才是命题,命题首先是“陈述句”,其他语句如疑问句、祈使句、感叹句等一般都不是命题;其次是“能判断真假”,不能判断真假的陈述句不是命题,如“x≥2”、“小高的个子很高”等都不能判断真假,故都不是命题.因此,判断一个语句是否为命题,关键有两点:①是否为陈述句;②能否判断真假.跟踪训练1判断下列语句是不是命题.(1)求证3是无理数.(2)x2+2x+1≥0.(3)你是高二学生吗?(4)并非所有的人都喜欢吃苹果.(5)一个正整数不是质数就是合数.(6)若x∈R,则x2+4x+7>0.(7)x+3>0.解(1)(3)(7)不是命题,(2)(4)(5)(6)是命题.探究点二命题的分类思考1命题分哪几类?答真命题和假命题.小结判断为真的语句叫做真命题;判断为假的语句叫做假命题.例2请对例1给出的命题判断真假.解(1)(4)(5)是真命题,(2)是假命题.反思与感悟要判断一个命题是真命题,一般需要经过严格的推理论证,在判断时,要有理有据,有时应综合各种情况作出正确的判断,而判断一个命题是假命题,只需举出一个反例即可.跟踪训练2判断下列命题的真假:(1)已知a,b,c,d∈R,若a≠c,b≠d,则a+b≠c+d;(2)若x∈N,则x3>x2成立;(3)若m>1,则方程x2-2x+m=0无实数根;(4)存在一个三角形没有外接圆.解(1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x=0时,x3>x2不成立.(3)真命题:∵m>1⇒Δ=4-4m<0,∴方程x2-2x+m=0无实数根.(4)假命题.因为不共线的三点确定一个圆,即任何三角形都有外接圆.思考2数学中的定义、公理、定理、推论是真命题吗?答是.探究点三命题的结构思考1跟踪训练2中(2)(3)两个命题是什么形式?命题的常见形式是什么?答命题(2)(3)具有“若p,则q”的形式,即为命题的常见形式.小结命题由条件和结论两部分组成,它的结构形式为:“若p,则q”.也可写成:“如果p,那么q.其中p是命题的条件,q是命题的结论.思考2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则整数a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分.答(1)条件p:整数a能被2整除,结论q:整数a是偶数.(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.思考3如何把命题改写成“若p,则q”的形式.答分清条件和结论.例3将下列命题改写成“若p,则q”的形式,并判断真假.(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等.解(1)若两条直线垂直于同一条直线,则这两条直线平行.假命题.(2)若一个数是负数,则这一个数的立方是负数.真命题.(3)若两个角是对顶角,则这两个角相等.真命题.反思与感悟把一个命题改写成“若p,则q”的形式,首先要确定命题的条件和结论,若条件和结论比较隐含,要补充完整,有时一个条件有多个结论,有时一个结论需多个条件,还要注意有的命题改写形式也不唯一.跟踪训练3把下列命题改写成“若p,则q”的形式,并判断真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac>bc时,a>b;(4)角的平分线上的点到角的两边的距离相等.解(1)若一个数是实数,则它的平方是非负数.真命题.(2)若两个三角形等底等高,则这两个三角形是全等三角形.假命题.(3)若ac>bc,则a>b.假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等.真命题.1.下列语句是命题的是()A.2 014是一个大数B.若两直线平行,则这两条直线没有公共点C.对数函数是增函数吗D.a≤15答案 B解析A、D不能判断真假,不是命题;B能够判断真假而且是陈述句,是命题;C是疑问句,不是命题.2.下列命题中是真命题的是()A.互余的两个角不相等B.相等的两个角是同位角C.若a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角答案 C解析由平面几何知识可知A、B、D三项都是错误的.3.命题“函数y=2x+1是增函数”的条件是________,结论是________.答案函数为y=2x+1该函数是增函数4.下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.其中假命题的个数是________.答案 4解析①等底等高的三角形都是面积相等的三角形,但不一定全等;②当x,y中一个为零,另一个不为零时,|x|+|y|≠0;③当c=0时不成立;④菱形的对角线互相垂直,矩形的对角线不一定垂直.[呈重点、现规律]1.根据命题的意义,可以判断真假的陈述句是命题,命题的条件与结论之间属于因果关系,真命题可以给出证明,假命题只需举出一个反例即可.2.任何命题都是由条件和结论构成的,可以写成“若p,则q”的形式.含有大前提的命题写成“若p,则q”的形式,大前提应保持不变.六、课堂小结1、命题的定义2、命题的分类3、命题的结构七、作业课本后习题八、板书设计1.1.1命题一、定义二、分类三、结构。
人教版高中数学选修一教学案:第一章1.1命题及其关系
第1课时命题[ 中心必知 ]1.预习教材,问题导入依据以下纲要,预习教材P2~ P4,回答以下问题.察看教材 P2“思虑”中的 6 个语句.(1)这 6 个语句都是陈说句吗?提示:是.(2)可否判断这 6 个语句的真假性?提示:能.2.概括总结,中心必记命题及有关观点定义:用语言、符号或式子表达的,能够判断真假的陈说句命题真命题:判断为真的语句分类假命题:判断为假的语句形式:“若 p,则 q”.此中 p叫做命题的条件,q叫做命题的结论[ 问题思虑 ](1)x>5“”是命题吗?提示:不是.(2)陈说句必定是命题吗?提示:不必定.(3)命题“当x= 2 时, x2-3x+ 2= 0”的条件和结论各是什么?提示:条件: x=2;结论: x2-3x+ 2= 0.(4)“若 p 则 q”形式的命题必定是真命题吗?提示:不必定.(5)数学中的定义、公义、定理、推论是真命题吗?提示:是.[ 课前反省 ](1)命题的定义是:;(2)真、假命题的定义是:;(3)命题的条件和结论的定义是:.[思虑 ]一个语句是命题应具备哪两个因素?提示: (1)是陈说句; (2)能够判断真假.1.判断以下语句中,哪些是命题?( 链接教材 P2-例 1)1(1)函数 f(x)=x在定义域上是减函数;(2)一个整数不是质数就是合数;(3)3x2- 2x>1;(4)在平面上作一个半径为 4 的圆;(5)若 sin α= cos α,则α= 45°;(6)2100是一个大数;(7)垂直于同一个平面的两条直线必定平行吗?(8)若 x∈R,则 x2+ 2>0.[试试解答 ](1) 是陈说句,且能判断真假,是命题.(2)是陈说句,且能判断真假,是命题.(3)当 x∈R时, 3x2- 2x 与 1 的大小关系不确立,没法判断其真假,不是命题.(4)不是陈说句,不是命题.(5)是陈说句,且能判断真假,是命题.(6)是陈说句,可是“ 大数” 的标准不确立,所以没法判断其真假,不是命题.(7)不是陈说句,不是命题.(8)是陈说句,且能判断真假,是命题.(1)一个语句是命题应具备两个条件:一是陈说句;二是能够判断真假.一般来说,疑问句、祈使句、叹息句等都不是命题.(2)对于含有变量的语句,要注意依据变量的取值范围,看可否判断真假.若能,就是命题;若不可以,就不是命题.(3)还有一些语句,当前没法判断真假,但从事物的实质而论,这些语句是可鉴别真假的,特别是科学上的一些猜想等,这种语句也叫做命题.(4)数学中的定义、公义、定理和推论都是命题.1.以下语句中是命题的有________. (填序号 )①地球是太阳的一个行星.②甲型 H1N1 流感是如何流传的?③若 x,y 都是无理数,则x+ y 是无理数.④若直线 l 不在平面α内,则直线l 与平面α平行.⑤60x+ 9>4.⑥求证:3是无理数.分析:依据命题的观点进行判断.因为②是疑问句,所以②不是命题.因为⑤中自变量x的值不确立,所以没法判断其真假,故不是命题.因为⑥是祈使句,所以不是命题,故填①③④ .答案:①③④2.判断以下语句是不是命题,并说明原因.π(1) 3是有理数;(2)3x2≤ 5;(3)梯形是不是平面图形呢?(4)x2-x+ 7>0.π解: (1)“3是有理数”是陈说句,而且它是假的,所以它是命题.(2)因为没法判断“ 3x2≤ 5”的真假,所以它不是命题.(3)“梯形是不是平面图形呢?”是疑问句,所以它不是命题.212272(4)因为 x - x+ 7= x-2+4 >0,所以“ x- x+ 7>0”是真的,故是命题.2.把以下命题改写成“若p,则 q”的形式,并指出条件与结论.(链接教材P3-例 2、例 3)(1)等边三角形的三个内角相等;(2)当 a>1 时,函数y=a x是增函数;(3)菱形的对角线相互垂直.[试试解答 ] (1) 若一个三角形是等边三角形,则它的三个内角相等.此中条件p:一个三角形是等边三角形,结论q:它的三个内角相等.(2)若 a>1,则函数 y= a x是增函数.此中条件p: a>1,结论 q:函数 y= a x是增函数.(3)若四边形是菱形,则它的对角线相互垂直.此中条件p:四边形是菱形,结论q:四边形的对角线相互垂直.(1)对命题改写时,必定要找准命题的条件和结论,有些命题的形式比较简短,条件和结论不明显,写命题的条件和结论时需要合适加以增补,比如命题“ 对顶角相等”的条件应写成“ 若两个角是对顶角”,结论为“这两个角相等”.(2)在对命题改写时,要注意所表达的条件和结论的完好性,有些命题中,还要注意大前提的写法.比如,命题“在△ ABC 中,若 a>b,则 A>B”中,大前提“在△ ABC 中”是必不行少的.3.将以下命题改写为“若p,则 q”的形式.(1)当 a>b 时,有 ac2>bc2;(2)实数的平方是非负实数;(3)能被 6 整除的数既能被 3 整除也能被 2 整除;(4)已知 x, y 为正整数,当y= x+ 1 时,必有y= 4, x= 3.22(2)若一个数是实数,则它的平方是非负实数.(3)若一个数能被 6 整除,则它既能被 3 整除也能被 2 整除.(4)已知 x, y 为正整数,若y= x+ 1,则 y= 4,x= 3.3.判断以下各命题的真假,并说明原因.22(1)若 a >b,则a>b;3(2)在△ ABC 中,当 A>60 °时,必有sin A> 2 ;(3)两个向量相等,它们必定是共线向量;(4)直线 y = x 与圆 (x - 1)2+ (y + 1)2=1 相切.[试试解答 ] (1) 假命题.比如,当a =- 3,b =1 时, a 2>b 2,但 a>b 不建立.1,不知足 sin A>3 (2)假命题.比如,当 A = 150°时, A>60 °,但 sin A = 22.(3) 真命题.当两个向量相等时,它们的模相等,方向同样,切合共线向量的定义,它们必定是共线向量.(4)假命题.圆心 (1,- 1)到直线 y = x 的距离为 d = 2>1,所以直线与圆相离.(1)判断一个命题的真假时,第一要弄清命题的结构,即它的条件和结论分别是什么,把它写成 “若 p ,则 q ” 的形式,而后联系其余有关的知识,经过逻辑推理或列举反例来判断.(2)一个命题要么真,要么假,两者必居其一.当一个命题改写成式以后,判断这种命题真假的方法:若由 “p ”经过逻辑推理,得出“ 若 p ,则 q ” 的形“q ”,则可判断 “ 若 p ,则q ” 是真;判断 “ 若 p ,则 q ”是假,只要举一反例即可.4.以下命题中是真命题的是 ()A .若 3∈ A , 3∈B ,则 A ∩ B ={3} B .若 x 2+ x - 2=0,则 x = 1C .若函数 f(x)= x 2 -x ,则 f(x)有最小值- 14 D .若 log 2x<1 ,则 x<2答案: C5.判断以下命题的真假,并说明原因.(1)正方形既是矩形又是菱形;(2)当 x = 4 时, 2x + 1<0 ;(3)若 x = 3 或 x = 7,则 (x -3)(x - 7)= 0;(4)一个等比数列的公比大于1 时,该数列必定为递加数列.解: (1)是真命题,由正方形的定义知,正方形既是矩形又是菱形.(2)是假命题, x = 4 不知足 2x + 1<0.(3)是真命题,由 x = 3 或 x = 7 能获得 (x - 3)(x - 7)= 0.(4)是假命题,因为当等比数列的首项 a 1<0 ,公比 q>1 时,该数列为递减数列.——————————————[讲堂概括·感悟提升 ]———————————————1.本节课的要点是命题的真假判断,难点是命题的构成形式和命题的真假判断.2.本节课要要点掌握的规律方法(1)将命题改写成“ 若p,则q”的形式,找准命题的条件和结论,见讲 2.(2)判断命题的真假性,见讲 3.3.本节课的易错点是将含有大前提的命题写成“若 p,则 q”的形式时,大前提应保持不变,且不写在条件 p 中.课时达标训练(一)[ 即时达标对点练]题组 1命题的观点1.