专题4:带电粒子在复合场中的运动
带电粒子在复合场中的运动公式
带电粒子在复合场中的运动公式在物理学中,带电粒子在复合场中的运动是一个重要的研究课题。
复合场是指同时存在电磁场和重力场的情况,这种情况下带电粒子的运动将受到两种力的影响。
为了描述带电粒子在复合场中的运动,物理学家们提出了一系列的运动公式,其中最著名的是洛伦兹力和引力的相互作用。
洛伦兹力是指带电粒子在电磁场中受到的力,它可以用以下公式描述:\[ \mathbf{F} = q(\mathbf{E} + \mathbf{v} \times\mathbf{B}) \]其中,\( \mathbf{F} \) 是洛伦兹力,\( q \) 是带电粒子的电荷,\( \mathbf{E} \) 是电场强度,\( \mathbf{v} \) 是带电粒子的速度,\( \mathbf{B} \) 是磁感应强度。
这个公式表明了带电粒子在电磁场中受到的力是电场力和磁场力的叠加效果。
另一方面,带电粒子在重力场中受到的力可以用牛顿的引力定律描述:\[ \mathbf{F} = m\mathbf{g} \]其中,\( \mathbf{F} \) 是重力,\( m \) 是带电粒子的质量,\( \mathbf{g} \) 是重力加速度。
当带电粒子同时受到电磁场和重力场的影响时,它的运动将受到这两种力的综合作用。
这种情况下,带电粒子的运动将由洛伦兹力和引力共同决定,可以用牛顿第二定律来描述:\[ \mathbf{F} = m\mathbf{a} \]其中,\( \mathbf{F} \) 是带电粒子所受的合力,\( m \) 是带电粒子的质量,\( \mathbf{a} \) 是带电粒子的加速度。
通过这些运动公式,我们可以定量地描述带电粒子在复合场中的运动规律,为理解和预测带电粒子在复合场中的行为提供了重要的理论基础。
这对于电磁场和引力场的研究以及相关技术应用具有重要意义。
高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动
(2)电场的电场强度大小E以及磁场的磁感应强度大小B;
答案
mv2 6qL
2 3mv 3qL
1234
对粒子从Q点运动到P点的过程,根据动能
定理有 -qEL=12mv2-12mv02 解得 E=6mqvL2
设粒子从Q点运动到P点的时间为t1,有
0+v0sin 2
θ·t1=L
1234
解得
t1=2
3mv02 3qE
⑤
竖直方向的位移 y=0+2 vyt=m6qvE02
⑥
则粒子发射位置到P点的距离为
d=
x2+y2=
13mv02 6qE
⑦
(2)求磁感应强度大小的取值范围; 答案 3-3q3lmv0<B<2mqlv0
设粒子在磁场中运动的速度为 v,结合题意及几何
关系可知,v=sinv60 0°=233v0
垂直于纸面向外的匀强磁场.OM上方存在电场强度大小为E的匀强电场,
方向竖直向上.在OM上距离O点3L处有一点A,在电场中距离A为d的位置
由静止释放一个质量为m、电荷量为q的带负电的粒子,经电场加速后该
粒子以一定速度从A点射入磁场后,第一次恰好不从ON边界射出.不计粒
子的重力.求:
(1)粒子运动到A点时的速率v0;
d.N边界右侧区域Ⅱ中存在磁感应强度大小为B、方向垂直于纸面向里的匀
强磁场.M边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M
上的O点处有一离子源,水平向右发射同种正离子.已知初速度为v0的离子 第一次回到边界M时恰好到达O点,电场及两磁场区域
足够大,不考虑离子的重力和离子间的相互作用.
(1)求离子的比荷;
迹如图乙所示,设此时的轨迹圆圆心为O2,半
专题复习-带电粒子在复合场中的运动
四﹑解题规律 带电微粒在组合场、 复合场中的运动问题是电磁 带电微粒在组合场 、 学与力学知识的综合应用, 学与力学知识的综合应用 , 分析方法与力学问题 分析方法基本相同, 分析方法基本相同 , 只是增加了电场力和洛伦兹 力,解决可从三个方面入手: 解决可从三个方面入手: 1. 力学观点:包括牛顿定律和运动学规律 力学观点: 2. 能量观点:包括动能定理和能量守恒定律 能量观点: 3. 动量观点:包括动量定理和动量守恒定律 动量观点:
解: (1)小球受力如图所示 小球受力平衡时速度最大 小球受力如图所示, 小球受力如图所示 小球受力平衡时速度最大, f FB N 1 = FE + FB = Eq + Bqv m N
1
mg = f = µN 1 = µ ( Eq + Bqv m )
FE mg
mg E 0.1 × 10−2 10 vm = − = − = 5(m/s ) −4 0.5 µBq B 0.2 × 0.5 × 4 × 10 f (2)电场反向后 小球受力如图所示 电场反向后, 电场反向后 小球受力如图所示: FE 开始时, 小球向下加速运动, 开始时,FB =0, 小球向下加速运动,
专题复习:带电粒子在复合场中的运动 例 专题复习:带电粒子在复合场中的运动-例4 如图所示, 例4. 如图所示,纸平面内一带电粒子以某一速度做 直线运动, 直线运动 , 一段时间后进入一垂直于纸面向里的圆 形匀强磁场区域(图中未画出磁场区域) 形匀强磁场区域 ( 图中未画出磁场区域 ) , 粒子飞 出磁场后从上板边缘平行于板面进入两面平行的金 属板间,两金属板带等量异种电荷, 属板间 , 两金属板带等量异种电荷 , 粒子在两板间 经偏转后恰从下板右边缘飞出。已知带电粒子的质 经偏转后恰从下板右边缘飞出。 量为m,电量为 电量为q,其重力不计, 量为 电量为 ,其重力不计,粒子进入磁场前的速 度方向与带电板成θ=600角。匀强磁场的磁感应强度 度方向与带电板成 带电板长为l, 板距为d, 为B, 带电板长为 板距为 板间电压为U。试解答: 板间电压为 。试解答: (1)上金属板带什么电 )上金属板带什么电? θ (2)粒子刚进入金属板时速度为多大 ) (3)圆形磁场区域的最小面积为多大 )圆形磁场区域的最小面积为多大?
