人教版数学七年级下册5.1.2 垂线 习题1
5.1.2 垂线 人教版七年级数学下册分层作业(含答案)
![5.1.2 垂线 人教版七年级数学下册分层作业(含答案)](https://img.taocdn.com/s3/m/cfd50352974bcf84b9d528ea81c758f5f61f29b2.png)
第五章相交线与平行线5.1.2 垂线分层作业1.如图,图中直角的个数有()A.个B.个C.个D.个【答案】D【分析】根据直角的定义进行求解即可.【详解】解:由题意得,图中的直角有一共五个,故选D.【点睛】本题主要考查了垂线的定义,熟知垂线的定义是解题的关键.2.如图,,,若,则的度数是()A.B.C.D.【答案】C【分析】先求出,即可求出.【详解】解:,,.,.故选:C.【点睛】本题主要考查直角的概念以及角度的计算,比较简单.3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线、嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.【详解】解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点睛】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.4.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】C【分析】根据垂直定义得到∠AOF+∠BOD=,求出∠AOF的度数,利用角平分线的定义求出∠EOF即可.【详解】解:∵∠DOF=,∴∠AOF+∠BOD=,∵∠BOD=,∴∠AOF=,∵OF平分∠AOE,∴∠EOF=∠AOF=,故选:C.【点睛】此题考查了垂直的定义,几何图形中角度的计算,正确理解图形中各角度的关系是解题的关键.5.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义,得出∠MOC=35°,再根据题意,得出∠MON=90°,然后再根据角的关系,计算即可得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义,解决本题的关键在正确找出角的关系.6.如图,为了解决村民饮水困难,需要在河边建立取水点,下面四个点中哪个最方便作为取水点()A.A点B.B点C.C点D.D点【答案】B【分析】根据“垂线段最短”可得结论.【详解】解:根据“垂线段最短”可知要在河边建立取水点,点B作为取水点最方便,故选:B【点睛】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.7.如图,,垂足是点,,,,点是线段上的一个动点包括端点,连接,那么的长为整数值的线段有()A.条B.条C.条D.条【答案】D【分析】根据垂线段最短解答即可.【详解】解:∵,,,,且点是线段上的一个动点包括端点,∴长的范围是,∴的长为整数值的线段有、、、,,共条,故选:D.【点睛】本题考查垂线段最短.理解和掌握垂线段最短是解题的关键.8.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1=50°,则∠2的度数为()A.B.C.D.【答案】B【分析】应用垂线性质可得∠EOD=90°,由∠1+∠BOD=90°,即可算出∠BOD的度数,再根据对顶角的性质即可得出答案.【详解】解:∵EO⊥CD,∴∠EOD=90°,∵∠1+∠BOD=90°,∴∠BOD=∠EOD-∠1=90°-50°=40°,∴∠2=∠BOD=40°.故选:B.【点睛】本题主要考查了垂线及对顶角,熟练掌握垂线及对顶角的性质进行求解是解决本题的关键.9.已知,与的度数之比为,则等于___.【答案】或【分析】根据垂直定义知,由,可求,根据与的位置关系,分类求解.【详解】解:,,,即∠AOB:90°=3:5,.分两种情况:①当OB在内时,如图,∴;②当OB在外时,如图,∴.故答案是:或.【点睛】本题考查垂直定义,角的和差运算,解题的关键是利用分类讨论的思想进行求解.10.如图,点,在直线上,且,的面积为.若是直线上任意一点,连接AP,则线段AP的最小长度为_____cm.【答案】8【分析】根据点到直线的垂线段最短,再由面积求出高,即为AP的最小值,由题知,过点A作BC的垂线,即为所求,此时,该垂线也是三角形的高.【详解】解:过点A作BC的垂线AP,根据点到直线的所有线段中,垂线段最短,∴垂线段即为AP的最小值,∵BC=5cm,ΔABC的面积为20,∴,∴AP=8,故答案为:8.【点睛】本题考查三角形的面积公式,垂线段最短的性质,属于基础题.11.已知的两边与的两边分别垂直,且比的倍少,则______【答案】80°或92°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的倍少40°,设∠B是x 度,利用方程即可解决问题.【详解】解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=x-40,解得,x=80,故∠A=80°,②两个角互补时,如图2:x+x-40=180,所以x=88,×88°-40°=92°综上所述:∠A的度数为:80°或92°.故答案为:80°或92°.【点睛】本题考查垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B的关系.12.如图,直线AB,CD相交于点O,若,且,则的度数是______.【答案】54°##54度【分析】设,则,可得,再由,可得,可求出x,即可求解.【详解】解:设,则,∴,∵,∴∠AOE=∠BOE=90°,∴,即,∴.故答案为:54°【点睛】本题主要考查了垂直的性质,对顶角的性质,熟练掌握垂直的性质,对顶角的性质进行求解是解决本题的关键.13.如图,直线与直线相交于点,,垂足为,,则的度数为______.【答案】60°##60度【分析】根据对顶角相等可得,由,可得,由,即可求解.