高一数学综合训练题(一)_2
高一数学必修2精选习题与答案
![高一数学必修2精选习题与答案](https://img.taocdn.com/s3/m/59f0beca5fbfc77da269b12e.png)
(数学2必修)第一章 空间几何体 一、选择题1.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为( )A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:92.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( ) A. 23 B. 76C. 45D. 563.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V =( )A. 1:3B. 1:1C. 2:1D. 3:14.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:95.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A. 224cm π,212cm πB. 215cm π,212cmπC. 224cm π,236cm πD. 以上都不正确二、填空题1. 若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。
2.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 . 3.球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.4.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________。
三、解答题1. (如图)在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱, 求圆柱的表面积65P ABCVEDF2.如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,22CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.(数学2必修)第二章 点、直线、平面之间的位置关系 [基础训练A 组] 一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
泸溪一中高一数学综合训练试题2
![泸溪一中高一数学综合训练试题2](https://img.taocdn.com/s3/m/50094cc3a1c7aa00b52acb87.png)
泸溪一中高一数学综合训练试题班级 姓名 得分一、选择题。
每小题5分,共40分。
每小题有且只有一个正确答案1. 如图程序框图得到函数()y f x =,则1[()]4f f 的值是( )A . 8 B. 18C. 9D. 192. 下列数字特征一定是数据组中数据的是( )A .众数B .中位数C .标准差D .平均数 3. 有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A .至少有1件次品与至多有1件正品B .至少有1件次品与都是正品C .至少有1件次品与至少有1件正品D .恰有1件次品与恰有2件正品4.对总数为N 的一批零件抽取一个容量为30 的样本,若每个零件被抽到的概率为0.25,则N 的值为( )A .120B .200C .150D . 1005.若sin ⎝⎛⎭⎫π2-x =-32,且π<x <2π,则x 等于( ) A.43π B.76π C.53π D.116π 6.函数y =sin ⎝⎛⎭⎫-2x +π6的单调递减区间是( ) A.⎣⎡⎦⎤-π6+2k π,π3+2k π,k ∈Z B.⎣⎡⎦⎤π6+2k π,5π6+2k π,k ∈Z C.⎣⎡⎦⎤-π6+k π,π3+k π,k ∈Z D.⎣⎡⎦⎤π6+k π,5π6+k π,k ∈Z 7. 调研考试以后,班长算出了某班40人数学成绩的平均分为M ,如果把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N ,那么NM的值为( ) A .4041B .1C .4140D .2 8.已知A 为锐角,lg(1+cos A )=m ,lg 11-cos A =n ,则lgsin A 的值是( )A .m +1nB .m -n C.12⎝⎛⎭⎫m +1n D.12(m -n ) 二.填空题(共7小题,每小题5分,共35分,请把答案写在题后横线上) 9. 将五进制(5)344化成四进位制数是__ __.10. 将容量为n 的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n 等于 .11.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为73,乙夺得冠军的概率为41,那么中国队夺得女子乒乓球单打冠军的概率为 .12.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
高一上学期数学单元测试(1)人教版
![高一上学期数学单元测试(1)人教版](https://img.taocdn.com/s3/m/13b39d2dcdbff121dd36a32d7375a417866fc14f.png)
高中学生学科素质训练系列试题高一上学期数学单元测试(1)[原人教版] 第一册 第1章注意事项:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟。
2.答第Ⅰ卷前务必将自己的某某、考号、考试科目涂写在答题卡上。
考试结束,试题和答题卡一并收回。
3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。
第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。
1.下列命题说法正确的是 ( )A .方程x 2+2x +1=0的根形成集合{-1,-1}B .{x ∈R |x 2+2=0}={R ∈x |⎩⎨⎧<+>+03012x x }C .集合{1,3,5}与集合{3,5,1}是不同的集合D .集合M ={(x ,y )|x +y =5,xy =6}表示的集合是{2,3}2.以下四个关系:∅∈{0},0∈∅,{∅}⊆{0},∅{0},其中正确的有 ( )A .1个B .2个C .3个D .4个3.已知全集U ={a ,b ,c ,d ,e ,f ,g ,h },A ={c ,d ,e },B ={a ,c ,f },那么集合{b ,g ,h }等于A .A ∪BB .A ∩BC .(UA )∪(UB ) D .(UA )∩(UB )4.下列语句不是命题的有 ( )①x 2-3=0 ②与一条直线相交的两直线平行吗? ③3+1=5 ④5x -3>6. A .①③④B .①②③C .①②④D .②③④5.下列命题为简单命题的是 ( ) A .5和10是20的约数B .正方形的对角线垂直平分C .6是无理数D .方程x 2+x +2=0没有实数根6.若A 、B 是两个集合,则下列命题中真命题是( )A .如果A ⊆B ,那么A ∩B =A B .如果A ∩B =B ,那么A ⊆BC .如果A ⊆B ,那么A ∪B =AD .如果A ∪B =B ,那么B ⊆A7.设U 为全集,P 、Q 为非空集合,且P Q U ,下面结论中不正确的是 ( )A .(UP )∪Q =U B .(UP )∩Q =∅C .P ∪Q =QD .P ∩(UQ )=∅8.不等式组⎩⎨⎧>+>0342a x x 的解集是{x |x >2},则实数a 的取值X 围是( )A .a ≤-6B .a ≥-6C .a ≤6D .a ≥6 9.若|x +a |≤b 的解集为{x |-1≤x ≤5},那么a 、b 的值分别为 ( ) A .2,-3 B .-2,3 C .3,2 D .-3,210.一元二次方程ax 2+bx +c =0(a ≠0)有一个正根和一个负根的充要条件是 ( )A .ab >0B .ab <0C .bc >0D .ac <0 11.在如图的电路图中,“开关A 的闭合”是“灯泡B 亮”的________条件A .充分非必要B .必要非充分C .充要D .既非充分又非必要12.设集合M ={x |x >2},P ={x |x <}3,那么“x ∈M 或x ∈P ”是“x ∈M ∩P ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。
人教A版第三章函数的应用综合测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)
![人教A版第三章函数的应用综合测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)](https://img.taocdn.com/s3/m/672ce6f4c0c708a1284ac850ad02de80d4d8063f.png)
专题6:人教A 版第三章函数的应用综合测试题(解析版)一、单选题1.设()ln 2f x x x =+-,则函数()f x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)1.B【分析】根据()f x 的单调性,结合零点存在性定理,即可得出结论.【详解】 ()ln 2f x x x =+-在(0,)+∞单调递增,且(1)10,(2)ln20f f =-<=>,根据零点存在性定理,得()f x 存在唯一的零点在区间(1,2)上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题. 2.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为( )A .B .C .D . 2.B【解析】依题设可知,蜡烛高度h 与燃烧时间t 之间构成一次函数关系,又∵函数图象必过点(0,20)、(4,0)两点,且该图象应为一条线段.∴选B.3.利用二分法求方程3log 5x x =-的近似解,可以取得一个区间( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.D【分析】根据零点存在定理判断.【详解】设3()log 5f x x x =-+,则函数单调递增由于3(3)log 35310f =-+=-<,33(4)log 454log 410f =-+=->,∴()f x 在(3,4)上有零点.故选:D.【点睛】本题考查方程的解与函数零点问题.掌握零点存在定理是解题关键.4.若函数()27x f x x =+-的零点所在的区间为(,1)()k k k +∈Z ,则k =( )A .3B .4C .1D .24.D【分析】结合零点存在性定理和函数()f x 的单调性,求得k 的值.【详解】 ∵(2)4270,(3)8370,f f =+-<⎧⎨=+->⎩且()f x 单调递增,∴()f x 的零点所在的区间为(2,3),∴2k =. 故选:D【点睛】本小题主要考查零点存在性定理的运用,考查函数的单调性,属于基础题.5.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )A .x 1B .x 2C .x 3D .x 45.C【解析】 观察图象可知:点x 3的附近两旁的函数值都为负值,∴点x 3不能用二分法求,故选C.6.函数21()f x x x =+,(0,)x ∈+∞的零点个数是( ). A .0B .1C .2D .36.A【分析】 根据函数定义域,结合零点定义,即可容易判断和求解.【详解】由于20x >,10x>, 因此不存在(0,)x ∈+∞使得21()0f x x x=+=, 因此函数没有零点.故选:A .【点睛】本题考查函数零点的求解,属简单题. 7.用二分法求函数()f x 的一个正实数零点时,经计算:()()0.640,0.720f f <>,()0.680f <,()0.740f >,则函数()f x 的一个精确度为0.1的正实数零点的近似值为A .0.64B .0.8C .0.7D .0.67.C【分析】由题意根据函数零点的判定定理可得,函数零点所在的区间为(0.68,0.72),从而得出结论.【详解】因为()0.680f <,()0.720f >,即()()0.680.720f f ⋅<,所以函数()f x 的零点在区间()0.68,0.72内.又0.720.680.040.1-=<,观察各选项可知函数()f x 的一个精确度为0.1的正实数零点的近似值为0.7.故选C .【点睛】本题主要考查函数零点的判定定理的应用,属于基础题.8.已知函数()221,11,1x x f x log x x ⎧-=⎨+>⎩,则函数()f x 的零点为( )A .1,02B .2-,0C .12D .08.D【分析】函数()f x 的零点,即令()0f x =分段求解即可.【详解】函数221,1()1,1x x f x log x x ⎧-=⎨+>⎩当1x 时,令()210x f x =-=,解得0x =当1x >时,令2()1log 0f x x =+=,解得12x =(舍去) 综上函数的零点为0故选:D .【点睛】本题考查函数的零点个数,考查分段函数的知识,属于基础题.9.设f (x )=3x +3x –8,用二分法求方程3x +3x –8在x ∈(1,2)内方程的近似解,则方程的根落在区间(参考数据31.25≈3.95)A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定9.B【分析】显然函数单调递增,然后利用二分法求(1,2)的中间值f (1.5)0>,再将范围限制(1,1.5),再利用二分法继续下次知道和选项逼近即可【详解】显然函数单调递增,f (1)<0,f (2)>0,f (1.5)=31.5+3×1.5–8=323 4.58+-=4.58->4.580->,f (1.25)=31.25+3×1.25–8<0,∴f (1.25)•f (1.5)<0,∴方程的根落在区间(1.25,1.5),故选B .【点睛】利用二分法判断函数零点的区间,首先确保函数在所给区间内连续,然后利用二分法算出所给区间的中间值,进而一步步将区间范围缩小10.已知碳14是一种放射性元素,在放射过程中,质量会不断减少.已知1克碳14经过5730年,质量经过放射消耗到0.5克,则再经过多少年,质量可放射消耗到0.125克( ) A .5730B .11460C .17190D .22920 10.B【分析】根据由题意可知再经过2个半衰期可消耗到0.125克.【详解】由题意可得:碳14的半衰期为5730年,则再过5730年后,质量从0.5克消耗到0.25克,过11460年后,质量可消耗到0.125克.故选:B.【点睛】本题考查指数函数的应用,属于基础题.11.已知二次函数22()(5)6(0)f x ax a x a a =+-+-≠的图象与x 轴交于()1,0M x ,()2,0N x 两点,且12112x x -<<<<,则a 的取值范围是( )A .(2,1+B .()1C .()1++∞D .(,2-∞- 11.B【分析】讨论0a >、0a <,根据零点的范围,结合二次函数的性质列不等式组求解即可得a 的取值范围.【详解】若0a >,则(1)0(1)0(2)0f f f ->⎧⎪<⎨⎪>⎩,即2221021106160a a a a a ⎧->⎪+-<⎨⎪+->⎩,解得21a <<;若0a <,则(1)0(1)0(2)0f f f -<⎧⎪>⎨⎪<⎩,即2221021106160a a a a a ⎧-<⎪+->⎨⎪+-<⎩,不等式组无解.故a的取值范围是()1.故选:B 12.已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩若函数()()2y f x f x m =+--()m R ∈恰有2个零点,则m 的取值范围是( )A .()2,+∞B .7,24⎛⎫ ⎪⎝⎭C .()0,2D .(),2-∞12.A【分析】求得函数()()2y f x f x =+-的解析式,画出()()2y f x f x =+-的图象,由此求得m 的取值范围.【详解】 由()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩得()()()2,02,0x x f x x x ⎧≥⎪-=⎨<⎪⎩, 所以()()()()()222,022,0234,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩,所以函数()()2y f x f x m =+--恰有2个零点等价于函数y m =与函数()()2y f x f x =+-的图象有2个公共点,由图象可知2m >.故选:A二、填空题13.在平面直角坐标系xOy 中,若直线y a =与函数2y x a a =-+-的图象有且只有一个公共点,则实数a 的值为______.13.1【分析】在同一坐标系中作出函数y a =与函数2y x a a=-+-的图象,根据只有一个公共点,利用数形结合法求解.【详解】在同一坐标系中作出函数y a =与函数2y x a a =-+-的图象,如图所示:因为只有一个公共点,所以2a a -=,解得1a =.故答案为:114.已知函数()1,2,x x x a f x x a+≤⎧=⎨>⎩,若存在两个不相等的实数12,x x ,使得()()12f x f x =,则实数a 的取值范围是__________.14.01a <<【分析】根据1y x =+与2xy =交于(0,1)和(1,2)点,即可求解结论.【详解】解:因为存在两个不相等的实数1x ,2x ,使得12()()f x f x =,故函数不是单调函数,又因为1y x =+与2x y =交于(0,1)和(1,2)点,故须01a <<.故答案为:(0,1).15.方程243x x m -+-=有四个互不相等的实数根,则实数m 的取值范围为_________. 15.()3,1-【分析】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点,作出函数图象可得实数m 的取值范围.【详解】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点 作出22243,04343,0x x x y x x x x x ⎧-+>=-+=⎨++≤⎩的函数图象如图所示:当2x =时,1y =-;0x =时,3y =,∴13m -<-<,()3,1m ∈-故答案为:()3,1-16.已知1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1,则实数k 的取值范围是___________.16.02k <<【分析】根据二次函数的零点分布情况,得到()10f >,求解对应不等式,即可得出结果.【详解】因为1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1, 二次函数()()2221f x x k x k =-++开口向上, 所以只需()()2211012f k k -++<=,即220k k -<, 解得02k <<.故答案为:02k <<.三、解答题17.已知函数32()2()3x f x x ax a R =--∈.(1)若()y f x =在()3,+∞上为增函数,求实数a 的取值范围; (2)若12a =-,设()ln(1)()g x x f x =-+,且方程3(1)(1)3xb g x x --=+有实根,求实数b 的最大值.17.(1)32a ≤(2)0 【解析】试题分析:(1)求导()'2220fx x x a =--≥在区间(3,+∞)上恒成立,从而转化为最值问题求解即可;(2)化简方程可得2ln b x x x x+-=,从而化为2(ln )b x x x x =+-在(0,+∞)上有解,从而讨论函数2()(ln )p x x x x x =+-的值域即可试题解析:(1)∵()f x 在区间()3,+∞上为增函数, ∴2'()220f x x x a =--≥即222a x x ≤-在区间()3,+∞上恒成立. ∵在()3,+∞内223x x -< ∴23a ≤即32a ≤(2)方程3(1)(1)3x b g x x --=+可化为2ln b x x x x +-=. ∴条件转化为2(ln )b x x x x =+-在()0,+∞上有解, 令2()(ln )p x x x x x =+-,∴即求函数2()(ln )p x x x x x =+-在()0,+∞上的值域. 令2()ln h x x x x =+-, 则1(21)(1)'()12x x h x x x x +-=+-=,∴当01x <<时'()0h x >,从而()h x 在()0,1上为增函数, 当1x >时'()0h x <,从而()h x 在()1,+∞上为减函数, 因此()(1)0h x h ≤=.又∵0x >,故()()0p x x h x =⋅≤,∴0b ≤因此当1x =时,b 取得最大值0.考点:根的存在性及根的个数判断;利用导数研究函数的单调性18.已知函数()lg f x kx =,()()lg 1g x x =+.(Ⅰ)当=1k 时,求函数()()y f x g x =+的单调区间;(Ⅱ)若方程()2()f x g x =仅有一个实根,求实数k 的取值集合.18.(1)单调递增区间为(0,)+∞,不存在单调递减区间;(2)0k <或4k =;【解析】试题分析:(1)由题可知,将=1k 代入,可得()()lg lg(1)lg (1)y f x g x x x x x =+=++=+,由于真数x (x+1)>0,可知x (x+1)在定义域上始终递增,外层对数函数始终递增,即单调递增区间为(0,)+∞,不存在单调递减区间;(2)由题可知,由()2()f x g x =,即lg 2lg(1)kx x =+,根据真数大于0,真数相等,可列出不等式组,对k 进行讨论,即可得出k 的取值; 试题解析:(Ⅰ)当=1k 时,()()lg lg(1)lg (1)y f x g x x x x x =+=++=+ (其中0x >),由复合函数单调性可知内层函数x (x+1)在定义域上始终递增,外层对数函数始终递增,所以,()()y f x g x =+的单调递增区间为(0,)+∞,不存在单调递减区间;(Ⅱ)由()2()f x g x =,即lg 2lg(1)kx x =+.该方程可化为不等式组 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩(1)若0k >时,则0x >,原问题即为:方程2(1)kx x =+在(0,)+∞上有根,解得4k =;(2)若0k <时,则10x -<<,原问题即为:方程2(1)kx x =+在(1,0)-上有根,解得0k <.综上可得0k <或4k =为所求.考点:①复合函数的单调性②对数函数单调性的应用19.已知函数221()11x m f x x x x x -=----- (Ⅰ)若函数()f x 无零点,求实数m 的取值范围;(Ⅱ)若函数()f x 在(2,2)-有且仅有一个零点,求实数m 的取值范围.19.(Ⅰ) 47|{<m m 或2}m =;(Ⅱ)7{|4m m =或48}m ≤<。