以下语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 0 °= 02C.求 x - 2x+ 1>0 的解集分析:选 B A 选项是疑问句,C、 D 选项中的语句是祈使句,都不是命题.2.以下语句中:① {0} ∈N;② x2+ y2= 0;③ x2>x;④ { x|x2+ 1= 0} .此中命题的个数是()A.0B.1C.2D.3分析:选 B①是命题,且是假命题;②、③不可以判断真假,不是命题;④不是陈说句,不是命题.题组 2命题的构成形式3.把命题“末位数字是 4 的整数必定能被 2 整除”改写成“若p,则 q”的形式为_______________________________________ .答案:若一个整数的末位数字是4,则它必定能被 2 整除4.命题“若a>0,则二元一次不等式x+ ay-1≥ 0 表示直线x+ay- 1= 0 的右上方区域( 包括界限 )”的条件 p:________,结论 q:________.它是 ________命题 (填“真”或“假”).分析: a>0 时,设 a= 1,把 (0, 0)代入 x+ y- 1≥ 0 得- 1≥0 不建立,∴ x+ y- 1≥ 0 表示直线的右上方地区,∴命题为真命题.答案: a>0二元一次不等式x+ ay- 1≥ 0 表示直线x+ay- 1= 0 的右上方地区 (包括边界) 真5.把以下命题改写成“若p,则 q”的形式,并判断真假,且指出p 和 q 分别指什么.(1)乘积为 1 的两个实数互为倒数;(2)奇函数的图象对于原点对称;(3)与同向来线平行的两个平面平行.解: (1)“若两个实数乘积为1,则这两个实数互为倒数”.它是真命题.p:两个实数乘积为1, q:两个实数互为倒数.(2)“若一个函数为奇函数;则它的图象对于原点对称”.它是真命题.p:一个函数为奇函数;q:函数的图象对于原点对称.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能订交.p:两个平面与同一条直线平行;q:两个平面平行.题组 3判断命题的真假6.以下命题是真命题的是()A.全部质数都是奇数B.若a> b,则 a>bC.对随意的x∈N,都有 x3>x2建立D.方程 x2+ x+1= 0 有实根分析:选 B 选项 A错,因为 2是偶数也是质数;选项 B 正确;选项 C 错,因为当 x =0 时 x3>x2不建立;选项 D 错,因为= 12-4=- 3<0 ,所以方程 x2+ x+ 1= 0 无实根.7.以下命题中真命题有()① mx2+ 2x- 1= 0 是一元二次方程;②抛物线y= ax2+ 2x- 1 与 x 轴起码有一个交点;③相互包括的两个会合相等;④空集是任何会合的真子集.A.1个 B.2 个 C.3 个 D.4 个分析:选 A ①中,当 m= 0 时,是一元一次方程;②中当=4+ 4a<0 时,抛物线与x轴无交点;③是正确的;④中空集不是自己的真子集.8.以下命题中真命题的个数为()①面积相等的三角形是全等三角形;②若 xy=0,则 |x|+ |y|= 0;③若 a>b,则 a+c>b+ c;④矩形的对角线相互垂直.A.1 B.2 C.3D. 4分析:选A①错;②中若x= 3,y= 0,则xy= 0,但 |x|+ |y|≠ 0,故②错;③正确;④中矩形的对角线不必定相互垂直.9.以下命题:① y= x2+ 3 为偶函数;② 0 不是自然数;③{ x∈N|0<x<12} 是无穷集;④假如a·b=0,那么a= 0,或 b= 0.此中是真命题的是________(写出全部真命题的序号).分析:①为真命题;②③④为假命题.答案:①[ 能力提高综合练]1.设a、b、c是随意非零平面向量,且相互不共线,则:① (a·b)c=(c·a)b;② |a|-|b|<|a-b|; ③(b·c)a-(c·a)b 不与 c 垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2,是真命题的有()A .①②B.②③C.③④D.②④分析:选 D①错,数目积不知足联合律;②对,由向量减法的三角形法例可知有|a|-|b|<|a- b|;③[( b·c)·a-(c·a)·b]·c=(b·c)(a·c)-(c·a)( b·c)=0.∴③错;④对.2.已知 a, b 为两条不一样的直线,α ,β 为两个不一样的平面,且a⊥ α,b⊥β,则以下命题中,假命题是()A .若 a∥ b,则α∥ βB.若α⊥ β,则 a⊥ bC.若 a, b 订交,则α,β订交D.若α,β订交,则a,b 订交分析:选 D由已知a⊥ α,b⊥ β,若α,β订交,a,b有可能异面.23.给出命题“方程x + ax+ 1= 0 没有实数根” ,则使该命题为真命题的 a 的一个值可以是 ()A . 4B .2C.0D.-4分析:选C方程无实根时,应知足= a2- 4<0.故a=0 时合适条件.4.已知以下三个命题:①若一个球的半径减小到本来的1,则其体积减小到本来的1;28②若两组数据的均匀数相等,则它们的标准差也相等;③直线x+ y+ 1=0 与圆x2+ y2= 1相切.2此中真命题的序号为( A .①②③B .①②C.①③ D.②③)4 R 31 4 3 分析:选 C 对于命题①,设球的半径为R ,则 3π2 =8· 3π R ,故体积减小到原来的 1,命题正确;对于命题②,若两组数据的均匀数同样,则它们的标准差不必定同样,8比如数据: 1, 3, 5 和 3, 3,3 的均匀数同样,但标准差不一样,命题不正确;对于命题③,圆 x 2 +y 2= 1的圆心(0,0) 到直线x + y +1= 0 的距离d =1=2,等于圆的半径,所以直线222与圆相切,命题正确.5.以下语句中是命题的有________(写出序号),此中是真命题的有________( 写出序号 ).①垂直于同一条直线的两条直线必平行吗?②一个数不是正数就是负数;③大角所对的边大于小角所对的边;④△ ABC 中,若∠ A =∠ B ,则 sin A = sin B ;⑤求证方程 x 2+ x + 1=0 无实根.分析:①是疑问句, 没有对垂直于同一条直线的两条直线能否平行作出判断,不是命题;②是假命题, 0 既不是正数也不是负数;③是假命题,没有限制在同一个三角形内;④是真命题;⑤是祈使句,不是命题.答案: ②③④④6.若命题“ ax 2- 2ax - 3>0 不建立”是真命题,则实数 a 的取值范围是 ________.分析: ∵ ax 2- 2ax - 3>0 不建立,∴ ax 2- 2ax -3≤ 0 恒建立.当 a =0 时,- 3≤ 0 恒建立;a<0,当 a ≠0 时,则有= 4a 2+ 12a ≤0,解得- 3≤ a<0. 综上,- 3≤ a ≤ 0.答案: [- 3, 0]7.把以下命题改写成“若p ,则 q ”的形式,并判断命题的真假.(1)奇数不可以被 2 整除;(2)当 (a - 1)2 +(b - 1)2= 0 时, a = b = 1; (3)两个相像三角形是全等三角形;(4)在空间中,平行于同一个平面的两条直线平行.解: (1)若一个数是奇数,则它不可以被 2 整除,是真命题.(2)若 (a - 1)2 +(b - 1)2= 0,则 a =b = 1,是真命题.(3)若两个三角形是相像三角形,则这两个三角形是全等三角形,是假命题.(4)在空间中,若两条直线平行于同一个平面,则这两条直线平行,是假命题.8.已知 A : 5x - 1>a , B :x>1 ,请选择合适的实数 a ,使得利用 A , B 结构的命题“若p ,则 q ”为真命题.解:若视 A 为 p ,B 为 q ,则命题 “若 p ,则 q ”为 “ 若 x>1+ a,则 x>1”. 由命题为真 51+ a命题可知 5 ≥ 1,解得 a ≥ 4;若视 B 为 p , A 为 q ,则命题 “ 若 p ,则 q ” 为 “若 x>1,则1+ a 1+ a x> 5 ”. 由命题为真命题可知 5 ≤ 1,解得 a ≤4.故 a 取任一实数均可利用A ,B 结构出一个真命题,比方这里取a =1,则有真命题 “ 若 x>1 ,则 x>2”.5第 2 课时四种命题及四种命题间的相互关系[ 中心必知 ]1. 预习教材,问题导入 依据以下纲要,预习教材P 4~ P 8 的内容,回答以下问题.察看教材 P 4“思虑”中的 4 个命题:(1)这 4 个命题的条件和结论各是什么?提示: 命题 (1) 的条件: f(x)是正弦函数,结论: f(x)是周期函数;命题 (2)的条件: f(x)是周期函数,结论: f(x)是正弦函数;命题 (3) 的条件: f(x) 不是正弦函数,结论: f(x)不是周期函数;命题 (4)的条件: f(x)不是周期函数,结论:f(x)不是正弦函数.(2)命题 (1) 的条件和结论与命题 (2) 、 (3) 、 (4)的条件和结论之间有什么关系? 提示: 命题 (1) 的条件和结论分别是命题(2) 的结论和条件;命题(1)的条件和结论分别是命题 (3) 的条件的否认和结论的否认;命题(1)的条件和结论分别是命题 (4)的结论的否认和条件的否认.(3)依据上述四种命题的观点,你能说出此中随意两个命题之间的相互关系吗?提示: 命题 (2)(3) 互为逆否命题;命题 (2)(4) 互为否命题;命题 (3)(4) 互为抗命题.2. 概括总结,中心必记(1)四种命题的观点①互抗命题: 一个命题的条件和结论分别是另一个命题的结论和条件,这样的两个命题叫做互抗命题,把此中的一个命题叫做原命题,另一个命题叫做原命题的抗命题.这②互否命题:一个命题的条件和结论恰巧是另一个命题的条件的否认和结论的否认,样的两个命题叫做互否命题,把此中的一个命题叫做原命题,另一个命题叫做原命题的否命题.③互为逆否命题:一个命题的条件和结论恰巧是另一个命题的结论的否认和条件的否定,这样的两个命题叫做互为逆否命题,把此中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.(2)四种命题结构(3)四种命题间的相互关系(4)四种命题的真假性一般地,四种命题的真假性,有且仅有下边四种状况:原命题抗命题否命题逆否命题真真真真真假假真假真真假假假假假因为抗命题和否命题也互为逆否命题,所以四种命题的真假性之间的关系以下:①两个命题互为逆否命题,它们有同样的真假性;②两个命题为互抗命题或互否命题,它们的真假性没有关系.[ 问题思虑 ](1)命题“若a≠ 0,则 ab≠ 0”的抗命题、否命题和逆否命题各是什么?提示:抗命题:若ab≠ 0,则 a≠0;否命题:若a= 0,则 ab= 0;逆否命题:若ab= 0,则 a= 0.(2)在四种命题中,原命题是固定的吗?提示:不是.原命题是指定的,是相对于其余三种命题而言的,能够把任何一个命题看作原命题,从而研究它的其余命题形式.(3)假如一个命题的抗命题为真命题,这个命题的否命题必定为真命题吗?提示:必定为真命题,因为一个命题的抗命题和否命题互为逆否命题,所以它们的真假性同样.(4)在四种命题中,真命题的个数可能会有几种状况?提示:因为原命题与逆否命题,抗命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为 0, 2, 4.[ 课前反省 ](1)四种命题的观点是:;(2)四种命题的条件和结论之间有什么关系?;(3)四种命题的真假性有什么关系?.1.写出以下命题的抗命题、否命题与逆否命题:(1)若 x>- 2,则 x+ 3>0;(2)两条对角线相等的四边形是矩形.[试试解答 ] (1) 抗命题:若x+3>0 ,则 x>- 2;否命题:若x≤ -2,则 x+3≤ 0;逆否命题:若x+3≤ 0,则 x≤ - 2.(2)原命题可写为:若一个四边形的两条对角线相等,则这个四边形是矩形.抗命题:若一个四边形是矩形,则其两条对角线相等;否命题:若一个四边形的两条对角线不相等,则这个四边形不是矩形;逆否命题:若一个四边形不是矩形,则其两条对角线不相等.写出一个命题的其余三种命题的步骤(1)剖析命题的条件和结论;(2)将命题写成“若 p,则 q”的形式;(3)依据抗命题、否命题、逆否命题各自的结构形式写出这三种命题.[注意 ]假如原命题含有大前提,在写出原命题的抗命题、否命题、逆否命题时,一定注意各命题中的大前提不变.1.分别写出以下命题的抗命题、否命题、逆否命题:(1)正数的平方根不等于 0;(2)若 x2+ y2= 0(x, y∈R),则 x, y 全为 0.解: (1)抗命题:若一个数的平方根不等于0,则这个数是正数;否命题:若一个数不是正数,则这个数的平方根等于0;逆否命题:若一个数的平方根等于0,则这个数不是正数.(2)抗命题:若x, y 全为 0,则 x2+ y2= 0(x, y∈R );否命题:若x2+ y2≠ 0(x, y∈R),则 x,y 不全为 0;逆否命题:若x,y 不全为 0,则 x2+ y2≠ 0(x, y∈R ).[思虑 1]若原命题为真,则它的抗命题、否命题的真假性是如何的?名师指津:因为原命题的真假性与它的抗命题、否命题的真假性之间没有关系,所以无法判断它的抗命题、否命题的真假性.[思虑 2]若原命题为真,它的逆否命题的真假性如何?名师指津:原命题和它的逆否命题拥有同样的真假性.2.写出以下命题的抗命题、否命题和逆否命题,并判断它们的真假.