【详解】解:∵,∴,∵,,,解得.故答案为:60°.【点睛】本题考查了垂直的定义,对顶角相等,几何图形角度的计算,数形结合是解题的关键.14.如图,点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,连接,若,则的长可能是___________(写出一个即可).【答案】4【分析】直接利用垂线段最短即可得出答案.【详解】解∶∵点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,∴3≤AP,∴PA可以为4,故答案为4(答案不唯一).【点睛】此题主要考查了垂线段最短,正确得出A P的取值范围是解题的关键.15.如图,直线和相交于点,,,,求的度数.【答案】【分析】根据,得出,根据,可得,根据角的倍分关系,可得∠的度数,根据是邻补角,可得答案.【详解】解:∵,∴,∵,∴,∵,∴,∴,∵,∴.∴.【点睛】本题考查垂直的性质、角的和差、角的倍分关系、邻补角的性质等知识,是基础考点,掌握相关知识是解题关键.16.如图,是直线上一点,,平分(1)求的度数.(2)试猜想与的位置关系,并说明理由.【答案】(1)的度数为(2)OD⊥AB,理由见解析【分析】(1)设=x,根据题意得,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.【详解】(1)解:设=x,∵,∴,∵直线,∴x+3x=180°,解得,∴的度数为;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.【点睛】此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.17.如图,两直线、相交于点,平分,如果::.(1)求;(2)若,,求.【答案】(1)145°(2)125°【分析】(1)根据邻补角的性质和已知求出和的度数,根据对顶角相等求出和的度数,根据角平分线的定义求出的度数,可以得到的度数;(2)根据垂直的定义得到,根据互余的性质求出的度数,计算得到答案.(1)解:,::,,,,,平分,,.(2)解:,,平分,,,.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.18.如图,已知直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC.(1)若∠COE=54°,求∠DOF的度数;(2)若∠COE∶∠EOF=2∶1,求∠DOF的度数.【答案】(1)∠DOF=108°;(2)∠DOF=112.5°.【分析】(1)先由OE⊥AB得出∠AOE=∠BOE=90°,再根据角平分线定义求出∠COF=72°,然后由∠DOF=180°-∠COF即可求解;(2)设∠EOF=x°,则∠COE=2x°,则∠COF=3x°,再根据角平分线定义求出∠AOF=∠COF=3x°,所以∠AOE=4x°,由垂直的定义可知∠AOE=90°,则4x=90,解之,求出x即可.(1)解:∵OE⊥AB,∴∠AOE=90°;∵∠COE=54°,∴∠AOC=∠AOE+∠COE=144°,∵OF平分∠AOC,∴∠COF=∠AOC=72°,∴∠DOF=180°-∠COF=108°;(2)解:设∠EOF=x°,则∠COE=2x°,∴∠COF=3x°,∵OF平分∠AOC,∴∠AOF=∠COF=3x°,∴∠AOE=4x°,∵OE⊥AB,∴∠AOE=90°,∴4x=90,解得x=22.5,∴∠COF=3x°=67.5°,∴∠DOF=180°-∠COF=112.5°.【点睛】本题考查了角的计算,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.1.如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,∠AOE=24°,∠COF的度数是()A.146°B.147°C.157°D.136°【答案】B【分析】欲求∠COF,需求∠DOF.由OE⊥CD,得∠EOD=90°,故求得∠BOD=66°.由OF平分∠BOD,故∠DOF==33°.【详解】解:∵OE⊥CD,∴∠EOD=90°.∴∠BOD=180°﹣∠AOE﹣∠DOE=66°.又∵OF平分∠BOD,∴∠DOF==33°.∴∠COF=180°﹣∠DOF=180°﹣33°=147°.故选:B.【点睛】本题主要考查垂直的定义、角平分线的定义以及邻补角的性质,熟练掌握垂直的定义、角平分线的定义以及邻补角的性质是解决本题的关键.2.如图,,,平分,则的度数为()A.45°B.46°C.50°D.60°【答案】A【分析】先根据垂直的定义得,由已知,相当于把四等分,可得的度数,根据角平分线可得,从而得结论.【详解】解:,,,,,平分,,.故选:.【点睛】本题考查了角平分线的定义,垂直的定义及有关角的计算,解题的关键是确定.3.如图所示,直线AB,CD相交于点O,于点O,OF平分,,则下列结论中不正确的是()A.B.C.与互为补角D.的余角等于【答案】D【分析】根据垂直的定义及角平分线的性质判断A,利用对顶角的性质判断B,利用邻补角的性质判断C,根据余角的定义判断D.【详解】∵于点O,∴∠AOE=,∵OF平分,∴∠2=,故A正确;∵直线AB,CD相交于点O,∴∠1与∠3是对顶角,∴∠1=∠3,故B正确,∵,∴与互为补角,故C正确;∵,∴的余角=,故D错误,故选:D.【点睛】此题考查垂直的定义,角平分线的性质,对顶角的性质,余角的定理,邻补角的性质,几何图形中角度的计算,熟记各定义及性质是解题的关键.4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A.4 cm B.5 cm C.小于2 cm D.不大于2 cm【答案】D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.如图,若直线与相交于点,平分,且,则的度数为()A.B.C.D.