人教A版高一数学必修第一册全册复习训练题卷含答案解析(48)
![人教A版高一数学必修第一册全册复习训练题卷含答案解析(48)](https://img.taocdn.com/s3/m/70cdcf68dd88d0d232d46a26.png)
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 已知 a =1.70.3,b =0.31.7,c =log 0.31.7,则 a ,b ,c 的大小关系为 ( ) A . a <b <c B . c <b <a C . c <a <b D . b <a <c2. 已知 m ∈R ,“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3. 已知 sin (α+β)=14,sin (α−β)=13,则 tanα:tanβ= ( )A . −17B . 17C . −7D . 74. 根据统计,一名工人组装第 x 件某产品所用的时间(单位:分钟)为 f (x )=√x x <A√Ax ≥A (A ,c为常数),已知工人组装第 4 件产品用时 30 min ,组装第 A 件产品用时 15 min ,那么 c 和 A 的值分别是 ( ) A . 75,25 B . 75,16 C . 60,25 D . 60,165. 已知函数 f (x )={ln (x +1)+m,x ≥0ax −b +1,x <0(m <−1),对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t ,若关于 x 的方程 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,则 a 的取值范围是 ( ) A . (−4,−2) B . (−1,0)C . (−2,−1)D . (−4,−1)∪(−1,0)6. 已知 a >0 且 a ≠1,下列说法中正确的是 ( ) ①若 M =N ,则 log a M =log a N ; ②若 log a M =log a N ,则 M =N ; ③若 log a M 2=log a N 2,则 M =N ; ④若 M =N ,则 log a M 2=log a N 2. A .①③B .②④C .②D .①②③④7.定义在(−1,1]上的函数f(x)满足f(x)+1=1f(x+1),当x∈[0,1]时,f(x)=x,若函数g(x)=∣∣f(x)−12∣∣−mx−m+1在(−1,1]内恰有3个零点,则实数m的取值范围是( )A.(32,+∞)B.(32,258)C.(32,2516)D.(23,34)8.实数α,β为方程x2−2mx+m+6=0的两根,则(α−1)2+(β−1)2的最小值为( )A.8B.14C.−14D.−2549.若a>b>0,c<d<0,则一定有( )A.ac −bd>0B.ac−bd<0C.ad>bcD.ad<bc10.一个半径为R的扇形,它的周长是4R,则这个扇形所含弓形的面积为( )A.12R2B.12R2Ssin1cos1C.12(1−sin1cos1)R2D.(1−sin1cos1)R2二、填空题(共10题)11.已知△ABC中,sin(A+B)=45,cosB=−23,则sinB=,cosA=.12.函数y=lg(x2+2x−a)的定义域为R,则实数a的取值范围是.13.已知函数y=f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内零点的个数的最小值是个.14.一个驾驶员喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少.为了保障交通安全,规定驾驶员血液中的酒精含量不得超过0.09mg/mL,那么这个驾驶员至少要经过小时才能开车.(精确到1小时,参考数据lg2≈0.30,lg3≈0.48)15.将函数y=√4+6x−x2−2(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则tanα的最大值为.16.设集合A为含有三个元素的集合,集合B={z∣z=x+y,x,y∈A,x≠y},若B={log 26,log 210,log 215},则集合 A = .17. 已知 p:∣x −4∣>6,q:x 2−2x +1−a 2>0(a >0),若 p 是 q 的充分不必要条件,则实数 a的取值范围为 .18. 已知 α 为第二象限角,sinα+cosα=12,则 cos2α= .19. 定义在 R 上的函数 f (x ) 满足 f (x +2)=f (x )−2,当 x ∈(0,2] 时,f (x )={x 2−x −6,x ∈(0,1]−2x−1−5,x ∈(1,2],若 x ∈(−6,−4] 时,关于 x 的方程 af (x )−a 2+2=0(a >0) 有解,则实数 a 的取值范围是 .20. 已知函数 f (x )={x +2x −3,x ≥1lg (x 2+1),x <1,则 f(f (−3))= ,f (x ) 的最小值是 .三、解答题(共10题)21. 已知一扇形的周长为 40 cm ,当它的半径和圆心角取何值时,能使扇形的面积最大,最大面积是多少?22. 已知实数 a ,b 是常数,函数 f (x )=(√1+x +√1−x +a)(√1−x 2+b).(1) 求函数 f (x ) 的定义域,判断函数的奇偶性,并说明理由;(2) 若 a =−3,b =1,设 t =√1+x +√1−x ,记 t 的取值组成的集合为 D ,则函数 f (x )的值域与函数 g (t )=12(t 3−3t 2)(t ∈D ) 的值域相同.试解决下列问题:(i )求集合 D ;(ii )研究函数 g (t )=12(t 3−3t 2) 在定义域 D 上是否具有单调性?若有,请用函数单调性定义加以证明:若没有,请说明理由.并利用你的研究结果进一步求出函数 f (x ) 的最小值.23. 对于定义域为 R 的函数 g (x ),若存在正常数 T ,使得 cosg (x ) 是以 T 为周期的函数,则称g (x ) 为余弦周期函数,且称 T 为其余弦周期.已知 f (x ) 是以 T 为余弦周期的余弦周期函数,其值域为 R .设 f (x ) 单调递增,f (0)=0,f (T )=4π. (1) 验证 g (x )=x +sin x3 是以 6π 为周期的余弦周期函数;(2) 设 a <b ,证明对任意 c ∈[f (a ),f (b )],存在 x 0∈[a,b ],使得 f (x 0)=c ;(3) 证明:“u 0 为方程 cosf (x )=1 在 [0,T ] 上的解,”的充要条件是“u 0+T 为方程 cosf (x )=1 在区间 [T,2T ] 上的解”,并证明对任意 x ∈[0,T ],都有 f (x +T )=f (x )+f (T ).24. 已知函数 f (x )=(sinx +cosx )2+2cos 2x −1.(1) 求 f (x ) 的最小正周期;(2) 求 f (x ) 在 [0,π2] 上的单调区间.25. 已知函数 f (x )=a +b x (b >0,b ≠1) 的图象过点 (1,4) 和点 (2,16).(1) 求 f (x ) 的表达式; (2) 解不等式 f (x )>(12)3−x2;(3) 当 x ∈(−3,4] 时,求函数 g (x )=log 2f (x )+x 2−6 的值域.26. 已知函数 f (x ) 的定义域为 D ,若对任意的 x 1∈D ,都存在 x 2∈D ,满足 f (x 1)=1f (x 2),则称函数 f (x ) 为“L 函数”.(1) 判断函数 f (x )=sinx +32,x ∈R 是否为“L 函数”,并说明理由;(2) 已知“L 函数”f (x ) 是定义在 [a,b ] 上的严格增函数,且 f (a )>0,f (b )>0,求证:f (a )⋅f (b )=1.27. 记函数 f (x ) 的定义域为 D ,如果存在实数 a ,b 使得 f (a −x )+f (a +x )=b 对任意满足a −x ∈D 且 a +x ∈D 的 x 恒成立,则称 f (x ) 为 Ψ 函数. (1) 设函数 f (x )=1x −1,试判断 f (x ) 是否为 Ψ 函数,并说明理由; (2) 设函数 g (x )=12x +t ,其中常数 t ≠0,证明 g (x ) 是 Ψ 函数;(3) 若 ℎ(x ) 是定义在 R 上的 Ψ 函数,且函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称,试判断 ℎ(x ) 是否为周期函数?并证明你的结论.28. 已知函数 f (x ) 和 g (x ) 的图象关于原点对称,且 f (x )=x 2+2x .(1) 求函数 g (x ) 的解析式;(2) 若 ℎ(x )=g (x )−λf (x )+1 在区间 [−1,1] 上是增函数,求实数 λ 的取值范围.29. 解答题.(1) 已知 cosα=17,cos (α+β)=−1114,α,β 都是锐角,求 cosβ 的值;(2) 已知 π2<β<α<34π,cos (α−β)=1213,sin (α+β)=−35,sin2α.30.用五点法作出下列函数在[−2π,0]上的图象.(1) y=1−sinx;(2) y=sin(π+x)−1.答案一、选择题(共10题) 1. 【答案】B【知识点】指数函数及其性质、对数函数及其性质2. 【答案】B【解析】若函数 y =f (x )=2x +m −1 有零点,则 f (0)=1+m −1=m <1, 当 m ≤0 时,函数 y =log m x 在 (0,+∞) 上为减函数不成立,即充分性不成立,若 y =log m x 在 (0,+∞) 上为减函数,则 0<m <1,此时函数 y =2x +m −1 有零点成立,即必要性成立,故“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的必要不充分条件. 【知识点】指数函数及其性质、充分条件与必要条件、对数函数及其性质3. 【答案】C【解析】 sin (α+β)=sinαcosβ+cosαsinβ=14,sin (α−β)=sinαcosβ−cosαsinβ=13, 所以 sinαcosβ=724,cosαsinβ=−124,所以 tanα:tanβ=sinαcosβcosαsinβ=−7. 【知识点】两角和与差的正切4. 【答案】D【知识点】函数的模型及其实际应用5. 【答案】A【解析】由题意可知 f (x ) 在 [0,+∞) 上单调递增,值域为 [m,+∞),因为对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t , 所以 f (x ) 在 (−∞,0) 上是减函数,值域为 (m,+∞), 所以 a <0,且 −b +1=m ,即 b =1−m . 因为 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,所以 0<f (m2)<−m ,又 m <−1,所以 0<am 2<−m ,即 0<(a2+1)m <−m ,所以 −4<a <−2,所以则 a 的取值范围是 (−4,−2).【知识点】对数函数及其性质、函数的零点分布6. 【答案】C【解析】对于①,当 M =N ≤0 时,log a M ,log a N 都没有意义,故不成立; 对于②,log a M =log a N ,则必有 M >0,N >0,M =N ,故成立;对于③,当 M ,N 互为相反数且不为 0 时,也有 log a M 2=log a N 2,但此时 M ≠N ,故不成立; 对于④,当 M =N =0 时,log a M 2,log a N 2 都没有意义,故不成立. 综上,只有②正确. 【知识点】对数的概念与运算7. 【答案】C【解析】当 x ∈(−1,0) 时,x +1∈(0,1),f (x )=1f (x+1)−1=1x+1−1,若函数 g (x )=∣∣f (x )−12∣∣−mx −m +1 在 (−1,1] 内恰有 3 个零点,即方程 ∣∣f (x )−12∣∣−mx −m +1=0 在 (−1,1] 内恰有 3 个根,也就是函数 y =∣∣f (x )−12∣∣ 与 y =mx +m −1 的图象有三个不同交点,作出函数图象如图:由图可知,过点 (−1,−1) 与点 (−13,0) 的直线的斜率为 32;设过点 (−1,1),且与曲线 y =1x+1−1−12=−3x−12(x+1) 相切的切点为 (x 0,y 0), 则 yʹ∣x=x 0=−1(x 0+1)2=y 0−1x0−(−1), 又因为 y 0=−3x 0−12(x 0+1),解得 {x 0=−15,y 0=−14,则切点为 (−15,−14).所以切线的斜率为 k =1+14−1−(−15)=−2516,由对称性可知,过点 (−1,−1) 与曲线 ∣∣f (x )−12∣∣ 在 (−1,0) 上相切的切线的斜率为 2516.所以使函数 y =∣∣f (x )−12∣∣与 y =mx +m −1 的图象有三个不同交点的 m 的取值范围为(32,2516).【知识点】函数的零点分布、利用导数求函数的切线方程8. 【答案】A【解析】因为 Δ=(2m )2−4(m +6)≥0, 所以 m 2−m −6≥0, 所以 m ≥3 或 m ≤−2.而(α−1)2+(β−1)2=α2+β2−2(α+β)+2=(α+β)2−2αβ−2(α+β)+2=(2m )2−2(m +6)−2(2m )+2=4m 2−6m −10=4(m −34)2−494,因为 m ≥3,或 m ≤−2,所以当 m =3 时,(α−1)2+(β−1)2 的最小值为 8,故选A . 【知识点】函数的最大(小)值9. 【答案】D【解析】因为 c <d <0,所以 0<−d <−c , 又 0<b <a ,所以 −bd <−ac ,即 bd >ac , 又因为 cd >0,所以 bdcd >accd ,即 bc >ad . 【知识点】不等式的性质10. 【答案】D【解析】 l =4R −2R =2R ,α=lR =2R R=2,可得:S 扇形=12lR =12×2R ×R =R 2,可得:S 三角形=12×2Rsin1×Rcos1=sin1⋅cos1⋅R 2,可得:S弓形=S扇形−S三角形=R2−sin1⋅cos1⋅R2 =(1−sin1cos1)R2.【知识点】弧度制二、填空题(共10题)11. 【答案】√53;6+4√515【知识点】两角和与差的余弦12. 【答案】a<−1【知识点】函数的定义域的概念与求法、对数函数及其性质13. 【答案】7【知识点】函数的零点分布、函数的周期性14. 【答案】5【解析】设经过n小时后才能开车,由题意得0.3(1−0.25)n≤0.09,所以(34)n≤0.3,所以nlg34≤lg310<0,所以n≥lg3−1lg3−2lg2=0.48−10.48−0.6=133,解得n≥133,故至少经过5小时才能开车.故答案为:5.【知识点】函数模型的综合应用15. 【答案】23【解析】将函数变形为方程,可得(x−3)2+(y+2)2=13,x∈[0,6],y≥0,其图象如图所示.过点O作该图象所在圆M的切线OA,将该函数的图象绕原点逆时针旋转时,其最大的旋转角为∠AOy,此时曲线C都是一个函数的图象,因为k OA=−1k OM =32,所以tan∠AOy=23.【知识点】函数的相关概念16. 【答案】 {1,log 23,log 25}【解析】设 A ={a,b,c }(a <b <c ),则 {a +b =log 26,b +c =log 215,c +a =log 210,所以 a +b +c =log 230,所以 a =1,b =log 23,c =log 25, 所以 A ={1,log 23,log 25}. 【知识点】元素和集合的关系17. 【答案】 0<a ≤3【知识点】充分条件与必要条件18. 【答案】 −√74【解析】因为 sinα+cosα=12,所以 1+2sinαcosα=14,所以 2sinαcosα=−34,则 (cosα−sinα)2=1−2sinαcosα=74. 又因为 α 为第二象限角,所以 cosα<0,sinα>0, 则 cosα−sinα=−√72,所以cos2α=cos 2α−sin 2α=(cosα+sinα)(cosα+sinα)=12×(−√72)=−√74. 【知识点】二倍角公式19. 【答案】 1≤a ≤√2【解析】因为函数 f (x ) 满足 f (x +2)=f (x )−2,所以若 x ∈(−6,−4] 时,则 x +2∈(−4,−2],x +4∈(−2,0], 若 x +6∈(0,2],即若 x ∈(−6,−5] 时, 则 x +2∈(−4,−3],x +4∈(−2,−1], 若 x +6∈(0,1],则f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6+(x +6)2−(x +6)−6=x 2+11x +30,若 x ∈(−5,−4] 时,则 x +2∈(−3,−2],x +4∈(−1,0], 若 x +6∈(1,2],则 f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6−2x+6−1−5=1−2x+5,由 af (x )−a 2+2=0(a >0) 得 af (x )=a 2−2(a >0), 即 f (x )=a −2a (a >0).作出函数 f (x ) 在 x ∈(−6,−4] 的图象如图. 在函数的值域为 −1≤f (x )≤0, 由 −1≤a −2a≤0,得 {a −2a ≥−1,a −2a ≤0,即 {a 2+a −2≥0,a 2−2≤0, 即 {a ≥1 或 a ≤−2,−√2≤a ≤√2,因为 a >0,所以 1≤a ≤√2.【知识点】函数的零点分布20. 【答案】 0 ; 2√2−3【解析】因为 f (−3)=lg [(−3)2+1]=lg10=1,所以 f(f (−3))=f (1)=1+2−3=0.当x ≥1 时,x +2x −3≥2√x ⋅2x −3=2√2−3,当且仅当 x =2x ,即 x =√2 时等号成立,此时 f (x )min =2√2−3<0;当 x <1 时,lg (x 2+1)≥lg (02+1)=0,此时 f (x )min =0.所以f(x)的最小值为2√2−3.【知识点】函数的最大(小)值、分段函数三、解答题(共10题)21. 【答案】设扇形的圆心角为θ(0<θ<2π),半径为r,弧长为l,面积为S,则l+2r=40,所以l=40−2r.S=12lr=12(40−2r)r=20r−r2=−(r−10)2+100.所以当r=10cm时,扇形的面积最大,最大值为100cm2,此时θ=lr =40−2×1010=2.【知识点】弧度制22. 【答案】(1) 因为实数a,b是常数,函数f(x)=(√1+x+√1−x+a)(√1−x2+b),所以由{1+x≥0,1−x≥0,1−x2≥0.解得−1≤x≤1.所以函数的定义域是[−1,1].对于任意x∈[−1,1],有−x∈[−1,1],且f(−x)=(√1+(−x)+√1−(−x)+a)(√1−(−x)2+b)=(√1−x+√1+x+a)(√1−x2+b)=f(x),即f(−x)=f(x)对x∈[−1,1]都成立.(又f(x)不恒为零)所以,函数f(x)是偶函数.(该函数是偶函数不是奇函数也可以)(2) 因为a=−3,b=1,所以f(x)=(√1+x+√1−x−3)(√1−x2+1).设t=√1+x+√1−x(−1≤x≤1),则t2=2+2√1−x2.所以0≤√1−x2≤1,2≤t2≤4(t≥0),即√2≤t≤2.所以D=[√2,2].于是,g(t)=12(t3−3t2)的定义域为D=[√2,2].对于任意的t1,t2∈D,且t1<t2,有g(t1)−g(t2)=12[t13−3t12−(t23−3t22)]=12[(t1−t2)(t12+t1t2+t22)−3(t1−t2)(t1+t2)]=12(t1−t2)[(t12−2t1)+(t22−2t2)+(12t1t2−t1)+(12t1t2−t2)]=12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)].又t1>0,t2>0,t1−t2<0,且t1−2≤0,t2−2≤0(这里二者的等号不能同时成立),所以12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)]>0,即g(t1)−g(t2)>0,g(t1)>g(t2).所以函数g(t)在D上是减函数.所以(g(t))min =g(2)=12×(23−3×22)=−2.又因为函数f(x)的值域与函数g(t)=12(t3−3t2)的值域相同,所以函数f(x)的最小值为−2.【知识点】函数的值域的概念与求法、函数的奇偶性23. 【答案】(1) g(x)=x+sin x3,所以cosg(x+6π)=cos(x+6π+sin x+6π3)=cos(x+sin x3)=cosg(x),所以g(x)是以6π为周期的余弦周期函数.