专题 带电粒子在复合场中的运动
专题带电粒子在复合场中的运动知识梳理一、复合场的分类:1、复合场:即电场与磁场有明显的界线,带电粒子分别在两个区域内做两种不同的运动,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.2、叠加场:即在同一区域内同时有电场、磁场和重力场,或其中两场并存,此类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。
二、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.(2)、电场力和洛伦兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛伦兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.五、解决问题的基本观点:(1)动力学观点:牛顿三大定律和运动学规律(2)动量观点:动量定理和动量守恒定律(3)能量观点:动能定理和能量守恒定律典型例题带电粒子在复合场中的直线运动。
带电粒子在复合场中的(类)平抛运动
带电粒子在复合场中的(类)平抛运动带电粒子在复合场中的(类)平抛运动,是指带电粒子在电磁场和重力场的共同作用下,做类似于平抛运动的运动轨迹。
这种运动在物理学中被广泛研究,对于了解电磁场和重力场的相互作用,以及带电粒子在这些场中的运动规律具有重要意义。
一、电磁场和重力场的基本概念电磁场是由电荷和电流所产生的物理场。
电磁场的基本量是电场和磁场,它们是相互作用的。
电磁场的作用可以通过麦克斯韦方程组来描述。
重力场是由物体所产生的物理场。
重力场的基本量是重力加速度,它是物体受到的重力作用的大小和方向。
重力场的作用可以通过牛顿万有引力定律来描述。
二、带电粒子在电磁场中的运动规律带电粒子在电磁场中的运动规律可以通过洛伦兹力公式来描述。
洛伦兹力公式表示带电粒子在电磁场中受到的力的大小和方向。
洛伦兹力公式为:F=q(E+v×B)其中,F是带电粒子所受的力,q是粒子的电荷量,E是电场强度,B是磁场强度,v是粒子的速度。
带电粒子在电磁场中的运动轨迹可以通过牛顿第二定律和洛伦兹力公式来描述。
牛顿第二定律表示物体所受的合力等于物体的质量乘以加速度。
带电粒子在电磁场中的加速度可以通过洛伦兹力公式来计算。
因此,带电粒子在电磁场中的运动轨迹可以通过解微分方程来求解。
三、带电粒子在重力场中的运动规律带电粒子在重力场中的运动规律可以通过牛顿第二定律和牛顿万有引力定律来描述。
牛顿万有引力定律表示两个物体之间的引力大小与它们的质量和距离的平方成正比,与它们之间的相对位置有关。
带电粒子在重力场中的运动可以看作是一个质点在重力场中的运动,因此可以应用牛顿第二定律来描述。
四、带电粒子在复合场中的运动规律带电粒子在复合场中的运动规律可以通过将电磁场和重力场的作用合并来描述。
带电粒子在复合场中的运动轨迹可以通过解微分方程来求解。
在复合场中,带电粒子所受的合力等于电磁力和重力的合力,因此可以应用牛顿第二定律来描述。
总之,带电粒子在复合场中的(类)平抛运动是一个复杂的物理过程,它涉及到电磁场和重力场的相互作用,以及带电粒子在这些场中的运动规律。
重难点08 带电粒子在复合场中的运动(解析版)
2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。
设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。
下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。
关于带电粒子在复合场中运动问题的解析
关于带电粒子在复合场中运动问题的解析【引言】粒子在复合场中运动是一个复杂的问题,这是因为它们受到不同的力的影响的决定的。
粒子受带电的粒子与其他物理系统一样,在复合场中运动的轨迹也既是可预测的,也是难以预测的。
这篇文章的目的是通过解析的方法,探究带电粒子在复合场中运动的本质,建立它们的运动方程,以及它们如何在复合场中运动的规律。
【普朗克运动方程】在分析带电粒子在复合场中运动问题之前,我们需要了解他们在自由场中的运动情况。
1877年,普朗克发现了一组有名的运动方程,称之为“普朗克方程”,它描述了一个粒子在自由场中的运动轨迹:$$frac{d^2x}{dt^2} = frac{qE(x)}{m}$$其中$x$表示粒子的位置,$E$表示外加电场,$m$表示粒子的质量,$q$表示粒子的电荷。
此外,普朗克方程还可以推广到复合场中: $$frac{d^2x}{dt^2} = frac{qE(x)}{m} + frac{vtimesB(x,t)}{m}$$其中$B$表示磁场,$v$表示粒子的速度。
从上式可以看出,复合场中,粒子受到电场$E$和磁场$B$的影响。
【带电粒子在复合场中的运动轨迹】考虑带电粒子在复合场中的运动问题,我们可以利用普朗克方程,求出它们的运动轨迹。
当$E=0$时,也就是在弱磁场条件下,粒子的运动轨迹等于:$$x = frac{mv}{qB}sin (qBt)$$这表明,粒子在弱磁场条件下运动是按照受磁场作用的椭圆轨迹运动的。
另外,当$Eeq 0$时,粒子的运动轨迹变成更加复杂,呈现出不同维度的空间曲线:$$x(t) = Asin (omega t + phi) + Bcos (omega t + phi)$$ 其中$omega = frac{qB}{m}$,$A$和$B$是由椭圆方程$frac{x^2}{a^2}+frac{y^2}{b^2} = 1$给出的参数,$phi$是椭圆的相位角,由$frac{A}{B}=tan phi$给出。
带电粒子在复合场中的运动
带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。
常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。
带电粒子在复合场中的运动
带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指 电场 、 磁场 和 重力场 并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力 永不做功.(2) 重力 和 电场力 做功与路径 无关 ,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受 合力 变化,从而加速度变化,使粒子做 变加速 运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将 做匀速直线运动 或处于 静止 ,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v 与B 平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做 匀速圆周运动 时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r 联立求解得m =UL qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B U m q 又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m rv 2,r =qB mv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2k m e .最大动能:E km =mr B q 22m 22 f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转. ③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =dU q ,可得v =Bd U 液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE ,E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =dBI k nqd BI k=nq1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s 脱离斜面.