【答案】C【分析】根据角平分线的定义得到,根据垂线的定义得到,利用邻补角的定义即可求解.【详解】解:∵,平分,∴,∵,∴,∴,故答案为:C.【点睛】本题考查邻补角的定义、角平分线的定义、垂直的定义等内容,运用几何知识进行角的和差运算是解题的关键.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.25°【答案】A【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.【详解】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°-55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.【点睛】本题考查了垂直定义,角平分线定义等知识点,解题的关键是能求出∠COM的度数和求出∠AOM=∠COM.7.已知,如图,直线,相交于点,⊥于点,∠=35°.则∠的度数为().A.35°B.55°C.65°D.70°【答案】B【分析】直接利用垂线的定义结合已知角得出∠COE的度数即可.【详解】∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE−∠AOC=90°−35°=55°.∴∠COE=55°.故选B.【点睛】此题考查垂线的定义,对顶角,解题关键在于得出∠AOC=35°.8.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】B【分析】由垂直得∠COE=90°,从而知∠AOC=64°,则∠BOD也得64°,由角平分线和平角定义得∠COF 的度数.【详解】∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE-∠AOE=90°-26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF=∠BOD=×64°=32°,∴∠COF=180°-∠DOF=180°-32°=148°.故选B.【点睛】本题考查了垂线的定义、邻补角、对顶角定义、角平分线定义等知识点.本题属于基础题,推理过程的书写是关键,从垂直入手与已知相结合得出∠AOC的度数,使问题得以解决;同时要注意对顶角和平角性质的运用.9.如图,直线,,相交于点,,,射线,则的度数为___________.【答案】20°或160°【分析】先求出∠EOD=70°,再分射线OG在直线EF的两侧进行讨论求解即可.【详解】解:∵,,∠2=∠AOE,∴∠EOD=180°-50°-60°=70°,分两种情况:①如图,∵,∴∠EOG=90°,∴∠DOG=∠EOG-∠EOD=90°-70°=20°;②如图,∵∠EOG=90°,∠EOD=70°,∴∠DOG=∠EOD+∠EOG=70°+90°=160°,综上,的度数为20°或160°,故答案为:20°或160°.【点睛】本题考查邻补角、对顶角、垂线性质、角的运算,熟练掌握对顶角相等、邻补角互补,分情况讨论是解答的关键.10.如图,点C,O,D在一条直线上,,OE平分比大,的度数为________.【答案】##72.5度【分析】根据比大,和互补,即可求出,进而由垂直性质可求出,再由角平分线性质即可得出答案.【详解】解:∵比大,∴设,则,∵,∴,∴,∴,∵,∴,∴,∴,∵OE平分,∴.故答案为:.【点睛】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.11.如图,直线AB,CD交于点O,OC平分∠BOE,OE⊥OF,若∠DOF=15°,则∠EOA=_________.【答案】30°##30度【分析】根据垂直定义可得∠EOF=90°,从而利用平角定义求出∠COE=75°,然后利用角平分线的定义求出∠BOE=2∠COE=150°,最后利用平角定义求出∠EOA,即可解答.【详解】解:∵OE⊥OF,∴∠EOF=90°,∵∠DOF=15°,∴∠COE=180°﹣∠EOF﹣∠DOF=75°,∵OC平分∠BOE,∴∠BOE=2∠COE=150°,∴∠AOE=180°﹣∠∠BOE=30°,故答案为:30°.【点睛】本题考查了垂线,角平分线的定义,根据题目的已知条件并结合图形分析是解题的关键.12.如图,直线AB、CD相交于点O,,O为垂足,如果,则________°.【答案】57.5【分析】根据垂线的定义,可得,根据角的和差,可得的度数,根据邻补角的定义,可得答案.【详解】解:∵∴∴∵,∴,∴,∴,故答案为:.【点睛】本题考查了垂线的定义,邻补角的和等于180°,角与分的转化等知识.解题的关键在于领会由垂直得直角.13.如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40 ,则∠EOF=_______.【答案】130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE ⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.14.如图所示,已知,若,,,则点到的距离是______,点到的距离是______.【答案】 4 2.4【分析】根据点到直线的距离概念可得点到的距离为垂线段AC的长,设点到的距离为,依据三角形面积,即可得到点到的距离.【详解】解:∵,∴,∴点到的距离为垂线段AC的长,又∵,∴点到的距离为4cm;设点到的距离为,,,,∵,,,,,故答案为:4;2.4.【点睛】本题考查了点到直线的距离,利用三角形的面积得出是解题关键.15.如图,直线,相交于点,平分.(1)若,,求的度数;(2)若平分,,求的度数.【答案】(1)70°(2)50°【分析】(1)根据角平分线的性质可得,根据垂线的定义以及已知条件求得,继而求得,根据对顶角相等即可求解;(2)根据角平分线的性质可得,,设,则,根据平角的定义建立方程,解方程即可求解.