北师大版八年级数学分式测试题及答案
北师大版八年级数学下册分式测试题及答案
![北师大版八年级数学下册分式测试题及答案](https://img.taocdn.com/s3/m/66dafb94b0717fd5360cdc5f.png)
八年级下册第三章分式测试题一、填空题(本大题含10个小题,每小题2分,共20分)1. 下列代数式:①y x y x +-;②132+x ;③x x 13-;④4xy ;⑤14.3b a -,其中整式有____________,分式有___________(只填序号).2. 分式392--x x 当x __________时分式的值为零.3. 当x __________时分式xx 2121-+有意义. 4. ())0(,10 53≠=a axy xy a 5. 约分: =+--96922x x x __________ . 6. 计算b b a 12⨯÷的值等于_______. 8. 如果2a b =,则2222a ab b a b -++=__________. 7. 若关于x 的分式方程3232-=--x m x x 有增根,则增根为__________ . 9. 一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.10. 某商品原售价为2200元,按此价的8折出售,仍获利10%,那么此商品进价为_ ___元.二、选择题(本大题含8个小题,每小题3分,共24分)每小题给出的四个选项中,只有一项符合题目要求,请将正确选项的字母代号填入表格内相应位置.11. 下列各式中,是分式的是( ) A.2-πx B. 31x 2 C.312-+x x D.21x 12. 下列判断中,正确的是( ) A 、分式的分子中一定含有字母 B 、当B=0时,分式B A 无意义C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式 13. 下列各分式中,最简分式是A 、()()y x y x +-8534 B 、y x x y +-22 C 、2222xy y x y x ++ D 、()222y x y x +- 14.下列各式与x y x y -+相等的是(A )()5()5x y x y -+++ (B )22x y x y -+ (C )222()()x y x y x y -≠-(D )2222x y x y-+15.计算:y x x -22+x y y 2-,结果为( )A.1 B.-1 C.2x +y D.x +y16. 当a 为任何实数时,下列分式中一定有意义的一个是( ) A.21a a + B.11+a C.112++a a D.112++a a 17. 若把分式2x y x y +-中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍18. 在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)
![北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)](https://img.taocdn.com/s3/m/a5b6ef2adf80d4d8d15abe23482fb4daa48d1d5f.png)
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)
![八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)](https://img.taocdn.com/s3/m/43194a7cf5335a8102d22055.png)
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。
1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。
最新北师大版八年级下册分式及分式方程各个章节测试试题以及答案
![最新北师大版八年级下册分式及分式方程各个章节测试试题以及答案](https://img.taocdn.com/s3/m/7ca1f27c770bf78a64295408.png)
最新八年级下册分式及分式方程各个章节测试试题(1)分式无意义:B=0。
(2)分式有意义:B ≠0时。
(3)分式的值为0:A=0,B ≠01、在x1、5ab 2、3y x y 7.0+﹣、mnm +、a5cb +-、π2x 3中,是分式的有 个。
2、如果分式1x 3-有意义,那么x 的取值范围是 。
3、下列分式中,不论a 取何值总有意义的是 。
A 、1a 1a 22+-B 、1a 1a 2+-C 、1a 1a 22-+D 、1a 1a 2-+4、若分式1x 1x 2+-的值是0,则x 的值是 。
5、某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵.实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了______小时完成任务(用含a 的代数式表示).6、若a 、b 都是实数,且04b 16b 2a 22=++-)-(,写3a -b= 。
分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变.1、化简下列分式。
yx 20x y52=abb ab a 22++=22m m 39m --=22112m m m -+-=2、把分式x yy x +中的x 、y 都扩大2倍,那么分式的值 。
A 、扩大2倍B 、不变C 、缩小一半D 、扩大4倍 3、分式x22-可变形为 。
A 、x 22+ B 、x 22+﹣ C 、2x 2- D 、2x 2-﹣4、已知3y1x1=-,则代数式yx y 2x y 2x y 14x 2----= 。
5、对一任意非零实数a 、b ,定义运算“△”如下:a △b=abb a -,计算2△1+3△2+4△3+.......+2024△2023的值。
6、观察下面一列有规律的式子:1x 1x 1x 2+=--1x x 1x 1x 23++=--1x x x 1x 1x 234+++=--1x x x 1x 1x 2345++++=x --.......(1)计算1x 1x n --的结果是(2)根据规律计算:63623222.......2221++++++分式的乘除: 1、计算.(1)2224ab a a b+-÷a 4b a b+-;(2)22(14)41292341y y y y y -++•+-;(3)244x (16x y)()y -÷- (4)222x 6x 92x 69x x 3x-+-÷-+(5)xy x yy x x y x 2--÷+(6))-(-2222y x 4y2x y x y 4x 4÷++2、已知09b 4a =+--,计算22222ba aba b ab a --•+的值。
(完整版)北师大版数学八年级下册第五章分式与分式方程综合测试卷(含答案)
![(完整版)北师大版数学八年级下册第五章分式与分式方程综合测试卷(含答案)](https://img.taocdn.com/s3/m/16ff1abde87101f69f319570.png)
D.x≠3,且 x≠4,且 x≠-5
09 分式方程 3 1 3 的根为
x(x 1) x 1
()
A.-1 或 3 B.-1 C.3 D.1 或-3
10
如果关于
x
的分式方程
x
a 1
5
x3 1 x
有正数解,且关于
x
的不等式组
a 2x≤1, x
4x 1>x 2
3
的解集为 x> 5 ,那么符合条件的所有整数 a 的和为 ( )
所以 2
2
2(2 3m) ,
4 9m2 (2 3m)(2 3m) (2 3m)(2 3m)2
3
3 3(2 3m) .
9m2 12m 4 (2 3m)2 (2 3m)(2 3m)2
The shortest way to do many things is to only one thing at a time and All thi
= x 1 x 1
x 1 (x 1)2
整理,得 290x≥4350,解得 x≥15. ∴每千克该种水果的标价至少是 15 元. 答:每千克该种水果的标价至少是 15 元.
=1 x 1.
解不等式组
2 x≤3, 2x 3<0,
.得-1≤x<
3 2
,
∴不等式组的整数解有-1,0,1,
25 解:设排球的单价为 x 元,则足球的单价为(x+30)元,由题意,得 500 800 解得 x=50,
20 解: 16 m2 m 4 Am 2
16 8m m2 2m 8 m 2
= (4 m)(4 m)A2(m 4)Am 2
(4 m)2
m4 m2
= 4 2m .
北师大版八年级下册《第五章分式与分式方程》测试题(含答案)
![北师大版八年级下册《第五章分式与分式方程》测试题(含答案)](https://img.taocdn.com/s3/m/533156fd4b73f242326c5f24.png)
第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(答案解析)(3)
![(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(答案解析)(3)](https://img.taocdn.com/s3/m/ac5ca35a83d049649a665829.png)
一、选择题1.若关于x 的分式方程3111m x x -=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠B .4m ≥-且3m ≠-C .2m ≥且3m ≠D .4m >- 2.已知113x y -=,则代数式21422x xy y x xy y ----的值( ) A .4B .9C .-4D .-8 3.若关于x 的方程2033x a x x ++=++有增根,则 a 的值为( ) A .1B .3C .4D .5 4.分式方程3121x x =-的解为( ) A .1x = B .2x = C .3x = D .4x = 5.下列各分式中是最简分式的是( )A .2-1-1x xB .42xC .22-1x xD .-11-x x6.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度 7.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2- B .2 C .3- D .38.若关于x 的方分式方程222x m x x=---有非负整数解,且关于y 的不等式组()()2123513y y y y m +⎧+≥⎪⎨⎪-<-+⎩有且只有2个整数解,则所有符合条件的正整数m 的和为( ) A .5 B .7 C .8 D .99.已知x a =时,分式211x x ++的值为m .若a 取正整数,则m 的取值范围为( ) A .112m ≤< B .312m ≤< C .322m ≤< D .522m ≤<10.若x 2y 5=,则x y y +的值为( ) A .25 B .72 C .57 D .7511.若分式12x -有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x ≠ D .x 取任意实数 12.小红和小丽分别将9000字和7500字的两篇文稿录入计算机,…,求两人每分钟各录入多少字?设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…”表示的缺失的条件应为( )A .两人每分钟录入字数的和是220字B .所用时间相同,两人每分钟录入字数的和是220字C .所用时间相同,小红每分钟录入字数比小丽多220字D .所用时间相同,小丽每分钟录人字数比小红多200字 二、填空题13.已知关于x 的分式方程233x k x x -=--的解是非负数,则k 的取值范围为______. 14.若x 2-x -1=0,则232x x x--=___. 15.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根. 16.已知5a b +=,6ab =,b a a b+=______. 17.观察给定的分式,探索规律:(1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数). 18.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133aa -=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可) 19.如果分式126x x --的值为零,那么x =________ . 20.用科学记数法表示:-0.00000202=_______.三、解答题21.某制药厂生产一种创新型中药,该药对于治疗流感及新冠肺炎都有较好的疗效.该制药厂第一车间原来每天能生产该药品960箱,受疫情影响,曾经停工停产,在复工复产初期,该生产车间仍有6名工人没有报到.已到厂的工人积极生产,原来每天工作8小时,现在每天加班2小时,在每人每小时平均完成的工作量不变的情况下,该车间现在每天能生产该药品840箱.(1)该制药厂第一车间原来有工人多少人?(2)就这样加班生产已过10天,该制药车间接到加急任务:将复工后的21000箱药品供应武汉市,制药厂决定从其他制药车间抽调6名技术工人以填补未到岗工人的空缺,并且每天仍然加班生产2小时,那么该车间至少还需要生产多少天才能完成任务?22.