求磁场的磁感应强度(g 取10 m/s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+mqE α cos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s 小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f 洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F 电,加速度a =mf mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7 kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)Rv 2' 研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m 根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ 将L 结果代入上式得s =θθ sin 12cos 352222B q g m 碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有v v 0=cos θ ① v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③ U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =rmv 2⑤ r =qBmv 02 ⑥ (3)由几何关系得ON =r sin θ⑦ 设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧ t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qB m π2 ⑩设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qB m 32π ⑫t =t 1+t 2=qBm 3π)233(+ 【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s =8 cm的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m=6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v=3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m Rv 2,得R =Bqmv =0.2 m如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m 当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则 tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m rQq 22'= α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =qdU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·mqU d 22= 竖直方向有v 2y =v 2+2gL 离开时的速度v ′=m qU dB U gL v v y x 2222222++=+ 【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU dB U gL ++2222 【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.【例5】回旋加速器是用来加速带电粒子的装置,如图所示。
带电粒子在复合场中的运动例题
带电粒子在复合场中的运动例题引言本文将围绕带电粒子在复合场中的运动进行详细的探讨和解析。
我们将通过一个具体的运动例题,展示带电粒子在电磁场和重力场共同作用下的运动规律,帮助读者更好地理解这一过程。
问题描述考虑一个带电质量为m的粒子,在匀强电场和重力作用下,其运动方程如下:$$F=qE+m g$$其中,F表示粒子所受的合外力,q表示粒子的电荷量,E表示电场强度,g表示重力加速度。
在给定初速度v0的情况下,我们的目标是确定带电粒子在复合场中的运动轨迹。
解析为了解决这个问题,我们将采取以下步骤:步骤一:分析受力情况带电粒子所受的合外力由电场力和重力构成,因此可以将合外力表示为:$$F=qE+m g$$步骤二:列出运动方程根据牛顿第二定律,粒子的加速度与合外力成正比,因此可以得到运动方程为:$$a=\f ra c{F}{m}=\f ra c{qE}{m}+g$$将加速度与速度的关系带入上式,得到:$$\f ra c{dv}{dt}=\f ra c{qE}{m}+g$$步骤三:解微分方程对上式进行积分,可以得到粒子的速度与时间的关系:$$v=\f ra c{qE}{m}t+gt+v_0$$其中,v0为初始速度。
步骤四:求解轨迹方程将速度与时间的关系带入运动方程中,即可得到带电粒子在复合场中的运动轨迹:$$x=\f ra c{1}{2}\l e ft(\fr ac{q E}{m}t^2+g t^2+v_0t\ri g ht)+x _0$$其中,x0为初始位置。
结论通过以上的推导和计算,我们得到了带电粒子在复合场中的运动轨迹方程。
这个运动方程将帮助我们更好地理解带电粒子在电场和重力场中的相互作用情况,并能够准确地描述其运动过程。
希望读者通过本文的学习,能够加深对带电粒子在复合场中运动的理解,并能够应用相关原理解决类似的问题。
*注意:本文所使用的公式和推导过程纯属示例,实际问题中需要根据具体情况进行适当的调整。
专题4 第10讲带电粒子在组合场、复合场中的运动
答案:(1)104 m/s
(2)1.6×10-5 s
(3)5×103 V/m
热点考向2
带电粒子在复合场中的运动
【典例2】(16分)(2013·信阳一 模)如图所示,MN是一段在竖直平
面内半径为1 m 的光滑的 1 圆弧
轨道,轨道上存在水平向右的匀 强电场。轨道的右侧有一垂直纸面向里的匀强磁场,磁感应强 度为B1=0.1 T。现有一带电荷量为1 C、质量为100 g的带正电 小球从M点由静止开始自由下滑,恰能沿NP方向做直线运动, 并进入右侧的复合场(NP沿复合场的中心线)。已知AB板间的电 压为UBA=2 V,板间距离d=2 m,板的长度L=3 m,若小球恰能
【解析】(1)根据牛顿第二定律可知,qE=ma
带电粒子在匀强电场中做类平抛运动,则 d 1 at 2
2
①
② ③ ④ ⑤
2d=v0t 粒子到达Q点时沿y轴方向的速度vy=at 则粒子到达Q点的速度 v v 0 2 v y 2 2 qEd
m
与x轴正方向成夹角α斜向上,且 tan v y 1, α=45°
v2 qvB0 m R
⑧ ⑨
2 2qd 2qd
mv mE 联立⑦⑧两式解得: B0
(3)粒子在第一、三象限做匀速圆周运
动,发生偏转,在第二、四象限做匀 速直线运动,不偏转。一、三象限的 磁场完全相同,粒子经过一段时间后 能再次经过Q点,且速度与第一次经 过时相同,说明粒子在磁场中偏转了 2π弧度圆心角,也就是说,粒子在第一、三象限恰好各做了
v0
⑥
(2)粒子以垂直y轴的方向进入第二象限, 因此,其圆周运动的圆心必在y轴上,过 Q点作速度v的垂线,垂线与y轴的交点O′ 就是粒子在匀强磁场中做匀速圆周运动 的圆心。轨迹如图所示。 由几何知识可得,运动半径为 R
带电粒子在复合场中的运动(整理)
