2010《结构动力学》多自由度系统习题
结构动力学之多自由度体系的振动问题

2.760 3.342 1
0.163
0.924
2.76
柔度法
利用刚度法的方程间接导出柔度法方程:
由刚度法振幅方程:
令λ=1/ω2 得频率方程:
( [K]-ω2 [M] ){Y}={0}
前乘[K]-1=[δ]后得: ( [I ]-ω2 [δ] [M] ){Y}={0} ( [δ] [M] - λ [I ] ){Y}={0} ┃ [δ] [M] - λ [I ] ┃=0
刚度法
2)如果初始条件是任意的,则任其自然 后, 系统所发生的振动就不是按主振型的简谐自由 振动,而是复杂的周期振动,这时可以用各阶 主振动的线性组合来描述它,也就是说其通解 表为各个特解之和,即
y j sin( j t v j )
j 1 n
所以系统的任意振动可以表示为各个主振动 的叠加。
Yij为正时表示质1 1.293 5Y11 6.70Y21 3 0 量mi的运动方向与单 3Y 1.707 0
21
Y
(1)
0.163 0.569 1
0.569
5Y13 5.027Y23 3 0 (1) Y 3Y21 10.027 0 3.342 1.227
1 1 4 0 , m m 2 9
展开得: 解之:
3 15 2 42 30 0
ξ1=11.601,ξ2=2.246,ξ3=1.151
1 m
三个频率为:
1 0.2936
1 1 3 0.9319 m m 3)求主振型: (令Y3i=1)将λ1代入振型方程: ([δ] [M ]-λ1[I]){Y}=0的前两式:
《结构动力学》考试复习题

《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。
(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。
结构动力学多自由度系统振动

运用功旳互等原理可知,刚度矩阵是对称阵,即有kij=kji, 于是上述刚度矩阵为:
k1 k2
k2
K 0
0
0
k2 k2 k3
k3 0
0
0 k3 k3 k4 k4
0
0 0 k4 k4 k5 k5
0
0
0
k5
k5
⒉ 柔度法 柔度系数aij定义为:
在第j个质量上作用单位力时在第i个质量上产生旳位移。
K12 k2 K22 k2 k3
K32 k3 K42 0 K52 0
K13 0 K23 k3 K33 k3 k4 K43 k4 K53 0
K14 0 K24 0 K34 k4 K44 k4 k5 K54 k5
K15 0 K25 0 K35 0 K45 k5 K55 k5
(a) m1 mi
mj mn
y1
yi yj yn
m1 y1
(b)
mi yi
1
i
j
m j y j
mn yn
ii
ji
1
(c)
ij
ij
jj
(a) m1
mi
mj mn
y1
yi yj yn
m1 y1
(b)
mi yi
1
i
j
m j y j
mn yn
ii
ji
1
(c)
ij
ij
jj
于是: 若在第j个质量上作用有力F,则在第i个质量上产
2
2
2
1 Mx 2 1 m[x 2 2Lx cos L2 2 ] 1 kx2 mgL(1 cos)
2
2
2
d dt
[美]R.克里夫《结构动力学》补充详解及习题解
![[美]R.克里夫《结构动力学》补充详解及习题解](https://img.taocdn.com/s3/m/198055225627a5e9856a561252d380eb629423b8.png)
前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。
结构动力学学习的难点主要有以下两个方面。
1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。
二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。
2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。
克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。
之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。
为什么难懂呢?是因为公式的推导过程比较简单,省略过多。
本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。
所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。
达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。
以下黑体字是注释,其它为原书文字。
[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。
为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。
华科土木结构动力学-作业题汇总精选全文完整版