化简:22234122m m m m m --⎛⎫-÷ ⎪--⎝⎭. 23.先化简,再求值:21123369⎛⎫+÷⎪-+-+⎝⎭m m m m m ,其中9m =. 24.解方程(1)2231022x x x x -=+- (2)31523x-162x -=- (3)25231x x x x +=++ (4)552252x x =-+ 25.(1)计算:()30211324-⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭(2)化简:21111x x x ⎛⎫-÷ ⎪+-⎝⎭ (3)先化简,再求值:()()()22322a b a b a b +-+-,其中13a =,12b =-. 26.为预防新冠疫情的反弹,康源药店派采购员到厂家去购买了一批A 、B 两种品牌的医用外科口罩.已知每个B 品牌口罩的进价比A 品牌口罩的进价多0.7元,采购员用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌每个口罩的进价分别为多少元?(2)若B 品牌口罩的售价是A 品牌口罩的售价的1.5倍,要使康源药店销售这批A 、B 两种品牌口單的利润为8800元,则它们的售价分别定为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m+3=x﹣1,再由整式方程的解为非负数得到m+4≥0,由整式方程的解不能使分式方程的分母为0得到m+4≠1,然后求出不等式的公共部分得到m的取值范围.【详解】解:去分母得m+3=x﹣1,整理得x=m+4,因为关于x的分式方程311mx x-=--1的解是非负数,所以m+4≥0且m+4≠1,解得m≥﹣4且m≠﹣3,故选:B.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.A解析:A【分析】由11x y=3,变形得y-x=3xy,然后整体代入代数式,计算化简,即可得到结论.【详解】解:由11x y=3,得y xxy-=3,即y-x=3xy,x-y=-3xy,则21422x xy yx xy y----=2()142x y xyx y xy----=61432xy xyxy xy----=4.故选:A.【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.3.A解析:A【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x的值,代入整式方程求出a的值即可.【详解】解:分式方程去分母得:20x a ++=,由分式方程有增根,得到x+3=0,即x=-3,把x=-3代入整式方程得:320a -++=,解得1a =故选:A .【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点.4.C解析:C【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验;【详解】两边同时乘以()21x x -,得:()312x x -= ,解得:x=3,检验:将x=3代入()210x x -≠,∴方程的解为x=3.故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验; 5.C解析:C【分析】根据最简分式的定义即可求出答案.【详解】解:A 、211()111)(11x x x x x x -==+--+-,故选项A 不是最简分式,不符合题意; B 、42=2x x ,故选项B 不是最简分式,不符合题意; C 、22-1x x ,是最简二次根式,符合题意; D 、1111(1)x x x x --==----,故选项D 不是最简分式,不符合题意. 故选:C .【点睛】本题考查最简分式,解的关键是正确理解最简分式的定义,本题属于基础题型.6.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 7.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 8.B解析:B【分析】由题意根据分式方程去分母转化为整式方程,由解为非负整数以及不等式组只有2个整数解,确定出符合条件m 的值,求出它们的和即可.【详解】解:去分母得:()22x x m =-+,解得:4x m =-,由解为非负整数解,得到40m -≥,且42m -≠,解得:4m ≤且2m ≠,不等式组整理得:242y y m ⎧⎪⎨-⎪≥-⎩<, 由不等式组只有2个整数解,得到y=-2,-1,即1024m --≤<, 解得:2≤m <6,综上:2<m≤4则符合题意m=3,4,它们的和为7.故选:B .【点睛】本题考查分式方程的解以及一元一次不等式组的整数解,熟练掌握相关运算法则是解答本题的关键. 9.C解析:C【分析】 先把211x x ++化为121x -+,再根据条件和a 的范围,即可得到答案. 【详解】 ∵211x x ++=22-12(1)-112111x x x x x ++==-+++, 又∵x a =时,分式211x x ++的值为m , ∴121m a -=+, ∵a 取正整数,即a≥1, ∴1112a ≤+, ∴13212a -≥+,即m≥32, 又∵101a >+, ∴1221a -<+,即m<2, ∴322m ≤<. 故选C .【点睛】本题主要考查分式的运算和化简,把原分式的分子化为常数,是解题的关键. 10.D解析:D 【分析】根据同分母分式的加法逆运算得到x y x yy y y+=+,将x2y5=代入计算即可.【详解】解:∵x2y5 =,∴x y x y2y y y5+=+=+175=,故选:D.【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.11.C解析:C【分析】根据分式有意义的基本条件计算即可.【详解】∵分式12x-有意义,∴x-2≠0,∴2x≠,故选C.【点睛】本题考查了分式有意义的条件,熟记有意义的条件,熟练转化成不等式是解题的关键.12.B解析:B【分析】根据工作时间=工作总量÷工作效率,从而得出正确答案.【详解】解:设小红每分钟录入x个字,则可得方程90007500220x x=-,根据此情景,题中用“…“表示的缺失的条件应补为所用时间相同,两人每分钟录入字数的和是220字,故选:B.【点睛】本题主要考查了由实际问题抽象出分式方程,根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.二、填空题13.且【分析】先解分式方程可得检验可得再由关于的分式方程的解是非负数列不等式解不等式从而可得答案【详解】解:去分母得:检验:关于的分式方程的解是非负数综上:且【点睛】本题考查的是分式方程的解与解分式方程 解析:6k ≤且 3.k ≠【分析】先解分式方程可得6,x k =-检验可得3,k ≠再由关于x 的分式方程233x k x x -=--的解是非负数,列不等式,解不等式,从而可得答案.【详解】 解:233x k x x -=-- 去分母得:()23,x x k --=26,x x k ∴-+=6,x k ∴=-检验:30,x -≠630,k ∴--≠3,k ∴≠关于x 的分式方程233x k x x -=--的解是非负数, 60,k ∴-≥6,k ∴≤综上:6k ≤且 3.k ≠【点睛】本题考查的是分式方程的解与解分式方程,解一元一次不等式,掌握解分式方程一定要检验是解题的关键.14.2【分析】把x2-x-1=0变形得x2-1=x 然后对分式进行化简再代入求值【详解】∵x2-x-1=0∴x2-1=x ∵故答案是:2【点睛】本题主要考查分式的化简求值掌握分式的减法运算是解题的关键解析:2【分析】把x 2-x -1=0变形得x 2 -1=x ,然后对分式进行化简,再代入求值.【详解】∵x 2-x -1=0,∴x 2 -1=x , ∵232x x x --=()222221322222x x x x x x x x x----====, 故答案是:2.【点睛】本题主要考查分式的化简求值,掌握分式的减法运算是解题的关键.15.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由 解析:6【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值.【详解】 解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12, 去分母得7-2x=m将x=12代入得m=6 即当m=6时,原分式方程会出现增根.故答案为6.【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.16.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136【分析】 原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab++-+== 25266-⨯=136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 17.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a -- 【点睛】本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键18.②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】 解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a -=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.19.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 20.02×10-6【分析】绝对值小于1的负数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:02×10-6【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法表示-0.00000202为 2.02×10-6.故答案为:2.02×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题21.(1)该制药厂第一车间原来有工人20人;(2)至少还需要生产10.5天才能完成任务【分析】(1)设该制药厂第一车间原来有工人x 人,根据每人每小时完成的工作量不变列出关于x 的方程,求解即可;(2)设还需要生产y 天才能完成任务.根据前面10天完成的工作量+后面y 天完成的工作量≥21000列出关于y 的不等式,求解即可.【详解】解:(1)设该制药厂第一车间原来有工人x 人,根据题意,得()9608408106=-x x , 解得20x .经检验,20x 是原分式方程的解且符合题意.答:该制药厂第一车间原来有工人20人.(2)设还需要生产y 天才能完成任务.当20x 时,96096068820==⨯x (箱), 即每人每小时生产该药物6箱.由题意得,()108402068221000⨯+⨯⨯+≥y ,解得10.5≥y .答:至少还需要生产10.5天才能完成任务.【点睛】本题考查分式方程及一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.22.1m m + 【分析】先把括号内的进行通分,然后除以一个数等于乘以这个数的倒数,把分子分母因式分解后进行约分计算即可;【详解】()()()22223441222411m m m m m m m m m m m m m ----⎛⎫-÷=⨯= ⎪----++⎝⎭; 【点睛】本题考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则;23.33-+m m ,12. 【分析】 原式被除数括号中两项通分并利用同分母分式的加法法则计算,除数分母利用完全平方公式分解因式后,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21123369⎛⎫+÷ ⎪-+-+⎝⎭m m m m m =33(3)(3)m m m m ++-+-•2(3)2m m- =33-+m m , 当m =9时,原式=931=932-+. 【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.24.