(2) 因为f(x)的值域为R;所以存在x0,使f(x0)=c;又c∈[f(a),f(b)],所以f(a)≤f(x0)≤f(b),而f(x)为增函数;所以a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3) 若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;所以cosf(u0)=1,且0≤u0≤T;所以u0为方程cosf(x)=1在[0,T]上的解;所以“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,所以显然成立;②当x=T时,cosf(2T)=cosf(T)=1;所以f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,所以k1>2;(1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;所以f(T)<f(x0+T)<f(2T);所以4π<2k2π<6π;所以2<k2<3,无解;(2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;(3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),⋯,f(x n),(x1<x2<⋯<x n);则f(x1+T),f(x2+T),⋯,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,⋯,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;所以f(x i+T)=f(x i)+4π=f(x i)+f(T);所以综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【知识点】Asin(ωx+ψ)形式函数的性质、二倍角公式24. 【答案】(1) 由已知得,f(x)=sin2x+cos2x+1=√2sin(2x+π4)+1.函数的最小正周期T=2π2=π.(2) 由2kπ−π2≤2x+π4≤2kπ+π2(k∈Z)得,kπ−3π8≤x≤kπ+π8(k∈Z),又x∈[0,π2],所以x∈[0,π8],所以f(x)的单调递增区间为[0,π8],由2kπ+π2−≤2x+π4≤2kπ+3π2(k∈Z)得,kπ+π8≤x≤kπ+5π8(k∈Z),又x∈[0,π2],所以x∈[π8,π2 ],所以f(x)的单调递减区间为[π8,π2 ].【知识点】Asin(ωx+ψ)形式函数的性质25. 【答案】(1) 由题意知 {4=a +b,16=a +b 2,解得 {a =0,b =4 或 {a =7,b =−3(舍去), 所以 f (x )=4x . (2) f (x )>(12)3−x2,所以 4x>(12)3−x2,所以 22x >2x 2−3, 所以 2x >x 2−3, 解得 −1<x <3,所以不等式的解集为 (−1,3). (3) 因为g (x )=log 2f (x )+x 2−6=log 24x +x 2−6=2x +x 2−6=(x +1)2−7,因为 x ∈(−3,4],所以当 x =−1 时,g (x )min =−7, 当 x =4 时,g (x )max =18,所以函数 g (x )=log 2f (x )+x 2−6 的值域为 [−7,18].【知识点】函数的解析式的概念与求法、指数函数及其性质、函数的值域的概念与求法26. 【答案】(1) 不是; (2) 反证法,略.【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) f (x ) 的定义域为 {x∣ x ≠0}.设 f (x )=1x −1 是为 Ψ 函数,则存在实数 a ,b ,使得 f (a −x )+f (a +x )=b 对任意满足 a −x ∈D 且 a +x ∈D 的 x 恒成立, 即 1a−x +1a+x −2=b ,所以 (b +2)(a 2−x 2)=2a 恒成立,所以 a =0,b =−2. 所以存在 a =0,b =−2,使得 f (a −x )+f (a +x )=b 对任意 x ≠±a 恒成立. 所以 f (x )=1x −1 是 Ψ 函数.(2) 若 g (a +x )+g (a −x )=12a−x +t +12a+x +t =b 恒成立, 则 2a+x +2a−x +2t =b (2a+x +t )(2a−x +t ) 恒成立, 即 (1−bt )(2a+x +2a−x )=b (22a +t 2)−2t 恒成立,所以 1−bt =0,b (22a +t 2)−2t =0,又 t ≠0,所以 b =1t ,a =log 2∣t∣. 所以存在实数 a ,b 使得 g (x ) 是 Ψ 函数.(3) 因为函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称, 所以 ℎ(m −x )=ℎ(m +x ),所以当 m ≠a 时, ℎ(x +2m −2a )=ℎ[m +(x +m −2a )]=ℎ[m −(x +m −2a )]=ℎ(2a −x )=ℎ(a +(a −x )),又 ℎ(a +x )+ℎ(a −x )=b ,所以 ℎ(a +(a −x ))=b −ℎ[a −(a −x )]=b −ℎ(x ),所以 ℎ(x +2m −2a )=b −ℎ(x ),ℎ(x )=b −ℎ(x +2m −2a )=ℎ(x +2m −2a +2m −2a )=ℎ(x +4m −4a ).所以 ℎ(x ) 为周期函数,周期为 4m −4a .若 m =a ,则 ℎ(a −x )=ℎ(a +x ),且 ℎ(a −x )=b −ℎ(a +x ), 所以 ℎ(a +x )=b2,显然 ℎ(x ) 是周期函数. 综上,ℎ(x ) 是周期函数.【知识点】函数的对称性、函数的周期性、幂函数及其性质、指数函数及其性质28. 【答案】(1) g (x )=−x 2+2x ,(2) ℎ(x )=−(1+λ)x 2+2(1−λ)x +1,当 λ=−1 时,ℎ(x )=4x +1 在 [−1,1] 上显然为增函数,当 λ≠−1 时,可得 {1+λ>0,1−λ1+λ≥1, 或 {1+λ>0,1−λ1+λ≤−1,⇒−1<λ≤0 或 λ<−1,综上所述,所求 λ 的取值范围是 λ=−1 或 −1<λ≤0 或 λ<−1,即 λ≤0.【知识点】函数的解析式的概念与求法、函数的单调性29. 【答案】(1) 由题知,sinα=4√37,sin (α+β)=5√314,所以,cosβ=cos (α+β−α)=cos (α+β)cosα+sin (α+β)sinα=12. (2) 因为 0<α−β<π4,cos (α−β)=1213,所以 sin (α−β)=513,因为 π<α+β<3π2,sin (α+β)=−35,所以 cos (α+β)=−45,所以 sin2α=sin [(α−β)+(α+β)]=sin (α−β)cos (α+β)+cos (α−β)sin (α+β)=−5665. 【知识点】两角和与差的正弦、两角和与差的余弦30. 【答案】(1) 找出关键的五个点,列表如下: x −2π−3π2−π−π2y =sinx 010−10y =1−sinx10121描点作图,如图所示.(2) 由于 y =sin (x +π)−1=−sinx −1,找出关键的五个点,列表如下: x −2π−3π2−π−π20y =sinx 010−10y =−sinx −1−1−2−10−1描点作图,如图所示. 【知识点】正弦函数的图象。
2011-2012年度高一数学集合综合训练题
![2011-2012年度高一数学集合综合训练题](https://img.taocdn.com/s3/m/c1be50db76eeaeaad1f3304e.png)
第一卷 总分150分一、选择题(共10题,每题5分) 1.下列集合的表示法正确的是( ) A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈; C .集合{}1,2,2,5,7; D .不等式14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( ) A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( ) A .5个 B .6个 C .7个 D.8个4.已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 }, 那么集合 { 2 ,7 ,8}是 ( ))(A B A U )(B B A ⋂ )(C B C A C U U ⋂ )(D B C A C U U U5.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是( )A .8B .7C .6D .56. 集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A ∩B={-1},则a 的值是( ) A .-1 B .0 或1 C .2 D .07. 下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅ ⑤0⋂∅.=∅其中错误..写法的个数为 ( ) A .1 B .2 C .3 D .48. 已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤9 . 集合A={x |x =2n +1,n ∈Z}, B={y |y =4k ±1,k ∈Z},则A 与B 的关系为( )A .A ≠⊂B B .A ≠⊃BC .A=BD .A ≠B10.设U ={1,2,3,4,5},若A ∩B ={2},(U A )∩B ={4},(U A )∩(U B )={1,5},则下列结论正确的是( )A.3∉A 且3∉BB.3∉B 且3∈AC.3∉A 且3∈BD.3∈A 且3∈B班级 学号 姓名 成绩第二卷 总分150分二、填空题:(共4题,每题5分)11.满足{}{}1,21,2,3B = 的所有集合B 的集合为 。
人教A版高一数学必修第一册全册复习训练题卷含答案解析(39)
![人教A版高一数学必修第一册全册复习训练题卷含答案解析(39)](https://img.taocdn.com/s3/m/9630b9851711cc7930b71627.png)
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 设函数 f (x ) 的定义城为 A ,如果对于任意的 x 1∈A ,都存在 x 2∈A ,使得 f (x 1)+f (x 2)=2m (其中 m 为常数)成立,则称函数 f (x ) 在 A 上“与常数 m 相关联”.给定函数:① y =1x ;② y =x 3;③ y =(12)x;④ y =lnx ;⑤ y =cosx +1,则在其定义域上与常数 1 相关联的所有函数是 ( ) A .①②⑤ B .①③ C .②④⑤ D .②④2. 设全集为 R ,A ={x ∣x 2−5x −6>0},B ={x ∣−2<x <12},则 ( ) A . (∁R A )∪B =R B . A ∪(∁R B )=R C . (∁R A )∪(∁R B )=RD . A ∪B =R3. 已知函数 f (x )={log 2(x +1),x ≥11,x <1,则满足 f (2x +1)<f (3x −2) 的实数 x 的取值范围是( ) A . (−∞,0] B . (3,+∞) C . [1,3) D . (0,1)4. 已知函数 f (x )={x 2+4a,x >01+log a ∣x −1∣,x ≤0(a >0,且 a ≠1)在 R 上单调递增,若关于 x 的方程 ∣f (x )∣=x +3 恰好有两个互异的实数解,则 a 的取值范围是 ( ) A . (34,1316]B . (0,34]∪{1316}C . [14,34)∪{1316}D . [14,34]∪{1316}5. 已知 cosα+cosβ=12,sinα+sinβ=√32,则 cos (α−β)= ( ) A . −12B . −√32C . 12D . 16. 已知函数 f (x )=m 2x 2−2mx −√x +1−m 区间 [0,1] 上有且只有一个零点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,√2]∪[3,+∞)C . (0,√2]∪[2√3,+∞)D . (0,1]∪[3,+∞)7. 已知函数 f (x )=sin2x ,x ∈[a,b ],则“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的 ( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8. 已知函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,则实数 a 的取值范围是( ) A . [25,12)B . (0,25]C . (0,12)D . (0,15]9. 函数 f (x )=lnx +2x −6 的零点一定位于区间 ( ) A . (1,2) B . (2,3) C . (3,4) D . (4,5)10. 已知 a =log 0.92019,b =20190.9,c =0.92019,则 ( ) A . a <c <b B . a <b <c C . b <a <c D . b <c <a二、填空题(共10题) 11. 已知函数 f (x )=3x −13x +1,若不式 f (kx 2)+f (2x −1)<0 对任意 x ∈R 恒成立,则实数 k 的取值范围是 .12. 已知函数 f (x )=lg 1−x 1+x ,若 f (a )=b ,则 f (−a )= .13. 已知一次函数 f (x ) 满足 f [f (x )]=4x +3,且 f (x ) 在 R 上为单调递增函数,则 f (1)= .14. 已知 f (x ) 是以 2e 为周期的 R 上的奇函数,当 x ∈(0,e ),f (x )=lnx ,若在区间 [−e,3e ],关于 x 的方程 f (x )=kx 恰有 4 个不同的解,则 k 的取值范围是 .15. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a 的取值范围为 .16. 用二分法求函数 y =f (x ) 在区间 [2,4] 上零点的近似解,经验证有 f (2)f (4)<0.取区间的中点 x 1=2+42=3,计算得 f (2)f (x 1)<0,则此时零点 x 0∈ (填区间).17. 函数 f (x )=2x 与 g (x )=x 2 的图象交点个数是 个.18. 若某种参考书每本 2.5 元,则购书 x 本这种参考书的费用 y 关于 x 的函数表达式为 .19.已知13≤k<1,函数f(x)=∣2x−1∣−k的零点分别为x1,x2(x1<x2),函数g(x)=∣2x−1∣−k2k+1的零点分别为x3,x4(x3<x4),则(x4−x3)+(x2−x1)的最小值为.20.已知函数f(x)=∣∣x+1x∣∣,给出下列命题:①存在实数a,使得函数y=f(x)+f(x−a)为奇函数;②对任意实数a,均存在实数m,使得函数y=f(x)+f(x−a)关于x=m对称;③若对任意非零实数a,f(x)+f(x−a)≥k都成立,则实数k的取值范围为(−∞,4];④存在实数k,使得函数y=f(x)+f(x−a)−k对任意非零实数a均存在6个零点.其中的真命题是.(写出所有真命题的序号)三、解答题(共10题)21.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且∠AOP=π4,点P沿单位圆按逆时针方向旋转角θ后到点Q(a,b).(1) 当θ=π6时,求ab的值;(2) 设θ∈[π4,π2],求b−a的取值范围.22.化简:(1) 1+sin(α−2π)sin(π+α)−2cos2(−α);(2) sin(−1071∘)sin99∘+sin(−171∘)sin(−261∘).23.已知f(x)=e x−ae x是奇函数(e为自然对数的底数).(1) 求实数a的值;(2) 求函数y=e2x+e−2x−2λf(x)在[0,+∞)上的值域;(3) 令g(x)=f(x)+x,求不等式g((log2x)2)+g(2log2x−3)≥0的解集.24. 已知 α,β 为锐角,tanα=43,cos (α+β)=−√55. (1) 求 cos2α 的值; (2) 求 tan (α−β) 的值.25. 设函数 f (x )=∣x −a ∣,a ∈R .(1) 当 a =2 时,解不等式:f (x )≥6−∣2x −5∣;(2) 若关于 x 的不等式 f (x )≤4 的解集为 [−1,7],且两正数 s 和 t 满足 2s +t =a ,求证:1s+8t ≥6.26. 已知 a ≥1,函数 f (x )=sin (x +π4),g (x )=−sinxcosx −1+√2af (x ).(1) 若 f (x ) 在 [−b,b ] 上单调递增,求正数 b 的最大值; (2) 若函数 g (x ) 在 [0,3π4] 内恰有一个零点,求 a 的取值范围.27. 对于函数 f (x )=ax 2+(b +1)x +b −2,(a ≠0),若存在实数 x 0,使 f (x 0)=x 0 成立,则称x 0 为 f (x ) 的不动点.(1) 当 a =2,b =−2 时,求 f (x ) 的不动点;(2) 当 a =2 时,函数 f (x ) 在 (−2,3) 内有两个不同的不动点,求实数 b 的取值范围; (3) 若对于任意实数 b ,函数 f (x ) 恒有两个不相同的不动点,求实数 a 的取值范围.28. 用适当的方法表示下列集合:(1) 二次函数 y =x 2−4 的函数值组成的集合; (2) 反比例函数 y =2x 的自变量组成的集合; (3) 不等式 3x ≥4−2x 的解集.29. 已知定义在 R 上的奇函数 f (x ),当 x ≤0 时,f (x )=x 2+4x .(1) 求出 f (x ) 的解析式,并直接写出 f (x ) 的单调区间. (2) 求不等式 f (x )>3 的解集.30. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2016 年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量 p 万件与促销费用 x 万元满足 p =3−2x+1(其中 0≤x ≤a,a为正常数).已知生产该产品还需投入成本10+2p万元(不含促销费用),每一件产品的)元,假定厂家的生产能力完全能满足市场的销售需求.销售价格定为(4+20p(1) 将该产品的利润y万元表示为促销费用x万元的函数;(2) 促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.答案一、选择题(共10题) 1. 【答案】D【解析】若在其定义域上与常数 1 相关联,则满足 f (x 1)+f (x 2)=2. ① y =1x 的定义域为 {x∣ x ≠0},由 f (x 1)+f (x 2)=2 得 1x 1+1x 2=2,即 1x 2=2−1x 1,当 x 1=12 时,2−1x 1=2−2=0,此时 1x 2=0 无解,不满足条件;② y =x 3 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 (x 1)3+(x 2)3=2,即 x 2=√2−x 133唯一,满足条件;③ y =(12)x 定义域为 R ,由 f (x 1)+f (x 2)=2 得 (12)x 1+(12)x 2=2,即 (12)x 2=2−(12)x 1,当 x 1=−2 时,(12)x 2=2−(12)x 1=2−4=−2,无解,不满足条件;④ y =lnx 定义域为 {x∣ x >0},由 f (x 1)+f (x 2)=2 得 lnx 1+lnx 2=2,得 lnx 1x 2=2, 即 x 1x 2=e 2,x 2=e 2x 1,满足唯一性,满足条件;⑤ y =cosx +1 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 cosx 1+cosx 2=2,得 cosx 2=2−cosx 1,当 x 1=π3 时,cosx 2=2−cosx 1=2−0=2,无解,不满足条件. 故满足条件的函数是②④.【知识点】余弦函数的性质、对数函数及其性质、幂函数及其性质、指数函数及其性质2. 【答案】D【知识点】交、并、补集运算3. 【答案】B【解析】法一:由 f (x )={log 2(x +1),x ≥11,x <1可得当 x <1 时,f (x )=1;当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (1)=log 22=1, 要使得 f (2x +1)<f (3x −2),则 {2x +1<3x −2,3x −2>1, 解得 x >3,即不等式 f (2x +1)<f (3x −2) 的解集为 (3,+∞). 法二:当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (x )≥f (1)=1, 要使 f (2x +1)<f (3x −2) 成立,需 {2x +1≥1,2x +1<3x −2 或 {2x +1<1,3x −2>1,解得 x >3.【知识点】函数的单调性4. 【答案】D【解析】由函数的解析式可知函数在区间(0,+∞)上单调递增,当x≤0时,函数y=∣x−1∣单调递减,由复合函数的单调性法则可知:0<a<1,且函数在x=0处满足:02+4a≥1+log a∣0−1∣,解得:a≥14,故14≤a<1,方程∣f(x)∣=x+3恰有两个不相等的实数解,则函数∣f(x)∣与函数y=x+3的图象有且仅有两个不同的交点,绘制函数∣f(x)∣的图象如图中虚线所示,令1+log a∣x−1∣=0可得:x=1±1a,由14≤a<1可知1+1a>1,1−1a≥−3,则直线y=x+3与函数∣f(x)∣的图象在区间(−∞,0]上存在唯一的交点,原问题转化为函数y=x+3与二次函数y=x2+4a(14≤a<1)在区间(0,+∞)上存在唯一的交点,很明显当4a≤3,即a≤34时满足题意,当直线与二次函数相切时,设切点坐标为(x0,x02+4a),亦即(x0,x0+3),由函数的解析式可得:yʹ=2x,故2x0=1,x0=12,则x0+3=72,故切点坐标(12,72),从而x02+4a=72,即14+4a=72,a=1316.据此可得:a的取值范围是[14,34]∪{1316}.【知识点】函数的零点分布5. 