专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?4.如图所示,M 、N 为两块带等量异种电荷的平行金属板,S 1、S 2为板上正对的小孔,N 板右侧有两个宽度均为d 的匀强磁场区域,磁感应强度大小均为B ,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S 1、S 2共线的O 点为原点,向下为正方向建立x 轴.板左侧电子枪发射出的热电子经小孔S 1进入两板间,电子的质量为m ,电荷量为e ,初速度可以忽略.求:(1)当两板间电势差为U 0时,求从小孔S 2射出的电子的速度v 0;(2)两金属板间电势差U 在什么范围内,电子不能穿过磁场区域而打到荧光屏上; (3)电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系.5.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m ,电量+q 的粒子在环中作半径为R 的圆周运动,A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A场一次次加速下动能不断增大,而绕行半径不变. (l )设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n . (2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n .(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R ).(4)在(2)图中画出A 板电势U 与时间t 的关系(从t =0起画到粒子第四次离开B 板时即可).(5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?6.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B =5.0×10-3T 的匀强磁场,方向分别垂直纸面向外和向里.质量为m =6.64×10-27㎏、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径; (2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.7.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N /c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求:(1)小球运动到O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离8.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.9.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C ,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s ,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求:(1)微粒再次经过直线OO´时与O 点的距离; (2)微粒在运动过程中离开直线OO ´的最大高度;(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.-10.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg ,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =0.2T 、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径; (2)粒子在磁场中运动的时间; (3)圆形磁场区域的最小半径;(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.11.如图所示,在x>0的空间中,存在沿x 轴方向的匀强电场,电场强度E=10N/C ;在x<0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B=0.5T .一带负电的粒子(比荷q/m=160C/kg ),在x=0.06m 处的d 点以8m/s 沿y 轴正方向的初速度v 0开始运动,不计带电粒子的重力.求:(1)带电粒子开始运动后第一次到达y 轴时的坐标. (2)带电粒子进入磁场后经多长时间会返回电场. (3)带电粒子的y 方向分运动的周期.12.如图所示,一绝缘圆环轨道位于竖直平面内,半径为R,空心内径远小于R.以圆环圆心O为原点在环面建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直环面向外的匀强磁场.一带电量为+q、质量为m的小球在轨道内从b点由静止释放,小球刚好能顺时针沿圆环轨道做圆周运动.(1)求匀强电场的电场强度E.(2)若第二次到达最高点a,小球对轨道恰好无压力,求磁感应强度B.(3)求小球第三次到达a点时对圆环的压力.13.如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m,电荷量为-q 的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=60°,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ=2OC,不计粒子的重力,求:(1)粒子从P运动到Q所用的时间t.(2)电场强度E的大小.(3)粒子到达Q点的动能E kQ.14.如图所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板问距离为两板与电动势为E的电源连接,一带电量为一质量为-q、质量为m的带电粒子(重力忽略不计),开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出,己知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.求:(1)筒内磁场的磁感应强度大小.(2)带电粒子从A点出发至第一次回到A点射出所经历的时间.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L =3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP和TQ,分别作出离子在 T、P、Q三点所受的洛仑兹力,分别延长之后相交于O1、O2点,如图所示,O1和O2分别是TP和TQ的圆心,设 R1和 R2分别为相应的半径.离子经电压U加速,由动能定理得.qU=½mv2………①由洛仑兹力充当向心力得qvB=mv2/R………②由①②式得q/m=2U/B2R2由图直角三角形O1CP和O2CQ可得R12=d2+(R1一d/2)2,R1=5d/4……④R22=(2d)2+(R2一d/2)2,R2=17d/4……⑤依题意R1≤R≤R2……⑥由③④⑤⑥可解得2228932dBU≤mq≤222532dBU.(2)4、解析:(1)根据动能定理,得20012eU mv=解得0v=(2)欲使电子不能穿过磁场区域而打在荧光屏上,应有mvr deB=<而212eU mv=由此即可解得222d eBUm<(3)若电子在磁场区域做圆周运动的轨道半径为r,穿过磁场区B2x r=-注意到mvreB=和212eU mv=所以,电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系为222)2d eBx UeB m=≥(3)5、解析:(1)E n=nqv(2)∵nqU=½mv2n∴v n=mnqU2Rmv n2=qv n B n B n=mv n/qR以v n结果代入,B n=qRmmnqU2=R1qnmv2(3)绕行第n圈需时nvRπ2=2πRqvm2n1∴t n=2πRqvm2(1+21+31+……+n1)(4)如图所示,(对图的要求:越来越近的等幅脉冲)(5)不可以,因为这样粒子在A、B之间飞行时电场对其做功+qv,使之加速,在A、B之外飞行时电场又对其做功-qv使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大。
高三复习专题——带电粒子在复合场中的运动优秀教案
的带负电粒子从静止开始经过场强为 E0 、宽度为 d 的电场加速后,从 O 点( O 点为 AD的中点)垂直入 AD
进入磁场,从 BC 边离开磁场,离开磁场时速度方向与 BC 边成 60o ,不计重力与空气阻力的影响。 (1)粒子经电场加速射入磁场时的速度? (2)长方形 ABCD区域内磁场的磁感应强度为多少?