(1)在△ ABC 中,若 a>b,则 A>B;(2)相等的两个角的正弦值相等;(3)若 x2- 2x- 3=0,则 x= 3;(4)若 x∈ A,则 x∈ A∩ B.[试试解答 ] (1) 抗命题:在△ ABC 中,若 A>B,则 a>b.真命题;否命题:在△ ABC 中,若 a≤ b,则 A≤ B,真命题;逆否命题:在△ABC 中,若 A≤ B,则 a≤ b.真命题.(2)抗命题:若两个角的正弦值相等,则这两个角相等.假命题;否命题:若两个角不相等,则这两个角的正弦值也不相等.假命题;逆否命题:若两个角的正弦值不相等,则这两个角不相等.真命题.(3)抗命题:若x= 3,则 x2- 2x- 3= 0.真命题;否命题:若x2- 2x- 3≠ 0,则 x≠ 3.真命题;逆否命题:若x≠3,则 x2- 2x-3≠ 0.假命题.(4)抗命题:若x∈ A∩B,则 x∈ A.真命题;否命题:若x?A,则 x?A∩ B.真命题;逆否命题:若x?A∩ B,则 x?A.假命题.判断一个命题的真假,能够有两种方法:一是分清原命题的条件和结论,直接对原命题的真假进行判断;二是不直接写出命题,而是依据命题之间的关系进行判断,即原命题和逆否命题同真同假,抗命题和否命题同真同假,特别是当命题自己不易判断真假时,往常都经过判断其逆否命题的真假来实现.2.有以下四个命题:(1)“若 x+ y=0,则 x,y 互为相反数”的否命题;(2)“若 x>y,则 x2>y2”的逆否命题;(3)“若 x≤ 3,则 x2- x- 6>0 ”的否命题;(4)“对顶角相等”的抗命题.此中真命题的个数是()A . 0B .1C. 2 D . 3分析:选为相反数,则B (1) 原命题的否命题与其抗命题有同样的真假性,其抗命题为“ 若x,y互x+ y=0”,为真命题; (2)原命题与其逆否命题拥有同样的真假性,而原命题为假命题 (如 x=0,y=- 1),故其逆否命题为假命题;(3) 该命题的否命题为“若 x>3,则 x2-x- 6≤ 0”,很明显为假命题; (4)该命题的抗命题是“ 相等的角是对顶角”,明显是假命题.3.在命题“若 a>- 3,则 a>-6”的抗命题、否命题、逆否命题中假命题个数是________.分析:简单判断,命题“若 a>- 3,则 a>-6”为真命题,而逆否命题与原命题同真假,从而它的逆否命题也是真命题;它的否命题为“ 若a≤- 3,则a≤- 6”,是假命题,而否命题与抗命题同真假,则它的抗命题也是假命题.答案: 2[思虑 ]我们学习了四种命题的关系,那么在直接证明某一个命题为真命题有困难时,该怎么办?名师指津:能够经过证明它的逆否命题为真命题来解决.3.(1) 判断命题“已知a,x 为实数,若对于x 的不等式x2+ (2a+1)x+ a2+ 2≤ 0 的解集不是空集,则a≥ 1”的逆否命题的真假.(2)( 链接教材P8-例 4)证明:已知函数f(x)是 (-∞,+∞ )上的增函数, a、b∈R,若 f( a)+f(b)≥ f(- a)+ f(-b),则 a+ b≥0.[试试解答 ](1) 法一:原命题的逆否命题:“已知 a,x 为实数,若 a<1 ,则对于 x 的不等式 x2+ (2a+1)x+a2+ 2≤ 0 的解集为空集.”真假判断以下:22因为抛物线y= x + (2a+1)x+ a + 2 张口向上,若 a<1,则 4a-7<0.即抛物线 y= x2+ (2a+ 1)x+ a2+ 2 与 x 轴无交点.22所以对于 x 的不等式x + (2a+ 1)x+ a + 2≤ 0 的解集为空集.法二:先判断原命题的真假.因为 a, x 为实数,且对于 x 的不等式 x2+ (2a+ 1)x+ a2+ 2≤0 的解集不是空集,所以= (2a+1) 2-4(a2+ 2)≥0,即 4a- 7≥ 0,所以 a≥ 1.所以原命题建立.又因为原命题与其逆否命题等价,所以逆否命题为真.(2) 原命题的逆否命题为“ 已知函数 f( x)是 (-∞,+∞ )上的增函数, a, b∈R,若 a+ b<0,则 f(a)+ f(b)< f(- a)+ f(- b).”∵当 a+ b<0 时, a<- b, b<- a,又∵ f(x)在 (-∞,+∞ )上是增函数,∴f(a)< f(- b), f(b)<f(- a).∴f(a)+ f(b)<f( -a)+ f(- b),即逆否命题为真命题.∴原命题为真命题.因为原命题和它的逆否命题有同样的真假性,即互为逆否命题的命题拥有等价性,所以我们在直接证明某一个命题为真命题有困难时,能够经过证明它的逆否命题为真命题,来间接地证明原命题为真命题.4.证明:若m2+ n2= 2,则 m+ n≤ 2.证明:将“若 m2+ n2=2,则 m+ n≤ 2”视为原命题,则它的逆否命题为“若m+n>2,则 m2+ n2≠ 2”.221212因为 m+ n>2,则 m + n ≥2(m+ n) >2× 2 = 2,故原命题的逆否命题为真命题,从而原命题也为真命题.——————————————[讲堂概括·感悟提升 ]———————————————1.本节课的要点是四种命题的观点以及四种命题间的关系,难点是等价命题的应用.2.本节课要要点掌握的规律方法(1)写出原命题的抗命题、否命题和逆否命题,并会判断真假,见讲1和讲 2.(2)用原命题和逆否命题的等价性解决有关问题,见讲 3.3.每一个命题都由条件和结论构成,要分清条件和结论.4.判断命题的真假能够依据互为逆否的命题真假性同样来判断,这也是反证法的理论基础.课时达标训练(二)[ 即时达标对点练]题组 1四种命题的观点1.命题“若a?A,则 b∈ B”的否命题是()A .若 a?A,则 b?B C.若 b∈ B,则 a?A B.若 a∈A,则 b?B D .若 b?B,则 a?A分析:选 B命题“ 若p,则q”的否命题是“ 若綈p,则綈q”,“ ∈ ”与“ ?”互为否定形式.2.命题“若x>1,则 x>0”的抗命题是 __________ ,逆否命题是__________.答案:若 x>0,则 x>1若x≤ 0,则x≤ 13.以下命题中:①若一个四边形的四条边不相等,则它不是正方形;②正方形的四条边相等;③若一个四边形的四条边相等,则它是正方形.此中互为抗命题的有________;互为否命题的有________;互为逆否命题的有________(填序号 ).答案:②和③①和③①和②题组 2四种命题的真假判断4.以下命题中为真命题的是()A .命题“若x>y,则 x>|y|”的抗命题2C.命题“若x= 1,则 x2+x- 2= 0”的否命题2D.命题“若x >1 ,则 x>1”的逆否命题分析:选 A对A,即判断:“ 若x>|y|,则x>y” 的真假,明显是真命题.5.命题“若m= 10,则 m2= 100”与其抗命题、否命题、逆否命题这四个命题中,真命题是()A .原命题、否命题B .原命题、抗命题C.原命题、逆否命题 D .抗命题、否命题分析:选 C因为原命题是真命题,所以逆否命题也是真命题.6.命题“若x≠1,则 x2- 1≠ 0”的真假性为________.分析:可转变为判断命题的逆否命题的真假,因为原命题的逆否命题是:“ 若x2-1=0,则 x= 1”,因为 x2- 1= 0, x=±1,所以该命题是假命题,所以原命题是假命题.答案:假命题题组 3 等价命题的应用27.判断命题“若m>0,则方程 x + 2x- 3m= 0 有实数根”的逆否命题的真假.∴方程 x2+2x- 3m= 0 的鉴别式=12m+4>0.22又原命题与它的逆否命题等价,所以“若 m>0,则方程 x + 2x-3m= 0 有实数根”的逆否命题也为真.8.证明:若a2- 4b2-2a+ 1≠ 0,则 a≠2b+ 1.证明:“ 若 a2-4b2- 2a+ 1≠ 0,则 a≠ 2b+ 1”的逆否命题为:“若 a= 2b+ 1,则 a2- 4b2-2a+ 1= 0”,当 a= 2b+ 1 时, a2- 4b2-2a+ 1= (2b+1) 2-4b2-2(2b+ 1)+ 1=4b2+ 4b+ 1-4b2- 4b-2+ 1= 0,故该命题的逆否命题为真命题,从而原命题也是真命题.[ 能力提高综合练]1.若命题p 的否命题为q,命题 p 的逆否命题为r ,则 q 与 r 的关系是 ()A .互抗命题B.互否命题C.互为逆否命题D.以上都不正确分析:选 A设p为“ 若A,则B”,那么q为“ 若,则”,r为“ 若,则”.故q 与 r 为互抗命题.2.以下四个命题:①“若xy= 0,则 x=0,且 y= 0”的逆否命题;②“正方形是矩形”的否命题;③“若ac2>bc2,则 a>b”的抗命题;④若m>2 ,则不等式x2- 2x+m>0.此中真命题的个数为 ()A . 0B. 1C. 2D. 3分析:选 B命题①的逆否命题是“若x≠0,或y≠ 0,则xy≠0”,为假命题;命题②的否命题是“ 若一个四边形不是正方形,则它不是矩形”,为假命题;命题③的抗命题是“ 若a>b,则 ac2 >bc2”,为假命题;命题④为真命题,当 m>2 时,方程 x2-2x+ m= 0 的鉴别式<0,对应二次函数图象张口向上且与x 轴无交点,所以函数值恒大于0.3.有以下四个命题:①“若 x+ y= 0,则 x、 y 互为相反数”的抗命题;②“全等三角形的面积相等”的否命题;③“若 q≤ 1,则 x2+2x+ q= 0 有实根”的抗命题;④“不等边三角形的三个内角相等”的逆否命题.此中真命题的序号为()A .①②B.②③C.①③ D .③④分析:选 C 命题①:“ 若 x, y 互为相反数,则 x+ y= 0”是真命题;命题②:可考虑其抗命题“面积相等的三角形是全等三角形”是假命题,所以命题②是假命题;命题③:“ 若x2+ 2x+ q= 0 有实根,则q≤ 1”是真命题;命题④是假命题.4.已知原命题“两个无理数的积还是无理数”,则:①抗命题是“乘积为无理数的两数都是无理数”;②否命题是“两个不都是无理数的积也不是无理数”;③逆否命题是“乘积不是无理数的两个数都不是无理数”此中全部正确表达的序号是________.分析:原命题的抗命题、否命题表达正确.逆否命题应为都是无理数”.答案:①②.“ 乘积不是无理数的两个数不5.已知: A 表示点, a, b, c 表示直线,α,β表示平面,给出以下命题:① a⊥α, b?α,若 b∥ α,则 b⊥ a;② a⊥α,若 a⊥ β,则α∥ β;③a? α, b∩ α= A, c 为 b 在α上的射影,若 a⊥ c,则 a⊥ b;④ a⊥α,若 b∥ α,c∥ a,则 a⊥ b, c⊥ b.此中抗命题为真的是________.分析:④的抗命题:“ a⊥ α,若 a⊥ b,c⊥ b,则 b∥ α, c∥ a”,而 b,c 能够在α内,故不正确.答案:①②③6.已知命题“若m-1<x<m+ 1,则 1< x<2”的抗命题为真命题,则m 的取值范围是________.。
人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.3 四种命题间的相互关系》优质课教案_9
1.1.3 四种命题的相互关系【教学目标】1.使学生理解并初步掌握四种命题及其关系2.能正确叙述一个命题的其它三种命题。
3.熟知四种命题的真假关系,理解两个互为逆否的命题是等价命题。
4.初步掌握反证法证明思想和证明步骤。
【教学重难点】重点:会熟练运用四种命题及关系解决问题难点:四种命题的等价转化【教学过程】知识点回顾1、互逆命题:如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫互逆命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题。
2、互否命题:如果第一个命题的条件和结论是第二个命题的条件和结论的否定,那么这两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。
3、互为逆否命题:如果第一个命题的条件和结论分别是第二个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题。
原命题:若p 则q 逆命题:若q 则p否命题:若非p 则非q 逆否命题:若非q 则非p观察与思考四种命题之间的关系()()f x f x 1)若是正弦函数,则是周期函数。
()()f x f x 2)若是周期函数,则是正弦函数。
()()f x f x 3)若不是正弦函数,则不是周期函数。
()()f x f x 4)若不是周期函数,则不是正弦函数。
总结:(1)原命题为真,则其逆否命题一定为真。
但其逆命题、否命题不一定为真。
(2)若其逆命题为真,则其否命题一定为真。
但其原命题、逆否命题不一定为真。
原命题与逆命题未必同真假.几条结论:原命题与否命题未必同真假. 原命题与逆否命题一定同真假.原命题的逆命题与原命题的否命题一定同真假.例1:设原命题是:当c>0时,若a>b,则ac>bc. 写出它的逆命题、否命题、逆否命题。
并分别判断它们的真假。
分析:“当c>0时”是大前提,写其它命题时应该保留原命题的条件是“a>b”,结论是“ac>bc”。
高中数学第一章常用逻辑用语1.1.1命题课件新人教A版选修1-1
2.命题的分类 (1)真命题:_判__断__为__真__的语句叫做真命题; (2)假命题:_判__断__为__假__的语句叫做假命题.