【答案】A【解析】由 cosα+cosβ=12,sinα+sinβ=√32, 两边平方相加得,(cosα+cosβ)2+(sinα+sinβ)2=(12)2+(√32)2=1,所以 2+2cosαcosβ+2sinαsinβ=1, 即 2(cosαcosβ+sinαsinβ)=−1, 所以 cos (α−β)=−12. 故选A .【知识点】两角和与差的余弦6. 【答案】D【解析】由 f (x )=m 2x 2−2mx −√x +1−m =0, 得 m 2x 2−2mx +1=√x +m ,令 g (x )=m 2x 2−2mx +1=(mx −1)2,ℎ(x )=√x +m ,问题等价于函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. 又函数 g (x )=(mx −1)2 的图象为经过点 (0,1),对称轴为 x =1m 的抛物线,函数 ℎ(x )=√x +m 在区间 [0,1] 上单调递增,且图象经过点 (0,m ) 和 (1,1+m ). ①当 0<m ≤1 时,1m ≥1,所以函数 g (x )=(mx −1)2 在区间 [0,1] 上单调递减, 又当 0<m ≤1 时,g (1)=(m −1)2<1,ℎ(1)=1+m >1, 所以 g (1)<ℎ(1),所以函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. ②当 m >1 时,0<1m<1,在同一坐标系内做出两个函数的图象,如图所示. 由图形可得,要使两个函数的图象有且只有一个交点, 则需满足当 m >1 时,g (1)≥ℎ(1), 即 {m >1,m 2−3m ≥0,解得 m ≥3.综上,正实数 m 的取值范围是 (0,1]∪[3,+∞).【知识点】函数的零点分布7. 【答案】B【解析】 f (x ) 的最小正周期 T =2π2=π,所以当 x ∈[a,b ] 时,f (x )∈[−1,1],则 b −a ≥π2 恒成立, 而当 a =0,b =π2时,a −b ≥π2,此时 f (x )∈[0,1],故“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的必要而不充分条件.故B 选项符合题意.【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】B【解析】因为函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,所以 {2a −1<0,0<a <1,log a 1≥2(2a −1)+a,即 {a <12,0<a <1,a ≤25,解得 0<a ≤25.【知识点】函数的单调性9. 【答案】B【知识点】零点的存在性定理10. 【答案】A【解析】因为 a <0,b >1,0<c <1, 所以 a <c <b .【知识点】对数函数及其性质、指数函数及其性质二、填空题(共10题) 11. 【答案】 (−∞,−1)【解析】易证 f (x )=3x −13x +1 为奇函数,所以 f (kx 2)+f (2x −1)<0⇒f (kx 2)<f (1−2x ). 因为 f (x )=3x −13x +1=1−23x +1,所以 f (x ) 在 R 上单调递增,所以 f (kx 2)<f (1−2x )⇒kx 2<1−2x ⇒kx 2+2x −1<0 在 R 上恒成立, 所以 {k <0,Δ=4+4k <0, 解得 k <−1,所以实数 k 的取值范围是 (−∞,−1).【知识点】函数的奇偶性、函数的单调性12. 【答案】 −b【解析】由 1−x1+x >0,得 {1−x >0,1+x >0, 或 {1−x <0,1+x <0,所以 −1<x <1.故 f (x ) 的定义域为 (−1,1),而 f (−x )=lg 1+x1−x =lg (1−x 1+x )−1=−lg 1−x1+x =−f (x ),所以 f (x ) 为奇函数,所以 f (−a )=−f (a )=−b . 【知识点】对数函数及其性质13. 【答案】 3【解析】根据题意,函数 f (x ) 是一次函数,设 f (x )=ax 十b ,则 f [f (x )]=a (ax +b )+b =a 2x +ab +b =4x +3,则有 {a 2=4,ab +b =3.解得:{a =2,b =1, 或 {a =−2,b =−3.又由 f (x ) 在 R 上为单调递增函数,则 f (x )=2x +1, 故 f (1)=2+1=3. 【知识点】函数的单调性14. 【答案】 (−∞,−1e]∪[13e ,1e)【知识点】函数的零点分布15. 【答案】(1,2)【解析】考查函数 y =f (x ) 图象与 y =a ∣x ∣ 图象的交点的情况,根据图象,得 a >0. 当 a =2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 3 个交点; 当 y =a ∣x ∣(x ≤0) 图象与 y =∣x 2+5x +4∣ 图象相切时,在整个定义域内,函数 y =f (x ) 图象与 y =a ∣x ∣ 图象有 5 个交点, 此时,由 {y =−ax,y =−x 2−5x −4, 得 x 2+(5−a )x +4=0.由 Δ=0,解得 a =1 或 a =9(舍去).故当 1<a <2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 4 个交点.【知识点】函数零点的概念与意义、函数图象16. 【答案】 (2,3)【解析】因为 x 1=3,且 f (2)⋅f (3)<0,所以 x 0∈(2,3). 【知识点】零点的存在性定理17. 【答案】 3【知识点】函数的零点分布18. 【答案】 y =2.5x ,x ∈N ∗【知识点】函数的解析式的概念与求法19. 【答案】log23【解析】f(x)=∣2x−1∣−k=0⇒2x1=1−k,2x2=1+k⇒x1=log2(1−k),x2=log2(1+k),g(x)=∣2x−1∣−k2k+1=0⇒2x3=k+12k+1,2x4=3k+12k+1⇒x3=log2k+12k+1,x4=log23k+12k+1,由(1)(2)得(x4−x3)+(x2−x1)=log23k+11−k =log2(41−k−3),因为13≤k<1,故(x4−x3)+(x2−x1)≥log23.【知识点】函数的零点分布20. 【答案】②③④【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) 由三角函数的定义,可得P(cosπ4,sinπ4),Q(cos(π4+θ),sin(π4+θ)).当θ=π6时,Q(cos5π12,sin5π12),即a=cos5π12,b=sin5π12,所以ab=cos5π12sin5π12=12×2×cos5π12sin5π12=12×sin5π6=14.(2) 因为Q(cos(π4+θ),sin(π4+θ)),所以a=cos(π4+θ),b=sin(π4+θ),由三角恒等变换的公式,化简可得:b−a=sin(π4+θ)−cos(π4+θ)=√2[sin(π4+θ)cosπ4−cos(π4+θ)sinπ4]=√2sinθ,因为θ∈[π4,π2],所以1≤√2sinθ≤√2.即b−a的取值范围为[1,√2].【知识点】任意角的三角函数定义、Asin(ωx+ψ)形式函数的性质22. 【答案】(1) −cos2a.(2) 0.【知识点】诱导公式23. 【答案】(1) 因为f(x)的定义域为R,f(x)为奇函数,所以f(0)=0,故1−a=0,即a=1.经检验,满足题意.(2) 设e x−1e x =t(t≥0),则e2x+1e2x=t2+2,设y=ℎ(t)=t2−2λt+2=(t−λ)2+2−λ2,t∈[0,+∞).①当λ≤0时,ℎ(t)≥ℎ(0),所以函数的值域为[2,+∞);②当λ>0时,ℎ(t)≥ℎ(λ),所以函数的值域为[2−λ2,+∞).(3) 因为g(x)的定义域为R,f(x)为奇函数,所以g(−x)=f(−x)+(−x)=−f(x)−x=−(f(x)+x)=−g(x),故g(x)为奇函数.任取x1,x2,且x1<x2,则g(x1)−g(x2)=(e x1−e x2)−(1e x1−1e x2)+(x1−x2)=(e x1−e x2)(1+1e x1+x2)+(x1−x2),因为x1<x2,所以(e x1−e x2)(1+1e x1+x2)<0,x1−x2<0,所以g(x1)−g(x2)<0,所以g(x1)<g(x2),故g(x)在R上单调递增.由g((log2x)2)+g(2log2x−3)≥0,得g((log2x)2)≥−g(2log2x−3),即g((log2x)2)≥g(−2log2x+3),所以(log2x)2≥−2log2x+3,所以(log2x)2+2log2x−3≥0,解得log2x≥1或log2x≤−3,故x≥2或0<x≤18.故原不等式的解集为(0,18]∪[2,+∞).【知识点】对数函数及其性质、函数的单调性、函数的奇偶性24. 【答案】(1) 因为 tanα=43,tanα=sinαcosα, 所以 sinα=43cosα,因为 sin 2α+cos 2α=1,所以 cos 2α=925, 因此,cos2α=2cos 2α−1=−725.(2) 因为 α,β 为锐角,所以 α+β∈(0,π), 因为 cos (α+β)=−√55, 所以 sin (α+β)=√1−cos 2(α+β)=2√55.因此 tan (α+β)=−2, 因为 tanα=43,所以 tan2α=2tanα1−tan 2α=−247,因此tan (α−β)=tan [2α−(α+β)]=tan2α−tan (α+β)1+tan2αtan (α+β)=−211.【知识点】两角和与差的正切、二倍角公式25. 【答案】(1) 当 a =2 时,不等式:f (x )≥6−∣2x −5∣,可化为 ∣x −2∣+∣2x −5∣≥6. ① x ≥2.5 时,不等式可化为 x −2+2x −5≥6,所以 x ≥133;② 2≤x <2.5,不等式可化为 x −2+5−2x ≥6,所以 x ∈∅; ③ x <2,不等式可化为 2−x +5−2x ≥6,所以 x ≤13,综上所述,不等式的解集为 (−∞,13]∪[133,+∞).(2) 不等式 f (x )≤4 的解集为 [a −4,a +4]=[−1,7], 所以 a =3,所以 1s +8t =13(1s +8t )(2s +t )=13(10+ts +16s t)≥6,当且仅当 s =12,t =2 时取等号.【知识点】绝对值不等式的求解、均值不等式的应用26. 【答案】(1) 由2kπ−π2≤x+π4≤2kπ+π2,k∈Z,得2kπ−3π4≤x≤2kπ+π4,k∈Z.因为f(x)在[−b,b]上单调递增,令k=0,得−3π4≤x≤π4是f(x)的一个单调递增区间,所以{b≤π4,−b≥−3π4,解得b≤π4,可得正数b的最大值为π4.(2) g(x)=−sinxcosx+√2af(x)−1=−sinxcosx+a(sinx+cosx)−1,设t=sinx+cosx+√2sin(x+π4),当x∈[0,3π4]时,t∈[0,√2].它的图形如图所示.又sinxcosx=12(t2−1),则−sinxcosx+a(sinx+cosx)−1=12t2+at−12,t∈[0,√2],令ℎ(t)=−12t2+at−12,则函数g(x)在[0,3π4]内恰有一个零点,转化为ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点.①当t=0时,ℎ(t)无零点.②当t=√2时,由√2a−32=0,得a=3√24,把a=3√24代入−12t2+at−12=0中,得−12t2+3√24t−12=0,解得t1=√2,t2=√22,不符合题意.③当0<t<√2时,若Δ=a2−1=0,得a=1,此时t=1,由t=√2sin(x+π4)的图象可知不符合题意;若Δ=a2−1>0,即a>1,设−12t2+at−12=0的两根分别为t1,t2,由t1t2=1,且抛物线的对称轴为t=a≥1,要使ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点,则两同时为正,且一个根在(0,1)内,另一个根在(√2,+∞)内,所以{ℎ(1)>0,ℎ(√2)>0,解得a>3√24.综上,a的取值范围为(3√24,+∞).【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) 当a=2,b=−2时,f(x)=2x2−x−4,所以由 f (x )=x 得 x 2−x −2=0,所以 x =−1 或 x =2, 所以 f (x ) 的不动点为 −1,2.(2) 当 a =3 时,f (x )=2x 2+(b +1)x +b −2, 由题意得 f (x )=x 在 (−2,3) 内有两个不同的不动点,即方程 2x 2+bx +b −2=0 在 (−2,3) 内的两个不相等的实数根, 设 g (x )=2x 2+bx +b −2,所以只须满足 {g (−2)=8−2b +b −2>0,g (3)=18+3b +b −2>0,−2<−b4<3,b 2−8(b −2)>0, 所以 {b <6,b >−4,−12<b <8,b ≠4, 所以 −4<b <4 或 4<b <6.(3) 由题意得:对于任意实数 b ,方程 ax 2+bx +b −2=0 总有两个不相等的实数解, 所以 {a ≠0,Δ=b 2−4a (b −2)>0,所以 b 2−4ab +8a >0 对 b ∈R 恒成立, 所以 16a 2−32a <0,所以 0<a <2.【知识点】函数的零点分布28. 【答案】(1) {y∣ y ≥−4}. (2) {x∣ x ≠0}. (3) {x∣ x ≥45}.【知识点】集合的表示方法29. 【答案】(1) 当 x >0 时,−x <0,f (−x )=(−x )2+4(−x )=x 2−4x , 因为 f (x ) 是定义在 R 上的奇函数, 所以 f (x )=−f (x )=−x 2+4x , 所以 f (x )={x 2+4x,x ≤0−x 2+4x,x >0,f (x ) 的单调减区间为 (−∞,−2) 和 (2,+∞),单调增区间为 (−2,2).(2) 当 x ≤0 时,x 2+4x >3,即 x 2+4x −3>0, 即 x <−2−2√7 或 x >−2+2√7, 因为 x ≤0,所以 x <−2−2√7, 当 x >0 时,−x 2+4x >3,即 x 2−4x +3<0,即 (x −1)(x −3)<0,解得 1<x <3.综上,不等式f(x)>3的解集为(−∞,−2−2√7)∪(1,3).【知识点】函数的奇偶性、函数不等式的解法30. 【答案】(1) 由题意知,t=(4+20p)p−x−(10+2p),将p=3−2x+1代入化简得:y=16−4x+1−x(0≤x≤a).(2) y=17−(4x+1+x+1)≤17−2√4x+1×(x+1)=13,当且仅当4x+1=x+1,即x=1时,上式取等号,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,y=17−(4x+1+x+1)在[0,a]上单调递增,所以x=a时,函数有最大值,即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元时,厂家的利润最大.【知识点】均值不等式的实际应用问题、建立函数表达式模型。
高一数学第1章三角函数综合训练卷
![高一数学第1章三角函数综合训练卷](https://img.taocdn.com/s3/m/0850ea8a6429647d27284b73f242336c1eb9300a.png)
三角函数综合训练卷(120分钟:满分150分)一、选择题(每题5分:共60分)1.函数y=sin (2-πx )的最小正周期为( ) A .1 B .2 C .π D .2π 2.函数)32sin(4π+=x y 的图象( )A .关于原点对称B .)0,6(π-为其对称中心C .关于y 轴对称D .关于直线6π=x 对称3.函数)32tan(π-=x y 在一个周期内的图象是( )4.已知函数f (x )满足f (x+π)=f (-x ):f (-x )=f (x ):则f (x )可以是( ) A .sin2x B .cosx C .sin|x| D .|sinx|5.A 为△ABC 的一个内角:sinA+cosA 的取值范围是( ) A .]2,1(- B .)2,2( C .)2,2(-D .]2,2[-6.若x x 22cos sin <:则x 的取值范围是( )A .},42432|{Z k k x k x ∈+<<-ππππ B .},45242|{Z k k x k x ∈+<<-ππππC .},44|{Z k k x k x ∈+<<-ππππD .},43242|{Z k k x k x ∈+<<-ππππ 7.函数f (x )=2sin ωx (ω>0)在]4,3[ππ-上为增函数:那么( ) A .230≤<ω B .0<ω≤2 C .7240≤<ω D .ω≥28.函数y=sin2x+acos2x 的图象关于直线8π-=x 对称:那么实数a 的值为( )A .2B .2-C .1D .-19.已知x :y ∈R :1422=+y x :则x+2y 的最大值为( ) A .5 B .4 C .17D .610.已知21sin ≥x :tgx ≤-1:函数xy cos 11-=取得最小值时的最小正数x 等于( ) A .43π B .2πC .4πD .6π11.方程lgx=sinx 的实根个数为( )A .1个B .2个C .3个D .4个 12.函数f (x )=Msin (ωx+ϕ)(ω>0)在区间[a :b]上为增函数:f (a )=-M :f (b )=M :则函数g (x )=Mcos (ωx+ϕ)在[a :b]上( )A .为增函数B .可以取得最小值-MC .为减函数D .可以取得最大值M二、填空题(每题4分:共16分) 13.函数)3sin(3π+=ax y 的最小正周期为1:则实数a 的值为____________。
第六章平面向量及其应用综合训练-2021-2022学年高一下学期数学人教A版(2019)必修第二册
![第六章平面向量及其应用综合训练-2021-2022学年高一下学期数学人教A版(2019)必修第二册](https://img.taocdn.com/s3/m/84e83f68178884868762caaedd3383c4ba4cb452.png)
第六章 平面向量及其应用 章末综合训练一、选择题1. 下列结论中,不正确的是 ( ) A .若 AB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则 AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ B .向量 AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线与 AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ 的意义是相同的 C .若向量 a ,b ⃗ 满足 ∣a ∣=∣∣b ⃗ ∣∣,则 a =b ⃗ D .若 AB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则 BA ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗2. 设 a ,b ⃗ 是向量,则“∣a ∣=∣b ⃗ ∣”是“∣a +b ⃗ ∣=∣a −b⃗ ∣”的 ( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3. 已知向量 a 与 b ⃗ 方向相反,a =(1,−√3),|b ⃗ |=2,则 |a −b⃗ |= ( )A . 2B . 4C . 8D . 164. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 a =3,b =7,cosB =−12,则 c = ( )A . 4B . 5C . 8D . 105. 在 △ABC 中,∠BAC =60∘,∠BAC 的平分线 AD 交 BC 边于点 D ,已知 AD =2√3,且λAB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −13AC ⃗⃗⃗⃗⃗ (λ∈R ),则 AB ⃗⃗⃗⃗⃗ 在 AD ⃗⃗⃗⃗⃗ 方向上的投影数量为 ( )A . 1B . 32C . 3D .3√326. 如图所示,为了测量山高 MN ,选择 A 和另一座山的山顶 C 作为测量基点,从 A 点测得 M 点的仰角 ∠MAN =60∘,C 点的仰角 ∠CAB =45∘,∠MAC =75∘,从 C 点测得 ∠MCA =60∘,已知山高 BC =500 m ,则山高 MN (单位:m )为 ( )A . 750B . 750√3C . 850D . 850√37. 已知在 △ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,若 b =1,c =√3,且 2sin (B +C )cosC =1−2cosAsinC ,则 △ABC 的面积是 ( )A .√34B . 12C .√34或√32D .√34或 128. 已知 e 1⃗⃗⃗ ,e 2⃗⃗⃗是平面内两个夹角为 2π3的单位向量,设 m ⃗⃗ ,n ⃗ 为同一平面内的两个向量,若 m ⃗⃗ =e 1⃗⃗⃗ +e 2⃗⃗⃗ ,∣n ⃗ −e 1⃗⃗⃗ ∣=12,则 ∣m ⃗⃗ −n ⃗ ∣ 的最大值为 ( )A . 12B . 32C .√3−12D .√3+12二、多选题9. 如图,在平行四边形 ABCD 中,下列计算错误的是 ( )A . AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ B . AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DO ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ C . AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ D . AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =0⃗ 10. △ABC 满足下列条件,其中有两个解的是 ( )A . b =3,c =4,B =30∘B . b =12,c =9,C =60∘C . b =3√3,c =6,B =60∘D . a =5,b =8,A =30∘ 11. 