例题 2: 如图所示,在平面直角坐标系 xoy 内,第Ⅰ象限的等腰直角三角形 MNP 区域内存在垂直于坐标平面 向外的匀强磁场, y O 的区域内存在着沿 y 轴正方向的匀强电场.一质量 m ,带电量 q 的带电粒子从电 场中 Q(2h,h) 点以速度 v 0 水平向右射出,经坐标原点 O 处射入第Ⅰ象限,最后以垂直于 PN 的方向射出 磁场.已知 MN 平行于 x 轴, N 点的坐标为 (2h,2h) ,不计粒子的重力,求: (1)电场强度 E 的大小; (2)磁感应强度 B 的大小;
E0qd
1 2
mv2
0
洛 伦 兹 力 与 速 运动 度垂直
qvB mv 2 r
(3)规范解答过程:必要的文字说明;作出准确受力分析图及运动轨迹图;建立准确物理方程
解:(1)带电粒子在电场中加速运动,
带电粒子运动轨迹如图所示,由几何关系可知
由动能定理得
E0qd
1 2
mv2
0
粒子经电场加速射入磁场时的速度 v
受力特点 只受电场力 电场力与速度垂直
第一阶段 运动特点 类平抛运 动
运动过程分析
第二阶段
物理规律
受力特点
运动特点
牛顿第二定律 只受洛伦兹力
匀速圆周
运动学公式
洛伦兹力与速度垂直 运动
带电粒子在复合场中的运动
带电粒子在复合场中的运动发表时间:2011-08-19T16:29:23.780Z 来源:《学习方法报》教研周刊 作者: 马敬卫[导读] 带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。
山东省郓城第一中学 马敬卫复合场是指电场、磁场、重力场中三者或任意两者共存的场。
虽然带电粒子在复合场中的运动情况一般较为复杂,但它作为一个力学问题,同样遵循联系力和运动的基本规律。
带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。
(1)若带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动,由于电场力和重力为恒力,洛伦兹力方向和速度方向垂直且大小随速度大小而改变,所以只要带电粒子速度大小发生变化,垂直于速度方向的合力就要发生变化,该方向带电粒子的运动状态就会发生变化,带电粒子就会脱离原来的直线轨道而沿曲线运动。
可见,只有带电粒子速度大小不变,才可能做直线运动,也就是说,带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动时,一定是做匀速直线运动。
(2)若带电粒子在电场力、重力和洛伦兹力共同作用下做匀速圆周运动时,由于物体做匀速圆周运动的条件是所受合外力大小恒定、方向时刻和速度方向垂直,这是任何几个恒力或恒力和某一变力无法合成实现的,只有洛伦兹力可满足该条件。
也就是说,带电粒子在上述复合场中如果做匀速圆周运动,只能是除洛伦兹力以外的所有恒力的合力为零才能实现。
总之,处理此类问题,一定要牢牢把握隐含条件。
在解决实际问题时,要做到以下三点:①正确分析受力情况;②充分理解和掌握不同场对带电粒子作用的特点和差异;③认真分析带电粒子运动的详细过程,充分发掘题目中的隐含条件,建立清晰的物理情景,最终把物理模型转化为数学表达式。
下面以两个例子来说明处理此类问题的方法。
1. 带电微粒在电场力、重力和洛伦兹力共同作用下做匀速圆周运动。
必然是电场力和重力平衡,而洛伦兹力充当向心力。
例1 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直平面内做匀速圆周运动。
带电粒子在复合场中的运动
带电粒子在复合场中的运动一、带电粒子....(通常不计重力)在混合场中的运动 1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。
带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,BE v =。
在本图中,速度方向必须向右。
(1)这个结论与离子带何种电荷、电荷多少都无关。
(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
【例1】 某带电粒子从图中速度选择器左端由中点O 以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带___电;第二次射出时的速度为_____。
【例2】 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L 偏转角度均为α,求E ∶B2.回旋加速器(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。