命题真假的判断
判断下列命题的真假: (1)若 a>b,则 a2>b2; (2)x=1 是方程(x-2)(x-1)=0 的根; (3)当 x=4 时,2x+1<0; (4)直线 y=x 与圆(x-1)2+y2=1 相切. 【精彩点拨】 语句 ―命 定―题 义→ 判断是否是命题 证明―举 ―→反例 真假命题
(1)若整数 a 能被 2 整除,则 a 是偶数; (2)若四边形是菱形,则它的对角线互相垂直且平分. 【提示】 (1)条件 p:整数 a 能被 2 整除,结论 q:整数 a 是偶数. (2)条件 p:四边形是菱形,结论 q:四边形的对角线互相垂直且平分.
把一个命题改写成“若 p,则 q”的形式,首先要确定命题的条件和结论,若 条件和结论比较隐含,则要补充完整,有时一个条件有多个结论,有时一个结 论需多个条件,还要注意有的命题改写形式不唯一.
判断(正确的打“√”,错误的打“×”) (1)“指数函数的图象真漂亮”是命题.( ) (2)语句“陈述句都是命题”不是命题.( ) (3)命题“实数的平方是非负数”是真命题.( ) (4)“mx2+2x-1=0 是一元 P3 第 4 段,完成下列问题. 命题的结构 1.结构形式:_若__p_,__则__q_. 2.命题的条件是:命题中的__p__;命题的结论是:命题中的__q_.
判断命题真假的两个技巧 1.真命题:判断一个命题为真命题时,会涉及学习过的概念、定理、公理、 法则、公式等,借助于题目中的已知条件,经过严格科学地推理论证得出要证 的结论. 2.假命题:判断一个命题为假命题时,只要举一个反例即可.
人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.1 命题》优质课教案_2
教学准备1. 教学目标1.知识与技能(1)理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假.(2)能把命题改写成“若p,则q”的形式.(1)多列举命题的例子,培养学生的辨析能力.(2)培养学生分析问题和解决问题的能力.3.情感、态度与价值观通过学生的参与,激发学生学习数学的兴趣.2. 教学重点/难点重点:命题的概念、命题的构成.难点:分清命题的条件、结论和判断命题的真假.3. 教学用具多媒体4. 标签教学过程一、问题导思观察下列实例:①4是集合{1,2,3,4}的元素;②若x∈R,方程x2-x+2=0无实根;③2013年中国发射了嫦娥三号;④作△ABC∽△A′B′C′.上述语句中,哪些能判断真假?【提示】①,②,③能判断真假,④是祈使句不能判断真假二、典例精讲题型1 命题的判断例1.判断下列语句是否是命题,若是,判断其真假,并说明理由:(1)求证是无理数.(2)若x∈R,x2+4x+4≥0.(3)你是高一的学生吗?(4)并非所有的人都喜欢苹果.(5)若x+y和xy都是有理数,则x、y都是有理数.(6)60x+9>4.【解析】(1)是祈使句,不是命题.(2)x2+4x+4=(x+2)2≥0,可以判断真假,是命题,且是真命题.(3)是疑问句,不是命题.(4)是真命题,有的人喜欢苹果,有的人不喜欢苹果.(5)是假命题,如)都是有理数,但都是无理数.(6)不是命题,这种含有未知数的语句,未知数的取值能否使不等式成立,无法确定.【小结】判断一个语句是否是命题关键看它是否符合两个条件:“是陈述句”和“可以判断真假”,而祈使句、疑问句、感叹句等都不是命题.【变式训练】判断下列语句是否为命题,并说明理由.(1)一条直线l,与平面α不是平行就是相交;(2)若xy=1,则x,y互为倒数;(3)作平行四边形ABCD.【解】(1)是命题.直线l与平面α有相交、平行、l在平面α内三种关系,为假.(2)是命题.因xy=1时,x,y互为倒数,为真.(3)不是命题,祈使句不是命题.题型2 命题真假的判定例2.判断下列语句是否为命题,若是,判断其真假,并说明理由.(1)函数y=sin4x-cos4x的最小正周期是π;(2)若x=4,则2x+1<0;(3)一个等比数列的公比大于1时,该数列为递增数列;(4)求证:x∈R时,方程x2-x+2=0无实根.【解析】(1)(2)(3)是命题,(4)不是命题.命题(1)中,y=sin4x-cos4x=sin2x-cos2x=-cos 2x,显然其最小正周期为π,为真命题.命题(2)中,当x=4时,2x+1>0,是假命题.命题(3)中,若等比数列的首项a1<0,公比q>1时,该数列为递减数列,是假命题.(4)是一个祈使句,没有作出判断,不是命题.小结1.真命题的判定方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑论证的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.2.假命题的判定方法:通过构造一个反例来否定命题的正确性,这是判断一个命题为假命题的常用方法.【变式训练】在本例中,把不是命题的改为命题后,再把假命题改为真命题.【解】(2)是假命题,改为真命题为:若x=4,则2x+1>0.(3)是假命题,改为真命题为:一个等比数列的公比大于1,首项大于零时,该数列为递增数列.(4)不是命题,改为真命题为:若x∈R,则方程x2-x+2=0无实根.例3.把下列命题写成“若p,则q”的形式:(1)ac>bc⇒a>b;(2)已知x、y为正整数,当y=x+1时,y=3,x=2;(3)当m>时,mx2-x+1=0无实数根;(4)负数的立方是负数.【解析】(1)若ac>bc,则a>b.(2)已知x、y为正整数,若y=x+1,则y=3且x=2.(3)若m>,则mx2-x+1=0无实数根.【小结】1.解决本例问题的关键是找准命题的条件和结论,进而化成“如果p,则q”的形式.2.对于命题的大前提,应当写在前面,不要写在条件中;对于改写时语句不通顺的情况,要适当补充使语句顺畅.三、变式训练将下列命题改写成“若p,则q”的形式,并判断真假.(1)6是12和18的公约数.(2)当a>-1时,方程ax2+2x-1=0有两个不等实根.(3)负数的立方仍是负数.【解】(1)若一个数为6,则它是12和18的公约数.真命题.(2)若a>-1,则方程ax2+2x-1=0有两个不等实根.假命题.(3)若一个数是负数,则它的立方仍是负数.真命题.四、当堂检测1.下列语句为命题的是 ( )A.对角线相等的四边形 B.同位角相等C.x≥2 D.x2-2x -3<0【解析】A不是陈述句,C、D无法判断真假.【答案】 B2.下列命题中是假命题的是()A.5是15的约数B.对任意实数x,有x2<0 C.对顶角相等D.0不是奇数【解析】对任意实数x,有x2≥0,所以B为假命题.A,C,D均为真命题.【答案】 B3.把命题“垂直于同一平面的两条直线互相平行”改写成“若p,则q”的形式为________.【答案】若两条直线都垂直于同一个平面,则这两条直线互相平行4.判断下列语句是否为命题,若是命题,判断其真假.(1)x2+2x-3<0;(2)二次函数的图象太完美了!(3)4是集合{1,2,3}的元素.【解】(1)不是命题,因为在x未赋值之前,不能判断其真假;(2)感叹句,不是命题;(3)是命题,且是假命题.由于4∉{1,2,3},所以为假命题.课堂小结1.根据命题的意义,可以判断真假的陈述句是命题,命题的条件与结论之间属于因果关系,真命题可以给出证明,假命题只需举出一个反例即可.2.任何命题都是由条件和结论构成的,可以写成“若p,则q”的形式.含有大前提的命题写成“若p,则q”的形式,大前提应保持不变.板书命题。
新课标人教A版数学选修1-1全套教案
第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。
教学设想:通过学生的参与,激发学生学习数学的兴趣。
(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
人教A版高中数学选修1-1 教师用书
第一章常用逻辑用语1.1命题及其关系1.1.1命题目标导学1.了解命题的有关概念.2.会判断命题的真假.3.理解若p,则q形式的命题的条件和结论.能指出此类命题的条件和结论.‖知识梳理‖1.命题的概念一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.命题的分类判断为真的语句为真命题,判断为假的语句为假命题.3.命题的结构命题的结构形式是“若p,则q”,其中p是条件,q是结论.1.对于命题概念的理解(1)并不是任何语句都是命题,一个语句是命题应具备两个条件:①该语句是陈述句;②能够判断真假.一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有字母变量的语句,根据字母的取值范围,若能判断真假,则是命题;若不能判断真假,则不是命题.2.命题的结构形式(1)在数学中,一般用小写字母p,q,r,…等表示命题.如命题p:2是无理数;命题q:π是有理数.(2)常见的命题形式为:“若p,则q”,其中p称为命题的条件,q称为命题的结论.当一个命题不是“若p,则q”的形式时,为了找出命题的条件和结论,可以对命题改写为“若p,则q”的形式.如命题“菱形的对角线互相垂直且平分”,可以改写为:“若一个四边形是菱形,则它的对角线互相垂直且平分”.题型一命题及其真假的判断判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)垂直于同一直线的两条直线必平行吗?(2)x2+4x+5>0(x∈R);(3)x2+3x-2=0;(4)一个数不是正数就是负数;(5)4是集合{1,2,3,4}中的元素;(6)求证y=sin 2x的最小正周期为π.【思路探索】解答本题,首先要根据命题的概念,判断是否是命题,若是,再根据条件和结论的逻辑关系判断真假.【解】(1)是疑问句,不是命题.(2)是命题.因为当x∈R时,x2+4x+5=(x+2)2+1>0恒成立,可判断真假,所以是命题,而且是真命题.(3)不是命题.因为语句中含有变量x,在没给定x的值之前,无法判断语句的真假,所以不是命题.(4)是命题.因为数0既不是正数也不是负数,所以是假命题.(5)是命题.因为4∈{1,2,3,4},且是真命题.(6)是祈使句,不是命题.[名师点拨]判断一个语句是否是命题,关键在于能否判断其真假.一般地,陈述句“π是无理数”,反意疑问句“难道矩形不是平行四边形吗?”都是命题;而祈使句“求证2是无理数”,疑问句“你是高一的学生吗?”,感叹句等都不是命题.(2019·陆良八中月考)下面命题中是真命题的是() A.函数y=sin2x的最小正周期是2πB.等差数列一定是单调数列C.直线y=ax+a过定点(-1,0)D .在△ABC 中,若AB →·BC →>0,则角B 为锐角解析:A 中,y =sin 2x =12-12cos 2x ,周期T =π,A 为假命题;B 中,当公差为0时,等差数列为常数列,B 为假命题;D 中,若AB→·BC →>0,则AB →与BC →的夹角为锐角,角B 为钝角,D 为假命题,故C 正确.答案:C题型二 命题的结构形式把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)ac >bc ⇒a >b ;(2)当x 2-2x -3=0时,x =-1或x =3;(3)有两个内角之和大于90°的三角形是锐角三角形;(4)实数的平方是非负数;(5)平行于同一平面的两条直线互相平行.【思路探索】 本例所给的命题都不具备“若p ,则q ”的形式,解决这类题型既要找准命题的条件和结论,还要注意表述的完整性.【解】 (1)若ac >bc ,则a >b ,是假命题.(2)若x 2-2x -3=0,则x =-1或x =3,是真命题.(3)若一个三角形中,有两个内角之和大于90°,则这个三角形是锐角三角形,是假命题.(4)若一个数是实数,则它的平方是非负数,是真命题.(5)若两条直线平行于同一个平面,则它们互相平行,是假命题.[名 师 点 拨](1)把命题改写成“若p ,则q ”(或“如果p ,那么q ”)的形式,其中p 为命题的条件,q 为命题的结论,要注意条件及结论的完整性,将条件写在前面,结论写在后面.“若p ,则q ”是原来命题的另一种叙述形式,它的真假性等同于原来的命题.(2)不要认为假命题没有条件和结论,对于一个命题无论是真命题还是假命题,它必须由条件和结论两个部分组成,只是有些命题的条件或结论不十分明显.(3)判断一个命题的真假.“若p ,则q ”为真命题,则需要由p 经过严格推理得出q.“若p,则q”为假命题,只需举出一个反例说明即可.把下列命题改写成“若p,则q”的形式,并判断其真假.(1)能被9整除的数是偶数;(2)当x2+(y-1)2=0时,有x=0,y=1;(3)如果a>1, 那么函数f(x)=(a-1)x是增函数.解:(1)若一个数能被9整除,则这个数是偶数,是假命题.(2)若x2+(y-1)2=0,则x=0,y=1,是真命题.(3)若a>1,则函数f(x)=(a-1)x是增函数,是假命题.1.下列语句为命题的个数有()①一个数不是正数就是负数;②梯形是不是平面图形呢?③22 019是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.A.1个B.2个C.3个D.4个解析:①④是命题,故选B.答案:B2.(2019·莆田月考)下列命题中是假命题的是()A.若a·b=0,则a⊥b(a≠0,b≠0)B.若|a|=|b|,则a=bC.若ac2>bc2,则a>bD.5>3解析:B中两个向量模相等,方向不一定相同,故B为假命题.答案:B3.(2019·杭高期末)已知α,β是两个不同平面,m,n,l是三条不同直线,则下列命题正确的是()A.若m∥α,n⊥β且m⊥n,则α⊥βB.若m⊂α,n⊂α,l⊥n,l⊥m,则l⊥αC.若m∥α,n⊥β且α⊥β,则m⊥nD.若l⊥α且l⊥β,则α∥β解析:A中,α与β有可能平行,A错;B中,m与n不一定相交,B错;C 中,m与n的关系不确定,C错;D中,垂直于同一条直线的两个平面互相平行,D正确.故选D.答案:D4.指出下列命题中的条件p和结论q.(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分.解:(1)条件p:整数a能被2整除,结论q:整数a是偶数.(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.5.把下列命题改写为“若p,则q”的形式,并判断其真假.(1)函数y=x3是奇函数;(2)奇数不能被2整除;(3)与同一直线平行的两个平面平行;(4)已知x,y是正整数,当y=x+1时,y=3,x=2.