设 a ,b⃗ 是两个非零向量.则下列命题为假命题的是 ( ) A .若 ∣∣a +b ⃗ ∣∣=∣a ∣−∣∣b ⃗ ∣∣,则 a⊥b ⃗ B .若 a ⊥b ⃗ ,则 ∣∣a +b ⃗ ∣∣=∣a ∣−∣∣b ⃗ ∣∣C .若 ∣∣a +b ⃗ ∣∣=∣a ∣−∣∣b ⃗ ∣∣,则存在实数 λ,使得 b⃗ =λaD .若存在实数 λ,使得 b ⃗ =λa ,则 ∣∣a +b ⃗ ∣∣=∣a ∣−∣∣b ⃗ ∣∣12. 《数书九章》是南宋时期杰出数学家秦九韶的著作,全书十八卷,共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积术”中提出了已知三角形三边 a ,b ,c ,求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”若把以上这段文字写成公式,即 S =√14[c 2a 2−(c 2+a 2−b 22)2].现有 △ABC 满足 sinA:sinB:sinC =2:3:√7,且 △ABC 的面积 S =6√3,请运用上述公式判断下列结论正确的是 ( ) A . △ABC 的周长为 10+2√7B . △ABC 三个内角 A ,B ,C 满足 2C =A +B C . △ABC 外接圆的直径为4√213D . △ABC 的中线 CD 的长为 3√2三、填空题13. 在 △ABC 中,sinA:sinB:sinC =3:2:4,则 cosC = .14. 已知 A ,B ,C 三点共线,若 O 是这直线外一点,满足 mOA ⃗⃗⃗⃗⃗ −2OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ,则点 A 分 BC⃗⃗⃗⃗⃗ 的比为 .15. 已知 △ABC 的面积为 3√15,且 AC −AB =2,cosA =−14,则 BC 的长为 .16.如图所示,等腰梯形ABCD中,AB=4,BC=CD=2,若E,F分别是BC,AB上的点,且满足BEBC =AFAB=λ,当AE⃗⃗⃗⃗⃗ ⋅DF⃗⃗⃗⃗⃗ =0时,则实数λ的值是.四、解答题17.已知a=(1,2),b⃗=(−3,2),当k为何值时:(1) ka+b⃗与a−3b⃗垂直?(2) ka+b⃗与a−3b⃗平行?平行时它们是同向还是反向?18.如图所示,AD,BE,CF是△ABC的三条高,求证:AD,BE,CF相交于一点.19.已知平面向量a,b⃗,c满足∣a∣=4,∣∣b⃗∣∣=3,∣c∣=2,b⃗⋅c=3,求(a−b⃗)2(a−c)2−[(a−b⃗)⋅(a−c)]2的最大值.20. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 a =1,B =π3,△ABC 的面积为3√34.(1) 求 △ABC 的周长; (2) 求 cos (B −C ) 的值.21. 已知 △ABC 的外接圆半径为 R ,其内角 A ,B ,C 的对边长分别为 a ,b ,c ,设 2R (sin 2A −sin 2B )=(a −c )sinC . (1) 求角 B ;(2) 若 b =12,c =8,求 sinA 的值.22. 已知 O 为坐标原点,对于函数 f (x )=asinx +bcosx ,称向量 OM⃗⃗⃗⃗⃗⃗ =(a,b ) 为函数 f (x ) 的伴随向量,同时称函数 f (x ) 为向量 OM ⃗⃗⃗⃗⃗⃗ 的伴随函数. (1) 设函数 g (x )=√3sin (π+x )−sin (3π2−x),试求 g (x ) 的伴随向量 OM ⃗⃗⃗⃗⃗⃗ ;(2) 记向量 ON ⃗⃗⃗⃗⃗⃗ =(1,√3) 的伴随函数为 f (x ),当 f (x )=85,且 x ∈(−π3,π6) 时,求 sinx 的值; (3) 将(1)中函数 g (x ) 的图象的横坐标伸长为原来的 2 倍(纵坐标不变),再把整个图象向右平移2π3个单位长度得到 ℎ(x ) 的图象,已知 A (−2,3),B (2,6),问在 y =ℎ(x ) 的图象上是否存在一点 P ,使得 AP ⃗⃗⃗⃗⃗ ⊥BP⃗⃗⃗⃗⃗ ?若存在,求出 P 点坐标;若不存在,说明理由.。
人教A版高一数学必修第一册全册复习训练题卷含答案解析(33)
![人教A版高一数学必修第一册全册复习训练题卷含答案解析(33)](https://img.taocdn.com/s3/m/b46517e6a8114431b80dd863.png)
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 如果函数 f (x )=12(m −2)x 2+(n −8)x +1(m ≥0,n ≥0) 在区间 [12,2] 上单调递减,那么 mn 的最大值为 ( ) A .16 B .18 C .25D .8122. 若 a 为实数,则“a <1”是“1a >1”的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3. 若函数 f (x )=x 2−4x +8,x ∈[1,a ],它的最大值为 f (a ),则实数 a 的取值范围是 ( ) A . (1,2] B . (1,3) C . (3,+∞) D . [3,+∞)4. 已知函数 f (x )=√3sinωx −cosωx (ω>0),y =f (x ) 的图象与直线 y =2 的两个相邻交点的距离等于 π,则 f (x ) 的一条对称轴是 ( ) A . x =−π12B . x =π12C . x =−π3D . x =π35. 已知函数 f (x )={ln (x +1),0<x ≤21−2x ,−2≤x ≤0,若函数 y =∣f (x )∣ 图象与直线 y =kx +k 有 3 个交点,则实数 k 的取值范围是 ( ) A .(0,1e )B .(0,12e )C .[ln33,12e )D .[ln33,1e )6. 如果 a <b <0,那么下列不等式中不正确的是 ( ) A .1a>1bB .1a−b>1bC . √−a >√−bD . ∣a∣>−b7. 若函数 f (x )={1−x 2,x ≤1x 2−x −3,x >1,则 f (1f (3)) 的值为 ( )A .1516B . −2716C . 89D . 188. 设函数 f (x ) 的定义域为 R ,有下列三个命题:(1)若存在常数 M ,使得对任意 x ∈R ,有 f (x )≤M ,则 M 是函数 f (x ) 的最大值;(2)若存在 x 0∈R ,使得对任意 x ∈R ,且 x ≠x 0,有 f (x )<f (x 0),则 f (x 0) 是函数 f (x ) 的最大值;(3)若存在 x 0∈R ,使得对任意 x ∈R ,有 f (x )≤f (x 0),则 f (x 0) 是函数 f (x ) 的最大值. 这些命题中,真命题的个数是 ( ) A . 0 个 B . 1 个 C . 2 个 D . 3 个9. 已知函数 f (x )=6x −log 2x 在下列区间中,包含 f (x ) 零点的区间是 ( )A . (0,1)B . (1,2)C . (2,4)D . (4,+∞)10. 函数 f (x ) 满足是 f (x +2)=4f (x ),且 x ∈R ,当 x ∈[0,2],f (x )=x 2−4x +16,则当 x ∈[−4,−2] 时,f (x ) 的最小值为 ( ) A . −18B . 18C . −34D . 34二、填空题(共10题)11. 能说明“若 a >b ,则 1a <1b ”为假命题的一组 a ,b 的值依次为 .12. 已知函数 f (x )=x 2−2(a +2)x +a 2,g (x )=−x 2+2(a −2)x −a 2+8.设 H 1(x )=max {f (x ),g (x )},H 2(x )=min {f (x ),g (x )}(max {p,q } 表示 p ,q 中的较大值,min {p,q } 表示 p ,q 中的较小值).记 H 1(x ) 的最小值为 A ,H 2(x ) 的最大值为 B ,则 A −B = .13. 已知 θ∈(0,π),且 sin (θ+π4)=√210,则 cos (θ−π4)= ,tanθ= .14. 已知函数 f (x ) 的定义域为 R ,且 f (x )⋅f (−x )=1 和 f (1+x )⋅f (1−x )=4 对任意的 x ∈R都成立.若当 x ∈[0,1],f (x ) 的值域为 [1,2],则当 x ∈[−100,100] 时,函数 f (x ) 的值域为 .15. 对一定义域为 D 的函数 y =f (x ) 和常数 c ,若对任意正实数 ξ,∃x ∈D 使得 0<∣f (x )−c ∣<ξ 成立,则称函数 y =f (x ) 为“敛 c 函数”,现给出如下函数:① f (x )=x (x ∈Z );② f (x )=(12)x+1(x ∈Z );③ f (x )=log 2x ;④ f (x )=x−1x.其中为“敛 1 函数”的有 .(填序号)16. 设函数 f (x )={√x,x ≥0(12)x,x <0,则 f(f (−4))= ,f (f(f (−4))) .17. 某卡车在同一时间段里速度 v (km/h ) 与耗油量 Q (kg/h ) 之间近似地满足函数表达式 Q =0.0025v 2−0.175v +4.27,要使卡车的耗油量最少,则车速为 .18. 定义在 R 上的奇函数 f (x ) 满足 f (x +4)=f (x ) 上,且在区间 [2,4) 上,f (x )={2−x,2≤x <3x −4,3≤x <4,则函数 y =f (x )−log 5∣x ∣ 的零点的个数为 .19. 已知 a >0,函数 f (x )={x 2+2ax +a,x ≤0−x 2+2ax −2a,x >0.若关于 x 的方程 f (x )=ax 恰有 2 个互异的实数解,则 a 的取值范围是 .20. 已知 cos (508∘−α)=1213,则 cos (212∘+α)= .三、解答题(共10题)21. 已知 f (x )=mx +3,g (x )=x 2+2x +m .(1) 求证:关于 x 的方程 f (x )−g (x )=0 有解;(2) 设 G (x )=f (x )−g (x )−1,求函数 y =G (x ) 在区间 [0,+∞) 上的最大值;(3) 对于(2)中的 G (x ),若函数 y =∣G (x )∣ 在区间 [−1,0] 上是严格减函数,求实数 m 的取值范围.22. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x >0 时,f (x )=1−2−x ,(1) 写出 f (x ) 的单调区间; (2) 求不等式 f (x )<−12 的解集.23. 求证:1cos2θ−tanθtan2θ=1.24. 已知集合 A ={x∣ ∣ x −2∣ <a },集合 B ={x∣ 2x−1x+2≤1},且 A ⊆B ,求实数 a 的取值范围.25. 求函数 y =tan (2x −π4) 的周期和单调区间.26. 已知函数 f (x )=x∣x −a∣+2x (a ∈R ).(1) 若函数 f (x ) 在 R 上单调递增,求实数 a 的取值范围;(2) 若存在实数a∈[−4,4]使得关于x的方程f(x)−tf(a)=0恰有三个不相等的实数根,求实数t的取值范围.−x)−√3sin2x+sinxcosx.27.已知函数f(x)=2cosxcos(π6(1) 求f(x)的最小正周期;(2) 将函数y=f(x)的图象上各点的横坐标缩短到原来的1倍,纵坐标不变,得到函数y=2g(x)的图象,求函数g(x)在(0,π)上的取值范围.4(p>0)的单调性.28.判断函数f(x)=x+px29.已知函数f(x)的定义域为[0,2],且f(x)的图象连续不间断.若函数f(x)满足:对于给定的实数m且0<m<2,存在x0∈[0,2−m],使得f(x0)=f(x0+m),则称f(x)具有性质P(m).),并说明理由;(1) 已知函数f(x)=√1−(x−1)2,判断f(x)是否具有性质P(12(2) 求证:任取m∈(0,2),函数f(x)=(x−1)2,x∈[0,2]具有性质P(m);(3) 已知函数f(x)=sinπx,x∈[0,2],若f(x)具有性质P(m),求m的取值范围.30.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到(15−0.1x)万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1) 每套丛书售价定为100元时,书商所获得的总利润是多少万元?(2) 每套丛书售价定为多少元时,单套丛书的利润最大?答案一、选择题(共10题)1. 【答案】B【解析】当m=2时,f(x)=(n−8)x+1,要使其在区间[12,2]上单调递减,则n−8<0⇒n<8,于是mn<16,则mn无最大值.当m∈[0,2)时,f(x)的图象开口向下,要使f(x)在区间[12,2]上单调递减,需−n−8m−2≤12,即2n+m≤18,又n≥0,则mn≤m(9−m2)=−12m2+9m.而g(m)=−12m2+9m在[0,2)上为增函数,所以m∈[0,2)时,g(m)<g(2)=16,故m∈[0,2)时,mn无最大值.当m>2时,f(x)的图象开口向上,要使f(x)在区间[12,2]上单调递减,需−n−8m−2≥2,即2m+n≤12,而2m+n≥2√2m⋅n,所以mn≤18,当且仅当{2m+n=12,2m=n.即{m=3,n=6.时,取“=”,此时满足m>2.故(mn)max=18.【知识点】二次函数的性质与图像、函数的最大(小)值、函数的单调性2. 【答案】B【知识点】充分条件与必要条件3. 【答案】D【知识点】函数的最大(小)值4. 【答案】D【解析】由题,得f(x)=√3sinωx−cosωx=2sin(ωx−π6),因为y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,所以函数y=f(x)的最小正周期T=π,则ω=2πT=2,所以f(x)=2sin(2x−π6),当x=π3时,2x−π6=π2,所以x=π3是函数f(x)=2sin(2x−π6)的一条对称轴.【知识点】Asin(ωx+ψ)形式函数的性质5. 【答案】D【解析】因为函数 y =∣f (x )∣ 图象与直线 y =kx +k 有 3 个交点, 所以 f (x )={ln (x +1),0<x ≤21−2x ,−2≤x ≤0,与 y =k (x +1) 有 3 个不同交点,作 y =f (x ) 与 y =k (x +1) 的图象如下,易知直线 y =k (x +1) 过定点 A (−1,0),斜率为 k .当直线 y =k (x +1) 与 y =ln (x +1) 相切时是一个临界状态, 设切点为 (x 0,y 0),则 {k =yʹ=1x0+1,k (x 0+1)=ln (x 0+1),解得,x 0=e −1,k =1e ,又函数过点 B (2,ln3),k AB =ln32−(−1)=ln33,故ln33≤k <1e .【知识点】函数的零点分布6. 【答案】B【知识点】不等式的性质7. 【答案】C【解析】因为 f (x )={1−x 2,x ≤1x 2−x −3,x >1,所以 f (3)=32−3−3=3, 所以 f (1f (3))=f (13)=1−(13)2=89.【知识点】分段函数8. 【答案】C【解析】对于(1),M 不一定是函数 f (x ) 中的值,可能“=”不能取到,故其不正确; 因为函数最大值的定义是存在一个函数值不小于其它所有的函数值, 则此函数值是函数的最大值,故(2)(3)正确. 综上可知正确的有 2 个. 【知识点】函数的最大(小)值9. 【答案】C【解析】因为f(x)在(0,+∞)上单调递减,且f(1)=6−log21=6>0,f(2)=3−log22=2>0,f(4)=32−log24=−12<0,所以由函数零点存在定理知函数f(x)在区间(2,4)内必存在零点.【知识点】零点的存在性定理10. 【答案】D【解析】因为x∈[0,2]时,f(x)的对称轴为x=2,所以f(x)在[0,2]单调递减,所以f(x)min=f(2)=12,所以x∈[−4,−2]时,f(x)min=116f(2)=34.故选D.【知识点】函数的最大(小)值二、填空题(共10题)11. 【答案】1,−1(答案不唯一)【知识点】命题的概念与真假判断12. 【答案】−16【解析】f(x)=[x−(a+2)]2−4−4a,g(x)=−[x−(a−2)]2+12−4a.由f(x)=g(x),解得x=a+2或x=a−2.又H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},所以H1(x)的最小值A=−4−4a,H2(x)的最大值B=12−4a,所以A−B=(−4−4a)−(12−4a)=−16.【知识点】二次函数的性质与图像13. 【答案】√210;−43【解析】由诱导公式sinα=cos(π2−α),cos(−α)=cosα.所以sin(θ+π4)=cos[π2−(θ+π4)]=cos(π4−θ)=cos(θ−π4),即sin(θ+π4)=cos(θ−π4),所以cos(θ−π4)=sin(θ+π4)=√210.由sin(θ+π4)=√210,利用正弦和角公式展开可得 sinθcos π4+cosθsin π4=√210. 即 sinθ+cosθ=15,两边同时平可得 2sinθcosθ=125−1=−2425.则 sinθ 与 cosθ 异号,且 sinθ+cosθ=15>0,由 θ∈(0,π),所以 sinθ>0,cosθ<0,且 ∣sinθ∣>∣cosθ∣. 由 sinθ+cosθ=15,可知 sinθ=15−cosθ.由同角三角函数关系式 sin 2θ+cos 2θ=1 代入可得 (15−cosθ)2+cos 2θ=1.化简可得 25cos 2θ−5cosθ−12=0,即 (5cosθ+3)(5cosθ−4)=0. 解得 cosθ=−35,cosθ=45(舍).所以 sinθ=15−(−35)=45.所以 tan =sinθcosθ=45−35=−43.【知识点】两角和与差的正弦14. 【答案】 [2−100,2100]【解析】由 f (x )⋅f (−x )=1 可得,f (x )=1f (−x ),由 f (1+x )⋅f (1−x )=4 可得 f (1+x )=4f (1−x ), 令 1−x =t 可得 f (t )=4f (2−t ), ⋯⋯①由 f (x )⋅f (−x )=1 可得,f (x )=1f (−x ),所以 f (t )=1f (−t ), ⋯⋯② ①② 联立可得 f (t +2)=4f (t ),所以 f (x +2)=4f (x ), 因为当 x ∈[0,1],f (x ) 的值域为 [1,2], 设 x ∈[−1,0] 时,−x ∈[0,1],则 f (x )=1f (−x)∈[12,1], 所以 x +2∈[1,2] 时,f (x +2)=4f (x )∈[2,4],以此类推,区间每增加 2 个长度,值域变为上个区间的 4 倍,且 x ∈[−1,1] 时,值域为 [12,2],则当 x ∈[−100,100] 时,函数 f (x ) 的值域 [2−100,2100]. 【知识点】抽象函数、函数的值域的概念与求法15. 【答案】②③④【解析】由新定义知,对任意正实数 ξ,∃x ∈D 使得 0<∣f (x )−c ∣<ξ 成立,即 0<∣f (x )−c ∣<ξ 有解.对于函数①解得,1−ξ<x <1+ξ,且 x ≠1,x ∈Z ,因为 ξ 为任意正实数,所以无解,故函数①不是“敛 1 函数”;对于函数②解得,x >−log 2ξ 且 x ∈Z ,故函数 ②是“敛 1 函数”; 对于函数③解得,21−ξ<x <21+ξ,且 x ≠2,故函数③是“敛 1 函数”; 对于函数④解得,∣x ∣>1ξ,故函数④是“敛 1 函数”.因此正确答案为②③④. 【知识点】函数的相关概念16. 【答案】 4 ; 2【解析】因为 x =−4<0, 所以 f (−4)=(12)−4=16,因为 x =16>0,所以 f (16)=√16=4,f (4)=2. 【知识点】分段函数17. 【答案】 35 km/h【知识点】建立函数表达式模型18. 【答案】 5【知识点】函数的周期性、函数的零点分布、函数的奇偶性19. 【答案】 (4,8)【知识点】函数的零点分布20. 【答案】1213【解析】因为 cos (508∘−α)=cos (360∘+148∘−α)=cos (148∘−α)=1213,所以 cos (212∘+α)=cos (360∘+α−148∘)=cos (α−148∘)=cos (148∘−α)=1213. 【知识点】诱导公式三、解答题(共10题) 21. 【答案】(1) f (x )−g (x )=−x 2+(m −2)x +3−m ,令 f (x )−g (x )=0, 则 Δ=(m −2)2−4(m −3)=m 2−8m +16=(m −4)2≥0.(2) G(x)=−x2+(m−2)x+(2−m),当m−22≤0时,即m≤2时,G(x)max=G(0)=2−m,当m−22>0时,即m>2时,G(x)max=G(m−22)=−(m−2)24+(m−2)22+(2−m).G(x)max=(m−2)24+(2−m)=14m2−2m+3.(3) (方法一)G(x)=f(x)−g(x)−1=−x2+(m−2)x+2−m,①令G(x)=0,Δ=(m−2)2−4(m−2)=(m−2)(m−6),当Δ≤0,即2≤m≤6时,G(x)=−x2+(m−2)x+2−m≤0恒成立,所以∣G(x)∣=x2−(m−2)x+m−2,因为∣G(x)∣在[−1,0]上是减函数,所以m−22≥0.解得m≥2.所以2≤m≤6.当Δ>0,即m<2或m>6时,∣G(x)∣=∣x2−(m−2)x+m−2∣.因为∣G(x)∣在[−1,0]上是减函数,所以方程x2−(m−2)x+m−2=0的两根均大于零或一根大于零另一根小于零且x=m−22≤−1,所以{m−2>0,m−22>0或{m−2<0,m−22≤−1.解得m>2或m≤0.所以m≤0或m>6.综上可得,实数m的取值范围为(−∞,0]∪[2,+∞).(方法二)G(x)=f(x)−g(x)−1=−x2+(m−2)x+2−m,因为函数∣G(x)∣在[−1,0]上是减函数,所以{m−22≤−1,G(0)≥0或{m−22≥0,G(0)≤0.