(1)4x =;(2)10=9x ;(3)无解;(4)356x =- 【分析】(1)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;(2)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;(3)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;(4)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;【详解】解:(1) 2231022x x x x-=+-整理,得:310(2)(2)x x x x -=+- 方程两边同乘(2)(2)x x x +-得:3(2)(2)0x x --+=去括号,得:3620x x ---=移项,合并同类项,得:28x =系数化1,得:4x =经检验:4x =是原方程的解∴原分式方程的解为:4x =(2) 31523x-162x -=- 整理,得:3152312(31)x x -=-- 方程两边同乘2(31)x -得:()33125x --=去括号,得:9325x --=移项,合并同类项,得:9=10x系数化1,得:10=9x 经检验:10=9x 是原方程的解 ∴原分式方程的解为:10=9x (3)25231x x x x +=++ 整理,得:523(1)1x x x x +=++ 方程两边同乘(1)x x +得:523x x +=移项,合并同类项,得:22x =-系数化1,得:1x =-经检验:1x =-是原方程的增根∴原分式方程无解(4)552252x x =-+ 方程两边同乘()()2525x x +-得:()()525225x x +=-去括号,得:1025410x x +=-移项,合并同类项,得:635x =-系数化1,得:356x =-经检验:356x =-是原方程的解 ∴原分式方程的解为:356x =-【点睛】本题考查解分式方程,掌握解方程步骤,正确计算是解题关键,注意分式方程的结果要进行检验.25.(1)0;(2)-x+1;(3)21210ab b +,12【分析】(1)根据负指数幂和零指数幂计算即可;(2)根据分式的乘除化简即可;(3)先根据整式乘法进行化简,在代入求值即可;【详解】解:(1) ()30211324-⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭, =-8+9-1,=0;(2)21111x x x ⎛⎫-÷⎪+-⎝⎭, =()()()11111x x x x x -++-+, =()()111x x x x x+--+, =1x -+; (3)()()()22322a b a b a b +-+-,=()222241294a ab b a b++--, =222241294a ab b a b ++-+,=21210ab b +,当13a =,12b =-时,原式=12×12×12⎛⎫- ⎪⎝⎭+10×212⎛⎫- ⎪⎝⎭=12. 【点睛】本题主要考查了分式化简、整式化简求值、实数计算,准确计算是解题的关键. 26.(1)A 、B 两种品牌每个口罩的进价分别为每个1.8元,2.5元;(2)A 、B 两种品牌每个口罩的售价分别定为每个3元,4.5元.【分析】(1)设A 种品牌每个口罩的进价为每个x 元,则B 种品牌每个口罩的进价为每个()0.7x +元,则可列方程7200500020.7x x =⨯+,解方程并检验即可得到答案; (2)设A 品牌口罩的售价为每个y 元,则B 品牌口罩的售价为每个1.5y 元, 由(1)得:A 品牌口罩的数量为7200=40001.8个,B 品牌口罩的数量为2000个,再列方程()()4000 1.820001.5 2.58800,y y -+-= 解方程可得答案.【详解】解:(1)设A 种品牌每个口罩的进价为每个x 元,则B 种品牌每个口罩的进价为每个()0.7x +元,则7200500020.7x x =⨯+ 1825,0.7x x ∴=+ 251812.6x x ∴=+712.6,x ∴=1.8,x ∴=经检验: 1.8x =是原方程的根,且符合题意,1.82.5x ∴+=即A 、B 两种品牌每个口罩的进价分别为每个1.8元,2.5元.(2)设A 品牌口罩的售价为每个y 元,则B 品牌口罩的售价为每个1.5y 元, 由(1)得:A 品牌口罩的数量为7200=40001.8个,B 品牌口罩的数量为2000个, 则()()4000 1.820001.5 2.58800,y y -+-=17.552.5,y ∴=3y ∴=1.5 4.5,y ∴=答:A 、B 两种品牌每个口罩的售价分别定为每个3元,4.5元.【点睛】本题考查的是一元一次方程的应用,分式方程的应用,掌握利用相等关系列方程解决实际问题是解题的关键.。
北师大版数学八年级上册 分式解答题检测题(WORD版含答案)
![北师大版数学八年级上册 分式解答题检测题(WORD版含答案)](https://img.taocdn.com/s3/m/899317f533687e21ae45a98a.png)
一、八年级数学分式解答题压轴题(难)1.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. 【解析】【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…, 知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立; (3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】 解答此题关键是找出规律,再根据规律进行逆向运算.2.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵20a b =-≥,∴a b +≥a b =时取等号.请利用上述结论解决以下问题: (1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,112x x x x +≥⋅= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭ ∵()1122x x x x ⎛⎫--≥-⋅-= ⎪⎝⎭∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.3.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。
北师大版八年级数学下册第三章分式测试题及答案
![北师大版八年级数学下册第三章分式测试题及答案](https://img.taocdn.com/s3/m/642bfb42852458fb760b560e.png)
第三章分式综合测试题一、选择题(每题3分,共30分)1.代数式4-x 1是( )A.单项式B.多项式C.分式D.不能确定2.有理式x 2,31(x+y),3-ππ,x a -5,42yx -中分式有( )个.A.1B.2C.3D.43.若分式2122-+-x x x 的值为0,则x 的值是( ).A.1或-1B.1C.-1D.-24.下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.45.如果x =a -b ,y =a +b ,计算-xy x y 2)(-的值为( ) A .222b a b- B .-222b a b - C .-2224b a b - D .2224b a b - 6.将b a b a --||约分,正确的结果是( )A .1B .2C .±1D .无法确定7.下列运算正确的个数是( ) ①m÷n·n 1=m÷1=m ②x·y÷x·y=xy÷xy=1 ③11111=⋅⋅⋅=÷⋅÷a a a a a a a a ④22224)2(y x x yx x +=+ A .2 B .1 C .3 D .48.如果x <32,那么23|32|--x x 的值是( )A .-1B .0C .1D .329.若a -b =2ab ,则b a 11-的值为( ) A .21 B .-21C .-2D .210.若a 1+a =4,则(a 1-a )2的值是( )A .16B .9C .15D .12二、填空题(每题3分,共30分)1.已知代数式:3,x 1,3+x 1,222y x -,π1(x+y),y 1(z+x),11+x ,x x 212+,32122+++x x x 整式有: 分式有:2. 已知分式122--x x ,当x 时分式值为0. 3.如果32=b a ,且a ≠2,那么51-++-b a b a =4.某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为5.已知y =32)1(6126-+-x x x ,x 取 时,y 的值为正整数. 6.计算:______)2()32(23232---÷-a b a b7.把分式))((11)(3b a b a b a -+-约分得)(113b a +时,a 、b 必须满足的条件为_______。
北师大版初二数学下册分式练习题
![北师大版初二数学下册分式练习题](https://img.taocdn.com/s3/m/e4d5bdd8b84ae45c3a358c7c.png)
3. 1分式课程引入分数在我们中国很早就有了 ,最初分数的表现形式跟现在不一样。
后来,印度出现了和我国相似的分数表示法。
再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
把单位"1"平均分成若干份,表示这样的一份或几份的数叫做分数 成几份,分子表示取了其中的几份•那么,分式又是怎样的呢? 课前预习 ※自主阅读1. 复习:什么是整式?2 .在代数式中,整式的除法可以用类似分数的形式表示:来表示;60+(x )可以用式子m 吨,平均每公顷产量可以用式子 x 公顷,收棉花 m 千克,第二块图书的库存全部售出时,其销售额为 b 元.降价销售开始时,文林书店这种图书的库存量是3.分式的定义:整式 A 除以整式B ,可以表示成 的形式.如果 其中A 称为分式的分子,B 称为分式的分母.4 .分式中,字母可以取任意实数吗?当 x值时,分式 有意义5 .当x 时,分式的值为0※质疑问难 课堂研习 ※知识理解分式与整式的本质区别是 ※典例剖析(1) 下列各式中,哪些是整式?哪些是分式? 5x — 7, 3x2 — 1, , , — 5,,,. (2 )当x 取什么值时,下列分式有意义? ①;②;③;④(3)当x 取何值时,下列分式的值为零?① ② ③(4)把甲、乙两种饮料按质量比 混合在一起,可以调制成一种混合饮料,调制1 kg 这种混合饮料需多少甲种饮料? ※反馈练习1.下面各式中, x+ y, , , — 4xy ,,分式的个数有()A 、1个B 、2个C 、3个D 、4个2 .当x 时,分式 无意义;当x 时,分式 有意义;3 .当x 时,分式的值为0。
4 .当x时,分式无意义?,分母表示把一个物体平均分(1) 90*x 可以用式子 (2) n 公顷麦田共收小麦 (3) 有两块棉田,有一块 棉田平均每公顷的棉产量是(4 )文林书店库存一批图书,其中一种图书的原价是每册 来表示。
[北师大版]八年级数学下册《分式》单元测试1(含答案)
![[北师大版]八年级数学下册《分式》单元测试1(含答案)](https://img.taocdn.com/s3/m/a52ac368eff9aef8941e068e.png)
八年级数学 第三章 分式单元测试A 卷(基础层 共100分)一、选择题:(每小题3分,共30分) 1、若a ,b 为有理数,要使分式ba的值是非负数,则a ,b 的取值是 ( ) (A)a ≥0,b ≠0; (B)a ≥0,b>O ; (C)a ≤0,b<0; (D)a ≥0,b>0或a ≤0,b<02、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。
(A)2 (B)3 (C)4 (D)5 3、下列各式,正确的是 ( )(A)326x x x =; (B)b a x b x a =++;(C))(1y x y x y x ≠-=-+-; (D)b a ba b a +=++22; 4、要使分式2||1-x 有意义,x 的值为 ( )(A)x ≠2; (B)x ≠-2; (C)-2<x<2; (D)x ≠2且x ≠-2; 5、下列判断中,正确的是( ) (A)分式的分子中一定含有字母; (B)对于任意有理数x ,分式252+x 总有意义 (C)分数一定是分式;(D)当A=0时,分式BA的值为0(A 、B 为整式) 6、如果x>y>0,那么xyx y -++11的值是 ( ) (A)零; (B)正数; (C)负数; (D)整数; 7、若ab ba s -+=,则b 为 ( )(A)1++s as a ; (B)1+-s as a ; (C)2-+s as a ; (D)1-+s asa ; 8、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
(A)221v v +千米; (B)2121v v v v +千米; (C)21212v v v v +千米; (D)无法确定9、若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( ) (A)扩大3倍; (B)缩小3倍; (C)缩小6倍; (D)不变;10、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )(A)9448448=-++x x ; (B)9448448=-++x x ; (C)9448=+x ; (D)9496496=-++x x ;二、填空题:(每小题3分,共30分) 1.在分式11||+-x x 中,x =_______时,分式无意义;当x =_________时,分式的值为零. 2、①())0(,10 53≠=a axy xy a ②约分:=+--96922x x x __________。
八年级数学下册《认识分式》练习题及答案(北师大版)
![八年级数学下册《认识分式》练习题及答案(北师大版)](https://img.taocdn.com/s3/m/09be68ebcf2f0066f5335a8102d276a2002960be.png)
11.当 _______________时, 有意义.