(1)解:平分,,,,,,∴;(2)平分,,,设,则,,解得:,故的度数为:.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,垂线的定义,一元一次方程的应用,数形结合是解题的关键.16.如图,直线相交于点O,平分,求:(1)的度数;(2)写出图中互余的角;(3)的度数.【答案】(1)70°(2)∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余(3)55°【分析】(1)根据对顶角相等即可得到;(2)根据余角的定义求解即可;(3)先根据角平分线的定义求出∠DOE=35°,则∠EOF=∠DOF-∠DOE=55°.(1)解:由题意得;(2)解:∵∠COF=90°,∴∠DOF=180°-∠COF=90°,∴∠BOF+∠BOD=90°,∠EOF+∠EOD=90°,∵OE平分∠BOD,∴∠BOE=∠DOE,∴∠EOF+∠BOE=90°,∵∠AOC=∠BOD,∴∠BOF+∠AOC=90°,∴∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余;(3)解:∵∠BOD=70°,OE平分∠BOD,∴∠DOE=35°,∴∠EOF=∠DOF-∠DOE=55°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,对顶角相等,余角的定义,熟知相关知识是解题的关键.17.如图,已知,,是内三条射线,平分,平分.(1)若,,求的度数.(2)若,,求的度数.(3)若,,求的度数.【答案】(1)(2)(3)【分析】对于(1),由角平分线的定义求出和,再根据即可求解;对于(2),先求出,再根据角平分线的定义求出和,然后根据即可求解;对于(3),由角平分线的定义得,结合已知条件可得,,即,进而得出,可得答案.【详解】(1)∵平分,平分,∴,,∴;(2)∵,∴.∵,∴.∵平分,平分,∴,,∴;(3)∵平分,∴.∵,∴.∵,∴,∴,∴,∴.【点睛】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.18.点O为直线l上一点,射线均与直线l重合,如图1所示,过点O作射线和射线,使得,,作的平分线.(1)求与的度数;(2)作射线,使得,请在图2中画出图形,并求出的度数;(3)如图3,将射线从图1位置开始,绕点O以每秒的速度逆时针旋转一周,作的平分线,当时,求旋转的时间.【答案】(1),(2)或(3)6秒或秒【分析】(1)根据,,即可得出的度数,根据角平分线的定义得出,然后根据得出的度数;(2)根据题意得出的度数,然后分两种情况进行讨论:①当射线在内部时;②当射线在外部时;分别进行计算即可;(3)根据平分得出,根据题意画出图形,计算的角度,然后计算时间即可.【详解】(1)解:由题意可知,,∵,∴,∵平分,∴,∴;(2)由(1)知,,∴,①当射线在内部时,如图2(1),;②当射线在外部时,如图2(2),,综上所述,的度数为或;(3)∵平分,∴,①如图3,,∵平分,∴,∴,∴旋转的时间(秒);②如图3(1),此时,,∵平分,∴,∴,∴,∴旋转的时间(秒);综上所述,旋转的时间为6秒或秒.【点睛】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线旋转的过程中,和的相对位置在不断的变化,以此进行分类画图.1.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.2.(2022·河南·中考真题)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.3.(2021·北京·中考真题)如图,点在直线上,.若,则的大小为()A.B.C.D.【答案】A【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.(2021·浙江杭州·中考真题)如图,设点是直线外一点,,垂足为点,点是直线上的一个动点,连接,则()A.B.C.D.【答案】C【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点是直线外一点,,垂足为点,是垂线段,即连接直线外的点与直线上各点的所有线段中距离最短,当点与点重合时有,综上所述:,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.5.(2020·湖北孝感·中考真题)如图,直线,相交于点,,垂足为点.若,则的度数为()A.B.C.D.【答案】B【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.6.(2020·河北·中考真题)如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.7.(2020·吉林·中考真题)如图,某单位要在河岸上建一个水泵房引水到处,他们的做法是:过点作于点,将水泵房建在了处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)
![人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)](https://img.taocdn.com/s3/m/234c7de059eef8c75ebfb329.png)