A 0处带正电的粒子源发出带正电的粒子以速度v 0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A 1时,在A 1 A 1/处造成向上的电场,粒子被加速,速率由v 0增加到v 1,然后粒子以v 1在磁场中匀速转动半个周期,到达A 2/时,在A 2/ A 2处造成向下的电场,粒子又一次被加速,速率由v 1增加到v 2,如此继续下去,每当粒子经过A A /的交界面时都是它被加速,从而速度不断地增加。
带电粒子在磁场中作匀速圆周运动的周期为qBT mπ2=,为达到不断加速的目的,只要在A A /上加上周期也为T 的交变电压就可以了。
专题 带电粒子在复合场中的运动
图3.6-4 (1)求粒子进入磁场时的速率; (2)求粒子在磁场中运动的轨道半径。 解析 (1)粒子飘入电势差为U的加速电场, 有 qU=12mv2,
29
@《创新设计》
得粒子进入磁场时的速率 v= 2mqU。
(2)粒子进入磁场做匀速圆周运动,洛伦兹力提供向心力,有 qvB=mvR2,R=B1 2mqU。
6
@《创新设计》
联立②④⑤⑥式得
t=B4Ud2π2+
3。 3
答案
4U (1)B2d2
(2)B4Ud2π2+
3
3
7
@《创新设计》
1.如图2所示,在第Ⅱ象限内有沿x轴正方向的匀强电场,电场
强度为E,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,
磁感应强度大小相等。有一个带电粒子以垂直于x轴的初速度
v0从x轴上的P点进入匀强电场中,并且恰好与y轴的正方向成 45°角进入磁场,又恰好垂直于x轴进入第Ⅳ象限的磁场。已
18
(2)由第(1)问得
@《创新设计》
mg=qE,qvB= 2qE,
解得 v= B2E=4 2 m/s。 (3)进入第一象限,电场力和重力平衡,知油滴先做匀速直线运动,进入y≥h的 区域后做匀速圆周运动,轨迹如图,最后从x轴上的N点离开第一象限。
由 O→A 匀速运动的位移为 s1=sinh45°= 2h; 其运动时间 t1=sv1=0.1 s 由 qvB=mvr2,T=2vπr得
@《创新设计》
图6
23
@《创新设计》
解析 由 A、B 相碰时动量守恒得 mv=2mv′,有 v′=v2。据题意碰后 A、B 合 成的大油滴仍受重力与电场力平衡,合外力是洛伦兹力,所以继续做匀速圆周 运动,且有 r=22mqBv′=2mqvB=R2,T=22πq·2Bm=2qπBm,选项 B 正确。 答案 B
带电粒子在复合场中的运动
等,简化动力学方程的求解过程。
动力学方程的应用
带电粒子在磁场中的回旋运动
当带电粒子在磁场中作圆周运动时,其轨迹为一回旋线,可以根据动力学方程计算粒子的 回旋半径和回旋频率等参数。
带电粒子在电场中的加速运动
当带电粒子在电场中作加速运动时,可以根据动力学方程计算粒子的速度和位移等参数。
带电粒子的偏转运动
速度恒定
带电粒子的速度保持不变, 不随时间变化。
运动轨迹稳定
带电粒子的运动轨迹应是 一条稳定的曲线,不会发 生突变或震荡。
平衡位置的确定
受力分析
对带电粒子进行受力分析,找出各个力的方向和 大小,判断其平衡位置。
速度分析
根据速度恒定的条件,分析带电粒子在平衡位置 附近的速度变化情况。
轨迹分析
根据运动轨迹稳定的条件,分析带电粒子在平衡 位置附近的轨迹变化情况。
动力学方程的求解
分离变量法
01
将带电粒子的运动分解为在电场中的运动和在磁场果合并。
数值计算方法
02
对于一些复杂的动力学问题,可以采用数值计算方法,如有限
差分法、有限元法等,通过迭代求解动力学方程。
近似解法
03
对于一些特殊情况,可以采用近似解法,如小参数法、变分法
能量守恒定律的应用场景
在解决带电粒子在复合场中的运动问题时,我们通常需要分析带电粒子的受力情况,然后利用能量守恒 定律计算出带电粒子的速度、位移等物理量。
THANKS FOR WATCHING
感谢您的观看
匀速圆周运动
总结词
带电粒子在复合场中以恒定速率绕圆周运动,受到的电场力和洛伦兹力提供向心 力。
详细描述
当带电粒子在复合场中受到的电场力和洛伦兹力达到平衡时,粒子将绕圆周匀速 运动。此时,粒子的速度大小保持不变,方向不断变化,且受到的磁场力充当向 心力,使粒子保持圆周运动。
带电粒子在复合场中的运动(含答案)
带电粒子在复合场中的运动1、 如图,在平面直角坐标系xOy 内,第1象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以速度v 垂直于y 轴射出磁场。
不计粒子重力。