12.分式 无意义的条件是________.
13.约分: =____.
14.如果分式 有意义,那么x的取值范围是________________;
15.在函数 中,自变量x的取值范围是______.
三、解答题
16.当 , 时,求代数式 的值.
A. B.
C. 且 D. 且
6.下列式子中,是分式的是()
A. B. C. D.
7.下列分式中,不是最简分式的是( )
A. B.
C. D.
8.下列分式中,最简分式是()
A. B. C. D.
9.已知 ,则 的值为().
A. B. C. D.
10.使分式 有意义,x的取值是( )
A.x≠﹣2B.x≠2C.x≠±2D.x≠1
八年级数学下册《认识分式》练习题及答案(北师大版)
一、单选题
1.下列各式中,是分式的是()
A. B. C. D.
2.下列各式中,属于分式的是()
A. B. C. D.
3.当 时,下列分式中有意义的是( )
A. B. C. D.
4.下列分式是最简分式的是()
A. B. C. D.
5.在函数 中,自变量x的取值范围是().
17.若无论x为何实数,分式 总有意义,求m的取值范围.
18.约分
(1) ;
(2) ;
(3) .
19.求下列各分式的值:
(1) ,其中 .(2) ,其中 .
20.若 ,求 的值.
参考答案:
1.【答案】C
2.【答案】C
3.【答案】C
4.【答案】B
5.【答案】C
北师大版数学八年级下册第五章测试题及答案《分式与分式方程》
![北师大版数学八年级下册第五章测试题及答案《分式与分式方程》](https://img.taocdn.com/s3/m/7c2bbbca964bcf84b8d57b3d.png)
北师大版数学八年级下册第五章测试卷一、单选题1.在代数式ab a ,23a b ,-0.5xy +23y ,b ca c +-,12x x ---,1π中,是分式的有( ).A .1个B .2个C .3个D .4个2.下列各式从左到右变形正确的是A .1-2-2122x y x y x y x y =++ B .0.220.22a b a b a b a b ++=++C .-1-1--x x x y x y += D .--a b a ba b a b+=+ 3.计算11x x y--的结果是( ). A .()yx x y --B .2()x yx x y +-C .2()x yx x y --D .()yx x y -4.计算2623993m mm m m ⋅÷+--的结果为( ). A .21(3)m +B .21(3)m -+C .21(3)m -D .219m -+5.下列分式方程有解的是( ).A .210x x+=B .123x -=0 C .2111x x x x +=-- D .11x -=1 6.按下列程序计算,当a =-2时,最后输出的答案是().A .132- B .52-C .-1D .12-7.已知a ,b 为实数,且ab =1,设M =11a b a b +++,N =1111a b +++,则M ,N 的大小关系是( ). A .M >NB .M =NC .M <ND .无法确定8.某工程限期完成,甲队独做正好按期完成,乙队独做则要延期3天完成.现两队先合做2天,再由乙队独做,也正好按期完成.如果设规定的期限为x 天,那么根据题意可列出方程:①223x x ++=1;②1122()133x x x x -++=++;③213xx x +=+;④233x x =+.其中正确的个数为( ). A .1 B .2C .3D .4二、填空题9.当x______时,分式22x x -+有意义;当x_______时,分式22x x -+的值为零. 10.若关于x 的分式方程1133ax x -=++在实数范围内无解,则实数a =________.11.已知114a b+=,则3227a ab ba b ab -++-=______.12.某商店销售一种衬衫,四月份的营业额为5 000元,为扩大销售,五月份将每件衬衫按原价的8折销售,销售量比四月份增加了40件,营业额比四月份增加了600元,求四月份每件衬衫的售价.解决这个问题时,若设四月份的每件衬衫的售价为x 元,由题意可列方程为_______.三、解答题13.先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.14.(1)解方程:23311x x x +---=0;(2)解方程:11322xx x-=---.15.我们把分子为1的分数叫做单位分数,如12,13,14,….任何一个单位分数都可以拆分成两个不同的单位分数的和,如12=13+16,13=14+112,14=15+120,….(1)根据对上述式子的观察,你会发现1115=+□○.请写出□,○所表示的数.(2)进一步思考,单位分数1n(n是不小于2的正整数)=11+△☆,请写出△,☆所表示的代数式,并加以验证.16.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过点P 跑回到起跑线l(如图所示),途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,乙同学说:“我俩所用的全部时间的和为50秒,捡球过程不算在内时,甲的速度是我的1.2倍.”根据图文信息,请问哪位同学获胜?参考答案1.C 【解析】 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】2a b 3,-0.5xy +2y 3,1π的分母中均不含有字母,因此它们是整式,而不是分式,ab a ,b ca c+-,1x 2x ---的分母中含有字母,因此是分式.故选C . 【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式,要注意圆周率π是常数字母. 2.A 【解析】A 原式=222222x yx y x y x y --=++,正确;B 原式=210102a ba b ++,错误;C 原式=1x x y ---,错误;D 显然错误.故选A 3.A111.()()()()x y x x y x x x y x x y x x y x x y x x y ----=-==------故选A 4.B 【解析】 【分析】首先把分式的分子或分母能分解因式的分解因式,再把除法变为乘法,然后约分后相乘即可. 【详解】原式=()m 3m 3+•()()63m 3m -+•m 32m -=-()21m 3+,故选:B . 【点睛】此题主要考查了分式的乘除法,分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分. 5.D 【解析】 【分析】分别按照解分式方程的步骤去分母,解整式方程可判断方程的解的情况. 【详解】A 、方程两边都乘以x 得:x 2+1=0,此整式方程无解,故原分式方程无解;B 、方程两边都乘以2x-3得:1=0,不成立,故方程无解;C 、方程两边都乘以x-1得:2x=x+1,解得x=1,而x=1时分母x-1=0,故原分式方程无解;D 、方程两边都乘以x-1得:x-1=1,解得x=2,当x=2时,分母x-1=1≠0,x=2是原分式方程的解; 故选:D . 【点睛】本题主要考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 6.D 【解析】根据题意列出关于m 的代数式,将a=-2代入计算即可求出值. 【详解】由题可知(a 3-a )÷a 2+1=a-1a +1, 当a=-2时,原式=-2-12-+1=12-. 故选:D . 【点睛】此题考查了代数式求值,根据题意列出正确的关系式是解本题的关键. 7.B 【解析】M -N =1a a ++1b b +-(11a ++11b +) =1a a ++1b b +-11a +-11b + =11a a -++11b b -+ =111111a b b a a b -++-+++()()()()=1111ab a b ab b a a b +--++--++()()=2211ab a b -++()()∵ab =1, ∴M -N =0, ∴M =N . 故选B.点睛:本题主要借助作差法将两个数比较大小问题转化为分式化简求值问题. 8.C 【解析】根据规定日期为x 天,则甲队完成任务需要x 天,乙队完成任务需要(x+3)天. 记该工程总量为“1”,根据题意,得:甲、乙的工作效率分别为1x 、13x +. 根据“甲乙合做的工作量+乙做的工作量=1”,由此可列方程:1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭.根据“甲的工作量+乙做的工作量=1”,可列方程:213xx x+=+.再根据题意得“乙2天做的工作量=甲3天做的工作量”,可列方程:233 x x=+.综上可知②③④方程均符合题意.故选C.点睛:此题考查了由实际问题抽象出分式方程,关键步骤在于找相等关系.当题中没有一些必须的量时,为了简便,应设其为1.本题要掌握好工作效率,工作总量和工作时间的等量关系.9.≠-2 =2【解析】【分析】分式有意义:分母不为零;分式的值为零时,分子为零,且分母不为零.【详解】当分母x+2≠0,即x≠-2时,分式x2x2-+有意义;当分子x-2=0,即x=2时,分式x2x2-+的值为零.故答案分别是:≠2;=2.【点睛】本题考查了分式有意义的条件和分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.1【解析】【分析】按照一般步骤解方程,用含a的代数式表示x,既然无解,所以x应该是能令最简公分母为0的值,代入即可解答a.【详解】原方程化为整式方程得:1-x-3=a,整理得x=-2-a,因为无解,所以x+3=0,即x=-3,所以a=-2+3=1. 故答案为:1 【点睛】分式方程无解的可能为:整式方程本身无解,但当整式方程的未知数的系数为一常数时,不存在整式方程无解;分式方程产生增根. 11.1 【解析】∵11a b +=4, ∴4b a ab+=,∴a+b=4ab, ∴-322-7a ab b a b ab ++=()32()7a b ab a b ab +-+-=4387ab ab ab ab --=ab ab=1 故答案为:1. 12.5?0006005?00080%x x+-=40 【解析】设四月份的每件衬衫的售价为x 元, 则五月份的每件衬衫的售价为80%x 元, 五月份的营业额为(5000+600)元,依据“销售量比四月份增加了40件”可得5000600500080%x x+-=40.故答案为:5000600500080%x x+-=40点睛: 解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程. 13.12x x +-,当x =0时,原式=12-(或:当x =-2时,原式=14). 【解析】 【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可. 【详解】 解:原式=21x x --×()()2x 1x 1(2)x +--=12x x +-.x满足﹣2≤x≤2且为整数,若使分式有意义,x只能取0,﹣2.当x=0时,原式=﹣12(或:当x=﹣2时,原式=14).【点睛】本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.14.(1)x=0;(2)原方程无解.【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)方程两边都乘(x+1)(x-1),得3(x+1)-(x+3)=0,3x+3-x-3=0,2x=0,x=0,检验:将x=0代入原方程,得左边=0=右边.所以x=0是原方程的解;(2)方程两边同乘(x-2),得1=-(1-x)-3(x-2),解这个方程,得x=2,检验:当x=2时,分母x-2=0,所以x=2是增根,原方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(1) 6,30;(2)n+1,n(n+1)【解析】试题分析:(1)通过观察直接写出口,○所表示的数分别为:6 ,30 ;(2)通过前面几个式子找出规律,再对找出的规律验证即可. 试题解析: (1) 6 ,30 ;(2)n =2时, 111236=+=112123++⨯; n =3时,11133134=++⨯; n =4时,11144145=++⨯; ……1n =11n ++11n n +(). 所以□,△所表示的式子n +1, n (n +1). 验证:()()1111111n n n n n n n++==+++. 点睛:掌握分式的加法运算.16.乙同学获胜. 【解析】 【分析】应算出甲乙两人所用时间.等量关系为:(甲同学跑所用时间+6)+乙同学所用时间=50. 【详解】设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, 根据题意,得606061.2x x ⎛⎫++⎪⎝⎭=50,解得x =2.5, 经检验,x =2.5是原方程的解,且符合题意, 所以甲同学所用的时间为601.2x+6=26(秒), 乙同学所用的时间为60x=24(秒), 因为26>24, 所以乙同学获胜. 【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.第11 页。