5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.到直线L 的距离等于2cm 的点有( )A .0个B .2个C .3个D .无数个2.如图,能表示点到直线的距离的线段共有( )A .2条B .3条C .4条D .5条3.点P 是直线l 外一点,A 、B 、C 为直线l 上的三点,4PA cm =,5PB cm =,2PC cm =,则点P 到直线l 的距离( )A .小于2cmB .等于2cmC .不大于2cmD .等于4cm4.如图,有三条公路,其中AC 与AB 垂直,小明和小亮分别沿AC 、BC 同时从A 、B 出发骑车到C 城,若他们同时到达,则下列判断中正确的是( )A .小明骑车的速度快B .小亮骑车的速度快C .两人一样快D .因为不知道公路的长度,所以无法判断他们速度的快慢5.如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C ,D ,那么以下线段大小的比较必定成立的是( )A .CD AD >B .AC BC < C .BC BD > D .CD BD <6.与一条已知直线垂直的直线有( )A .1条B .2条C .3条D .无数条7.如图,直线AB ,CD 相交于点O ,OE⊥CD 于点O ,∠AOC=36°,则∠BOE=( )A .36°B .64°C .144°D .54°8.下面说法正确的是( )A .过一点有且只有一条直线与已知直线平行B .两直线成直角,则这两直线一定垂直C .没有交点的两条直线一定平行D .过直线外一点,有且只有一条直线与已知直线垂直9.如图,OA⊥OB,∠1=35°,则∠2的度数是( )A .35°B .45°C .55°D .70°二、填空题1.如图所示,A ,B ,C 是直线l 上的三点,P 为直线l 外一点,已知PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,则点P 到直线l 的距离为__________.2.如图,115∠=︒,CO OA ⊥,点B ,O ,D 在同一直线上,则∠2的度数为________.3.如图,直线AB ,CD ,EF 相交于点O ,且AB⊥CD,∠1=30°,则∠2=______.4.如图,直线AB ,CD 相交于点O ,如果∠EOD=40°,∠BOC=130°,那么∠BOE 的度数是________.5.如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.三、解答题1.数学是从实际生活中来的,又应用于生活.请将下列事件与对应的数学原理连接起来.事件数学原理教室的门要用两扇合页才能自由开关直线外一点与直线上各点连线的所有线段中,垂线段最短飞机从萧山飞往北京,它的航行路线是直的经过两点有且只有一条直线测量运动员的跳远成绩时,皮尺与起跳线保持垂直两点之间线段最短2.如图,M,N为坐落于公路两旁的村庄,如果一辆施工的机动车由A向B行驶,产生的噪音会对两个村庄造成影响.(1)当施工车行驶到何处时,产生的噪音分别对两个村庄影响最大?在图中标出来.(2)当施工车从A向B行驶时,产生的噪音对M,N两个村庄的影响情况如何?3.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.4.把图中的互相平行的线写出来,互相垂直的线写出来:5.如图,已知直线AB和CD相交于点O,射线OE⊥AB于点O,射线OF⊥CD于点O,且∠AOF =25°.求∠BOC与∠EOF的度数.参考答案一、单选题1.D解析:根据点到直线的距离和直线与直线之间的距离进行分析.详解:当两条平行线互相平行时,且其中一条直线上的一点到另一条直线的距离为2时,则这条直线上所有的点到另一条直线的距离都为2,所以有无数个.故选D.点睛:考查了点到直线的距离和直线与直线之间的距离,解题关键理解点到直线的距离和两条平行线间的距离之间的联系.2.D解析:根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.3.C解析:根据点到直线的距离是点到直线的垂线段的长度以及垂线段最短即可得答案.详解:解:点P为直线l外一点,当P点直线l上的三点A、B、C的距离分别为PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为不大于2cm,故选:C.点睛:本题考查了点到直线的距离,点到直线的距离是点到直线的垂线段的长度,利用垂线段最短是解题关键.4.B分析:根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短,可知BC>AC,然后根据速度公式即可判断.详解:∵AC与AB垂直,∴BC>AC,若他们同时到达,根据速度公式可得,小亮骑车的速度快,小明骑车的速度慢.故选B5.C解析:A选项,CD与AD互相垂直,没有明确的大小关系,错误;B选项,AC与BC互相垂直,没有明确的大小关系,错误;C选项,BD是从直线CD外一点B所作的垂线段,根据垂线段最短定理,BC>BD,正确;D选项,CD与BD互相垂直,没有明确的大小关系,错误,故选C.6.D解析:根据垂线的性质:过直线外一点作已知直线的垂线,能作且只能作1条;而直线外有无数个点,因此与一条已知直线垂直的直线有无数条.详解:解:与一条已知直线垂直的直线有无数条,故选D.点睛:本题主要考查了垂线的性质,准确理解性质是解题的关键.7.D解析:由垂直的定义可知∠DOE=90°;直线AB,CD相交于点O,对顶角相等,然后根据角的差计算即可详解:∵OE⊥CD∴∠DOE=90°∵直线AB,CD相交于点O,∠AOC=36°∴∠DOB=36°∴∠BOE=∠DOE−∠BOD=90°−36°=54°故本题答案应为:D点睛:垂直的定义、对顶角相等的性质是本题的考点,找出角之间的关系是解题的关键.8.B解析:根据平行公理,垂线的定义,平行线的定义和以及垂线的性质对各选项分析判断即可求解.解:A.应为过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B.两直线成直角,则这两直线一定垂直正确,故本选项正确;C.应为在同一平面内,没有交点的两条直线一定平行,故本选项错误;D.应为在同一平面内,过直线外一点,有且只有一条直线与已知直线垂直,故本选项错误. 故选B.9.C解析:试题分析:∵OA⊥OB,∴∠AOB=90°,所以∠2+∠1=90°,∵∠1=35°,∴∠2=55°,故选C .考点:1.余角和补角;2.垂线.