《结构动力学》课后习题1试确定图示各体系的动力自由度,忽略弹性杆件自身的质量和轴向变形。
(a)4个动力自由度(b)2个动力自由度(c)2个动力自由度(d)2个动力自由度m(e )3个动力自由度(f )3个动力自由度(g)2个动力自由度(h)3个动力自由度(i)2个动力自由度(j)1个动力自由度m(k )2个动力自由度(l )2个动力自由度2试比较下列图式结构(a )、(b)固有频率的大小,并说明理由。
解:(a )结构滑动铰支座刚度无穷大,而(b )结构由于二力杆可以轴向变形,所以(a )结构刚度大于(b )结构刚度;而两结构质量相等,根据ω=可以知道,(a )结构故固有频率大于(b)结构固有频率。
m(a )(b )3下图为刚性外伸梁,C 处为弹性支座,刚度系数为k ,梁端A ,D 处分别有m 和质量m /3,同时梁受集中荷载F P (t )的作用,试建立刚性梁的运动方程。
解:单自由度体系,设刚性梁转角为ϕm(t)(my )(y )3A A D D F ϕϕϕϕδδδ=-⋅+-⋅+ (1)其中A y l ϕ=2D y l ϕ= 设刚梁顺时针转动为正①当在A 处作用单位力F=1时,2()3C F =↓234329A l k klϕδ=+÷=+②当在D 处作用单位力F=1时,4()3C F =↑438329A l k klϕδ=+÷=+③当作用F p (t )时,(t)()3p C F F =↑(t)2(t)3329p p FF F l k kl ϕδ=÷=代入(1)式得:2(t)4m 8(m )((2)9399p F l l kl kl klϕϕϕ=-⋅+-⋅⋅+整理得:2(t)28279p F m k klϕϕ+=4求图示结构的自振频率ωEI =∞kθlθm解:如图所示,该体系只有一个自由度。
设固定支座处出为原点,距离原点x处的质点(mdx )位移为x θ,惯性力为()mdx x mx dx θθ''-=- 。
结构动力学试题及答案

结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。
2. 描述阻尼对结构动力响应的影响。
三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。
若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。
答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。
2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。
二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。
它的重要性在于:- 预测结构在动态载荷下的响应。
- 为控制结构的振动提供基础数据。
- 优化设计,提高结构的抗震性能。
2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。
- 改变系统的自然频率和模态形状。
- 影响系统的动态响应时间。
三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。
- 应用逆变换得到位移响应的解析解或数值解。
位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。
具体的数值需要根据系统参数和初始条件进行计算。
结构动力学习题解答(三四章)

第三章 多自由度系统3.1试求图3-10所示系统在平衡位置附近作微振动的振动方程。
图3-10解:〔1〕系统自由度、广义坐标图示系统自由度N=2,选x1、x2和x3为广义坐标; 〔2〕系统运动微分方程根据牛顿第二定律,建立系统运动微分方程如下:;)(;)()(;)(34233332625323122222121111x K x x K x m x K x K x x K x x K xm x x K x K xm ---=------=---= 整理如下;0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K xm x K x K K K K x K xm x K x K K xm 写成矩阵形式;000)(0)(0)(00000321433365322221321321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+++--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x K K K K K K K K K K K K x x x m m m 〔1〕 〔3〕系统特征方程设)sin(,)sin(,)sin(332211ϕωϕωϕω+=+=+=t A x t A x t A x 代入系统运动微分方程〔1〕得系统特征方程;000)(0)(0)(321234333226532222121⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+++---+A A A m K K K K m K K K K K K m K K ωωω〔2〕 〔4〕系统频率方程系统特征方程〔2〕有非零解的充要条件是其系数行列式等于零, 即;0)(0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K展开得系统频率方程;0))(())(()))(())(()((21212323432223432265322121=-+--+--+-+++-+ωωωωωm K K K m K K K m K K m K K K K m K K进一步计算得;0;0)()())()(()))(())((())()()(()()()()())(()())(())(())()(())(())(()))(()()())((())(())(()))(())(()((02244662123432265324321236532214321231233224316532214332216321231232123232243226321421434322124321243165322165324323653221653243212121232343222343421221265322165322121212323432223432265322121==++++-+-+++++++++++-++-+++++++++++-=++-++--++++++-++++++++-++++-+++++=-+--+--+++-+++-++++=-+--+--+-+++-+a a a a K K K K K K K K K K K K K K m K K K K K K K K K K m m m K m K m m K K K K m m K K m m K K m m m m m K K K K m K K K K m m m m m K K m m K K K K K K m m m K K K K m K K K K K K m K K K K K K K K K K K K K K m K K K m K K K m K K m m K K m K K K K m K K K K K K m K K K m K K K m K K m K K K K m K K ωωωωωωωωωωωωωωωωωωωωωωωωωω (3)其中;3216m m m a -= ;)()()(316532214332214m m K K K K m m K K m m K K a +++++++=;))(())((36532214321231233222m K K K K K K K K K K m m m K m K a ++++-++-+=);()())()((21234322653243210K K K K K K K K K K K K K K a +-+-+++++=求解方程〔3〕得系统固有频率;)3,2,1(),,,,,,,,,(654321321==i K K K K K K m m m f i i ω 〔4〕 〔5〕系统固有振型 将系统固有频率代入系统特征方程〔2〕得系统固有振型, 即各阶振型之比:)3(3)3(1)3(3)3(2)3(1)3(2)2(3)2(1)2(3)2(2)2(1)2(2)1(3)1(1)1(3)1(2)1(1)1(21,1;1,1,1,1A A A A A A A A A A A A ======γγγγγγ 〔5〕 〔6〕系统振动方程)sin()sin()sin()sin()sin()sin(33)3(1)3(3)3(1)3(2)3(122)2(1)2(3)2(1)2(2)2(111)1(1)1(3)1(1)1(2)1(133)3(3)3(2)3(122)2(3)2(2)2(111)1(3)1(2)1(1321ϕωγγϕωγγϕωγγϕωϕωϕω+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧t A A A tA A A tA A A t A A A t A A A t A A A x x x 〔6〕在方程〔6〕中含有6个待定常数:)1(1A 、)2(1A 、)3(1A 、1ϕ、2ϕ和3ϕ。
结构动力学-多自由度系统振动