即{m−22≤−1,2−m≥0或{m−22≥0,2−m≤0.解得m≤0或m≥2.所以实数m的取值范围为(−∞,0]∪[2,+∞).【知识点】函数的单调性、函数的最大(小)值、二次函数的性质与图像22. 【答案】(1) 因为f(x)是定义在R上的奇函数,所以 f (0)=0.因为 f (x ) 在 [0,+∞) 上是增函数, 所以 f (x ) 在 (−∞,+∞) 上是增函数, (2) f (x )<−12=−f (1)=f (−1), 由(1)知 f (x ) 在 R 上是增函数, 所以 x <−1,即 f (x )<−12 的解集为 (−∞,−1).【知识点】指数函数及其性质23. 【答案】左边=1cos2θ−sinθsin2θcosθcos2θ=cosθ−2sin 2θcosθcosθcos2θ=1−2sin 2θcos2θ=cos2θcos2θ=1=右边,所以原等式成立. 【知识点】二倍角公式24. 【答案】当 a ≤0 时,A =∅,则 A ⊆B 满足题意,当 a >0 时,A ={x∣ ∣ x −2∣ <a }={x∣ −a <x −2<a }={x∣ 2−a <x <2+a },由2x−1x+2≤1⇒x−3x+2≤0⇒{(x +2)(x −3)≤0,x +2≠0⇒−2<x ≤3,所以 B ={x∣ −2<x ≤3},A ⊆B , {a >0,2−a ≥−2,2+a ≤3⇒0<a ≤1, 综上实数 a 的取值范围是 a ≤1. 【知识点】包含关系、子集与真子集25. 【答案】 y =tan (2x −π4) 的周期是 π2,单调递增区间是 (−π8+kπ2,3π8+kπ2)(k ∈Z ).【知识点】Asin(ωx+ψ)形式函数的性质26. 【答案】(1) f (x )=x∣x −a∣+2x ={x 2+(2−a )x,x ≥a−x 2+(2+a )x,x <a.由 f (x ) 在 R 上是增函数,则 {a ≥−2−a2,a ≤2+a2,即 −2≤a ≤2,则 a 范围为 −2≤a ≤2.(2) 当 −2≤a ≤2 时,f (x ) 在 R 上是增函数,则关于 x 的方程 f (x )−tf (a )=0 不可能有三个不等的实数根. 则当 a ∈(2,4] 时,由 f (x )={x 2+(2−a )x,x ≥a−x 2+(2+a )x,x <a ,得 x ≥a 时,f (x )=x 2+(2−a )x 对称轴 x =a−22,则 f (x ) 在 x ∈[a,+∞) 为增函数,此时 f (x ) 的值域为 [f (a ),+∞)=[2a,+∞); x <a 时,f (x )=−x 2+(2+a )x 对称轴 x =a+22,则 f (x ) 在 x ∈(−∞,a+22] 为增函数,此时 f (x ) 的值域为 (−∞,(a+2)24],f (x ) 在 x ∈[a+22,+∞) 为减函数,此时 f (x ) 的值域为 (2a,(a+2)24];由存在 a ∈(2,4],方程 f (x )=tf (a )=2ta 有三个不相等的实根, 则 2ta ∈(2a,(a+2)24),即存在 a ∈(2,4],使得 t ∈(1,(a+2)28a) 即可,令 g (a )=(a+2)28a,只要使 t <(g (a ))max 即可,而 g (a ) 在 a ∈(2,4] 上是增函数,g (a )max =g (4)=98,故实数 t 的取值范围为 (1,98); 当 a ∈[−4,−2) 时,由a+22>a−22>a ,则 f (x ) 在 (−∞,a ) 单调递增,值域为 (−∞,2a ); 在 (a,a−22) 单调递减,值域为 (−(a−2)24,2a); 在 (a−22,+∞) 单调递增,值域为 (−(a−2)24,+∞).由存在 a ∈[−4,−2),方程 f (x )=tf (a )=2ta 有三个不相等的实根, 则 2ta ∈(−(a−2)24,2a),即 t ∈(1,(a−2)28a),令 ℎ(a )=(a−2)28a,只要使 t <ℎ(a )max 即可,而 ℎ(a ) 在 a ∈[−4,−2) 单调递减,ℎ(a )max =ℎ(−4)=98, 所以 t 的取值范围为 (1,98).综上所述,实数t的取值范围为(1,98).【知识点】函数的奇偶性、函数的零点分布、函数的单调性27. 【答案】(1) 函数f(x)=2cosxcos(π6−x)−√3sin2x+sinxcosx=√3(cos2x−sin2x)+2sinxcosx=2sin(2x+π3),所以函数的最小正周期为π.(2) 将函数y=f(x)的图象上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数g(x)的图象,所以g(x)=2sin(4x+π3).因为x∈(0,π4),所以4x+π3∈(π3,4π3),所以g(x)∈(−√3,2].【知识点】Asin(ωx+ψ)形式函数的性质28. 【答案】任取x1,x2∈(0,+∞),且x1<x2,则f(x1)−f(x2)=x1+px1−(x2+px2)=(x1−x2)+p(x2−x1)x1x2=(x1−x2)⋅x1x2−px1x2. ⋯⋯①当x1,x2∈(0,√p)时,0<x1x2<p,x1−x2<0,所以①式大于0,即f(x1)−f(x2)>0,所以f(x2)<f(x1),即f(x)在(0,√p)上单调递减;当x1,x2∈[√p,+∞)时,x1x2>p,x1−x2<0,所以①式小于0,即f(x1)−f(x2)<0,所以f(x2)>f(x1),即f(x)在[√p,+∞)上单调递增.同理可得,当x∈(−√p,0)时,f(x)=x+px单调递减;当x∈(−∞,−√p]时,f(x)=x+px单调递增.综上所述,f(x)=x+px(p>0)在(−∞,−√p]和[√p,+∞)上单调递增,在 (−√p,0) 和 (0,√p) 上单调递减.【知识点】函数的单调性29. 【答案】(1) f (x ) 具有性质 P (12).设 x 0∈[0,32],令 f (x 0)=f (x 0+12), 则 (x 0−1)2=(x 0−12)2,解得 x 0=34,又 34∈[0,32],所以 f (x ) 具有性质 P (12).(2) 任取 x 0∈[0,2−m ],令 f (x 0)=f (x 0+m ), 则 (x 0−1)2=(x 0+m −1)2,因为 m ≠0,解得 x 0=−m2+1,又 0<m <2,所以 0<−m2+1<1, 当 0<m <2,x 0=−m 2+1 时,(2−m )−x 0=(2−m )−(−m 2+1)=1−m 2>0,即 0<−m2+1<2−m ,即任取实数 m ∈(0,2),f (x ) 都具有性质 P (m ).(3) m ∈(0,1].首先,若 m ∈(0,1],取 x 0=1−m 2,则1−m 2≥0 且 2−m −1−m 2=3−m 2>0,故 x 0∈[0,2−m ].又 f (x 0)=sin (π2−mπ2),f (x 0+m )=sin (π2+mπ2)=sin (π2−mπ2)=f (x 0),所以 f (x ) 具有性质 P (m );假设存在 m ∈(1,2) 使得 f (x ) 具有性质 P (m ), 即存在 x 0∈[0,2−m ],使得 f (x 0)=f (x 0+m ),若 x 0=0,则 x 0+m ∈(1,2),f (x 0)=0,f (x 0+m )<0,f (x 0)≠f (x 0+m );若 x 0∈(0,2−m ],则 x 0+m ∈(m,2],进而 x 0∈(0,1), x 0+m ∈(1,2],f (x 0)>0,f (x 0+m )≤0,f (x 0)≠f (x 0+m ), 所以假设不成立,所以 m ∈(0,1].【知识点】二次函数的性质与图像、函数的相关概念、Asin(ωx+ψ)形式函数的性质30. 【答案】(1) 每套丛书售价定为 100 元时,销售量为 15−0.1×100=5 (万套),所以每套丛书的供货价格为 30+105=32 (元),故书商所获得的总利润为 5×(100−32)=340 (万元).(2) 每套丛书售价定为 x 元时,由 {15−0.1x >0,x >0, 得 0<x <150 .设单套丛书的利润为 P 元,则 P =x −(30+1015−0.1x )=x −100150−x −30, 因为 0<x <150,所以 150−x >0, 所以 P =−[(150−x )+100150−x]+120,又 (150−x )+100150−x ≥2√(150−x )⋅100150−x =2×10=20, 当且仅当 150−x =100150−x ,即 x =140 时等号成立, 所以 P max =−20+120=100 .故每套丛书售价定为 140 元时,单套丛书的利润最大,为 100 元.【知识点】函数的模型及其实际应用、函数的最大(小)值、均值不等式的应用。
专题01集合中的含参问题-2019版高一数学特色专题训练Word版含解析
![专题01集合中的含参问题-2019版高一数学特色专题训练Word版含解析](https://img.taocdn.com/s3/m/61b2ab14eefdc8d376ee32bc.png)
一、选择题1.若集合,则实数的取值范围是 ( )A .B .C .D .【答案】D【解析】2.已知集合{}0,5,10A =,集合{}22,1B a a =++,且{}5A B ⋂=,则满足条件的实数a 的个数有 ( )A . 0个B . 1 个C . 2 个D . 3 个【答案】B【解析】{}22,1B a a =++,且{}5A B ⋂=,则有25a +=或215a +=. 32a =,或-2.当3a =时, {}5,10B =,此时{}510A B ⋂=,,不满足题意;当2a =时, {}54B =,,满足题意;当2a =-时, {}0,5B =,此时{}50A B ⋂=,,不满足题意,所以满足条件的实数a 只有1个.故选B.3.已知点)在平面直角坐标系的第二象限内,则的取值范围在数轴上可表示为(阴影部分)( )A. B.C. D.【答案】C【解析】因为在第二象限,所以,所以,故选C.4.已知m,,集合,集合,若,则A. 1 B. 2 C. 4 D. 8【答案】A【解析】5.已知集合A={x|x2-2x-3≤0},B={x|x<a},若A⊆B,则实数a的取值范围是()A. (-1,+∞)B. [-1,+∞)C. (3,+∞)D. [3,+∞)【答案】C【解析】[]13A =-,, (),B a =-∞;∵A B ⊆;∴3a >;∴a 的取值范围为3+∞(,),故选C . 点睛:研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.解指数或对数不等式要注意底数对单调性的影响.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍,熟练画数轴来解交集、并集和补集的题目.6.已知集合,,若,则实数的取值范围为( )A .B .C .D . 【答案】C【解析】7.已知集合A ={-1,0,a },B ={ x |0<x <1},若A ∩B ≠Ø,则实数a 的取值范围是A . {1}B . (0,1)C . (1,+∞)D . (-∞,0)【答案】B【解析】1,0,B B -∉∉ 若A B φ⋂≠ ,则a B ∈ ,则01a << ,选B .8.已知集合2{|280}P x x x =--≤, {|}Q x x a =≥, ()C P Q ⋃=R R ,则a 的取值范围是 A . ()2,∞-+ B . ()4,∞+ C . (],2∞-- D . (],4∞-【答案】C【解析】因为{|24}P x x =-≤≤, {|}Q x x a =≥,则{|24}C P x x x =-R 或,又因为()C P Q ⋃=R R ,所以2a ≤-本题选择C 选项.9.集合,,若,则的取值范围是( )A .B .C .D .【答案】B【解析】 根据题意,可得,,要使,则,故选B.二、填空题10.已知集合,.若,则实数__________.【答案】0【解析】11.设全集 ,,,则的值为____________.【答案】2或8【解析】 由题意,可知,依据补集可得, 则有,即,解得或,即实数的值为或.12.集合{}{}1,|A x x B x x a ==<,若R A C B ⊆,则实数a 的取值范围_________【答案】1a ≤ 【解析】∵集合{}{}1,|,{|},1R R A x x B x x a C B x x a A C B a ==<∴=⊆∴,,厔∴实数a 的取值范围是 1.a ≤13.已知,若,则的取值范围是___________.。
人教A版高中数学必修一全册作业与测评含答案综合质量评估
![人教A版高中数学必修一全册作业与测评含答案综合质量评估](https://img.taocdn.com/s3/m/05b1e40c680203d8ce2f24de.png)
综合质量评估(第一至第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·大庆高一检测)设集合U=,集合M=,N=,则M ∩(ðN)等于( )UA. B.C. D.【解析】选B.因为ðN=,M=,所以M∩(UðN)=.U【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则ð(A∪B)U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以ð(A∪B)={2,4}.U2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+∞).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x ≠2,故函数的定义域为[-1,2)∪(2,+∞).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠±1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=±,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( )A.c<b<aB.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小. 【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+∞)上是减函数,因为lo3=-log 23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.(2015·鹰潭高一检测)函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3).【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.(2015·临川高一检测)已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=log m(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)【解题指南】当x<0时,-x>0,由题意可知f(-x),再利用f(-x)=-f(x),可求f(x). 【解析】选A.设x<0,则-x>0,f(-x)=(1-x)=-(1-x),又因为f(x)为奇函数,所以f(-x)=-f(x),所以-f(x)=-(1-x),所以f(x)=(1-x).12.(2015·鄂州高一检测)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9【解析】选D.当y=2x2-1=1时,解得x=±1,当y=2x2-1=7时,解得x=±2,由题意可知是“孪生函数”的函数的定义域应为,,,, ,,,,共9个.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·温州高一检测)函数y=a x-1+1a>0,且a≠1一定过定点. 【解析】当x-1=0时,y=a x-1+1=a0+1=2,由此解得x=1,即函数恒过定点(1,2).答案:(1,2)14.= .【解析】===1.答案:115.(2015·常德高一检测)如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【解析】由于函数f(x)=x2-ax+1仅有一个零点,即方程x2-ax+1=0仅有一个根,故Δ=a2-4=0,解得a=±2.答案:±2【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.【解析】由于函数f(x)=x2+ax-4在(0,1)内只有一个零点,且f(0)=-4<0,函数f(x)的图象开口向上,则必有f(1)>0,即1+a-4>0,所以a>3.答案:a>316.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).【解析】例如函数f(x)=x2,f(0)=0,但此函数不是奇函数,故①错误;若函数为偶函数,则在其定义域内的所有的x,都有f(-x)=f(x),若f(-4)≠f(4),则该函数一定不是偶函数,故②正确;对于函数f(x)=x2,f(0)<f(4),但该函数不是R上的增函数,故③错误;由于f(0)<f(4),则该函数一定不是减函数,故④正确.答案:②④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数). 【解析】原式=÷×=××=×a×=a2.18.(12分)(2015·郑州高一检测)已知集合A=,B=.(1)分别求R (A B)∩ð,(R Bð)∪A.(2)已知C=,若C⊆B,求实数a的取值集合. 【解析】(1)因为A∩B=,所以R (A B)∩ð=或,因为R Bð=,所以(R Bð)∪A=x<6或.(2)因为C⊆B,所以解之得3≤a≤8,所以a∈.19.(12分)(2015·海口高一检测)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.【解析】(1)由已知得所以可得-1<x<1,故函数的定义域为.(2)f(-x)=lg(1-x)-lg(1+x)=-lg(1+x)+lg(1-x)=-=-f(x).所以f(x)=lg(1+x)-lg(1-x)为奇函数.20.(12分)(2015·梅州高一检测)已知函数f(x)是定义在R上的偶函数,且当x ≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【解析】(1)当x>0时,-x<0,因为函数是偶函数,故f(-x)=f(x),所以f(x)=f(-x)=(-x)2+4(-x)=x2-4x,所以f(x)=(2)图象如图所示:函数的值域为[-4,+∞).【补偿训练】(2014·临沂高一检测)已知函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2).(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.【解析】(1)因为函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2),所以即所以解得所以f(x)=log3(2x-1),定义域为.(2)f(14)÷f=log327÷log 3=3÷=6.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【解析】(1)由题意可知,用汽车运输的总费用为:f(x)=8x+1000+·300=14x+1600(x>0),用火车运输的总费用为:g(x)=4x+2000+·300=7x+3200(x>0).(2)由f(x)<g(x)得x<.由f(x)=g(x)得x=.由f(x)>g(x)得x>.所以,当A,B两地距离小于km时,采用汽车运输好;当A,B两地距离等于km时,采用汽车或火车都一样;当A,B两地距离大于km时,采用火车运输好.【拓展延伸】选择数学模型分析解决实际问题(1)特点:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题.(2)三种常用方法:①直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;②列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;③描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.22.(12分)(2015·成都高一检测)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.(3)当x∈(-3,4]时,求函数g(x)=log2f(x)+x2-6的值域.【解析】(1)由题知所以或(舍去),所以f(x)=4x.(2)因为4x>,所以22x>,所以2x>x2-3,所以x2-2x-3<0,所以-1<x<3,所以不等式的解集为(-1,3).(3)g(x)=log24x+x2-6=log222x+x2-6=2x+x2-6=(x+1)2-7,因为-1∈(-3,4],所以g(x)min=-7,当x=4时,g(x)max=18,所以值域为[-7,18].关闭Word文档返回原板块。
苏教版高一数学第一学期期末考试训练题二
![苏教版高一数学第一学期期末考试训练题二](https://img.taocdn.com/s3/m/dad5d323e2bd960590c6774d.png)