解:(1)若一个函数是y=x3,则它是奇函数,它是真命题.(2)若一个数是奇数,则它不能被2整除,它是真命题.(3)若两个平面都与同一直线平行,则这两个平面平行,它是假命题.(4)已知x,y是正整数,若y=x+1,则y=3,x=2,它是假命题.一、选择题1.下列语句中命题的个数是()①2<1;②x<1;③若x<2,则x<1;④函数f(x)=x2是R上的偶函数.A.0 B.1C.2 D.3解析:①③④是命题,②不是命题.答案:D2.下面的命题中是真命题的是()A.y=sin2x的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则c a >0C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB→·BC →>0,则△ABC 是锐角三角形 解析:B 正确,由韦达定理知,x 1x 2=c a >0.答案:B3.(2019·商丘联考)给出下列命题:①若直线l ⊥平面α,直线m ⊥平面α,则l ⊥m ;②若a ,b 都是正实数,则a +b ≥2ab ;③若x 2>x ,则x >1;④函数y =x 3是指数函数.其中假命题为( )A .①③B .①②③C .①③④D .①④解析:①中,l ∥m ,①错;②为真命题;③中,由x 2>x ,得x >1或x <0,③错;④中,y =x 3是幂函数,④错.故选C.答案:C4.(2019·海林月考)已知命题“非空集合M 中的元素都是集合P 的元素”是假命题,那么下列命题:①M 中的元素都不是P 的元素;②M 中有不属于P 的元素;③M 中有P 的元素;④M 中的元素不都是P 的元素.其中真命题的个数为( )A .1B .2C .3D .4解析:“非空集合M 中的元素都是集合P 的元素”是假命题,则集合M 中有不属于P 的元素,故②④正确,故选B.答案:B5.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“相等”和“直角”B .语句“当a >4时,方程x 2-4x +a =0有实根”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题解析:D 中,当a >4时,判别式Δ=16-4a <0,此方程无实根,故是假命题. 答案:D6.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③解析:对于①,设球的半径为R ,则43π⎝ ⎛⎭⎪⎫R 23=18·43πR 3,故体积缩小到原来的18,故①正确;对于②,可举例1,3,5和3,3,3两组数据的平均数相等,但它们的标准差不同,故②错;对于③,圆心(0,0)到直线x +y +1=0的距离d =|0+0+1|2=22,等于圆x 2+y 2=12的半径,所以直线与圆相切,故③正确.答案:C二、填空题7.下列语句是命题的有________.①地球是太阳的一个行星;②数列是函数吗;③x ,y 都是无理数,则x +y 是无理数;④若直线l 不在平面α内,则直线l 与平面α平行;⑤60x +9>4;⑥求证3是无理数.解析:根据命题的定义进行判断.因为②是疑问句,所以②不是命题;因为⑤中自变量x 的值不确定,所以无法判断其真假,所以⑤不是命题;因为⑥是祈使句,所以不是命题.①③④是命题.答案:①③④8.(2019·长春月考)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π;②终边在y 轴上的角的集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ α=k π2,k ∈Z ; ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点;④把函数y =3sin ⎝⎛⎭⎪⎫2x +π3的图象向右平移π6,得到y =3sin 2x 的图象; ⑤函数y =sin ⎝ ⎛⎭⎪⎫x -π2在[0,π]上是减函数. 其中,真命题的序号是________(写出所有真命题的序号).解析:由y =sin 4x -cos 4x =sin 2x -cos 2x =-cos 2x ,得T =2π2=π,①为真命题;终边在y 轴上的角的集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =π2+k π,k ∈Z ,②为假命题;在同一坐标系中,函数y =sin x 的图象和y =x 的图象只有一个公共点,③为假命题;把函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π6,得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3=3sin 2x 的图象,④为真命题;函数y =sin ⎝ ⎛⎭⎪⎫x -π2在[0,π]上是增函数,⑤为假命题,故真命题有①④. 答案:①④9.若命题“ax 2-2ax +3>2”是真命题,则实数a 的取值范围是________. 解析:令f (x )=ax 2-2ax +1,当a =0时,f (x )=1>0成立;当a ≠0时,要使f (x )>0恒成立,只要Δ=(-2a )2-4a =4a (a -1)<0,且a >0,即0<a <1.综上知,a 的取值范围是[0,1).答案:[0,1)三、解答题10.将下列命题改写成“若p ,则q ”的形式,并判断其真假.(1)当ab =0时,a =0或b =0;(2)等腰三角形的两个底角相等;(3)末位数字是0或5的整数,能被5整除;(4)方程x 2+x +1=0有两个实数根.解:(1)若ab =0,则a =0或b =0,是真命题.(2)若一个三角形是等腰三角形,则两个底角相等,是真命题.(3)若一个整数的末位数字是0或5,则能被5整除,是真命题.(4)若一个方程为x 2+x +1=0,则它有两个实数根,是假命题.11.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.解:由x 2-2x -2≥1,得x 2-2x -3≥0,解得x ≤-1或x ≥3,即命题p :x ≤-1或x ≥3.而命题q :0<x <4,由命题p 是真命题,命题q 是假命题,得⎩⎨⎧x ≤-1或x ≥3,x ≤0或x ≥4,所以x ≤-1或x ≥4.故实数x 的取值范围是(-∞,-1]∪[4,+∞).12.已知命题A :2x -1>a ;命题B :x >3.试确定实数a 的一个值,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解:若A 为条件,则命题“若p ,则q ”为“若x >1+a 2,则x >3”,由命题为真命题,得1+a 2≥3,即a ≥5.若B 为条件,则命题“若p ,则q ”为“若x >3,则x >1+a 2”,由命题是真命题,得1+a 2≤3,即a ≤5.由以上分析知,取a =5,符合题意.13.(2019·上海七宝月考)已知函数f (x )=cos x -|sin x |,那么下列命题中假命题是( )A .f (x )是偶函数B .f (x )在[-π,0]上恰有一个零点C .f (x )是周期函数D .f (x )在[-π,0]上是单调函数解析:∵f (-x )=cos(-x )-|sin(-x )|=cos x -|sin x |=f (x ),∴f (x )为偶函数,A正确;由f (x )=cos x -|sin x |=0,x ∈[-π,0]时,可得cos x =-sin x ,∴x =-π4,即f (x )在[-π,0]上恰有一个零点,B 正确;∵f (x +2π)=cos(x +2π)-|sin(x +2π)|=cos x -|sin x |=f (x ),∴f (x )为周期函数,C 正确;当x ∈[-π,0]f (x )=cos x +sinx =2sin ⎝ ⎛⎭⎪⎫x +π4,f (x )在[-π,0]上不单调,D 为假命题,故选D. 答案:D1.1.2 四种命题1.1.3 四种命题间的相互关系目 标 导 学1.了解四种命题的概念.2.认识四种命题的结构形式,会写某命题的逆命题、否命题和逆否命题.3.认识四种命题之间的关系以及真假性之间的关系.4.能利用命题的等价性解决简单问题.‖知识梳理‖1.四种命题的概念名称栏目内容定义 表示形式 互逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题原命题为“若p ,则q ”;逆命题为“若q ,则p ” 互否命题 对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p ,则q ”;否命题为“若﹁p ,则﹁q ” 互为逆否对于两个命题,其中一个命题的条原命题为“若p ,则2.四种命题的相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.1.四种命题的表示形式一般地,用p 和q 分别表示一个命题的条件和结论,用﹁p 和﹁q 分别表示p 和q 的否定,于是四种命题的形式为:原命题:若p ,则q (p ⇒q );逆命题:若q ,则p (q ⇒p );否命题:若﹁p,则﹁q (﹁p ⇒﹁q );逆否命题:若﹁q ,则﹁p (﹁q ⇒﹁p ).注:命题的四种形式中,哪一个为原命题是相对的,而不是绝对的.2.命题的真假判断一个命题要么是真命题,要么是假命题,不能既真又假,也不能模棱两可,无法判断其真假.判断一个命题为真命题,需要逻辑推理(证明),判断一个命题是假命题,只需举出一个反例即可.在四种命题中,互为逆否的两个命题同真或同假,称为等价命题.原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题中真假命题的个数一定为偶数个.题型一四种命题的概念写出下列命题的逆命题、否命题、逆否命题.(1)若a<1,则方程x2+2x+a=0有实根;(2)若ab是正整数,则a,b都是正整数;(3)若a+5是有理数,则a是无理数.【思路探索】首先弄清楚原命题的条件和结论,再写出其逆命题、否命题、逆否命题.【解】(1)原命题的逆命题为:若方程x2+2x+a=0有实根,则a<1.否命题为:若a≥1,则方程x2+2x+a=0没有实根.逆否命题为:若方程x2+2x+a=0没有实根,则a≥1.(2)原命题的逆命题为:若a,b都是正整数,则ab是正整数;否命题为:若ab不是正整数,则a,b不都是正整数;逆否命题为:若a,b不都是正整数,则ab不是正整数.(3)原命题的逆命题为:若a是无理数,则a+5是有理数.否命题为:若a+ 5 不是有理数,则a不是无理数.逆否命题为:若a不是无理数,则a+5不是有理数.[名师点拨]若一个命题不是“若p,则q”的形式,则先改写为“若p,则q”的形式,然后再按定义写出其逆命题、否命题和逆否命题.(2019·江门月考)“若a≥2,则a2≥4”的否命题是() A.若a≤2,则a2≤4B.若a≥2,则a2≤4C.若a<2,则a2<4D.若a≥2,则a2<4解析:否命题既否定条件,又否定结论,所以“若a≥2,则a2≥4”的否命题为“若a<2,则a2<4”,故选C.答案:C题型二四种命题的相互关系下列说法中,不正确的是()A.“若p,则q”与“若q,则p”互为逆命题B.“若﹁p,则﹁q”与“若q,则p”互为逆否命题C.“若﹁p,则﹁q”是“若p,则q”的逆否命题D.“若﹁p,则﹁q”与“若p,则q”互为否命题【思路探索】题目中每个选项都给了两个命题,应从四种命题的概念入手进行判断.【解析】根据四种命题的概念知,A、B、D正确;C错误.【答案】C[名师点拨]原命题:若p,则q,逆命题:若q,则p,否命题:若﹁p,则﹁q,逆否命题:若﹁q,则﹁p,熟记四种命题的形式,是解决此类问题的关键.若命题A的否命题为B,命题A的逆否命题为C,则B与C的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确解析:设命题A为:“若p,则q”,依题意得,命题B为:“若﹁p,则﹁q”,命题C为:“若﹁q,则﹁p”,所以B与C为互逆命题.答案:A题型三四种命题的真假判断有下列四个命题:①“若b2=ac,则a,b,c成等比数列”的否命题;②“若m=2,则直线x+y=0与直线2x+my+1=0平行”的逆命题;③“已知a,b是非零向量,若a·b>0,则a与b方向相同”的逆否命题;④“若x≤3,则x2-x-6>0”的逆否命题.其中为真命题的个数是()A.1B.2C.3D.4【思路探索】先正确的写出相对应的命题,再判断真假.也可以根据互为逆否命题同真同假直接进行判断.【解析】命题“若b2=ac,则a,b,c成等比数列”的逆命题为:“若a,b,c成等比数列,则b2=ac”,是真命题.因为逆命题与否命题等价,所以①正确;因为②中原命题的逆命题为:“若直线x+y=0与直线2x+my+1=0平行,则m=2”,是真命题,故②正确;对于③可考虑原命题.设a=(0,1),b=(1,1),则a·b=1>0,但a与b不同向,所以原命题为假命题,故③为假命题;④中命题“若x≤3,则x2-x+6>0”的逆否命题为:“若x2-x+6≤0,则x>3”,是假命题,故④为假命题.【答案】B[名师点拨](1)判断四种命题的真假,可以通过逻辑证明或举反例进行判断.(2)判断四种命题的真假可以利用真假性关系:原命题与逆否命题等价,逆命题与否命题等价,它们同真同假,在只要求判断真假的题目中,可以不一一写出逐个判断,利用等价性判断更为方便简捷.(2019·铜陵一中期中)下列命题中为真命题的是() A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题解析:A中,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,为真命题;B中,命题“若x>1,则x2>1”的逆命题为“若x2>1,则x>1”,为假命题,所以其否命题为假命题;C中,命题的逆命题为“若x2+x-2=0,则x=1”,为假命题,所以其否命题为假命题;D中,命题“若x2>1,则x>1”为假命题,则逆否命题为假命题,故选A.答案:A题型四等价命题的应用判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.【思路探索】解法一:由已知命题,写出逆否命题,再判断真假;解法二:判断原命题的真假,即得逆否命题的真假.【解】解法一:原命题的逆否命题:已知a,x为实数,若a<1,则关于x 的不等式x2+(2a+1)x+a2+2≤0的解集为空集.真假判断过程如下:抛物线y=x2+(2a+1)x+a2+2开口向上,Δ=(2a+1)2-4(a2+2)=4a-7.