二、填空题1.3厘米解析:分析:点P 到直线l 的距离为点P 到直线l 的垂线段,结合已知,因此点P 到直线l 的距离为PC 的长.详解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短)的长度,PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,∴点P 到直线l 的距离为3厘米,故答案为:3厘米.点睛:本题考查了垂线段最短,关键是要明确点P 到直线l 的距离为点P 到直线l 的垂线段的长度.2.105°分析:根据垂直的定义及平角的定义计算即可.详解:解:∵CO OA ⊥,115∠=︒,∴∠COB=90°-15°=75°,∵点B ,O ,D 在同一直线上,∴∠2=180°-∠COB =180°-75°=105°.故答案为:105°.点睛:本题考查垂直定义与平角定义.熟练掌握垂直的定义是解题的关键.3.60°分析:根据题意由对顶角相等先求出∠ FOD,然后根据AB⊥CD,∠2与∠ FOD互为余角,求出即可详解:∵CD、EF相交于点O∴∠FOD=∠1=30°∵AB⊥CD∴∠2=90°−∠FOD=90°−30°=60°故本题答案应为:60°点睛:对顶角相等和垂线的定义及性质是本题的考点,熟练掌握基础知识是解题的关键.4.90°解析:观察图形,可猜想OE⊥AB,根据已知条件,证明∠AOE是直角即可.详解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB.故答案为互相垂直.点睛:考查了对顶角、邻补角,利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.5.45分析:根据垂直定义得BOE=∠90〬,由角平分线定义得∠BOD=12∠BOE=45〬,由对顶角相等得∠AOC=∠BOD=45〬详解:因为,直线AB,CD交于点O,OE⊥AB,所以,BOE=∠90〬,因为,OD平分∠BOE,所以,∠BOD=12∠BOE=45〬,所以,∠AOC=∠BOD=45〬故答案为45点睛:本题考核知识点:垂直定义、角平分线、对顶角. 解题关键点:理解垂直定义、角平分线、对顶角性质.三、解答题1.见解析分析:两个合页所在的位置可看成的两个点,目的是为了让门与门框在一条直线上,应用的是两点确定一条直线;两个城市可看做两个点,两个城市之间,航行路线是直的,应用的是两点之间,线段最短.跳远成绩可将踏板看作直线,脚后跟看作一点,应用的是垂线段最短.详解:点睛:本题考查了生活中的数学知识、直线公理、线段公理、垂线段最短.注意一些物体或地方可看做一个点.2.见解析解析:试题分析:(1)过点M,N分别作AB的垂线,垂足分别为P,Q,根据垂线段最短可得汽车行驶到何处时,分别对两所学校影响最大;(2)此题说明时要分3段A到P;由P向Q,由Q 向B分别说明对两学校的影响情况.试题解:(1)如图所示,过点M,N分别作AB的垂线,垂足分别为P,Q,则当施工车行驶到点P,Q处时产生的噪音分别对M,N两个村庄影响最大.(2)由A至P时,产生的噪音对两个村庄的影响越来越大,到P处时,对M村庄的影响最大;由P至Q时,对M村庄的影响越来越小,对N村庄的影响越来越大,到Q处时,对N村庄的影响最大;由Q至B时,对M,N两个村庄的影响越来越小.点睛:此题主要考查了应用与设计作图,以及垂线段的性质,关键是正确画出图形.3.(1)见解析;(2)见解析.解析:本题考查了线段和垂线的性质在实际生活中的运用(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF的线段.⑴连结AD,BC,交于点H,则H为所求的蓄水池点.⑵过H作HK EF于K,沿HK开挖,可使开挖的渠最短,依据是:“点与直线的连线中,垂线段最短”.(如图)4.AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.解析:试题分析:根据平行的含义,在同一平面内不相交的两条线叫做平行线,在图中所给的6条线段中找出互相平行的线,写出即可;根据垂直的含义,在同一平面内两条直线相交成直角时这两条直线互相垂直,在图中所给的6条线段中找出互相垂直的线,写出即可。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)
![人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)](https://img.taocdn.com/s3/m/7a7eba8531b765ce0408146e.png)
5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,以A为公共端点的两条线段AB、AC互相垂直,点B、D、C在同一条直线上,AD⊥BC,则图形中能表示点到直线的距离的线段有( )条.A.6 B.5 C.4 D.32.到直线a的距离等于2㎝的点有()个A.0个B.1个C.无数个D.无法确定3.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,下列说法不正确的是()A.点A到BC的垂线段为AD B.点C到AD的垂线段为CDC.点B到AC的垂线段为AB D.点D到AB的垂线段为BD4.下列语句叙述正确的有( )①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个 B.1个 C.2个 D.3个5.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度6.下列说法中正确的是()A.有且只有一条直线与已知直线垂直;B.从直线外一点到这条直线的垂线段,叫做这点到这条直线距离;C.互相垂直的两条线段一定相交;D.直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长度是3cm,则点A 到直线l的距离是3cm.7.