第5章 分式与分式方程 北师大版数学八年级下册单元检测(含答案)
![第5章 分式与分式方程 北师大版数学八年级下册单元检测(含答案)](https://img.taocdn.com/s3/m/c78defa76aec0975f46527d3240c844768eaa053.png)
2023年北师大版数学八年级下册《分式与分式方程》单元检测一、选择题(共12小题)1.下列式子是分式的是( )A.a-b2 B.5+yπ C.x+3x D.1+x2.下列是分式方程的是( )A.xx+1+x+43B.x4+x-52=0 C.34(x-2)=43x D.1x+2+1=03.若分式x+12-x有意义,则x满足的条件是( )A.x≠-1B.x≠-2C.x≠2D.x≠-1且x≠24.方程2x+1x-1=3的解是( )A.-45B.45C.-4D.45.下列计算错误的是( )A.0.2a+b0.7a+b=2a+b7a+bB.x3y2x2y3=xyC.a-bb-a=﹣1 D.1c+2c=3c6.下列等式成立的是( )A.(-3)-2=-9B.(-3)-2=19C.(a-12)2=a14D.(-a-1b-3)-2=-a2b67.化简:等于( ).A. B.xy4z2 C.xy4z4 D.y5z8.化简:-x-2y2xy+x+6y2xy=( )A.2xB.4xC.-2xD.-4x9.解分式方程2x-1+x+21-x=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)10.甲、乙两船从相距300 km的A,B两地同时出发相向而行,甲船从A地顺流航行180 km时与从B地逆流航行的乙船相遇,水流的速度为6 km/h,若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为( )A.180x+6=120x-6B.180x-6=120x+6C.180x+6=120xD.180x=120x-611.若a+b=2,ab=﹣2,则ab +ba的值是( )A.2B.﹣2C.4D.﹣412.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y 的整式方程,那么这个整式方程是()A.y2+y﹣3=0B.y2﹣3y+1=0C.3y2﹣y+1=0D.3y2﹣y﹣1=0二、填空题(共6小题)13.若分式的值为0,则x= .14.若关于x的方程«Skip Record If...»的解为x=4,则m= .15.计算:(﹣2xy﹣1)﹣3=.16.已知1a-1b=12,则aba-b的值是________.17.已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是.18.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.三、解答题(共8小题)19.计算:(a 2+3a)÷a 2-9a -3;20.计算:«Skip Record If...».21.解分式方程:x x -1-1=2x 3x -3.22.解分式方程:2x +2x-x +2x -2=x 2-2x 2-2x.23.先化简,再求值:1﹣÷,其中x 、y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.24.在解分式方程2-xx -3=13-x-2时,小玉的解法如下:解:方程两边都乘以x-3,得2-x=-1-2.①移项,得-x=-1-2-2.②解得x=5.③(1)你认为小玉从哪一步开始出现了错误________(只填序号),错误的原因是________________;(2)请你写出这个方程的完整解题过程.25.贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.26.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?答案1.C2.D3.C.4.D5.A6.B7.B8.A9.D10.A.11.D.12.A13.答案为:2.14.答案为:3;15.答案为:﹣y3 8x3.16.答案为:-2;17.答案为:k>﹣12且k≠0.18.答案为:520+45x=1.19.解:原式=a.20.解:原式=«Skip Record If...».21.解:方程两边同乘以3(x-1),得3x-3(x-1)=2x,解得x=1.5.检验:当x=1.5时,3(x-1)=1.5≠0,所以原方程的解为x=1.5.22.解:原方程可化为2(x+1)x-x+2x-2=x2-2x(x-2),方程两边同时乘x(x-2),得2(x+1)(x-2)-x(x+2)=x2-2,整理得-4x=2.解得x=-1 2 .经检验,x=-12是原方程的解.23.解:原式=1﹣•=1﹣==﹣,∵|x﹣2|+(2x﹣y﹣3)2=0,∴,解得:x=2,y=1,当x=2,y=1时,原式=﹣1 3 .24.解:(1)① 去分母时漏乘常数项 (2)去分母,得2-x=-1-2(x-3).去括号,得2-x=-1-2x+6.移项,合并,得x=3.检验,将x=3代入x-3=0,所以原方程无解.25.解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.26.解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意得202x3+60×(12x3+1x)=1,解得x=180.经检验,x=180是原分式方程的根,且符合题意,∴2x3=120,则甲、乙两队单独完成这项工程分别需120天、180天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(1120+1180)=1,解得y=72,需要施工费用72×(8.6+5.4)=1008(万元),∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元。
北师大版数学八年级下册第五章 分式与分式方程 达标测试卷(含答案)
![北师大版数学八年级下册第五章 分式与分式方程 达标测试卷(含答案)](https://img.taocdn.com/s3/m/a0f5ae2a854769eae009581b6bd97f192279bf1c.png)
第五章 分式与分式方程 达标测试卷 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列代数式,是分式的是( ) A.3x 2π B.m +n m C.ab 25 D.52.【2022·天津】计算a +1a +2+1a +2的结果是( ) A .1 B .2a +2 C .a +2 D .a a +23.【2022·佛山禅城区期末】如果分式|m +4|m -4的值为0,那么m 的值为( ) A .不存在 B .±4 C .4 D .-44.运用分式的性质,下列计算正确的是( )A.-x +y 2=-x +y 2B.x -3x 2-9=1x -3C.x 2-2xy +y 2x -y =x -yD.xy x 2-xy =x x -y5.若将分式3m m +n 与4n 2(m -n )通分,则分式3m m +n的分子应变为( ) A .6m 2-6mn B .6m -6n C .2(m -n ) D .2(m -n )(m +n )6.若关于x 的分式方程3x +ax x +1=2-3x +1有增根x =-1,则2a -3的值为( ) A .2 B .3 C .4 D .67.【2022·德阳】关于x 的方程2x +a x -1=1的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-28.已知x 2-4x -3÷是一道分式化简题,其中一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( )A .x -3B .x -2C .x +3D .x +29.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做48个所用的时间与师傅做72个所用的时间相同,则师傅每天做( )A .12个B .18个C .20个D .24个10.若关于x 的不等式组⎩⎪⎨⎪⎧x -3(x -2)>-2,a +x 2<x 有解,关于y 的分式方程ay -14-y +3y -4=-2有整数解,则符合条件的所有整数a 的和为( )A .0B .1C .2D .5二、填空题:本大题共5小题,每小题3分,共15分.11.分式m m 2-n 2和n 3m +3n的最简公分母为__________. 12.用换元法解分式方程x +1x -2x x +1=1时,如果设x x +1=y ,那么原方程可以化为关于y 的整式方程是________.13.【2022·成都】已知2a 2-7=2a ,则代数式⎝⎛⎭⎪⎫a -2a -1a ÷a -1a 2的值为________. 14.【2022·江西】甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为________________.15.对于两个非零的实数a ,b ,规定a *b =3b -2a ,若5*(3x -1)=2,则x 的值为________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.计算:(1)x 2x -3÷34x 2-9·12x +3; (2)⎝ ⎛⎭⎪⎫a -1+2a +1÷(a 2+1).17.解分式方程:(1)1-x x -2=12-x -2; (2)4x 2-9-x 3-x=1.18.已知x (x -1)-(x 2-y )=-6,求x 2+y 22-xy 的值.四、解答题(二):本大题共3小题,每小题9分,共27分.19.先化简,再求值:⎝ ⎛⎭⎪⎫x +2x -2+4x 2-4x +4÷x x -2,其中-1<x ≤2且x 为整数.请你选一个合适的x 值代入求值.20.【原创题】北京首条全封闭马拉松路线是冬奥公园的一大亮点,这条“特色最鲜明、体验最丰富、服务最专业”的42公里滨河马拉松路线,充分融合“永定河”“西山”“首钢工业”“冬奥”元素,构建畅通无阻的慢行绿道,具备“智慧跑”“滨水跑”“公园跑”“堤上跑”等多功能特色。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测题(答案解析)(1)
![(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测题(答案解析)(1)](https://img.taocdn.com/s3/m/1c9d0dd17cd184254a35356c.png)
一、选择题1.若关于x 的分式方程3111m x x -=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠B .4m ≥-且3m ≠-C .2m ≥且3m ≠D .4m >-2.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( )A .1010302x x -= B .102010602x x += C .1010302x x += D .102010602x x-= 3.已知关于x 的分式方程131k x x =+无解,则k 的值为( ) A .0 B .0或-1 C .-1 D .0或134.某市为有效解决交通拥堵营造路网微循环,决定对一条长1200米的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加20%,结果提前5天完成任务,求实际每天改造道路的长度和实际施工的天数.一位同学列出方程()1200120050120%x x+-=+,则方程中未知数x 所表示的量是( ) A .实际每天改造的道路长度 B .实际施工的天数C .原计划施工的天数D .原计划每天改造的道路长度 5.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+ 6.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④ 7.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a a b b ++=-- 8.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .29.若x 2y 5=,则x y y+的值为( ) A .25 B .72 C .57 D .7510.已知:x 是整数,12,21x x M N x +==+.