k 2k
y1 y2
0 0
m
M
0
0
k
m, K k
k
2k
解:①由频率方程求固有频率
K 2M 0 k m2
k 0
k 2k m2
展开上式得:(k m2 )(2k m2 ) k 2 0
2 1, 2
3k m
9k 2m2 4k 2m2 2m2
1 0.62
k, m
2 1.62
M20 0
M 21
y2 0
M1y1
M11
列力平衡方程为:M11 M1y1 0 M11 M1 M 21 0, M 31 0
同样的分析可以求得:M12 0, M 22 M 2 , M 23 0; M13 0, M 23 0, M 33 M 3;
所以,得到质量矩阵为: M1 0 0
k2
k3
P
p1 (t) p2 (t)
二、柔度矩阵法 用柔度矩阵法或者刚度矩阵建立方程本质上也是基于力的 动平衡来建立方程,关键在于求柔度系数或刚度系数。
例题 3-2 梁的跨长为 l ,梁上有两个集中质量 M1 和 M 2 ,分别受 到集中力 p1 (t) 和 p2 (t) 的作用。不计梁自身的质量和阻尼,建立 系统的垂向振动方程.
上面的方程为惯性解耦,刚度耦合方程。
kij 的物理意义:j 坐标发生单位位移,其余坐标位移全部为
零时, i 坐标引起的恢复力。
mij 的物理意义:仅在 j 坐标发生单位加速度时,在第 i 坐标所产生 的惯性力.
用柔度矩阵法建立的一般方程:
Y (P MY)
两边同乘以 1
1Y 1(P MY)
例题:针对下图给出的系统,建立振动微分方程。
结构动力学-第四章 MDOF(Part 1)