管 道 局 中 学 第 一 学 期 期 末高一数学试题(二)一、选择题(本大题共12个小题,每小题5分,共60分)1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( ) A .3个 B .4个 C .5个 D .6个 2.函数f (x )=|sin x +cos x |的最小正周期是( )A.π4B.π2C .πD .2π 3.若向量i ,j 为互相垂直的单位向量,a =i -2j ,b =i +mj ,且a 与b 的夹角为锐角, 则实数m 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭ B .()1,22,2⎛⎫-∞-- ⎪⎝⎭ C.222,,33⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭D. 1,2⎛⎫-∞ ⎪⎝⎭4.函数y =lg(21-x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称 5.已知log 23=a ,log 25=b ,则log 295等于( )A .a 2-b B .2a -b C.a 2b D.2ab6.函数y =-x 2+8x -16在区间[3,5]上( )A .没有零点B .有一个零点C .有两个零点D .有无数个零点 7.函数y =2cos 2⎝ ⎛⎭⎪⎫x -π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数8.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )A .y =2cos 2xB .y =2sin 2xC .y =1-sin (2x +π4) D .y =cos 2x9.若函数f (x )=log a |x -2|(a >0,且a ≠1)在区间(1,2)上是增函数,则f (x )在区间(2,+∞)上( )A .是增函数且有最大值B .是增函数且无最大值C .是减函数且有最小值D .是减函数且无最小值10.用固定的速度向图甲形状的瓶子注水,则水面的高度h 和时间t 之间的关系是图乙中的( )11.已知O ,N ,P 在△ABC 所在平面内,且 |OA→|=|OB →|=|OC →|,NA →+NB →+NC →=0,且 PA →·PB →=PB →·PC →=PC →·PA →,则点O ,N ,P 依次是△ABC 的( ) A .重心 外心 垂心 B .重心 外心 内心 C .外心 重心 垂心 D .外心 重心 内心12.已知幂函数12)12()(-+-=m x m m x f 在),0(+∞上为减函数,则满足不等式)1()1(f a f <+ 的实数的取值范围为 ( )A.),1()0,1(+∞⋃- B.),0()1,(+∞⋃--∞ C.)1,0( D.),1()1,(+∞⋃--∞二、填空题(每题5分,共20分)13.函数y =2cos 2x +sin2x 的最小值是________.14.在平行四边行ABCD 中,M 、N 分别是DC 、BC 的中点,已知AM →=c ,AN →=d , 用c 、d 表示AB→=________.15.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3, 则下一个有根区间是__________.16.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.三.解答题:17.设函数f (x )=a ·b ,其中向量a =(m ,cos2x ),b =(1+sin2x,1),x ∈R ,且函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,2.(1)求实数m 的值;(2)求函数f (x )的最小值及此时x 值的集合.18.(12分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2. (1)求f (x );(2)当函数f (x )的定义域是[0,1]时,求函数f (x )的值域.19.(本题满分12分)已知α,β都是锐角(1)若54)6sin(=+πα,求αsin 的值;(2)若4sin 5α=,5cos()13αβ+=,求sin β的值.20. 已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1, (1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.21.已知sin(45°+α)sin(45°-α)=-14,0°<α<90°.(1)求α的值;(2)求sin(α+10°)[1-3tan(α-10°)]的值.22. 我国加入WTO时,根据达成的协议,若干年内某产品关税与市场供应量P的关系允许近似满足2))(1(2)(b x kt x P --=(其中为t 关税的税率,且)21,0[∈t ,x 为市场价格,k b ,为正常数),当81=t 时的市场供应量曲线如图所示(1)根据图象求k b ,的值;(2)设市场需求量为Q,它近似满足2112)(x x Q -=,当P=Q时的市场价格称为市场平衡价格,为使市场平衡价格不低于9元,求税率的最小值.高一数学试题(二)答案一、选择题:1.解:U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},有3个元素,故选A.2.解: 由f (x )=|sin x +cos x |=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫x +π4,而y =2sin(x +π4)的周期为2π,所以函数f (x )的周期为π,故选C.3.解: 由条件知a =(1,-2),b =(1,m ),∵a 与b 的夹角为锐角, ∴a ·b =1-2m >0,∴m <12.又a 与b 夹角为0°时,m =-2,∴m ≠-2.4.解:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x=-f (x ),所以y =lg(21-x -1)关于原点对称,故选C.5.解:log 295=log 29-log 25=2log 23-log 25=2a -b .6.解:∵y =-x 2+8x -16=-(x -4)2,∴函数在[3,5]上只有一个零点4.7.解 因为y =2cos 2⎝ ⎛⎭⎪⎫x -π4-1=cos ⎝ ⎛⎭⎪⎫2x -π2=sin 2x 为奇函数,T =2π2=π,所以选A .8.解124sin 2sin 2sin 2cos 2cos 212cos 42y x y x x x y x x πππ⎛⎫⎛⎫=−−−−−→=+=+=−−−−→=+= ⎪ ⎪⎝⎭⎝⎭左移个单位上移个单位故选A9.解:在区间(1,2)上函数y =log a |x -2|=log a (2-x )是增函数,因此0<a <1,于是函数f (x )在区间(2,+∞)上为减函数,且不存在最小值.10.解:水面升高的速度由慢逐渐加快.答案:B11.解∵O ,N ,P 在△ABC 所在平面内,且|OA→|=|OB →|=|OC →|,∴O 是△ABC 外接圆的圆心; 由NA→+NB →+NC →=0,得N 是△ABC 的重心;由PA →·PB →=PB →·PC →=PC →·PA →得PB →·(PA →-PC →)=PB →·CA→=0, ∴PB ⊥CA ,同理可证PC ⊥AB ,PA ⊥BC , ∴P 为△ABC 的垂心.12.解:因为()f x 为幂函数,所以2211m m -+=解得0m =或2m =,而()f x 在),0(+∞上为减函数,所以0m =,所以1()f x x =,而)1()1(f a f <+即111a<+,解得0a >或1a <- 二、填空题:13.解:y =2cos 2x +sin2x =1+cos2x +sin2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∵x ∈R ,∴y min =1- 2.14.解:d =AB→+BN →=AB →+12AD →① c =AD→+DM →=AD →+12AB →②解①②组成的方程组得AD→=43c -23d ,AB →=43d -23c .15.解:设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3). 答案:(2,3)16.解:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪ 0≤k <34 三、解答题:17.解:(1)f (x )=a ·b =m (1+sin2x )+cos2x ,由已知f ⎝ ⎛⎭⎪⎫π4=m ⎝ ⎛⎭⎪⎫1+sin π2+cos π2=2,得m =1.(2)由(1)得f (x )=1+sin2x +cos2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴当sin ⎝ ⎛⎭⎪⎫2x +π4=-1时,f (x )取得最小值1-2,由sin ⎝ ⎛⎭⎪⎫2x +π4=-1得,2x +π4=2k π-π2, 即x =k π-3π8(k ∈Z) 所以f (x )取得最小值时,x 值的集合为{x |x =k π-3π8,k ∈Z}. 18.解:(1)∵f (x )的两个零点分别是-3和2.∴函数图象过点(-3,0),(2,0), ∴有9a -3(b -8)-a -ab =0① 4a +2(b -8)-a -ab =0② ①-②得b =a +8③③代入②得4a +2a -a -a (a +8)=0,即a 2+3a =0. ∵a ≠0,∴a =-3,∴b =a +8=5. ∴f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18=-3(x +12)2+34+18,图象的对称轴方程是x =-12,且0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18, ∴函数f (x )的值域是[12,18].19.解:(1)∵α是锐角,54)6sin(=+πα ∴53)6cos(±=+πα又由3266ππαπ<+<得:23)6cos(21<+<-πα ∴53)6c o s (=+πα6sin)6cos(6cos)6sin(]6)6sin[(sin ππαππαππαα+-+=-+==1033421532354-=⨯-⨯ 。
高一数学综合训练题
![高一数学综合训练题](https://img.taocdn.com/s3/m/f2f40d3fee06eff9aef8073f.png)
邢台市2010--2011学期上学期期末考试高一数学试题一、选择题(本题10个小题,每题5分,共50分,在每题给出的四个选项中,只有一项是正确的)1、已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则)()(B C A C U U 等于( )A 、{1,6}B 、{4,5}C 、{2,3,4,5,7}D 、{1,2,3,6,7}2、已知54sin =α,且α是第二象限角,则αtan 的值是 ( ) A 、34 B 、34- C 、43 D 、43- 3、函数2log 5+=x y (1≥x ) 的值域是 ( ) A 、R B 、[)+∞,2 C 、[)+∞,3 D 、()2,∞-4、已知)4,2(-=MA , )6,2(=MB ,则=AB 21 ( ) A 、(0,5) B 、(0,1) C 、(2,1) D 、(2,5)5、)4sin(πω+=x y 的最小正周期为32π ,则ω的值是( ) A 、3 B 、31- C 、23 D 、32 6、已知2cos sin -=+αα, 则α2sin 的值为 ( ) A 、1 B 、-1 C 、2 D 、-27、已知函数)(x f 是定义在R 上的函数,且图像关于原点对称,当0<x 时,x x f )31()(= ,若9)(-=x f ,则x 为 ( ) A 、3 B 、—3 C 、2 D 、—28、若函数22)(23--+=x x x x f 的一个正数零点附近的函数值用二分法计算,其参考数据如下表: 2)1(-=f625.0)5.1(=f 984.0)25.1(-=f 260.0)375.1(-=f162.0)4375.1(=f 054.0)40625.1(-=f那么方程02223=--+x x x 的一个近似根(精确到0.1)为 ( )A 、1.2B 、1.5C 、1.3D 、1.49、已知a=(3,-1) , b =(1,2), 向量c 满足a.c =7, 且b ⊥c ,则c 的坐标为 ( )A 、(2,-1)B 、(-2,1)C 、(2,1)D 、(-2,-1)10、已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能是 ( )A 、)62sin(2)(π-=x x fB 、)32cos(2)(π-=x x f C 、)44sin(2)(π+=x x f D 、)64sin(2)(π+=x x f二、填空题(本题6个小题,每题5分,共30分,将答案直接填入题后横线上)11、2tan =x ,则=-)4(2tan πx 。
2013届高三理科数学综合训练题二
![2013届高三理科数学综合训练题二](https://img.taocdn.com/s3/m/33ad54e6f8c75fbfc77db2bc.png)
2013届高三理科数学综合训练题(二)(本试卷共4页,21小题,满分150分。
考试用时120分钟)参考公式:如果在事件A 发生的条件下,事件B 发生的条件概率记为(|)P B A ,那么()()(|)P AB P A P B A =.一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1. 已知集合,集合,则A B = ( ) A. B. C. D. 2.若p 是真命题,q 是假命题,则( )A .p q ∧是真命题B .p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题 3.4)2(x x +的展开式中3x 的系数是( )A .6B .12C .24D .484.在A B C ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形5.已知实数4,,9m 构成一个等比数列,则圆锥曲线221xy m+=的离心率为( )630.A 7.B 7630.或C 765.或D6.阅读右图所示的程序框图,运行相应的程序,输出的结果是( ).A .3B .11C .38D .123 7.已知x 、y 的取值如下表所示:若y 与x 线性相关, 且ˆ0.95y x a =+,则a =( ) x 0 1 3 4 y2.24.34.86.7开始 1a =10?a <输出 结束22a a =+ 是否A 、2.2B 、2.9C 、2.8D 、2.68.对实数a 和b ,定义运算“⊗”:,1,,1.a ab a b b a b -≤⎧⊗=⎨->⎩.设函数()()()221f x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(]()1,12,-+∞B .(](]2,11,2--C .()(],21,2-∞-D .[]2,1-- 二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.复数Z=2(1)1i i+-(i 是虚数单位)则复数Z的虚部等于 .10.若向量()1,1a =,()1,2b =- ,则a 与b 夹角余弦值等于_____________.11.已知函数,0,()ln ,0,x e x f x x x ⎧<=⎨>⎩则1[()]f f e = .12.计算:1211xd x --=⎰.13.18世纪的时候,欧拉通过研究,发现凸多面体的面数F 、顶点数V 和棱数E 满足一个等式关系. 请你研究你熟悉的一些几何体(如三棱锥、三棱柱、正方体……),归纳出F 、V 、E 之间的关系等式: .(二)选做题:第14、15题为选做题,考生只能选做其中一题,两题全答的,只计前一题的得分。
人教A版高一数学必修第一册全册复习训练题卷含答案解析(22)
![人教A版高一数学必修第一册全册复习训练题卷含答案解析(22)](https://img.taocdn.com/s3/m/ae2de5d3b4daa58da1114a0f.png)
人教A 版高一数学必修第一册全册复习训练题卷(共22题)一、选择题(共10题)1. 命题“若 x 2=1,则 x =1”的否定为 ( ) A .若 x 2≠1,则 x =1 B .若 x 2=1,则 x ≠1 C .若 x 2≠1,则 x ≠1D .若 x ≠1,则 x 2≠12. 已知函数 f (x )=x 2−2kx −2 在 [5,+∞) 上是单调函数,则 k 的取值范围是 ( ) A . (−∞,5]B . [10,+∞)C . (−∞,5]∪[10,+∞)D . ∅3. 函数 y =√2x +1+√3−4x 的定义域为 ( ) A . (−12,34) B . [−12,34]C . (−∞,12]D . (−12,0)∪(0,+∞)4. 下列结论正确的是 ( )① lg (lg10)=0;② lg (lne )=0;③若 10=lgx ,则 x =10;④若 e =lnx ,则 x =e 2. A .①③ B .②④ C .①② D .③④5. 有下列四个命题:① ∀x ∈R ,2x 2−3x +4>0;② ∀x ∈{1,−1,0},2x +1>0;③ ∃x ∈N ,使 x 2≤x ;④ ∃x ∈N ∗,使 x 为 29 的约数.其中真命题的个数为 ( ) A . 1 B . 2 C . 3 D . 46. 命题“如果 x ≥a 2+b 2,那么 x ≥2ab ”的逆否命题是 ( ) A .如果 x <a 2+b 2,那么 x <2ab B .如果 x ≥2ab ,那么 x ≥a 2−b 2 C .如果 x <2ab ,那么 x <a 2+b 2D .如果 x ≥a 2−b 2,那么 x <2ab7. 设集合 A ={−2,−1,0,1,2,3,4,5},B ={−2,0,1,2},则 A ∩B = ( ) A . {1,2} B . {−2,1,2} C . {0,1} D . {−2,0,1,2}8. 函数 f (x )=2sin (ωx +φ)(ω>0,−π2<φ<π2) 的部分图象如图所示,则 ω,φ 的值分别是( )A . 2,−π3B . 2,−π6C . 4,−π6D . 4,π39. 已知函数 f (x )={(3−a )x −3,x ≤7a x−6,x >7.若数列 {a n } 满足 a n =f (n )(n ∈N ∗),且 {a n } 是递增数列,则实数 a 的取值范围是 ( ) A . [94,3)B . (94,3)C . (2,3)D . (1,3)10. 若 a ∈R ,则“a >0”是“a +1a ≥2”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既非充分也非必要条件二、填空题(共6题)11. 根据下列要求,写出“角 α 与角 β 终边重合”的一个:(1)必要不充分条件 ; (2)充分不必要条件 .12. 设集合 A ={x∣ −3≤x ≤2},B ={x∣ 2k −1≤x ≤2k +1},且 A ∩B =∅,则实数 k 的取值范围是 .13. 函数 y =1x−2 的定义域是 A ,函数 y =√2x +6 的值域是 B ,则 A ∩B = (用区间表示).14. 某药厂研制出一种新型药剂,投放市场后其广告投入 x (万元)与药品利润 y (万元)存在的关系为y=xα(α为常数),其中x不超过5万元.已知去年投入广告费用为3万元时,药品利润为27万元,若今年广告费用投入5万元,预计今年药品利润为万元.15.函数f(x)=cos(3x+π6)在[0,π]的零点个数为.16.将112∘30ʹ化为弧度为.三、解答题(共6题)17.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?18.设集合A={2,3,a2+2a−3},B={a+3,2},若已知5∈A,且5∉B,求实数a的值.19.解答题.(1) √259−(827)13+(14)12.(2) log89log23+e3ln2+lg12+lg20.20.已知“▫x∈{x∣ −1<x<1},使等式x2−x−m=0成立”是真命题.(1) 求实数m的取值集合M;(2) 设不等式(x−a)(x+a−2)<0的解集为N,若x∈N是x∈M的必要条件,求实数a的取值范围.21.设正有理数a1是√3的一个近似值,令a2=1+21+a1,求证:(1) √3介于a1与a2之间;(2) a2比a1更接近于√3.22.设f(x)=log31−2sinx1+2sinx.(1) 求函数f(x)的定义域;(2) 判断函数f(x)的奇偶性.答案一、选择题(共10题)1. 【答案】B【解析】“若p,则q”的否定为“若p,则¬q”.故选B.【知识点】全(特)称命题的否定2. 【答案】A【解析】函数f(x)=x2−2kx−2的图象开口朝上,且以直线x=k为对称轴,若函数f(x)=x2−2kx−2在[5,+∞)上是单调函数,则k∈(−∞,5].【知识点】二次函数的性质与图像、函数的单调性3. 【答案】B【知识点】函数的定义域的概念与求法4. 【答案】C【解析】因为lg10=1,所以lg(lg10)=0,所以①正确;因为lne=1,所以lg(lne)=0,所以②正确;因为10=lgx,所以x=1010,所以③不正确;因为e=lnx,所以x=e e,所以④不正确.【知识点】对数的概念与运算5. 【答案】C【解析】对于①,该命题是全称量词命题,因为Δ=(−3)2−4×2×4<0,所以2x2−3x+4>0恒成立,故①为真命题;对于②,该命题是全称量词命题,当x=−1时,2x+1>0不成立,故②为假命题;对于③,该命题是存在量词命题,当x=0或x=1时,x2≤x成立,故③为真命题;对于④,该命题是存在量词命题,当x=1时,x为29的约数成立,故④为真命题.故选C.【知识点】全(特)称命题的概念与真假判断6. 【答案】C【知识点】全(特)称命题的否定7. 【答案】D【解析】集合A={−2,−1,0,1,2,3,4,5},B={−2,0,1,2},所以A∩B={−2,0,1,2}.【知识点】交、并、补集运算8. 【答案】A【知识点】Asin(ωx+ψ)形式函数的性质9. 【答案】C【知识点】数列的单调性、分段函数10. 【答案】C【解析】若a>0,则a+1a ≥2√a⋅1a=2,当且仅当a=1时“=”成立,a+1a≥2⇔(a−1)2a≥0⇔a>0,故若a∈R,则“a>0”是“a+1a≥2”的充分必要条件.【知识点】均值不等式的应用二、填空题(共6题)11. 【答案】sinα=sinβ等;β=α+2π等【知识点】任意角的概念、充分条件与必要条件12. 【答案】{k∣ k>32,或k<−2}【解析】由A∩B=∅可知,2k−1>2或2k+1<−3,解不等式可得实数k的取值范围是{k∣ k>32,或k<−2}.【知识点】交、并、补集运算13. 