求:(1)电场强度大小E ;(2)粒子在磁场中运动的轨道半径; (3)粒子离开磁场时的位置坐标。
2、 如图所示,在xoy 平面的第一象限内,分布有沿x 轴负方向的场强4410/3E N C =⨯的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度10.2B T =的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度2B 的匀强磁场。
在x 轴上有一个垂直于y 轴的挡板OM ,挡板上开有一个小孔P ,P 处连接有一段长度2110d m -=⨯内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O 点210h m -的粒子源S 可以向第四象限平面内各个方向发射带正电的粒子,粒子速度大小均为50210/v m s =⨯,粒子的比荷7510/qC kg m=⨯,不计粒子重力和粒子间的相互作用,求:(1)粒子在第四象限的磁场中运动时的轨道半径r ; (2)粒子第一次到达y 轴的位置与O 点的距离H ;(3)要使离开电场的粒子只经过第二、三象限回到S 处,磁感应强度2B 应为多大。
3、 如图所示,空间存在方向与xoy 平面垂直,范围足够大的匀强磁场。
在0x ≥区域,磁感应强度大小为B 0,方向向里;x <0区域,磁感应强度大小为2B 0,方向向外。
某时刻,一个质量为m 、电荷量为q (q >0)的带电粒子从x 轴上P (L ,0)点以速度02qB Lv m=垂直x 轴射入第一象限磁场,不计粒子的重力。
求:(1)粒子在两个磁场中运动的轨道半径;(2)粒子离开P 点后经过多长时间第二次到达y 轴。
带电粒子在复合场中的运动
1. 速度选择器: ⑴如图所示,平行板中电场强度E和磁感应 强度B互相垂直。这种装置能把具有一定速 度的粒子选择出来,所以叫做速度选择器。
⑵带电粒子能够沿 直线匀速通过速度 选择器的条件是 qE=qvB,即v=E/B
B
考点二:带电粒子在复合场中运动的典型应用
• 3.如图所示的虚线区域内,充满垂直于纸面向里的匀强 磁场和竖直向下的匀强电场。一带电粒子a(不计重力)以 一定的初速度由左边界的O点射入磁场、电场区域,恰好 沿直线由区域右边界的O' 点(图中未标出)穿出。若撤去该 区域内的磁场而保留电场不变,另一个同样的粒子b(不 计重力)仍以相同初速度由O点射入,从区域右边界穿出, 则粒子b( ) • A.穿出位置一定在O' 点下方 • B.穿出位置一定在O' 点上方 • C.运动时,在电场中的电势能一定减小 • D.在电场中运动时,动能一定减小
6
则类平抛运动中垂直于电场方向的位移
L vt1 4 2m
L y 8m 0 cos 45
即电荷到达y轴上的点的坐标为( 0, 8 ).
练6.在如右图所示的直角坐标系中,x轴的上方存在与x轴 正方向成45°角斜向右下方的匀强电场,场强的大小为E = 2×104 V/m。x轴的下方有垂直于xOy面向外的匀强磁 场,磁感应强度的大小为B=2×10-2 T。把一个比荷为 q/m=2×108 C/kg的正点电荷从坐标为(0,1)的A点处由静 止释放。电荷所受的重力忽略不计。 ⑴求电荷从释放到第一次进入磁场时所用的时间; ⑵求电荷在磁场中做圆周运动的半径(保留两位有效数字); ⑶当电荷第二次到达x轴上时, 电场立即反向,而场强大小不 变,试确定电荷到达y轴时的 位置坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(l)电场强度的大小。
(2)粒子到达P2时速度的大小和方向。 (3)磁感应强度的大小。
P1
0
P3
P2
x
解:
(1) P1到P2做平抛运动: h=1/2 at2 2h=v0t qE=ma
y
P1
0
P3
P2 θ
x
v
vy=v0 vx=v0
解得E= mv02/2qh (2) vy2=2ah=2qEh/m v02
mg (3)F 电= 设带电微粒落地时的 2 速度大小为 v1,根据动能定理有
1 1 2 mghm -F 电 hm= mv1 - mv2 2 2 5mgv 2 v1= v+ . 2qB
变式训练2、如图所示,相互垂直匀强磁场和匀强电 场中,有一个带电液滴在竖直面内做匀速圆周运 动,那么这个液滴电性与转动方向应是( B ) A.带正电,逆时针方向 B.带负电,顺时针方向 C.带负电,逆时针方向 D.带正电,顺时针方向
mg 则有 mg =qE,即 E= q .
(2)若某时刻微粒在电场中运动到P点时,速度与水平方 向的夹角为60°,且已知P点与水平地面间的距离等 于其做圆周运动的半径.求该微粒运动到最高点时与 水平地面间的距离?