⎧ u1 ⎫ ⎧φ1 ⎫ ⎧a ⎫ ⎨ ⎬ = ⎨ ⎬ (ωt + θ ) = β ⎨ ⎬ sin (ωt + θ ) ⎩1 ⎭ ⎩u2 ⎭ ⎩φ2 ⎭
结构动力学 第四章 多自由度体系 5 of 42
或者
§4.1 两自由度体系的振动分析
算例 4.1 设 m1 = m2 = 1,000kg , k1 = 1,500 N / m, k2 = 1,000 N / m 求圆频率和振型
{d }1 {d }2
⎧φ1(1) ⎫ = ⎨ (1) ⎬ ⎩φ2 ⎭ ⎧φ1(2) ⎫ = ⎨ (2) ⎬ ⎩φ2 ⎭
用功能互等定理
{ f }1 {d }2 = { f }2 {d }1
将表达式代入并整理后,可得
(ω
结构动力学
2 1
− ω2 2 )( m1φ1(1)φ1(2) + m2φ2 (1)φ2 (2) ) = 0
结构动力学 第四章 多自由度体系 3 of 42 华南理工大学 土木与交通学院 土木工程系
§4.1 两自由度体系的振动分析
为得到非零解,必须有
2 Q (ω ) = m1m2ω 4 − ⎣ ω ⎡ m1k2 + m2 ( k1 + k2 )⎤ ⎦ + k1k2 = 0
方程的解
⎛ ⎡ k 1 k +k ω1 = ⎜ ⎢ 1 2 + 2 − ⎜ 2 ⎢ m1 m2 ⎝ ⎣ ⎛ ⎡ 1 ⎢ k1 + k2 k2 ⎜ + + ω2 = ⎜ 2 ⎢ m1 m2 ⎝ ⎣ ⎤⎞ ⎛ k1 + k2 k2 ⎞ k1k2 ⎥ ⎟ + − 4 ⎜ m ⎟ m m1m2 ⎥ ⎟ 1 2 ⎠ ⎝ ⎦⎠ 12 2 ⎞ ⎤ ⎛ k1 + k2 k2 ⎞ k1k2 ⎥ ⎟ ⎜ m + m ⎟ −4mm ⎟ 1 2 ⎠ 1 2 ⎥ ⎝ ⎦⎠
结构动力学习题+讲解

&&(t ) + (ω2 – n2 )S (t) = 0 --------------------------------------------(5) S
1.当 n >ω时(强阻尼) 方程(5)的解为: S (t) = A1sh n − ω t +A2ch n − ω t
2 2 2 2
从而,方程(4)的解为:
若时间 t 不是从 0 开始,而是从τ开始的,则(9)式写为:
y (t ) =
p∆t sinω(t-τ) mω
---------------------------------------(10)
写作: ,记ω2 =
K m
,2n =
C ,又可写作: m
& &(t ) + 2n y & (t ) +ω2 y (t ) = 0 y
利用常数变易法,令 y (t ) = e
− nt
---------------------------------------------(4)
S (t ) 代入方程(4)中 得:
K/2 VBA
48i/7L
2
A
取横梁为研究对象,Σ X=0,得:K= 4)振动方程
24 EI L3
即,
&(t ) - K y(t ) + Psinθt = 0 y - 2 m& &(t ) + y 2 m&
24 EI y(t ) = Psinθt L3
一、 无阻尼的自由振动
振动方程
&(t ) +K y (t ) = 0 , m& y & &(t ) + y K y (t ) = 0 m
结构动力学多自由度

pbT
~ fpa
paT ~fpb paT ~fpb T pbT ~f T pa pbT ~fpa
故 ~f 、 k 均为对称矩阵。
单元刚度矩阵
单元刚度系数表示由单位节点位移所引起的节点力。
单元刚度系数由虚位移法求得。
例如,课本P106图11-5所示简支梁中,令a端发生单位转角, 并给该处一竖向虚位移,零外力所做的功,等于内力所做的 功。
表示一个自由度发生相应单位位移而其他节点不动时在结构中所 产生的的力。
弹性特性
柔度的定义:
~ fij —在j坐标施加单位荷载而引起的i坐标的挠度。
则任意荷载组合下: vi ~fi1 p1 ~fi2 p2 ~fiN pN
用矩阵表示:
v1
vi
v N
略去阻尼矩阵和施加的荷载向量的影响: mv kv 0
假定以上多自由度体系的振动是简谐振动:
v(t) vˆ sin(t )
vˆ 表示体系的形状,不随时间变化。
v 2vˆ sin(t ) 2v 2mvˆ sin(t ) kvˆ sin(t ) 0
k 2m vˆ 0
无阻尼自由振动—振动频率分析
k 2m vˆ 0
即: k 2m 0
上式的N个根,表述体系可能存在的N个振型的频率。
1
2
3
WE va pa v1 k13
Lபைடு நூலகம்
WI v1 0 EI ( x) 1''( x) 3''( x)dx
结构动力学多自由度体系的自由振动