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线8.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35° B.40° C.45° D.60°9.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是().A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短二、填空题1.如图,BC⊥AC,CB=8 cm,AC=6 cm,点C到AB的距离是4.8 cm,那么点B到AC的距离是____ cm,点A到BC的距离是____ cm,A,B两点间的距离是____ cm.2.如图,AB⊥l 1,AC⊥l 2,垂足分别为B ,A ,则A 点到直线l 1的距离是线段__的长度.3.如图,直线AB CD ,相交于点,O EO AB ⊥.重足为35,O EOC ∠=︒,则AOD ∠的度数为__________度4.已知OA⊥OC 于O ,∠AOB∶∠AOC=2∶3,则∠BOC 的度数为____________度.5.如图,直线a 与b 相交于点O ,直线c⊥b,且垂足为O ,若∠1=35°,则∠2=_____.三、解答题1.如图,已知直线a ,b ,点P 在直线a 外,在直线b 上,过点P 分别画直线a ,b 的垂线.2.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB,交AC 的延长线于点E ;(3)指出∠E 的同位角和内错角.3.如图所示,点P 是∠ABC 内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?4.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)⊥于点O.5.如图,己知90∠=,过点O作直线CD,作OE CDAOB()1图中除了直角相等外,再找出一对相等的角,并证明它们相等;()2若70∠的度数;∠=,求BOCAOD()3将直线CD绕点O旋转,若在旋转过程中,OB所在的直线平分DOE∠的∠,求此时AOD度数.参考答案一、单选题1.B分析:根据点到直线距离的定义进行解答即可.详解:解:∵AB、AC互相垂直,AD⊥BC,∴线段AB的长度是点B到直线AC的距离;线段AC的长度是点C到直线AB的距离;线段AD的长度是点A到直线BC的距离;线段CD的长度是点C到直线AD的距离;线段BD的长度是点B到直线AD的距离.∴图形中能表示点到直线的距离的线段有5条.故选:B.点睛:本题考查了点到直线的距离的定义,即直线外一点到直线的垂线段的长度,叫做点到直线的距离,熟知概念是关键.2.C解析:详解:解:到直线a的距离等于2的点的轨迹是与a平行,且到a的距离等于2的两条直线,直线是由无数个点组成.故选C.3.D解析:A. 点A到BC的垂线段为AD,正确; B. 点C到AD的垂线段为CD,正确;C. 点B到AC的垂线段为AB,正确;D. 点B到AD的垂线段为BD.故选D.4.B解析:试题①如果两个角有公共顶点且它们的两边互为反向延长线,那么这两个角是对顶角;故错误.②如果两个角相等,那么这两个角是对顶角;错误.③连接两点的线段长度叫做两点间的距离;正确.④直线外一点到这条直线的垂线段的长度叫做这点到直线的距离.错误.故选B.5.B解析:由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.6.D解析:对照垂线的两条性质逐一判断.①从直线外一点引这条直线的垂线,垂线段最短;②过一点有且只有一条直线与已知直线垂直.详解:解:A、和一条直线垂直的直线有无数条,故A错误;B、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度,故B错误;C、互相垂直的两条线段不一定相交,线段有长度限制,故C错误;D、直线l外一点A与直线l上各点连接而成的所有线段中最短线段就是垂线段,可表示点A 到直线l的距离,故D正确.故选:D.点睛:本题考查的是垂线的相关定义及性质,只要记住并理解即可正确答题.7.C分析:根据“垂线段的性质:垂线段最短”解答即可.详解:这样做的理由是垂线段最短.故选C.点睛:本题考查了垂线段最短.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.8.A解析:试题分析:∵OA⊥OB,∴∠AO∠=90°,即∠2+∠1=90°.∵∠1=55°,∴∠2=35°.故选A.考点:1.垂直的性质;2.数形结合思想的应用.9.B解析:利用OM⊥NP,ON⊥NP,所以直线ON与OM重合,其理由是:同一平面内,经过一点有且只有一条直线与已知直线垂直.故选B.二、填空题1.6 10解析:∵BC⊥AC,CB=8cm, AC=6cm,∴点B到AC的距离是8cm,点A到BC的距离是6cm,故答案为8,6,10.2.AB详解:解:根据点到直线的距离的定义,易得A点到直线l的距离是线段AB的长度.1故答案为:AB.3.125分析:根据垂直的定义及角的加法,求出∠BOC的度数,根据对顶角相等求解即可.详解:⊥∵EO AB∴∠EOB=90°∵∠EOC=35°∴∠BOC=∠EOB+∠EOC=125°∴∠AOD=∠BOC =125°故答案为:125点睛:本题考查的是垂直的定义及角的加减,掌握垂直的定义及能从图形中确定角之间的关系是关键.4.30°或150°分析:根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.详解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=3:2,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.如图,①当在∠AOC内时,∠BOC=90°-60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故答案为30°或150°.