若a<1,则4a-7<0.所以抛物线y=x2+(2a+1)x+a2+2与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故逆否命题为真命题.解法二:判断原命题的真假.已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则Δ=(2a+1)2-4(a2+2)≥0,即4a-7≥0,得a≥74,从而a≥1成立.所以原命题为真命题.又因为原命题与其逆否命题等价,所以逆否命题为真命题.[名师点拨]由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的两个命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题来间接地证明原命题为真命题.已知奇函数f(x)是定义在R上的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a+b≥0.证明:原命题的逆否命题是:若a+b<0,则f(a)+f(b)<0.∵a+b<0,∴a<-b.又∵f(x)在R上为增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b).∴f(a)<-f(b),即f(a)+f(b)<0.∴原命题的逆否命题为真命题.故原命题成立.1.(2019·分宜中学月考)命题“若a>b,则a-1>b-1”的否命题是() A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1解析:否命题应同时否定条件和结论.答案:C2.命题“若p不正确,则q不正确”的逆命题的等价命题是() A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确解析:由于原命题的逆命题与否命题互为等价命题,故D正确.答案:D3.(2019·贵阳月考)下列有关命题的说法正确的是()A.命题“若xy=0,则x=0”的否命题为“若xy=0,则x≠0”B.“若sin α=12,则α=π6”的逆否命题为真命题C.“若x+y=0,则x,y互为相反数”的逆命题为真命题D.命题“若cos x=cos y,则x=y”的逆否命题为真命题解析:C中,原命题的逆命题为“若x,y互为相反数,则x+y=0”,是真命题.答案:C4.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②若一个四边形对角互补,则它内接于圆;③正方形的四条边相等;④圆内接四边形对角互补;⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有____________;互为否命题的有____________;互为逆否命题的有____________.解析:命题③可以改写为:若一个四边形是正方形,则它的四条边相等;命题④可以改写为:若一个四边形是圆内接四边形,则它的对角互补;命题⑤可以改写为:若一个四边形的对角不互补,则它不内接于圆.其中②和④,③和⑥互为逆命题;①和⑥,②和⑤互为否命题;①和③,④和⑤互为逆否命题.答案:②和④,③和⑥①和⑥,②和⑤①和③,④和⑤5.写出命题“如果|x-2|+(y-1)2=0,则x=2且y=1”的逆命题、否命题、逆否命题,并判断它们的真假.解:逆命题:如果x=2且y=1,则|x-2|+(y-1)2=0.真命题.否命题:如果|x-2|+(y-1)2≠0,则x≠2或y≠1.真命题.逆否命题:如果x≠2或y≠1,则|x-2|+(y-1)2≠0.真命题.一、选择题1.下列说法中正确的是()A.若一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.若一个命题的否命题为真,则它的逆命题为真解析:一个命题的否命题与逆命题互为逆否命题,同真同假.答案:D2.与命题“若实数a>1,则函数y=a x是增函数”互为逆否命题的是() A.若实数a<1,则函数y=a x不是增函数B.若实数a≤1,则函数y=a x不是增函数C.若函数y=a x是增函数,则实数a>1D.若函数y=a x不是增函数,则实数a≤1解析:写逆否命题否定并交换条件和结论即可.答案:D3.有以下命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B =B,则A⊆B”的逆否命题.其中真命题为()A.①②B.②③C.④D.①②③解析:①②③显然正确;若A∩B=B,则B⊆A,原命题为假命题,故其逆否命题也为假命题.答案:D4.原命题为“若a n+a n+12<a n,n∈N*,则{a n}为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是() A.真、真、真B.假、假、真C.真、真、假D.假、假、假解析:∵a n+a n+12<a n⇔a n+1<a n⇔{a n}为递减数列,∴原命题与其逆命题都是真命题,所以逆否命题与否命题也是真命题,故选A.答案:A5.下列有关命题的说法正确的是()A.“若x>1,则2x>1”的否命题为真命题B.“若cos β=1,则sin β=0”的逆命题是真命题C.“若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题D.命题“若x>1,则x>a”的逆命题为真命题,则a>0解析:在A中,“若x≤1,则2x≤1”,是假命题,故A不正确;在B中,“若sin β=0,则cos β=1”,是假命题,故B不正确;在C中,原命题为假命题,所以其逆否命题也为假命题,故C正确;在D中,由x>a⇒x>1,则a>1,故D不正确.答案:C6.下列判断中不正确的是()A.命题“若A∩B=B,则A∪B=A”的逆否命题为真命题B .“矩形的两条对角线相等”的否命题为假命题C .“已知a ,b ,m ∈R ,若am 2<bm 2,则a <b ”的逆命题是真命题D .“若x ∈N *,则(x -1)2>0”是假命题解析:A 中原命题为真,故其逆否命题为真;B 中否命题为“若四边形不是矩形,则对角线不相等”为假命题;C 中逆命题为“已知a ,b ,m ∈R ,若a <b ,则am 2<bm 2”为假命题;D 中当x =1时,(x -1)2=0,是假命题.答案:C二、填空题7.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:当m =3,n =4时,m >-n ,但m 2<n 2,故原命题为假命题,所以其逆否命题为假命题;当m =-4,n =3时,m 2>n 2,但m <-n ,故逆命题为假命题,所以其否命题为假命题,所以假命题的个数是3.答案:38.设有两个命题:p :关于x 的不等式mx 2+1≥0的解集是R ;q :函数f (x )=log m x 是减函数(m >0,且m =0,m ≥1).若这两个命题中有且仅有一个是真命题,则实数m 的取值范围是________. 解析:若p 为真,则m ≥0,若q 为真,则0<m <1,若p 与q 中一真一假,则实数m 的取值范围是m =0或m ≥1.答案:[1,+∞)∪{0}9.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范围是____________.解析:由题意得⎩⎨⎧1+2-m ≤0,4+4-m >0,∴3≤m <8. 答案:[3,8)三、解答题10.判断命题“若m >0,则方程x 2+2x -3m =0有实数根”的逆否命题的真假.解:∵m >0,∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.11.设M是一个命题,它的结论是q:x1或x2是方程x2+2x-3=0的两个根,M的逆否命题的结论是﹁p:x1+x2≠-2,或x1x2≠-3.(1)写出M;(2)写出M的逆命题、否命题、逆否命题.解:(1)设命题M表述为:若p,则q,那么由题意知,其中的结论q为:x1或x2是方程x2+2x-3=0的两个根.而条件p的否定形式﹁p为:x1+x2≠-2或x1x2≠-3,故﹁p的否定形式,即p为:x1+x2=-2且x1x2=-3.所以命题M为:若x1+x2=-2且x1x2=-3,则x1或x2是方程x2+2x-3=0的两个根.(2)M的逆命题为:若x1或x2是方程x2+2x-3=0的两个根,则x1+x2=-2且x1x2=-3.否命题为:若x1+x2≠-2或x1x2≠-3,则x1或x2不是方程x2+2x-3=0的两个根.逆否命题为:若x1或x2不是方程x2+2x-3=0的两个根,则x1+x2≠-2或x1x2≠-3.12.设p:m-2m-3≥2,q:关于x的不等式x2-6x+m2≤0的解集为空集,试确定m的值,使p与q同时成立.解:由m-2m-3≥2,得m-2m-3-2≥0,即m-4m-3≤0,∴3<m≤4,∴当3<m≤4时,p成立.∵关于x的不等式x2-6x+m2≤0的解集为空集.∴Δ=(-6)2-4m2<0,即m2>9,∴m<-3或m>3.∴当m<-3或m>3时,q成立.若p与q同时成立,则3<m≤4.即当3<m≤4时,使p与q同时成立.13.设△ABC的三边分别为a,b,c,在命题“若a2+b2≠c2,则△ABC不是直角三角形”及其逆命题中()A.原命题真,逆命题假B.原命题假,逆命题真C.两个命题都真D.两个命题都假解析:原命题“若a2+b2≠c2,则△ABC不是直角三角形”是假命题,而逆命题“若△ABC不是直角三角形,则a2+b2≠c2”是真命题.故选B.答案:B1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件目标导学1.理解充分条件、必要条件、充要条件的意义.2.会判断所给条件是充分条件、必要条件还是充要条件.3.会求或证明命题的充要条件.‖知识梳理‖1.推出关系一般地,命题“若p,则q”为真,可记作“p⇒q”;“若p,则q”为假,可记作p q.2.充分条件与必要条件一般地,如果p⇒q,那么称p是q的充分条件,同时称q是p的必要条件.3.充要条件如果p⇒q且q⇒p,那么称p是q的充分必要条件,简称p是q的充要条件,记作p⇔q.同时q也是p的充要条件.1.对充分条件,必要条件的理解若p⇒q,则说p是q的充分条件,所谓“充分”,即要使q成立,有p成立就足够了;q是p的必要条件,所谓“必要”,即q是p成立的必不可少的条件,。
高中数学 第一章 常用逻辑用语 1.1 命题及其关系导学案 新人教A版选修1-1
C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交
二、填空题
5.设a、b、c是空间的三条直线,下面给出四个命题:
①若a⊥b,b⊥c,则a∥c;
②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;
③若a和b相交,b和c相交,则a和c也相交;
(1)负数的平方是正数;
(2)正方形的四条边相等
跟踪训练3:
把下列命题表示为“若p,则q”的形式,并判断真假.
(1)相似三角形的面积相等;
(2)平行于同一个平面的两平面平行;
(3)正弦函数是周期函数.
疑难误区:
例4:将下面的命题改写成“若p,则q”的形式.矩形的对角线相等且互相平分.
课后作业:
一、选择题
④若a和b共面,b和c共面,则a和c也共面.
其中真命题的个数是________.
6.下列语句中是命题的有________,其中是真命题的有________(填序号)
①“等边三角形难道不是等腰三角形吗?”
②“垂直于同一条直线的两条直线必平行吗?”
③“角所对的边大于小角所对的边”;
1 .一般地,我们把用语言、符号或式子表达的,可以__________的陈述句叫做命题.
2.判断为真的语句叫__________,判断为假的语句叫__________.
3.数学中的定义、公理、公式、定理都是命题,但命题不一定都是定理,因为命题有_______之分,而定理是_____命题.
牛刀小试
1.下列语句不是 命题的是()
1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这4句诗中,可作为命 题的是()
431.高二数学教案:第一章 常用逻辑用语 1.1~1《命题》(人教A版选修2-1)
课题:命题课时:001课型:新授课教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教学过程一.复习回顾引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?二.新课教学下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
抽象、归纳:1.命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.例1:判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
数学:1.1《命题及关系》课件(新人教A版选修1-1)
例3 将下列命题改写成“若p,则q”的形式,并判断 真假; (1)垂直于同一条直线的两条直线平行; (2)负数的立方是负数; (3)对顶角相等; (4)等腰三角形两腰的中线相等;
(5)偶函数的图像关于y轴对称;
(6)垂直于同一个平面的两个平面平行.
下列四个命题中,命题(1)与命题(2)(3)(4)的条件和 结论之间分别有什么关系?
假命题
22 2 ;
真命题
(6)x>15.
判断 一个语句是不是命题,关键判断:(1)是否为陈 述句;(2)能否判断真假。
例1 判断下列语句中哪些是命题?是真命题还是 假命题? (1)空集是任何集合的子集; (2)若整数a是素数,则a是奇数; (3)指数函数是增函数吗? (4)若空间中两条直线不相交,则这两条直线平行; (5)
1.1.1命题的概念
一般地,在数学中,我们把用语言、符 号或式子表达的,可以判断真假的陈述句 叫做命题. 其中判断为真的语句叫做真命题,判 断为假的语句叫做假命题.
例 判断下列语句中哪些是命题?是真命题还是假 命题? (1)x>7; (2)如果a,b是正实数且 a b , 那么a b;
2 2
(2)若四边形是菱形,则它的对角线互相垂直且平分. 解:(1)条件p:整数a能被2整除,结论q:整数a是偶数;
(2)条件p:四边形是菱形,结论q:四边形的对角线互 相垂直且平分. 有一些命题表面上不是“若p,则q”的形式,但 可以改写成“若p,则q”的形式,例如:
垂直于同一条直线的两个平面平行.