几点说明: 1.按振型作自由振动时,各质点的 速度的比值也为常数,且与位移 比值相同。
1 (t ) Y111 cos(1t 1 ) Y11 y 2 (t ) Y211 cos(1t 1 ) Y21 y
2.发生按振型的自由振动是有条件的.
2 2
I 2 m
若为自由振动则有
Fp (t ) 0 ,于是:
1 (t ) k11 y1 (t ) k12 y2 (t ) 0 m1 y 2 (t ) k21 y1 (t ) k22 y2 (t ) 0 m2 y
或记作
k y 0 m y
k11 k12 m1 0 k 22 [ ] m22 [ ] k 21 k 22 0 m2 1 y 0 y1 21 [ ] y y 21 [ ] 021 [ ] 2 y2 0 y
y1 (0) Y11 , y2 (0) Y21
1 (0) Y11 y 2 (0) Y21 y
y1 (t ) Y11 sin( 1t 1 ) Y11 y2 (t ) Y21 sin( 1t 1 ) Y21
3.振型与频率是体系本身固有的属性, 与外界因素无关.
定义:体系上所有质量按相同频率作自由振动时 的振动形状称作体系的主振型。
(k11 m1 )
2
k12 (k22 m2 )
2
2
k21
0 ---频率方程
展开上式可得到一个关于 的二次方程
(k11 m1 2 ) k21
展开 整理后有:
k12 (k22 m2 )
2
0
---频率方程
2
(k11 m1 )(k22 m2 ) k12 k21 0
结构动力学习题+讲解

结构动力学*本章讨论结构在动力荷载作用下的反应。
**学习本章注重动力学的特征------惯性力。
*结构动力计算的目的在于确定结构在动力荷载作用下的位移、内力等量值随时间变化的规律,从而找出其最大值作为设计的依据。
*动力学研究的问题:动态作用下结构或构件的强度、刚度及稳定性分析。
一、本章重点1.振动方程的建立2.振动频率和振型的计算3.振型分解法求解多自由度体系4.最大动位移及最大动应力二、基础知识1.高等数学2.线性代数3.结构力学三、动力荷载的特征1.大小和方向是时间t的函数例如:地震作用,波浪对船体的作用,风荷载,机械振动等2.具有加速度,因而产生惯性力四、动力荷载的分类1.周期性动力荷载例如:①机械运转产生的动力荷载,②打桩时的锤击荷载。
P(t) Pt t(机械运转荷载)(打桩荷载)2.冲击荷载例如:①爆炸力产生的动力荷载,②车轮对轨道连接处的冲击。
P(t)P(t)P(t)t t t(爆炸力动力荷载)(吊车起吊钢索的受力)(随机动力荷载)3.突加常量荷载例如:吊车起吊重物时钢索的受力。
4.随机动力荷载前3类荷在是时间t的确定函数,称为确定性动力荷载;而地震作用,波浪对船体的作用,风荷载等其作用大小只能用统计的方法获得。
五、动力荷载的计算方法1.原理:达朗贝尔原理,动静法建立方程2.计算工具:微分方程,线性代数,结构力学六、体系振动的自由度---------动力自由度结构具有质量,有质量在运动时就有惯性力。
在进行动力计算时,一般把结构的质量简化为若干质点的质量,整个结构的惯性力就成为各质点的惯性力问题。
1.质点简化的一般要求①简单,②能反映主要的振动特性例如:楼房;质量集中在各层楼板平面内水塔:质量集中在水箱部分梁:无限自由度集中质量(楼房质量集中)(水塔质量集中)(梁的质量集中)2.位移y(t)即指质点的位移y(t),其加速度为y&&)(t3.动力自由度的确定即质点位移数量的确定。
结构动力学解题思路及习题解答