【答案】[0,2)∪(2,+∞)【解析】函数式y=1x−2有意义,只需x≠2,即A={x∣ x≠2};函数y=√2x+6≥0,即B={y∣ y≥0}={x∣ x≥0},则A∩B={x∣ 0≤x<2或x>2}.【知识点】函数的定义域的概念与求法、函数的值域的概念与求法14. 【答案】125【解析】由已知投入广告费用为3万元时,药品利润为27万元,代入y=xα中,即3α=27,解得α=3,故函数关系式为y=x3.所以当x=5时,y=125.【知识点】函数模型的综合应用15. 【答案】3【解析】由题意知,当 cos (3x +π6)=0 时,3x +π6=π2+kπ(k ∈Z ),所以 x =π9+kπ3(k ∈Z ),当 k =0 时,x =π9; 当 k =1 时,x =4π9;当 k =2 时,x =7π9,均满足题意.所以函数 f (x ) 在 [0,π] 的零点个数为 3. 【知识点】Asin(ωx+ψ)形式函数的性质16. 【答案】5π8rad【解析】 112∘30ʹ=π180×112.5 rad =5π8rad .【知识点】弧度制三、解答题(共6题)17. 【答案】设半径为 r ,则扇形弧长为 4−2r ,因此扇形的面积为 12(4−2r )r =(2−r )r =−(r −1)2+1,当 r =1 时,扇形的面积取最大值 1,此时弧长为 2,对应圆心角为 2.【知识点】弧度制18. 【答案】因为 5∈A ,且 5∉B ,所以 {a 2+2a −3=5,a +3≠5,即 {a =−4,或a =2,a ≠2,所以 a =−4.【知识点】元素和集合的关系19. 【答案】(1) 原式=53−23+12=32.(2)原式=log 2332log 23+e ln23+lg10=23+8+1=293.【知识点】幂的概念与运算、对数的概念与运算20. 【答案】(1) 由题意,知 m =x 2−x =(x −12)2−14. 由 −1<x <1,得 −14≤m <2, 故 M ={m∣ −14≤m <2}.(2) 由 x ∈N 是 x ∈M 的必要条件,知 M▫N . ①当 a >2−a ,即 a >1 时,N ={x∣ 2−a <x <a }, 则 {a >1,2−a <−14,a ≥2,解得 a >94.②当 a <2−a ,即 a <1 时,N ={x∣ a <x <2−a }, 则 {a <1,a <−14,2−a ≥2,解得 a <−14.③当 a =2−a ,即 a =1 时,N =∅,不满足 M▫N . 综上可得,实数 a 的取值范围为 {a∣ a <−14或a >94}.【知识点】全(特)称命题的概念与真假判断、充分条件与必要条件21. 【答案】(1) a 2−√3=1+21+a 1−√3=(1−√3)(a 1−√3)1+a 1,若 a 1>√3,则 a 1−√3>0,而 1−√3<0, 所以 a 2<√3;若 a 1<√3,则 a 1−√3<0,而 1−√3<0, 所以 a 2>√3,故 √3 介于 a 1 与 a 2 之间.(2) ①当 a 1>√3 时,有 a 2<√3,则∣∣a 2−√3∣∣−∣∣a 1−√3∣∣=√3−a 2−(a 1−√3)=(√3−1)(a 1−√3)1+a 1−(a 1−√3)=(a 1−√3)×√3−1−1−a 11+a 1,因为a1>0,√3−2<0,a1−√3>0,所以∣∣a2−√3∣∣<∣∣a1−√3∣∣,此时a2比a1更接近于√3;②当a1<√3时,有a2>√3,同理可得∣∣a2−√3∣∣<∣∣a1−√3∣∣,综上所述,a2比a1更接近于√3.【知识点】不等式的性质22. 【答案】(1) 因为1−2sinx1+2sinx>0,所以−12<sinx<12,所以kπ−π6<x<kπ+π6,k∈Z,所以该函数的定义域为{x∣ kπ−π6<x<kπ+π6,k∈Z},(2) 由(1)知定义域关于原点对称,又f(−x)=log31+2sinx1−2sinx =log3(1−2sinx1+2sinx)−1=−log31−2sinx1+2sinx=−f(x).所以该函数为奇函数.【知识点】对数函数及其性质、正弦函数的性质、函数的定义域的概念与求法、函数的奇偶性。
高一数学限时训练
![高一数学限时训练](https://img.taocdn.com/s3/m/e6f820d4240c844769eaeea1.png)
数学限时练习(1) 一、选择题:1.已知0(x>0)f(x)=1(x=0)2x3(x<0)⎧⎪-⎨⎪-⎩,,,,则f{f[f(5)]}的值是DA. 0B.-1C.5D. -52.下列各题中两个函数表示同一函数的是C2 A.f(x)=x g(x)=,B.f(x)=x g(x)=,C.f(x)=x g(x)=,2x4D.f(x)=g(x)=x+2x2--,3.设f (x)=5,则f (x2)= CA.25C.5D.不能确定4.设2x+1f(x)=x3x+2-的定义域T,全集U=R,则C R T= CA.{x|x≤1或x≥2}B. {1,2}C. {-1,1,2}D. {x|x<1或1<x<2或x>2}5.某物体一天当中的温度T 是时间t的函数:T(t)=t3-3t+60,时间单位是小时,温度单位是0C ,t=0时,表示12:00 ,12:00之后t取值为正,则上午8时的温度是AA.8 0CB.18 0CC. 580CD. 1280C6.已知函数f (x)=3(x-2)2+5且|x1-2|>|x2-2|,则AA.f (x1)> f (x2)B. f (x1)= f (x2)C. f (x1)< f (x2)D.不能确定大小7.设M={x|0≤x≤2},N={y|0≤y≤2} 给出下列四个图形,其中能表示从集合M到集合N 的函AB C D8.已知函数2x1(x0)y2x(x0)⎧+≤=⎨->⎩,,使函数值为10的x值为CA .3或-3 B.3或-5 C.-3 D.3或-3或-5 9.若f (2x+1)的定义域为[1,4],则f (x+3)的定义域为B A.[0, 1.5] B.[0,6] C.[0.5,1.5] D.[3, 4.5] 10.已知f (x)是奇函数,当x>0时,f(x)=x(1-x),则当x<0时,f(x)的解析式为B A.x(x+1) B.x(x -1) C.x(1-x) D.-x(x+1)二、填空题:11.已知A=B=R ,x ∈A ,y ∈B ,对任意的x ∈A , x→2x 2+3是从A 到B 的函数,若输出4则应输入_________.12.已知函数y=-2x 2+3,x ∈{-2,-1,0,1,2},则它的值域为 . 13.函数3x +1y =x 1-的值域为 . 14.已知f (x+1)=x 2-3x+2,则1f ()x的解析表达式为.15.函数y =_________.数学限时练习(2)姓名_________ 班级________ 一、选择题:1.单位圆中,面积为1的扇形所对的圆心角的弧度数为A.1B.2C. 3D.4 2.下列等式中恒成立的有 A.sin(α-β)=sinαcosβ-cosαsinβ B.cos(α-β)= cosαcosβ-sinαsinβ c1sin αcos β=[sin(α+β)sin(αβ)]2⋅--D.1sin αsin β=[cos(α+β)cos(αβ)]2⋅-- 3.)函数f(x)=sinxcosx 最小值是BA.-1B.-0.5C. 0.5D.1 4. sin5850的值为A.2-B.2C.2-D. 2 5.已知函数f(x)=sin(x -π2)(x ∈R),下面结论错误..的是 A.函数f(x)的最小正周期为2π B.函数f(x)在区间π[0]2,上是增函数 C.函数f(x)的图象关于直线x =0对称 D.函数f(x)是奇函数6.已知tanα=4,cotβ=13,则tan(α+β)= A.711 B.711- C.713 D.713- 7下列关系式中正确的是A.sin110<cos100<sin1680B. sin1680 <sin110<cos100C. sin110<sin1680 <cos100D. sin1680<cos100 <sin110. 8. “πα=6”是“1cos2α=2”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件9.函数2πy =2cos (x )14--是A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数10.函数f(x)=(1+的最小正周期为 A.2π B.3π2 C.π D.π2二、填空题:11.化简: ① cos580sin370+sin1220sin530= .② cos (α-β) cos(α+β) +sin(α-β) sin(α+β)= .12.已知113a (,2sin ),b (cos ,)322=α=α ,a //b ,则锐角α的值为 .13.函数y=cos2x -4cosx ,x []32ππ∈-,的值域是 .14.已知偶函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的最小正周期是π,则f(x)的单调递减区间为 . 三、解答题:15. (07安徽)已知0π<α<4,β为πf(x)=cos(2x +)8的最小正周期, 1a (tan(αβ)1)4=+- ,,b (cos α2)= ,,且a b =m ⋅ ,求22cos α+sin2(α+β)cos αsin α-的值. 数学限时练习(3)班级_______ 姓名____________ 一、选择题: 1.在△ABC 中,若sinA cosB=a b,则B 的值为 A.300 B.450 C.600 D.9002.在△ABC 中,如果(a+b+c) (b+c -a)=3bc ,那么角A 等于A.300B.600C.1200D.1500 3.在△ABC 中,根据下列条件解三角形,其中有两个解的是A. b=10,A=450,C=700B. a=60,c=48,B=600C. a=7,b=5, A=800D. a=14,b=16,A=4504.在△ABC 中,若A=600,b=16,此三角形面积S=a 的值是A. B.75 C.51 D.495.在△ABC 中,sinA :sinB :sinC=3:2:4,则cosC 的值为A.23 B.-23 C.14 D.-146.已知三角形的两边长分别为4,5,它们夹角的余弦是方程2x 2+3x -2=0的根,则第三边长是 A.20 B.21 C.22 D.61 7.在△ABC 中,tanAsin 2B=tanBsin 2A ,那么△ABC 一定是A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形 8.已知锐角..三角形三边分别为3,4,a ,则a 的取值范围为 A.1<a<5 B. 1<a<79.设A 是△ABC 中的最小角,且a 1cosA =a +1-,则实数a 的取值范围是 A.a ≥3 B.a >-1 C.-1<a ≤3 D.a >0 10.如图:D ,C ,B 三点在地面同一直线上,DC=a ,从C ,D 两点测得A分别是β,α (α<β),则A 点离地面的高度AB 等于 A.asin αsin βsin(βα)- B.asin αsin βcos(αβ)⋅-C.asin αcos βsin(βα)- D.acos αsin βcos(αβ)-二、填空题:11.在△ABC 中,A=60°, b=1,面积为3,则a +b +csinA +sinB +sinC= .12.在ΔABC 中,若ΔABC 1S 4=(a 2+b 2-c 2),那么角∠C=______. 13.在ΔABC 中,A=600, c :b=8:5,内切圆的面积为12π,则外接圆的半径为_____. 14.在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______. 三、解答题:15.在海岸A 处,发现北偏东450方向,距离A 1n mile 的B 处有一艘走私船,在A 处北偏西750方向,距离A 为2 n mile 的C 处有一艘缉私艇奉命以的速度追截走私船,此时,走私船正以10 n mile / h 的速度从B 处向北偏东300方向逃窜,问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间. (本题解题过程中请不要使用计算器,以保证数据的相对准确和计算的方便)北CBD三、解答题: 1.已知ΔABC 三个顶点的直角坐标分别为A(3,4),B(0,0),C(c ,0).(1)若AB AC =0⋅,求c 的值; (2) 若c =5,求sin ∠A 的值.2.已知△ABC 顶点的直角坐标分别为A(3,4),B(0,0),C(c ,0). (1)若c=5,求sin ∠A 的值; (2)若∠A 是钝角,求c 的取值范围.3.在△ABC 中,5cosA =13-,3cosB =5. (Ⅰ)求sinC 的值; (Ⅱ)设BC=5,求△ABC 的面积.4.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且acosB=3,bsinA=4. (Ⅰ)求边长a ;(Ⅱ)若△ABC 的面积S=10,求△ABC 的周长l .5.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且acosB -bcosA=3c 5.(Ⅰ)求tanAcotB 的值; (Ⅱ)求tan(A -B)的最大值.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,tanC =(1)求cosC ; (2)若CB CA =2.5⋅,且a+b=9,求c .7.在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c=2,C=600.(Ⅰ)若△ABC a ,b ;(Ⅱ)若sinB=2sinA ,求△ABC 的面积.(Ⅲ)若sinC+sin(B -A)=2sin2A ,求△ABC 的面积.说明:本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.数学限时练习(4)班级_______ 姓名____________一、选择题:1.若数列{a n }的通项公式是a n =2 (n +1)+3,则此数列A.是公差为2的等差数列B.是公差为3的等差数列C.是公差为5的等差数列D.不是等差数列 2.设等差数列5,247,437…第n 项到第n+6项的和为T ,则|T|最小时,n= A. 6 B.5 C.4 D.33.在等差数列{a n }中,已知a 3=2,则前5项之和等于A. 10B.16C.20D.32 4.记等差数列{a n }的前n 项和为S n ,,若S 2n -1=(2n -1)(2n+1),则S n = A.n (2n +1)2 B. n(2n+3) C.n(2n +3)2D. n(n+2) 5.等差数列{a n }中,若a 2+a 4+a 9+a 11=32,则a 6+a 7=A. 9B.12 C 15 D.16 6.等差数列{a n }中,已知前4项和是1,前8 项和是4,则a 17+a 18+a 19+a 20=A. 7B. 8 C 9 D.10 7.已知等差数列{a n }的公差为1,且a 1+a 2+a 3+…+a 99=99,则a 3+a 6+…a 99=A. 99B. 66 C 33 D. 0 8.已知数列{a n }的通项公式为a n =2n -49,则S n 达到最小值时,n=A.23B.24 C 25 D.26 9.已知等差数列{a n }的前三项依次为a -1,a +1,2a +3,则此数列的通项 a n =A. 2n -5B.2n -3 C 2n -1 D.2n +1 10.已知等差数列{a n }的公差d =21,a 1+a 3+a 5+a 7+a 9+…+a 95+a 97+a 99=60, 则前100项之和S 100=A. 120B.145 C 150 D.170 二、填空题:11.{a n }为等差数列,a 4=-20,a 16=16,则|a 1|+|a 2|+|a 3|+…+|a 20|=________.12.等差数列{a n }中,若a 1+a 3+a 5=-1,则a 1+a 2+a 3+a 4+a 5=___________ .13.等差数列{a n }中,若a 2+a 3+a 4+a 5=34, a 2a 5=52, 且a 4>a 2, 则a 5=_______. 14.数列前n 项和为S n =n 2+3n, 则其通项a n 等于____________.15.等差数列{a n }中, 前4项和为26, 后4项之和为110, 且前n 项和为340, 则n 的值为___________.16.等差数列{a n }中, S 5=28, S 10=36 (S n 为前n 项和), 则S 15等于________.17.等差数列{a n }中,a 10<0, a 11>0, a 11>|a 10|, 若{a n }的前n 项和S n < 0,则n 的最大值是________.18.在1与9之间插入n -1个数b 1,b 2,…b n -1,使这n+1个数成等差数列,记为A n+1,则数列{A n+1}的通项公式为_____________. 19.若数列{a n }的前n 项和S n =3 n +1,则a n = ____________.20.若数列{a n }的前n 项和S n =2n 2-n+3,则其通项公式a n =_______. 21.数列lg21250⋅, lg 32250⋅, lg 43250⋅,……中,开始出现负值的项是第_____项. 22.凸n 边形的各内角度数成等差数列,最小角为1200 ,公差为50 , 则边数n 为_______.23.给出数阵如右图,其中每行、每列均为等差数列,则数阵中 所有的数的和为___________.24.设S n 是等差数列的前n 项和,已知3a 4=7a 7,且a 1>0,当S n 取得最大时,则n=________.0 1 2 (9)1 2 3 (10)2 3 4 ... 11 .................. 9 10 11 (18)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年东阳市高一数学竞赛试题
一.选择题(每小题6分,共48分)
1.集合{}
N x x x ∈<-<,410的真子集个数是 ( )
(A ) 32 (B ) 31 (C ) 16 (D ) 15
2.若),0(,+∞∈b a ,则“122<+b a ”是“b a ab +>+1”成立的 ( )
(A )必要非充分条件(B )充分非必要条件(C )充要条件(D )既不充分也不必要条件 3.设函数的取值范围是则若0021
,1)(,.
0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )
(A )(-1,1) (B )(-1,+∞) (C )),0()2,(+∞⋃--∞ (D )),1()1,(+∞⋃--∞
4.函数)cos (sin sin 2x x x y +=的最大值为
( ) (A )21+ (B )12-
(C )2 (D )2 6.方程x x
x x x x ππ)1(12122-+=-+-的解集为A(其中π为无理数,π=3.141…,x 为实数),则A 中所有元素之和等于 ( )
(A ) 0 (B ) 1
(C ) 2 (D ) 4 6.已知)2
,2(ππθ-
∈,且)1,0(,c o s s i n ∈=+a a θθ,则关于θt a n 的值,以下四个答案中,可能正确的是 ( ) (A ) -3 (B ) 3或
31 (C ) 31- (D ) -3或3
1- 7.已知平面上直线l 的方向向量为)5
3,54(-=→e ,点O (0,0)和点A(1,-2)在l 上的射影分别为O1和A1,则→→=e A O λ11,则=λ ( )
(A) 511 (B) 2 (C) 511- (D) -2 8.如果点),5(a 在两条平行直线0186=+-y x 和0543=+-y x 之间,则整数a 的值为( )
(A ) 5 (B ) -5 (C ) 4 (D ) -4
( )
(A ) 不存在 (B ) 恰有1 个 (C ) 恰有2 个 (D ) 无数个
二.填空题(每小题6分,共30分)
9.函数y=sin3x(656ππ
≤≤x )与y=2的图象围成一个封闭图形,这个封闭图形的面积为________
10.设y x ,满足约束条件⎪⎪⎩
⎪⎪⎨⎧≥≤≤+x y x y y x 2121,则目标函数y x z 36+=的最大值是
11. .如图①,②,③,……是由花盆摆成的图案,
① ② ③
根据图中花盆摆放的规律,猜想第n 个图形中花盆的盆数n a = .
12.已知)(x f 是一个函数,对于任意整数x ,有3)2())((-+=x f x f f ,又3)4(,4)1(==f f ,则=)5(f
13.已知集合⎭⎬⎫⎩
⎨⎧++++==1122x x kx x y y M ,任取M c b a ∈,,,以c b a ,,为长度的线段都能构成三角形,则实数k 的取值范围是 三.解答题(共6小题,共14+14+14+15+15=72分)
14. 已知向量)sin 2,cos 3(),cos ,sin 2(x x n x x m ==→→,定义函数
)1,0(),1(log )(≠>-=→→a a n m x f a 。
(1)求函数)(x f 的最小正周期;(2)确定)(x f 的单调递增区间。
15.如果不等式0x x a b -+<(b 为常数)对[]0,1中的任何x 的值恒成立,求实数a 的取值范围.
16.已知A(2,0),B (0,6),O 为坐标原点。
(1)若C 点在线段OB 上,且4π
=∠BAC ,求ABC ∆
的面积。
(2)若原点O 关于直线AB 的对称点为D ,延长BD 到P ,且BD PD 2=,已知直线03108410:=-++y ax l 经过点P ,求直线l 的斜率。
17.已知0,=++>>c b a c b a 。
方程02=++c bx ax 的两个实根为21,x x 。
(1)证明:
121<<-a
b ;(2)若1222121=++x x x x ,求222121x x x x +-;(3)求2221x x -的取值范围。
18.已知一个数列{}n a 的各项是1或3。
首项为1,且在第k 个1和第1+k 个1之间有12-k 个3,即1,3,1,3,3,3,1,3,3,3,3,3,1…,记数列前n 项和为n S 。
(1)试问第2005个1为该数列的第几项?(2)求2005S ;(3)是否存在正整数m ,使得2005=m S ?如果存在,求出m 的值,如果不存在,请说明理由。