设2y N M =+.则符合要求的y 的正整数值共有( )A .1个B .2个C .3个D .4个 11.若关于x 的分式方程222x m x x =---的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .2,3D .1,312.下列计算正确的是( )A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a-=- 二、填空题13.设m ,n 是实数,定义关于@的一种运算如下:22@()()m n m n m n =+--,则下列结论:①若0mn ≠,m@8n =,则223944163m m n n ÷=; ②@()@@m n k m n m k -=-;③不存在非零实数m ,n ,满足22@5m n m n =+;④若设2m ,n 是长方形的长和宽,若该长方形的周长固定,则当m n =时,@m n 的值最大.其中正确的是_____________.14.若113m n+=,则分式225m n mn m n +---的值为________ . 15.已知5,3a b ab -==,则b a a b+的值是__________.16.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 17.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.18.已知215a a+=,那么2421a a a =++________. 19.对于每个非零自然数n ,x 轴上有(,0)n A x ,(,0)n B y 两点,以n n A B 表示这两点间的距离,其中n A ,n B 的横坐标分别是方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩的解,则112220202020A B A B A B +⋅⋅⋅++的值等于_______.20.若()()023248x x ----有意义,则x 的取值范围是______. 三、解答题21.解方程:32122x x x =--- 22.计算题:(1)- (2)(2a )3·b 4÷8a 3b 2 (3)(-a b )2·(-22b a)3÷(-ab 4) (4)()(5)1-2222244a b a b a b a ab b--÷+++ (6)(x -y +4xy x y -)(x +y -4xy x y+) 23.根据已知条件,求下列各式的值:()1已知3,2m n x x ==,求32m n x +的值;()2先化简:2211121x x x x x x ⎛⎫ ⎪+++÷--⎝+⎭,然后从22x -≤≤中选取一个合适的整数作为x 的值代入求值.24.为预防新冠疫情的反弹,康源药店派采购员到厂家去购买了一批A 、B 两种品牌的医用外科口罩.已知每个B 品牌口罩的进价比A 品牌口罩的进价多0.7元,采购员用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌每个口罩的进价分别为多少元?(2)若B 品牌口罩的售价是A 品牌口罩的售价的1.5倍,要使康源药店销售这批A 、B 两种品牌口單的利润为8800元,则它们的售价分别定为多少元?25.(1)计算:()24342a b ab ÷-(2)解方程:1233x x x-=-- 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m +3=x ﹣1,再由整式方程的解为非负数得到m +4≥0,由整式方程的解不能使分式方程的分母为0得到m +4≠1,然后求出不等式的公共部分得到m 的取值范围.【详解】解:去分母得m +3=x ﹣1,整理得x =m +4,因为关于x 的分式方程311m x x-=--1的解是非负数, 所以m +4≥0且m +4≠1,解得m ≥﹣4且m ≠﹣3,故选:B .【点睛】 本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.D解析:D【分析】设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可.【详解】解:设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,由题意得: 102010602x x-=, 故选:D .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3.D解析:D【分析】此题考查了分式方程的解,始终注意分母不为0这个条件,分式方程去分母转化为整式方程,由分式方程无解确定出k 的值即可.【详解】解:分式方程去分母得:33x kx k =+ ,即 ()313k x k -=- ,当310k -=,即 13k =时,方程无解; 当x=-1时,-3k+1=-3k ,此时k 无解;当x=0时,0=-3k ,k=0,方程无解; 综上,k 的值为0或13 . 故答案为:D .【点睛】本题考查了根据分式方程的无解求参数的值,是需要识记的内容.分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0. 4.D解析:D【分析】根据提前天数+实际工作用天数-原计划天数=0,可以判断方程中未知数x 表示的量.【详解】设原计划每天铺设管道x 米,则实际每天改造管道(1+20%)x ,根据题意,可列方程: ()1200120050120%x x+-=+, 所以所列方程中未知数x 所表示的量是原计划每天改造管道的长度,故选:D .【点睛】本题考查了由实际问题布列分式方程,解题的关键是依据所给方程等量关系.5.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式; B 、22y x x y--=-x-y ,故该项不是最简分式; C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x y x y -+,故该项不是最简分式; 故选:C .【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.6.B解析:B【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择.【详解】 原式221(1)71211543(1)x x x x x x x -++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++ 1111x x x -=-++ 1x x =+ 又因为x 为正整数,所以11 21xx≤<+,故选B.【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.7.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A.22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B.11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C.2233a b aab b=,从左边到右边分子和分母同时除以ab,分式的值不变,故正确;D.232131a ab b++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C.【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.D解析:D【分析】将y xx y+进行通分化简,整理出含已知条件形式的分式,即可得出答案.【详解】解:2222()2221 =21y x y x x y xyx y xy xy++--⨯+===故选D.【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.9.D解析:D【分析】根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】 解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.10.C解析:C【分析】先求出y 的值,再根据x ,y 是整数,得出x +1的取值,然后进行讨论,即可得出y 的正整数值.【详解】解:∵12,21x x M N x +==+ ∴42222221111x x y x x x x ++=+==+++++. ∵x ,y 是整数, ∴21x +是整数, ∴x +1可以取±1,±2.当x +1=1,即x =0时2241y =+=>0; 当x +1=−1时,即x =−2时,2201y =+=-(舍去); 当x +1=2时,即x =1时,2232y =+=>0; 当x +1=−2时,即x =−3时,2212y =+=->0; 综上所述,当x 为整数时,y 的正整数值是4或3或1.故选:C .【点睛】 此题考查了分式的加减法,熟练掌握分式的加减运算法则,求出y 的值是解题的关键. 11.D解析:D【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【详解】等式的两边都乘以(x - 2),得x = 2(x-2)+ m ,解得x=4-m ,且x≠2,由关于x 的分式方程的解为正数,∴4-m >0,4-m≠2∴m<4且m≠2则满足条件的正整数 m 的值为m=1,m=3,故选: D.【点睛】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.12.C解析:C【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断.【详解】解:A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a -,不符合题意, 故选:C .【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键. 二、填空题13.②③④【分析】根据所给新定义可得再分别判断【详解】解:∵①∴==8∴mn=2∴故错误;②=∴故正确;③∴∴当m-2n=0n=0∴m=0∴不存在非零实数mn 满足故正确;④∵m@n=(m+n )2-(m-解析:②③④【分析】根据所给新定义,可得22@()()4m n n m n m m n =-=+-,再分别判断.【详解】解:∵22@()()4m n n m n m m n =-=+-,①22m@()()8n m n m n =+--=,∴22()()m n m n +--=4mn =8,∴mn=2, ∴222239316241649334m m m n n n n m mn ÷=⨯==,故错误; ②()()22@()m n k m n k m n k -=+---+=4()m n k -, ()@@444m n m k mn mk m n k -=-=-,∴@()@@m n k m n m k -=-,故正确;③22@45m n mn m n ==+,∴22540m n mn +=-,∴()2220m n n -+=, 当m-2n=0,n=0,∴m=0,∴不存在非零实数m ,n ,满足22@5m n m n =+,故正确;④∵m@n=(m+n )2-(m-n )2=4mn ,(m-n )2≥0,则m 2-2mn+n 2≥0,即m 2+n 2≥2mn ,∴m 2+n 2+2mn≥4mn ,∴4mn 的最大值是m 2+n 2+2mn ,此时m 2+n 2+2mn=4mn ,解得m=n ,∴m@n 最大时,m=n ,故正确,故答案为:②③④.【点睛】本题考查因式分解的应用、整式的混合运算,分式的乘除,解题的关键是明确题意,找出所求问题需要的条件.14.【分析】由可得m+n=3mn 再将原分式变形将分子分母化为含有(m+n )的代数式进而整体代换求出结果即可【详解】解:∵∴即m+n=3mn ∴====故答案为:【点睛】本题考查分式的值理解分式有意义的条件 解析:13- 【分析】 由113m n+=可得m+n=3mn ,再将原分式变形,将分子、分母化为含有(m+n )的代数式,进而整体代换求出结果即可.【详解】 解:∵113m n +=,∴=3m n mn +,即m+n=3mn , ∴225m n mn m n+--- =()()25+m n mn m n +-- =2353mn mn mn⋅-- =3mn mn- =13-. 故答案为:13-.【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键. 15.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果.【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=, ∴22313b a b a a b ab ++==. 故答案为:313. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则. 16.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a -【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可.【详解】 解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭ =2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.17.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】将n 看做已知数求出方程组的解表示出x 与y 列举出所求式子各项拆项后抵消即可得到结果【详解】解:方程组①+②得即将代入①得:∴∵n >0∴是该方程组的根∴则原代数式故答案为:【点睛】此题考查了分式 解析:20202021【分析】将n 看做已知数求出方程组的解表示出x 与y ,列举出所求式子各项,拆项后抵消即可得到结果.【详解】 解:方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩①②, ①+②得22n x =,即1x n =, 将1x n =代入①得:11y n =+, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩, ∵n >0, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩是该方程组的根, ∴111n n A B n n =-+,则原代数式1111112020112232020202120212021=-+-+⋯+-=-=. 故答案为:20202021. 【点睛】 此题考查了分式的加减法,解二元一次方程组,以及坐标与图形性质,熟练掌握运算法则是解本题的关键.20.且【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组求出x 的取值范围即可【详解】解:∵(x-3)0-(4x-8)-2有意义∴解得x≠3且x≠2故答案为:x≠3且x≠2【点睛】本题考查解析:2x ≠,且3x ≠【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.【详解】解:∵(x-3)0-(4x-8)-2有意义,∴30480x x -≠⎧⎨-≠⎩, 解得x≠3且x≠2.故答案为:x≠3且x≠2.【点睛】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.三、解答题21.76x =. 【分析】 方程两边同时乘以2(x-1),把分式方程转化为整式方程求解即可.【详解】解:方程两边同时乘以2(x-1),得234(1)x x =--,去括号,得2344x x =-+,移项,合并同类项,得67x =,系数化为1,得6经检验,76x =是原方程的根, 所以原方程的解为76x =. 【点睛】本题考查了分式方程的解法,熟练确定最简公分母是解题的关键,解后要验根是注意事项,不能漏落.22.(1;(2)2b ;(3)218a ;(4)2+5)b a b -+(6)22x y -【分析】(1)先化为最间二次根式,再合并同类二次根式即可;(2)先算积的乘方再算同底数幂乘除法即可;(3)先算分式的乘方,再约分,最后计算分式除法;(4)先计算二次根式的除法,转化为二次根式除以二次根式即可;(5)先进行分子分母因式分解,同时把除法转化为乘法,约分,再通分,合并即可; (6)先将括号内通分,利用公式变形,再约分,最后利用平分差公式展开即可.【详解】解:(1)- ,=-,== (2)(2a )3·b 4÷8a 3b 2 =8 a 3·b 4÷8a 3b 2,=b 2;(3)(-a b )2·(-22b a)3÷(-ab 4), =()264238a b ab b a ⎛⎫⋅-÷- ⎪⎝⎭, =()448b ab a -÷-,28a(4)(),==(5)1-2222244a b a b a b a ab b--÷+++, =()()()2212a b a b a b a b a b +--⋅++-, =()()2a b a b a b a b ++-++, =b a b -+; (6)(x -y +4xy x y -)(x +y -4xy x y+), =()()22x-y +4x+y 4x+y xyxy x y-⋅-, =()()22x+y x-y x+y x y ⋅-,=()()x+y x y -,=22x y -.【点睛】本题考查二次根式加减乘除混合运算,幂指数乘除混合运算,分式的乘法乘除混合运算,分式加减乘除混合运算,掌握二次根式加减乘除混合运算,幂指数乘除混合运算,分式的乘法乘除混合运算,分式加减乘除混合运算是解题关键.23.()1108;()2221x x -+;x=-2时,6或x=2时,23 【分析】(1)利用幂指数运算的逆运算原式()()32mn x x =⋅,当3,2m n x x ==时,整体代入求值即可;(2)先化简分式,从不等式中可选取-2或2,可任选一个代入求值即可.【详解】解: ()1原式=32m n x x ⋅()()32mn x x =⋅, 当3,2m n x x ==时,原式108=;()2原式=22112111x x x x x x x x ⎛⎫ +--+⎝⨯-⎭+-+⎪, =()()21211x x x x x -⨯-+, 221x x -=+, 在22x -≤≤范围内有整数x=-2,-1,0,1,2,使分式有意义的x 的值:x=-2,2,当2x =-时,原式6=;当2x =时,原式23=. 【点睛】本题考查幂指数运算求值,和分式化简求值,掌握幂指数运算求值的方法,和分式化简求值方法是解题关键.24.(1)A 、B 两种品牌每个口罩的进价分别为每个1.8元,2.5元;(2)A 、B 两种品牌每个口罩的售价分别定为每个3元,4.5元.【分析】(1)设A 种品牌每个口罩的进价为每个x 元,则B 种品牌每个口罩的进价为每个()0.7x +元,则可列方程7200500020.7x x =⨯+,解方程并检验即可得到答案; (2)设A 品牌口罩的售价为每个y 元,则B 品牌口罩的售价为每个1.5y 元, 由(1)得:A 品牌口罩的数量为7200=40001.8个,B 品牌口罩的数量为2000个,再列方程()()4000 1.820001.5 2.58800,y y -+-= 解方程可得答案.【详解】解:(1)设A 种品牌每个口罩的进价为每个x 元,则B 种品牌每个口罩的进价为每个()0.7x +元,则7200500020.7x x =⨯+ 1825,0.7x x ∴=+ 251812.6x x ∴=+712.6,x ∴=1.8,x ∴=经检验: 1.8x =是原方程的根,且符合题意,1.82.5x ∴+=即A 、B 两种品牌每个口罩的进价分别为每个1.8元,2.5元.(2)设A 品牌口罩的售价为每个y 元,则B 品牌口罩的售价为每个1.5y 元, 由(1)得:A 品牌口罩的数量为7200=40001.8个,B 品牌口罩的数量为2000个, 则()()4000 1.820001.5 2.58800,y y -+-=17.552.5,y ∴=3y ∴=1.5 4.5,y ∴=答:A 、B 两种品牌每个口罩的售价分别定为每个3元,4.5元.【点睛】本题考查的是一元一次方程的应用,分式方程的应用,掌握利用相等关系列方程解决实际问题是解题的关键.25.(1)2a b ;(2)7x =是原方程的解.【分析】(1)单项式与单项式相除,系数与系数相除作为商的系数,相同字母分别相除,底数不变,指数相减计算即可;(2)等式两边同时乘以x-3化为整式方程,从而求出x 的值,再检验即可;【详解】(1)原式()432244a b a b =÷2a b =(2)解:方程左右两边乘()3x -得()123x x +=-126x x +=-7x =检验7x =时,30x -≠,∴7x =是原方程的解;【点睛】本题考查了单项式与单项式相除和解分式方程,掌握计算方法是解题的关键; 26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。
北师大版八年级数学下册《第五章分式与分式方程》单元测试卷(带答案)
![北师大版八年级数学下册《第五章分式与分式方程》单元测试卷(带答案)](https://img.taocdn.com/s3/m/67f5de5f773231126edb6f1aff00bed5b9f373c3.png)
北师大版八年级数学下册《第五章分式与分式方程》单元测试卷(带答案)一、单选题(共10小题,满分40分)1.已知15a a +=,则221a a +的值为( ) A .-5 B .27 C .23 D .252.下列函数中,自变量x 的取值范围是x≥2的函数是( )A .y =1﹣2xB .y 2x -C .y 2x -D .y =12x - 3.若分式211x x -+的值为 0,则 x 的取值为( ) A .x = 1B .x = -1C .x = ±1D .无法确定 4.在代数式:中,分式的个数是( ) A .2 B .3 C .4 D .55.从-2、-1、0、2、5这一个数中,随机抽取一个数记为m ,若数m 使关于x 的不等式组22141x m x m >+⎧⎨--≥+⎩无解,且使关于x 的分式方程2122x m x x -+=---有非负整数解,那么这一个数中所有满足条件的m 的个数是( ) A .1 B .2 C .3 D .46.若关于x 的一元一次不等式组12(35)334333x a x x ⎧--≤⎪⎪⎨+⎪>+⎪⎩无解,且关于y 的分式方程223211y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .7B .8C .14D .15 71x +x 的取值范围是( ) A .1x ≠-B .0x ≠C .1x >-且0x ≠D .1x ≥-且0x ≠8.若关于x 的分式方程52122x a x x x --=+--有正整数解,且关于y 的一元一次不等式组33240y y y a -⎧>-⎪⎨⎪-≤⎩的解集为y a ≤,则所有满足条件的整数a 的和为( )A .8B .7C .3D .29.若关于x 的分式方程262433x a x x --=---解为正数,且关于y 的不等式组()()12323331y y y a y ⎧-≤-⎪⎨⎪-≥-⎩恰有五个整数解,则所有满足条件的整数a 的和为( )A .22B .30C .32D .4010.x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( )A .﹣7B .﹣6C .﹣5D .﹣4二、填空题(共8小题,满分32分)11.代数式23x x -有意义,则实数x 的取值范围是 . 12.在中,分式的个数是 个. 13.若2310x x -+=,则 42218x x x++= . 14.解方程2142242x x x x +=+-- 解:方程两边同时乘以(x+2)(x -2)…(A)(x+2)(x -2)142(2)(2)2(2)(2)2x x x x x x x ⎡⎤+=⨯--⎢⎥++--⎣⎦化简得:x -2+4x=2(x+2)….. (B)去括号、移项得:x+4x -2x=4+2…(C)解得:x=2…..(D)原方程的解是x=2….(E)问题:①上述解题过程的错误在第 步,其原因是 ①该步改正为: 15.方程11233x x x--=--的解是 . 160的x 值是 .17.若关于x 的一元一次不等式组2133x x x a -⎧<+⎪⎨⎪+≤⎩至少有2个整数解,且关于y 的分式方程1122y a y y -+=---的解是正整数,则所有满足条件的整数a 的值之积是 . 18.满足222210105,4b a a b a b a b+=+=++的整数对(),a b 的组数为 ;三、解答题(共6小题,每题8分,满分48分)19.先化简,再求值:21(1)x x x x -⎛⎫-÷- ⎪⎝⎭,其中x =5. 20.已知关于x 的分式方程25311x m x x--=--的解是正数,求m 的取值范围 21.当x 为何值时,分式2369x x x --+的值为0? 22.解方程或方程组: (1)解方程组:32146x y x y +=⎧⎨-=-⎩; (2)解方程2303x x-=-. 23.(1)已知其中23a =-,化简求值2214411a a a a a -+⎛⎫-÷ ⎪--⎝⎭; (2)已知()22111m m n n ++=,探究m 与n 的关系. 24.已知p 、q 都是正实数,且3p q ≠.(1)3p q 和3p q p q ++之间; (2)请问:p q 和3p q p q++3 (3)请你再写出一个式子,使得它的值比p q 和3p q p q ++3 参考答案1.C2.C3.A4.B5.B6.C7.D8.D9.A10.D11.3x ≠12.313.114. E 没有进行检验 15.616.17.3-18.219.1x x - 54. 20.8m <且7m ≠/7m ≠且8m < 21.3x =-22.(1)12x y =-⎧⎨=⎩(2)x =923.(1)1;(2)0m n +=24.(1)11;(2)p >时,3p qp q ++p <时,p q (3)3q p q +。