bi
2 T
T
F (t ) sin(it )dt
0
因为 F (t) H sin 2 (0t) 是偶函数,所以 bi 0 。
于是
F (t )
H 2
H 2
c os (2 0 t )
而
x(t)
H 2k
A s in(2 0 t
a
/
2)
;
式中
H
A
2m
;
( n 2 402 ) 16n202
a arctan 2n ; n 2 4 0 2
进一步推导有
2 , 1 2
.-
结构动力学作业
因为 较小, 所以有 。 2
方法二:共振法求单自由度系统的阻尼比。 (1)通过实验,绘出系统的幅频曲线, 如下图:
单自由度系统的幅频曲线 (2)分析以上幅频曲线图,得到:
于是
1,2 max / 2 2 / 4 ;
进一步
12
(1
2
)
2 n
;
最后
-2-
.
弹性力作功为
Wc 0 、
阻尼力做功为
Wd c A2 、
激振力做作功为
W f F0 sin ;
(2) 由机械能守恒定理得,弹性力、阻尼力和激振力在一个周期内所作功为零,
即:
Wc +Wd +W f 0 ;
于是
F0 sin - c A2 0
进一步得:
A F0 sin c ;
mB rA2A
K
A
KB
rA 2 rB 2
A
0;
因此系统的固有频率为:
n
2 K A K B
rA 2 rB 2
结构动力学习题

结构动力计算习题习题9-1图示各系统的动力自由度为多少?都是什么?m m m m m m mm(1) (2) (3) (1)①△1x =△2x (2)①△1x =△2x =△3x (3)①△1y =△3y ②△1y ②△1y ②△2y ③△2y ③△3ymmmmmmmmm(4) (5) (6) (4)①△1x (5)①△1y (6)①△1y ②△1y =△2y ②△2x ②△2x ③△3y ③△2y =△3y ③△2y =△3ym m mm mm mm(7) (8) (9) (10) (7)①△1x =△2x (8)①△1x (9)①△1x (10)①△1x ②△2y ②△1y ②△2x ②△2x ③△2x ③△2y ④△2ym m mm m m mm m(11) (12) (13)(11)①△1x =△2x =△3x (12)①△1x =△2x =△3x =△4x (13)①△1x =△2x②△2y ②△1y ②△1y③△4y ③△2ym mm mm mmm(14) (15) (16) (17) (14)①△1x (15)①△1x (16)①△1x (17)①△1x =△2x ②△2x ②△1y ②△1y ②△2y ③△2x ③△2x ④△2y习题9-2图示各系统作强迫振动,已知激振力的频率与系统的自振频率之比,试求系统的动力系数β和最大动弯矩m ax d M 。
2l ltF θsin m2llmFFlM 图(1)32=ωθ, 2211ωθβ-=599411=-=, Fl M d 59m ax =tF θsin mlmlM 图FFl(2)32=ωθ, 2211ωθβ-=33211=-=, Fl M d 3m ax =ltF θsin lmM 图FFl /2(3)53=ωθ, 2211ωθβ-=255311=-=, 45m ax Fl M d = tF θsin mlmlM 图FFl(4)21=ωθ, 2211ωθβ-=22111=-=, Fl M d 2m ax =l /2tF θsin l /2mM 图FFl /4(5)32=ωθ, 2211ωθβ-=33211=-=, 43m ax FlM d =l l /2tF θsin mll /2mFFl /2M 图(6)21=ωθ, 2211ωθβ-=344111=-=, 32max Fl M d =llmtF θsin llmM 图FFl(7)43=ωθ, 2211ωθβ-=44311=-=, Fl M d 4m ax =mtF θsin ll /2M 图FFl /2Fl /2(8)31=ωθ, 2211ωθβ-=233111=-=, 43m ax Fl M d = mtF θsin ll /2mM 图F Fl /2Fl /2(9)31=ωθ, 2211ωθβ-=899111=-=, 169m ax Fl M d = 习题9-3求图示各系统的自振频率。
结构动力学多自由度