若两个平面垂直于同一条直线,则这两个平面平行.
原命题与其逆 原命题与其逆 原命题与其否 命题的真假是 否命题的真假 命题的真假是 否存在相关性 是否存在相关 否存在相关性 呢? 性呢? 呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 命题及其关系第1课时 命 题[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 2~P 4,回答下列问题. 观察教材P 2“思考”中的6个语句. (1)这6个语句都是陈述句吗? 提示:是.(2)能否判断这6个语句的真假性? 提示:能.2.归纳总结,核心必记 命题及相关概念命题⎩⎪⎨⎪⎧定义:用语言、符号或式子表达的,可以判断真假的陈述句分类⎩⎪⎨⎪⎧真命题:判断为真的语句假命题:判断为假的语句形式: “若p ,则q ”.其中p 叫做命题的条件,q 叫做 命题的结论[问题思考](1)“x >5”是命题吗? 提示:不是.(2)陈述句一定是命题吗? 提示:不一定.(3)命题“当x =2时,x 2-3x +2=0”的条件和结论各是什么? 提示:条件:x =2;结论:x 2-3x +2=0. (4)“若p 则q ”形式的命题一定是真命题吗? 提示:不一定.(5)数学中的定义、公理、定理、推论是真命题吗? 提示:是.[课前反思](1)命题的定义是: ;(2)真、假命题的定义是: ;(3)命题的条件和结论的定义是: .[思考] 一个语句是命题应具备哪两个要素? 提示:(1)是陈述句;(2)可以判断真假. 讲一讲1.判断下列语句中,哪些是命题?(链接教材P 2-例1) (1)函数f (x )=1x在定义域上是减函数;(2)一个整数不是质数就是合数; (3)3x 2-2x >1;(4)在平面上作一个半径为4的圆; (5)若sin α=cos α,则α=45°; (6)2100是一个大数;(7)垂直于同一个平面的两条直线一定平行吗? (8)若x ∈R ,则x 2+2>0.[尝试解答] (1)是陈述句,且能判断真假,是命题. (2)是陈述句,且能判断真假,是命题.(3)当x ∈R 时,3x 2-2x 与1的大小关系不确定,无法判断其真假,不是命题. (4)不是陈述句,不是命题.(5)是陈述句,且能判断真假,是命题.(6)是陈述句,但是“大数”的标准不确定,所以无法判断其真假,不是命题. (7)不是陈述句,不是命题.(8)是陈述句,且能判断真假,是命题.(1)一个语句是命题应具备两个条件:一是陈述句;二是能够判断真假.一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有变量的语句,要注意根据变量的取值范围,看能否判断真假.若能,就是命题;若不能,就不是命题.(3)还有一些语句,目前无法判断真假,但从事物的本质而论,这些语句是可辨别真假的,尤其是科学上的一些猜想等,这类语句也叫做命题.(4)数学中的定义、公理、定理和推论都是命题. 练一练1.下列语句中是命题的有________.(填序号) ①地球是太阳的一个行星. ②甲型H1N1流感是怎样传播的?③若x ,y 都是无理数,则x +y 是无理数.④若直线l 不在平面α内,则直线l 与平面α平行. ⑤60x +9>4.⑥求证:3是无理数.解析:根据命题的概念进行判断.因为②是疑问句,所以②不是命题.因为⑤中自变量x 的值不确定,所以无法判断其真假,故不是命题.因为⑥是祈使句,所以不是命题,故填①③④.答案:①③④2.判断下列语句是否是命题,并说明理由. (1)π3是有理数;(2)3x 2≤5;(3)梯形是不是平面图形呢? (4)x 2-x +7>0.解:(1)“π3是有理数”是陈述句,并且它是假的,所以它是命题.(2)因为无法判断“3x 2≤5”的真假,所以它不是命题. (3)“梯形是不是平面图形呢?”是疑问句,所以它不是命题.(4)因为x 2-x +7=⎝ ⎛⎭⎪⎫x -122+274>0,所以“x 2-x +7>0”是真的,故是命题.讲一讲2.把下列命题改写成“若p ,则q ”的形式,并指出条件与结论.(链接教材P 3-例2、例3)(1)等边三角形的三个内角相等;(2)当a>1时,函数y=a x是增函数;(3)菱形的对角线互相垂直.[尝试解答] (1)若一个三角形是等边三角形,则它的三个内角相等.其中条件p:一个三角形是等边三角形,结论q:它的三个内角相等.(2)若a>1,则函数y=a x是增函数.其中条件p:a>1,结论q:函数y=a x是增函数.(3)若四边形是菱形,则它的对角线互相垂直.其中条件p:四边形是菱形,结论q:四边形的对角线互相垂直.(1)对命题改写时,一定要找准命题的条件和结论,有些命题的形式比较简洁,条件和结论不明显,写命题的条件和结论时需要适当加以补充,例如命题“对顶角相等”的条件应写成“若两个角是对顶角”,结论为“这两个角相等”.(2)在对命题改写时,要注意所叙述的条件和结论的完整性,有些命题中,还要注意大前提的写法.例如,命题“在△ABC中,若a>b,则A>B”中,大前提“在△ABC中”是必不可少的.练一练3.将下列命题改写为“若p,则q”的形式.(1)当a>b时,有ac2>bc2;(2)实数的平方是非负实数;(3)能被6整除的数既能被3整除也能被2整除;(4)已知x,y为正整数,当y=x+1时,必有y=4,x=3.解:(1)若a>b,则ac2>bc2.(2)若一个数是实数,则它的平方是非负实数.(3)若一个数能被6整除,则它既能被3整除也能被2整除.(4)已知x,y为正整数,若y=x+1,则y=4,x=3.讲一讲3.判断下列各命题的真假,并说明理由.(1)若a2>b2,则a>b;(2)在△ABC中,当A>60°时,必有sin A>3 2;(3)两个向量相等,它们一定是共线向量;(4)直线y=x与圆(x-1)2+(y+1)2=1相切.[尝试解答] (1)假命题.例如,当a =-3,b =1时,a 2>b 2,但a >b 不成立. (2)假命题.例如,当A =150°时,A >60°,但sin A =12,不满足sin A >32.(3)真命题.当两个向量相等时,它们的模相等,方向相同,符合共线向量的定义,它们一定是共线向量.(4)假命题.圆心(1,-1)到直线y =x 的距离为d =2>1,所以直线与圆相离.(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,把它写成“若p ,则q ”的形式,然后联系其他相关的知识,经过逻辑推理或列举反例来判定.(2)一个命题要么真,要么假,二者必居其一.当一个命题改写成“若p ,则q ”的形式之后,判断这种命题真假的办法:若由“p ”经过逻辑推理,得出“q ”,则可判定“若p ,则q ”是真;判定“若p ,则q ”是假,只需举一反例即可.练一练4.下列命题中是真命题的是( ) A .若3∈A ,3∈B ,则A ∩B ={3} B .若x 2+x -2=0,则x =1C .若函数f (x )=x 2-x ,则f (x )有最小值-14D .若log 2x <1,则x <2 答案:C5.判断下列命题的真假,并说明理由. (1)正方形既是矩形又是菱形; (2)当x =4时,2x +1<0;(3)若x =3或x =7,则(x -3)(x -7)=0;(4)一个等比数列的公比大于1时,该数列一定为递增数列. 解:(1)是真命题,由正方形的定义知,正方形既是矩形又是菱形. (2)是假命题,x =4不满足2x +1<0.(3)是真命题,由x =3或x =7能得到(x -3)(x -7)=0.(4)是假命题,因为当等比数列的首项a 1<0,公比q >1时,该数列为递减数列.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是命题的真假判断,难点是命题的构成形式和命题的真假判断.2.本节课要重点掌握的规律方法(1)将命题改写成“若p,则q”的形式,找准命题的条件和结论,见讲2.(2)判断命题的真假性,见讲3.3.本节课的易错点是将含有大前提的命题写成“若p,则q”的形式时,大前提应保持不变,且不写在条件p中.课时达标训练(一)[即时达标对点练]题组1 命题的概念1.下列语句中是命题的是( )A.周期函数的和是周期函数吗?B.sin 0°=0C.求x2-2x+1>0的解集D.作△ABC∽△EFG解析:选B A选项是疑问句,C、D选项中的语句是祈使句,都不是命题.2.以下语句中:①{0}∈N;②x2+y2=0;③x2>x;④{x|x2+1=0}.其中命题的个数是( )A.0 B.1 C.2 D.3解析:选B ①是命题,且是假命题;②、③不能判断真假,不是命题;④不是陈述句,不是命题.题组2 命题的构成形式3.把命题“末位数字是4的整数一定能被2整除”改写成“若p,则q”的形式为_______________________________________.答案:若一个整数的末位数字是4,则它一定能被2整除4.命题“若a>0,则二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界)”的条件p:________,结论q:________.它是________命题(填“真”或“假”).解析:a>0时,设a=1,把(0,0)代入x+y-1≥0得-1≥0不成立,∴x+y-1≥0表示直线的右上方区域,∴命题为真命题.答案:a>0 二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界) 真5.把下列命题改写成“若p,则q”的形式,并判断真假,且指出p和q分别指什么.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同一直线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”.它是真命题.p:两个实数乘积为1,q:两个实数互为倒数.(2)“若一个函数为奇函数;则它的图象关于原点对称”.它是真命题.p:一个函数为奇函数;q:函数的图象关于原点对称.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.p:两个平面与同一条直线平行;q:两个平面平行.题组3 判断命题的真假6.下列命题是真命题的是( )A.所有质数都是奇数B.若a>b,则a>bC.对任意的x∈N,都有x3>x2成立D.方程x2+x+1=0有实根解析:选B 选项A错,因为2是偶数也是质数;选项B正确;选项C错,因为当x=0时x3>x2不成立;选项D错,因为Δ=12-4=-3<0,所以方程x2+x+1=0无实根.7.下列命题中真命题有( )①mx2+2x-1=0是一元二次方程;②抛物线y=ax2+2x-1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.A.1个 B.2个 C.3个 D.4个解析:选A ①中,当m=0时,是一元一次方程;②中当Δ=4+4a<0时,抛物线与x 轴无交点;③是正确的;④中空集不是本身的真子集.8.下列命题中真命题的个数为( )①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则a+c>b+c;④矩形的对角线互相垂直.A.1 B.2 C.3 D.4解析:选A ①错;②中若x=3,y=0,则xy=0,但|x|+|y|≠0,故②错;③正确;④中矩形的对角线不一定互相垂直.9.下列命题:①y =x 2+3为偶函数;②0不是自然数;③{x ∈N |0<x <12}是无限集;④如果a ·b =0,那么a =0,或b =0.其中是真命题的是________(写出所有真命题的序号).解析:①为真命题;②③④为假命题. 答案:①[能力提升综合练]1.设a 、b 、c 是任意非零平面向量,且相互不共线,则:①(a ·b )c =(c ·a )b ;②|a|-|b|<|a -b|; ③(b ·c )a -(c ·a )b 不与c 垂直;④(3a +2b )·(3a -2b )=9|a|2-4|b|2,是真命题的有( )A .①②B .②③C .③④D .②④解析:选 D ①错,数量积不满足结合律;②对,由向量减法的三角形法则可知有|a|-|b|<|a -b|;③[(b ·c )·a -(c·a )·b ]·c =(b·c )(a·c )-(c·a )(b·c )=0.∴③错;④对.2.已知a ,b 为两条不同的直线,α,β为两个不同的平面,且a ⊥α,b ⊥β,则下列命题中,假命题是( )A .若a ∥b ,则α∥βB .若α⊥β,则a ⊥bC .若a ,b 相交,则α,β相交D .若α,β相交,则a ,b 相交解析:选D 由已知a ⊥α,b ⊥β,若α,β相交,a ,b 有可能异面.3.给出命题“方程x 2+ax +1=0没有实数根”,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .0D .-4解析:选C 方程无实根时,应满足Δ=a 2-4<0.故a =0时适合条件. 4.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号为( ) A .①②③ B .①② C .①③ D .②③解析:选C 对于命题①,设球的半径为R ,则43π⎝ ⎛⎭⎪⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5.下列语句中是命题的有________(写出序号),其中是真命题的有________(写出序号).①垂直于同一条直线的两条直线必平行吗? ②一个数不是正数就是负数; ③大角所对的边大于小角所对的边; ④△ABC 中,若∠A =∠B ,则sin A =sin B ; ⑤求证方程x 2+x +1=0无实根.解析:①是疑问句,没有对垂直于同一条直线的两条直线是否平行作出判断,不是命题; ②是假命题,0既不是正数也不是负数; ③是假命题,没有限制在同一个三角形内; ④是真命题;⑤是祈使句,不是命题. 答案:②③④ ④6.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:∵ax 2-2ax -3>0不成立, ∴ax 2-2ax -3≤0恒成立. 当a =0时,-3≤0恒成立;当a ≠0时,则有⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0, 解得-3≤a <0.综上,-3≤a ≤0. 答案:[-3,0]7.把下列命题改写成“若p ,则q ”的形式,并判断命题的真假. (1)奇数不能被2整除;(2)当(a -1)2+(b -1)2=0时,a =b =1; (3)两个相似三角形是全等三角形;(4)在空间中,平行于同一个平面的两条直线平行. 解:(1)若一个数是奇数,则它不能被2整除,是真命题.(2)若(a -1)2+(b -1)2=0,则a =b =1,是真命题.(3)若两个三角形是相似三角形,则这两个三角形是全等三角形,是假命题. (4)在空间中,若两条直线平行于同一个平面,则这两条直线平行,是假命题. 8.