(完整word版)北师大版八年级数学下册第五章分式测试题及答案,推荐文档
![(完整word版)北师大版八年级数学下册第五章分式测试题及答案,推荐文档](https://img.taocdn.com/s3/m/39258cfb52ea551811a68734.png)
课堂检测:一、填空题1.下列代数式: ①;②;③-x y x 1 32;®号;®需,其中整式有分式有(只填序号)•时分式的值为零3•当x 时分式匚竺有意义.1 2x10.11.12. 13、4.亜5xy6.计算14、5.约分:x29x2 6x 98.如果:2 22,则a b7.若关于x的分式方程兀2 x9. 一项工程,甲单独做x小时完成,小时.某商品原售价为2200元,按此价的、选择题F列各式中,是分式的是(A.七B.F列各分式中,最简分式是(A、34^85 x yF列各式与彳丄相等的是x yA、(x y) 5(x y) 5 2x y2x yC、C、计算:2x+2x y y 2x,结果为A.1B. —1 C.2 x+y2有增根,3则增根为乙单独做y小时完成,则两人一起完成这项工程需要8折出售,仍获利10%,那么此商品进价为______ 元.C.2LJ xD.J2x2x2y xy27(xyx2D.x+yx2 2 y2yy) D、2 2x y2 2x y19、若1 1 3,求2x 3xy 2y的值.x yx 2xy y20、某质检部门抽取甲、乙两厂相同数量的产品进行质量检查,结果甲厂有 乙厂有45件合格产品,甲厂的合格率比乙厂高 5%求甲厂的合格率?15、若把分式^-2y 中的x 和y 都扩大3倍,那么分式的值( )x y A 、扩大3倍 三.解答题 16.计算: 2⑴竺5y .101 3y^ 6x 21x 2 B 、不变 C 、缩小3倍 D 、缩小2m n m n n m m n n mc2 ,3x x x 4 x 2 x 2 x17、解下列分式方程:⑴2 2x x 14x 21+1 18、先化简代数式:x 1 2x x 1 x 2 1x 21然后选取一个使原式有意义的 x 的值代入求值.48件合格(1)19、 20、 21、 22、 23、 1、 (4) (5),1、x=3x y、 ----211 —15、CBCCA(1) (1) 八年级下册第三章分式测试题参考答案(2)(3)1016、-3 、6a 2、1600 —18、DBC 7x 3 6? (2) (3) 2x+8 (4)10 x 22 ( 2) 1 x=3 无解 时, 原式=10 (答案不唯一) 5 解,设甲厂合格率为 由题意列方程为: 一 x解之得x 0.8 45 x 5%。
北师大版八年级上册数学 分式解答题综合测试卷(word含答案)
![北师大版八年级上册数学 分式解答题综合测试卷(word含答案)](https://img.taocdn.com/s3/m/6ab2d6f0a8956bec0975e3fb.png)
一、八年级数学分式解答题压轴题(难)1.已知分式 A =2344(1)11a a a a a -++-÷-- (1)化简这个分式;(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.【答案】(1)22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】【分析】(1)根据分式混合运算顺序和运算法则化简即可得;(2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a 的范围判断结果与0的大小即可得;(3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】 解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯-- =22a a +-; (2)变小了,理由如下: ∵22a A a +=-, ∴62a B a +=+, ∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,∴20a ->,24a +>,∴0A B ->,∴分式的值变小了;(3)∵A 是整数,a 是整数, 则24122a A a a +==+--, ∴21a -=±、2±、4±, ∵1a ≠,∴a 的值可能为:3、0、4、6、-2;∴3046(2)11++++-=;∴符合条件的所有a 值的和为11.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.2.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,12x x +≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x --≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】 本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.3.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x-,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式.例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式. 方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立, ∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式. 方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式. (1)请仿照上面的方法,选择其中一种方法将分式2731x x x ---拆分成一个整式与一个真分式的和(差)的形式;(2)已知整数x 使分式225112x x x +-+的值为整数,求出满足条件的所有整数x 的值. 【答案】(1)961x x ---;(2)x=-1或-3或11或-15. 【解析】【分析】 (1)先变形2731x x x ---=26691x x x x --+--,由“真分式”的定义,仿照例题即可得出结论;(2)先把分式化为真分式,再根据分式的值为整数确定整数x 的值.【详解】解:(1)2731x x x ---=26691x x x x --+-- =(1)6(1)91x x x x ----- =961x x ---; (2)225112x x x +-+= 2242132x x x x +++-+=2(2)(2)132x x x x +++-+ =13212x x +-+, ∵x 是整数,225112x x x +-+也是整数, ∴x+2=1或x+2=-1或x+2=13或x+2=-13,∴x=-1或-3或11或-15.【点睛】本题考查了逆用整式和分式的加减法对分式进行变形.解决本题的关键是理解真分式的定义对分子进行拆分.4.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h 米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h 的代数式表示)【答案】(1)甲的平均攀登速度是12米/分钟;(2)360h h+倍. 【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得甲的平均攀登速度;(2)根据(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本题.【详解】(1)设乙的速度为x 米/分钟, 900900151.2x x+=, 解得,x=10,经检验,x=10是原分式方程的解,∴1.2x=12,即甲的平均攀登速度是12米/分钟;(2)设丙的平均攀登速度是y 米/分,12h +0.5×60=h y , 化简,得 y=12360h h +,∴甲的平均攀登速度是丙的:1236012360hh hh++=倍,即甲的平均攀登速度是丙的360hh+倍.5.阅读下面的解题过程:已知21 13 xx=+,求241xx+的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册分式测试题
一、填空题(本大题含10个小题,每小题2分,共20分)
1. 下列代数式:①
y x y x +-;②1
32+x ;③x x 13-;④4xy ;⑤14.3b a -,其中整式有____________,分式有___________ 2. 分式392--x x 当x __________时分式的值为零. 3. 当x __________时分式x
x 2121-+有意义. 4. ())0(,10 53≠=a axy xy a 5. 约分: =+--9
6922x x x __________ . 6. 计算b b a 12⨯÷的值等于_______.
7. 若分式)3)(2(2
+--a a a 的值为0,则a= 、化简=-+-a b b b a a 已知5
922=-+b a b a ,则a :b=
8. 如果2a b
=,则2222a ab b a b -++=__________. 9. 一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.
10. 某商品原售价为2200元,按此价的8折出售,仍获利10%,那么此商品进价为________元.
二、选择题(本大题含11个小题,每小题2分,共22分)
11. 下列各式中,是分式的是( ) A.2-πx B. 31
x 2 C.312-+x x D.2
1
x 12. 下列判断中,正确的是( )
A 、分式的分子中一定含有字母
B 、当B=0时,分式B
A 无意义 C 、当A=0时,分式B
A 的值为0(A 、
B 为整式) D 、分数一定是分式 13. 下列各分式中,最简分式是( )
A 、()()y x y x +-8534
B 、y x x y +-22
C 、222
2xy y x y x ++ D 、()
222y x y x +- 14.下列各式与
x y x y -+相等的是( )
(A )()5()5x y x y -+++ (B )22x y x y
-+ (C )222()()x y x y x y -≠- (D )2222x y x y -+ 15.计算:y x x -22+x
y y 2-,结果为( ) A.1
B.-1
C.2x +y
D.x +y 16. 当a 为任何实数时,下列分式中一定有意义的一个是( ) A.21a
a + B.11+a C.112++a a D.112++a a 17. 若把分式
2x y x y +-中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍
18. 在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
A 、2
21v v +千米 B 、2121v v v v +千米 C 、21212v v v v +千米 D 无法确定 19、如果分式x
+16 的值为正整数,则整数x 的值的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个
20、有游客m 人,若果每n 个人住一个房间,结果还有一个人无房住,这客房的间数为( )
A 、n m 1-
B 、1-n m
C 、n m 1+
D 、1+n
m 21.把a 千克盐溶于b 千克水中,得到一种盐水,若有这种盐水x 千克,则其中含盐( ) A 、
b a ax +千克 B 、b a bx +千克 C 、b a x a ++千克 D 、b ax 千克 三.解答题
22. 计算:(每小题5分,共30分)
⑴ 22221106532x y x y y x ÷⋅ ⑵ m n n n m m m n n m -+-+--2 ⑶ x x x x x x 42232-⋅⎪⎭
⎫ ⎝⎛+--
⑷ 331+-+x x (5)⎪⎪⎭
⎫ ⎝⎛++÷--ab b a b a b a 22222; (6) ⎪⎭⎫ ⎝⎛--+÷--13112x x x x 。
23(本小题8分) 、已知a=25,25-=
+b ,求2++b a a b 得值。
24. (本小题8分) 先化简代数式:22121111x x x x x -⎛⎫+÷
⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.
25. (本小题4分)若311=-y x ,求y xy x y xy x ---+2232的值.。