求解系数:由质量矩阵和刚度矩阵的正交性,阻尼矩阵的一般形式为:
不耦合的运动方程—有阻尼
同理:
故:
不耦合的运动方程—有阻尼
另一种方法:
不耦合的运动方程—有阻尼
体系的对角广义质量矩阵:
不耦合的运动方程—有阻尼
在上式中,每一振型对阻尼矩阵起的作用与振型的阻尼比成比例。因此,任何无阻尼的振型对阻尼矩阵不起作用。
对每一项乘一个未知的时间函数li(t),并且将这个乘积在时间间隔t1到t2积分:
由于变分为零:
令:
Lagrange运动方程可改写为:
规格化的主振型矩阵:
无阻尼多自由度结构体系自由振动方程:
第i 阶振型的特解:
这样的特解有n个!
振型的物理意义
将N个振型中的每一振型形式,用F表示N个振型所组成的方阵。
以上矩阵为结构的振型矩阵,为一N*N方阵。
各项前乘 ,可得:
即:
注意:即使质量矩阵和柔度矩阵都是对称的,它们的乘机也是不对称的!
几何约束条件:
Hamilton原理:
动能可以用广义坐标和它们的一次导数表示,位能可以单独用广义坐标表示。非保守力在广义坐标的一组任意变分所引起的虚位移上所做的虚功,可以表示为这些变分的线性函数。
代入Hamilton原理公式:
由分部积分公式:
由:
故:
Lagrange运动方程:
由算例:
此时:
Lagrange运动方程写为:
假定弯矩—位移关系:
上式中,第一项由保守力产生,第二项由非保守力产生。
非保守力所做的虚功:
假定非保守力仅限于横向分布荷载p(x,t),这些力的虚功为:
非保守力所做的总虚功为:
其中:
在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案 D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案 D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案 D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案 B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案 D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案 D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案 A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案 A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案 A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案 D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移 y(t)与荷载 P(t) 的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。
(结构动力学)多自由度体系运动方程

系数kij称为刚度影响系数,简称刚度系数,物理意义是:
kij—由第j自由度的单位位移所引起的第i自由度的力
即j自由度给定一个单位位移, 而其余自由度都不动时, 所需要的力(反力)。
6.1 直接平衡法
弹性恢复力 fsi ki1u1 ki2u2 kiNuN
只要能用广义坐标给出体系总动能T和位能V的表 达式,以及确定相应于每一广义坐标的非保守 力Qi,就可以直接由Lagrange运动方程建立结构 体系的运动控制方程。
下 面 通 过 算 例 来 介 绍 如 何 应 用 Lagrange 方 程 , 从 算例中可以看到,用Lagrange运动方程建立的运 动方程不限于线性。
自由度方法也可以得到相当好的近似解。但对于复杂
的结构体系或作用的外荷载变化复杂时,用等效的单
自由度方法得到的解可能会导致相当大的误差。这时
就必须直接采用多自由度体系分析方法解决问题,即 必须采用更多自由度来描述体系的运动状态。
第六章 多自由度体系的运动方程
建立单自由度体系运动方程的方法均可以用来建立多自 由度体系的运动方程,例如:牛顿第二定律;直接平 衡法(d’ Alember);虚位移原理;Hamilton方程;运动 的Lagrange方程,都可用于多自由度体系。但基于矩 阵位移法的直接平衡方程和基于变分原理的Lagrange 方法应用更广泛一些。前者对于多自由度体系直接应 用动平衡的概念以矩阵的形式建立体系的运动方程, 概念直观,易于通过各个结构单元矩阵(刚度矩阵、质 量矩阵、阻尼矩阵)建立整个结构体系的相应矩阵,进 而建立体系的运动方程,便于计算机编程,在结构动 力分析的有限元程序中基本上都基于直接平衡法。而 对于一些特殊的问题,例如,大变形(位移)问题, 采用Lagrange方法可能更有效。本章将主要介绍这两 种方法。