已知A :5x -1>a ,B :x >1,请选择适当的实数a ,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解:若视 A 为p ,B 为q ,则命题“若p ,则q ”为“若x >1+a5,则x >1”.由命题为真命题可知1+a5≥1,解得a ≥4;若视B 为p ,A 为q ,则命题“若p ,则q ”为“若x >1,则x >1+a 5”.由命题为真命题可知1+a5≤1,解得a ≤4.故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x >1,则x >25”.第2课时 四种命题及四种命题间的相互关系[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 4~P 8的内容,回答下列问题. 观察教材P 4“思考”中的4个命题: (1)这4个命题的条件和结论各是什么?提示:命题(1)的条件:f (x )是正弦函数,结论:f (x )是周期函数;命题(2)的条件:f (x )是周期函数,结论:f (x )是正弦函数;命题(3)的条件:f (x )不是正弦函数,结论:f (x )不是周期函数;命题(4)的条件:f (x )不是周期函数,结论:f (x )不是正弦函数.(2)命题(1)的条件和结论与命题(2)、(3)、(4)的条件和结论之间有什么关系? 提示:命题(1)的条件和结论分别是命题(2)的结论和条件;命题(1)的条件和结论分别是命题(3)的条件的否定和结论的否定;命题(1)的条件和结论分别是命题(4)的结论的否定和条件的否定.(3)根据上述四种命题的概念,你能说出其中任意两个命题之间的相互关系吗? 提示:命题(2)(3)互为逆否命题;命题(2)(4)互为否命题;命题(3)(4)互为逆命题. 2.归纳总结,核心必记 (1)四种命题的概念①互逆命题:一个命题的条件和结论分别是另一个命题的结论和条件,这样的两个命题叫做互逆命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.②互否命题:一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.③互为逆否命题:一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.(2)四种命题结构(3)四种命题间的相互关系(4)四种命题的真假性一般地,四种命题的真假性,有且仅有下面四种情况:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.[问题思考](1)命题“若a≠0,则ab≠0”的逆命题、否命题和逆否命题各是什么?提示:逆命题:若ab≠0,则a≠0;否命题:若a=0,则ab=0;逆否命题:若ab=0,则a=0.(2)在四种命题中,原命题是固定的吗?提示:不是.原命题是指定的,是相对于其他三种命题而言的,可以把任何一个命题看作原命题,进而研究它的其他命题形式.(3)如果一个命题的逆命题为真命题,这个命题的否命题一定为真命题吗?提示:一定为真命题,因为一个命题的逆命题和否命题互为逆否命题,所以它们的真假性相同.(4)在四种命题中,真命题的个数可能会有几种情况?提示:因为原命题与逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0,2,4.[课前反思](1)四种命题的概念是:;(2)四种命题的条件和结论之间有什么关系?;(3)四种命题的真假性有什么关系?.讲一讲1.写出下列命题的逆命题、否命题与逆否命题:(1)若x>-2,则x+3>0;(2)两条对角线相等的四边形是矩形.[尝试解答] (1)逆命题:若x+3>0,则x>-2;否命题:若x≤-2,则x+3≤0;逆否命题:若x+3≤0,则x≤-2.(2)原命题可写为:若一个四边形的两条对角线相等,则这个四边形是矩形.逆命题:若一个四边形是矩形,则其两条对角线相等;否命题:若一个四边形的两条对角线不相等,则这个四边形不是矩形;逆否命题:若一个四边形不是矩形,则其两条对角线不相等.写出一个命题的其他三种命题的步骤(1)分析命题的条件和结论;(2)将命题写成“若p,则q”的形式;(3)根据逆命题、否命题、逆否命题各自的结构形式写出这三种命题.[注意] 如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.练一练1.分别写出下列命题的逆命题、否命题、逆否命题:(1)正数的平方根不等于0;(2)若x2+y2=0(x,y∈R),则x,y全为0.解:(1)逆命题:若一个数的平方根不等于0,则这个数是正数;否命题:若一个数不是正数,则这个数的平方根等于0;逆否命题:若一个数的平方根等于0,则这个数不是正数.(2)逆命题:若x,y全为0,则x2+y2=0(x,y∈R);否命题:若x2+y2≠0(x,y∈R),则x,y不全为0;逆否命题:若x,y不全为0,则x2+y2≠0(x,y∈R).[思考1] 若原命题为真,则它的逆命题、否命题的真假性是怎样的?名师指津:由于原命题的真假性与它的逆命题、否命题的真假性之间没有关系,所以无法判断它的逆命题、否命题的真假性.[思考2] 若原命题为真,它的逆否命题的真假性如何?名师指津:原命题和它的逆否命题具有相同的真假性.讲一讲2.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)在△ABC中,若a>b,则A>B;(2)相等的两个角的正弦值相等;(3)若x2-2x-3=0,则x=3;(4)若x∈A,则x∈A∩B.[尝试解答] (1)逆命题:在△ABC中,若A>B,则a>b.真命题;否命题:在△ABC中,若a≤b,则A≤B,真命题;逆否命题:在△ABC中,若A≤B,则a≤b.真命题.(2)逆命题:若两个角的正弦值相等,则这两个角相等.假命题;否命题:若两个角不相等,则这两个角的正弦值也不相等.假命题;逆否命题:若两个角的正弦值不相等,则这两个角不相等.真命题.(3)逆命题:若x=3,则x2-2x-3=0.真命题;否命题:若x2-2x-3≠0,则x≠3.真命题;逆否命题:若x≠3,则x2-2x-3≠0.假命题.(4)逆命题:若x∈A∩B,则x∈A.真命题;否命题:若x∉A,则x∉A∩B.真命题;逆否命题:若x∉A∩B,则x∉A.假命题.判断一个命题的真假,可以有两种方法:一是分清原命题的条件和结论,直接对原命题的真假进行判断;二是不直接写出命题,而是根据命题之间的关系进行判断,即原命题和逆否命题同真同假,逆命题和否命题同真同假,尤其是当命题本身不易判断真假时,通常都通过判断其逆否命题的真假来实现.练一练2.有下列四个命题:(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.其中真命题的个数是( )A.0 B.1 C.2 D.3解析:选B (1)原命题的否命题与其逆命题有相同的真假性,其逆命题为“若x,y互为相反数,则x+y=0”,为真命题;(2)原命题与其逆否命题具有相同的真假性,而原命题为假命题(如x=0,y=-1),故其逆否命题为假命题;(3)该命题的否命题为“若x>3,则x2-x-6≤0”,很明显为假命题;(4)该命题的逆命题是“相等的角是对顶角”,显然是假命题.3.在命题“若a>-3,则a>-6”的逆命题、否命题、逆否命题中假命题个数是________.解析:容易判断,命题“若a>-3,则a>-6”为真命题,而逆否命题与原命题同真假,从而它的逆否命题也是真命题;它的否命题为“若a≤-3,则a≤-6”,是假命题,而否命题与逆命题同真假,则它的逆命题也是假命题.答案:2[思考] 我们学习了四种命题的关系,那么在直接证明某一个命题为真命题有困难时,该怎么办?名师指津:可以通过证明它的逆否命题为真命题来解决.讲一讲3.(1)判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.(2)(链接教材P8-例4)证明:已知函数f(x)是(-∞,+∞)上的增函数,a、b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.[尝试解答] (1)法一:原命题的逆否命题:“已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.”真假判断如下:因为抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7,若a<1,则4a-7<0.即抛物线y=x2+(2a+1)x+a2+2与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真.法二:先判断原命题的真假.因为a,x为实数,且关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,所以Δ=(2a+1)2-4(a2+2)≥0,即4a-7≥0,所以a≥1.所以原命题成立.又因为原命题与其逆否命题等价,所以逆否命题为真.(2)原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b).”∵当a+b<0时,a<-b,b<-a,又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题.∴原命题为真命题.由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.练一练4.证明:若m2+n2=2,则m+n≤2.证明:将“若m2+n2=2,则m+n≤2”视为原命题,则它的逆否命题为“若m+n>2,则m2+n2≠2”.由于m +n >2,则m 2+n 2≥12(m +n )2>12×22=2, 所以m 2+n 2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是四种命题的概念以及四种命题间的关系,难点是等价命题的应用.2.本节课要重点掌握的规律方法(1)写出原命题的逆命题、否命题和逆否命题,并会判断真假,见讲1和讲2.(2)用原命题和逆否命题的等价性解决相关问题,见讲3.3.每一个命题都由条件和结论组成,要分清条件和结论.4.判断命题的真假可以根据互为逆否的命题真假性相同来判断,这也是反证法的理论基础.课时达标训练(二)[即时达标对点练]题组1 四种命题的概念1.命题“若a ∉A ,则b ∈B ”的否命题是( )A .若a ∉A ,则b ∉B B .若a ∈A ,则b ∉BC .若b ∈B ,则a ∉AD .若b ∉B ,则a ∉A解析:选B 命题“若p ,则q ”的否命题是“若綈p ,则綈q ”,“∈”与“∉”互为否定形式.2.命题“若x >1,则x >0”的逆命题是__________,逆否命题是__________.答案:若x >0,则x >1 若x ≤0,则x ≤13.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②正方形的四条边相等;③若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有________;互为逆否命题的有________(填序号).答案:②和③ ①和③ ①和②题组2 四种命题的真假判断4.下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B.命题“若x=1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题解析:选A 对A,即判断:“若x>|y|,则x>y”的真假,显然是真命题.5.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )A.原命题、否命题 B.原命题、逆命题C.原命题、逆否命题 D.逆命题、否命题解析:选C 因为原命题是真命题,所以逆否命题也是真命题.6.命题“若x≠1,则x2-1≠0”的真假性为________.解析:可转化为判断命题的逆否命题的真假,由于原命题的逆否命题是:“若x2-1=0,则x=1”,因为x2-1=0,x=±1,所以该命题是假命题,因此原命题是假命题.答案:假命题题组3 等价命题的应用7.判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.解:∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.8.证明:若a2-4b2-2a+1≠0,则a≠2b+1.证明:“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为:“若a=2b+1,则a2-4b2-2a+1=0”,当a=2b+1时,a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+4b+1-4b2-4b -2+1=0,故该命题的逆否命题为真命题,从而原命题也是真命题.[能力提升综合练]1.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是( )A.互逆命题 B.互否命题C.互为逆否命题 D.以上都不正确解析:选A 设p为“若A,则B”,那么q为“若,则”,r为“若,则”.故q与r为互逆命题.2.下列四个命题:①“若xy=0,则x=0,且y=0”的逆否命题;②“正方形是矩形”的否命题;③“若ac2>bc2,则a>b”的逆命题;④若m>2,则不等式x2-2x+m>0.其中真命题的个数为( )A.0 B.1 C.2 D.3解析:选B 命题①的逆否命题是“若x≠0,或y≠0,则xy≠0”,为假命题;命题②的否命题是“若一个四边形不是正方形,则它不是矩形”,为假命题;命题③的逆命题是“若a>b,则ac2>bc2”,为假命题;命题④为真命题,当m>2时,方程x2-2x+m=0的判别式Δ<0,对应二次函数图象开口向上且与x轴无交点,所以函数值恒大于0.3.有下列四个命题:①“若x+y=0,则x、y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为( )A.①② B.②③ C.①③ D.③④解析:选C 命题①:“若x,y互为相反数,则x+y=0”是真命题;命题②:可考虑其逆命题“面积相等的三角形是全等三角形”是假命题,因此命题②是假命题;命题③:“若x2+2x+q=0有实根,则q≤1”是真命题;命题④是假命题.4.已知原命题“两个无理数的积仍是无理数”,则:①逆命题是“乘积为无理数的两数都是无理数”;②否命题是“两个不都是无理数的积也不是无理数”;③逆否命题是“乘积不是无理数的两个数都不是无理数”.其中所有正确叙述的序号是________.解析:原命题的逆命题、否命题叙述正确.逆否命题应为“乘积不是无理数的两个数不都是无理数”.答案:①②5.已知:A表示点,a,b,c表示直线,α,β表示平面,给出下列命题:①a⊥α,b⊄α,若b∥α,则b⊥a;②a⊥α,若a⊥β,则α∥β;③a⊂α,b∩α=A,c为b在α上的射影,若a⊥c,则a⊥b;④a⊥α,若b∥α,c∥a,则a⊥b,c⊥b.其中逆命题为真的是________.解析:④的逆命题:“a⊥α,若a⊥b,c⊥b,则b∥α,c∥a”,而b,c可以在α内,。