(2)设带电微粒做匀速圆 周运动的轨迹半径为 r, 根据 牛顿第二定律和洛伦兹力公 mv 2 mv 式有 qvB = , 解得 r= . r qB
探究一、带电粒子在复合场中的直线运动情形
1、重力场和匀强电场并存的空间: (1)当重力与电场力平衡时,带电粒子做 什么运动? 匀速直线运动。 (2)当带电粒子速度方向与重力和电场力的合力共线时, 带电粒子做什么运动? 匀变速直线运动。 2、匀强磁场和重力场并存的空间: (1)当重力与洛伦兹力平衡时,带电粒子做什么运动? 匀速直线运动。 (2)当带电粒子速度方向与磁场方向平行,且与重力共 线时,带电粒子做什么运动? 匀变速直线运动。
2.2004年理综Ⅱ 24
(18分)如图所示,在y>0的空间中存在匀强电场, 场强沿y轴负方向;在y<0的空间中,存在匀强磁场, 磁场方向垂直xy平面(纸面)向外。一电量为q、质量 为m的带正电的运动粒子,经过y轴上y=h处的点P1时 速率为v0,方向沿x轴正方向;然后,经过x轴上x=2h 处的 P2点进入磁场,并经过y轴上y=-2h处的 P3点。不 y 计重力。求
带电粒子在复合 场中的运动
基础知识梳理
1、复合场: 电场 、磁场 和重力场并存或两种场 并 存,或分区域并存。粒子在复合场运动时要考 虑 电场力 、 洛伦兹力 和重力作用. 2.各种场力的特点 (1)重力的大小为mg,方向竖直向下,重力做功与 重力做功 相 路径无关,重力势能的变化总是与_________ 对应. (2)电场力与电荷性质及电场强度有关,电场力做 功与路径无关,电势能的变化总是与电场力做功 ________ 相对应. (3)洛伦兹力的大小F=qvB,其方向与速度方向垂 不做功 直,所以洛伦兹力_________ 。
变式训练3、带正电的甲、乙、丙三个粒子(不计重力)
分别以速度v甲、v乙、v丙垂直射入电场和磁场相互垂
直的复合场中,其轨迹如图所示,则下列说法正确的
是
A .v 甲> v 乙> v 丙
(
) A
B .v 甲< v 乙< v 丙
C.甲的速度可能变大
D.丙的速度不一定变大
练习
1. (2012· 海南物理)如图,在两水平极板间存在 匀强电场和匀强磁场,电场方向竖直向下,磁场 方向垂直于纸面向里。一带电粒子以某一速度沿 水平直线通过两极板。若不计重力,下列四个物 理量中哪一个改变时,粒子运动轨迹不会改变? • A.粒子速度的大小 • B.粒子所带电荷量 • C.电场强度 • D.磁感应强度 • 【答案】:B
3、匀强磁场和匀强电场并存的空间: (1)当电场力与洛伦兹力平衡时,带电粒子做什么运动? 匀速直线运动。 (2)当带电粒子速度方向与磁场方向平行,且与电场方 向共线时,带电粒子做什么运动? 匀变速直线运动。 4、重力场和匀强电场、匀强磁场并存的空间: (1)当电场力与重力平衡,带电粒子速度方向与磁场方 向平行时,带电粒子做什么运动? 匀速直线运动。 (2)当电场力与重力、洛伦兹力三力平衡时,带电粒子 做什么运动? 匀速直线运动。
例题2、 如图所示,在水平地面上方有一范围足够大的互
相正交的匀强电场和匀强磁场区域.磁场的磁感应强度 为B,方向水平并垂直于纸面向里.一质量为m、带电荷 量为q的带正电微粒在此区域内沿竖直平面做速度大小 为v的匀速圆周运动,重力加速度为g. (1)求此区域内电场强度的大小和方向;
【解析】 (1)电场强度的方向竖直向上 设电场强度为E,
依题意可画出带电微粒做匀速圆周运动的轨 迹如图所示,该微粒运动至最高点与水平地
5mv 面间的 距离 hm=2r+rcos60º= 2qB
(3)当带电粒子运动至最高点时,将电场强度的大 小变为原来的1/2 ,方向不变(且不计电场变化对 原磁场的影响),带电粒子能落至地面,求带电粒 子落至地面的速度大小。
好与重力平衡,由平衡条件有
Bqv=mg v=
探究二 曲线运动情形
1、匀速圆周运动(特例) 当带电粒子处在重力场、匀强电场、匀强磁场共存 的空间,带电粒子所受的 重力 与_______ 电场力 大小相等、 方向相反时,带电粒子在洛伦兹力 _______ 的作用下,在 垂直于匀强磁场的平面内做匀速圆周运动. 2、较复杂的曲线运动 当带电粒子所受的合外力大小和方向均变化,且与 初速度方向不在一条直线上,粒子做 非匀变速曲 线运动,这时粒子运动轨迹既不是圆弧,也不是 抛物线。
变式训练1、一个质量为m,带正电为q的带电小球静止 在光滑的绝缘水平面上,处于垂直于纸面向里的匀强 磁场B中,为了使小球能飘离平面,该匀强磁场在纸面
移动的最小速度应为多少?方向如何?
解析:由左手定则判断可知此带电小球必向右运 动,所以磁场应向左运动。设磁场移动的最小速 度为V,则此时一定满足带电小球所受洛伦兹力刚
v 2v0
θ=45°
(3) P2到P3做匀速圆周运动,圆心在P2P3的中点,如图示
ห้องสมุดไป่ตู้
由qBv=mv2 /r 得r =mv0/qB mv 2mv 0 由几何关系 r 2h qB qB ∴ B = mv0/qh
小结
(1)当带电粒子在复合场中做匀速运动时,应根据受力 平衡列方程求解. (2)当带电粒子在复合场中做匀速圆周运动时,往往同 时应用牛顿第二定律和平衡条件列方程联立求解. (3)当带电粒子在复合场中做非匀变速曲线运动时,应 选用动能定理或能量守恒定律列方程求解.
例题1、质量为m、带电量为q的液滴以速度v沿与水平 成45角斜向上进入正交的匀强电场和匀强磁场叠加区 域,电场强度方向水平向右,磁场方向垂直纸面向里 如图所示.液滴带正电荷,在重力、电场力及磁场力 共同作用下在场区做匀速直线运动. 试求:电场强度E和磁感应强度B各多大?
v B E A
2mg E = mg / q, B = qv