点睛:此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.5.55°解析:如下图,∵直线a、b、c相交于点O,且c⊥b,∴∠1+∠2+3∠=180°,∠3=90°,又∵∠1=35°,∴∠2=180°-35°-90°=55°.故答案为55°.三、解答题1.图形见解析.分析:根据过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线分别画出即可详解:解:如答图所示,PA为直线a的垂线,PB为直线b的垂线.点睛:垂线的作法是本题的考点,熟练掌握作图方法是解题的关键.2.(1)见解析(2)见解析(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.解析:(1)如图,过A点作AD⊥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.详解:(1)(2)如图所示.(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.点睛:本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键.3.(1)图形见解析(2)∠EPF=∠B解析:试题分析:(1)①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E ,过点P 作AB 的平行线交BC 于F ;(2)根据平行线的性质可得∠AEP=∠B,∠EPF=∠AEP 然后利用等量代换得到结论即可. 解:如图所示,(1)①直线PD 即为所求;②直线PE 、PF 即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).点睛:本题考查了平行线和垂线的画法及平行线的性质,熟练掌握两直线平行同位角相等,两直线平行内错角相等是解答本题的关键.4.详见解析.解析:试题分析:(1)过点C 作AB 的平行线.(2)过点C 作CD 垂直于AB 交AB 于点D .根据垂线段最短,可得CD 长度最小,量出CD 的长度,然后按比例尺求出实际的距离. 试题如图:(1)过点C 画一平行线平行于AB .(2)过点C 作CD 垂直于AB 交AB 于点D .然后用尺子量CD 的长度,再按1:2000的比例求得实际距离即可.经测量0.9,CD cm =0.92000180018.cm m ⨯==5.(1)AOD BOE ∠=∠;(2)160BOC ∠=;(3)45AOD ∠=.解析:(1)根据垂直定义可得∠DOB+∠BOE=90°,再根据同角的余角相等可得∠AOD=∠BOE;(2)根据余角定义可得∠BOD=20°,再根据邻补角互补可得∠BOC 的度数;(3)根据角平分线性质可得∠DOB=12∠DOE=45°,再根据角的和差关系可得答案.详解:解:()1AOD BOE∠=∠,∵OE CD⊥于点O,∴90DOB BOE∠+∠=,∵90AOB∠=,∴90AOD DOB∠+∠=,∴AOD BOE∠=∠;()2∵70AOD∠=,90AOB∠=,∴20BOD∠=,∴18020160BOC∠=-=;()3∵OB所在的直线平分DOE∠,∴1452DOB DOE∠=∠=,∵90AOB∠=,∴904545AOD∠=-=.点睛:此题主要考查了垂线,以及余角,补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.。
5.1.2 垂 线(1)
![5.1.2 垂 线(1)](https://img.taocdn.com/s3/m/f8fef202227916888486d746.png)
5.1.2垂线第课时1.知道垂直是相交的特殊情况,理解垂线的概念.2.会用三角尺或量角器过一点画已知直线的垂线.通过操作、探究等活动,培养学生的动手能力,并通过活动使学生对知识的学习从感性认识上升到理性认识.通过生动、有趣的活动,使学生积极参与到数学活动中,并在活动中感受成功的快乐.【重点】垂线的定义,用三角尺或量角器过一点画已知直线的垂线.【难点】过一点画已知直线的垂线.【教师准备】相交线模型、三角尺、量角器.【学生准备】三角尺、直尺、量角器、硬纸条、图钉.导入一:出示意大利比萨斜塔图片.师:同学们,你们认识这个世界著名的建筑吗?对!是意大利的比萨斜塔.那么这个斜塔倾斜多少度呢?如图所示,直线AB可以看成地平面,射线OC可以看成塔身所在的直线.要回答这个问题,就涉及我们要学习的垂线问题.[设计意图]从学生比较熟悉的事物中抽象出数学问题,更能唤起学生探求新知的欲望.导入二:(学生事先准备宽约为1 cm,长约为20 cm的两张硬纸条,图钉一个)课堂操作:学生用图钉在中间把两张纸条订在一起,提示学生可以把两张纸条看作是两条直线,观察两条直线相交有几个交点?如图所示,可以看到,直线AB与CD相交,只有一个交点,可以说明直线AB,CD相交于点O.【思考】两条直线相交所构成的四个角能否相等?[设计意图]用现实生活中的例子,引入相交线所成的角,为理解垂直的定义做认知准备,同时也会激发学生的学习兴趣,有利于进入新的知识学习.导入三:如图所示,直线AB,CD相交于点O,若∠1=90°,求其他三个角.教师出示问题,学生独立解决问题,并在练习本上书写解答过程.在这一过程中,教师应当关注学生是否能够独立完成问题,并且能否较规范地写出解答过程.然后学生口述过程并说明理由.[设计意图]通过练习,一是复习上节课的邻补角和对顶角的概念及性质,二是逐步培养学生的推理论证能力.一、探究垂线的概念思路一利用相交线模型引入直线相互垂直的概念.教师出示相交线模型,如图(1)所示,固定其中一个木条a,转动另一个木条b,在这一过程中,它们的交角∠α在不停地变化,这一过程中,一定会出现它们的交角等于90°的情况,这时我们说a与b互相垂直,这时其中一条直线叫另一条直线的垂线,记作a⊥b,它们的交点叫做垂足,如图(2)所示,可记作:AB⊥CD,垂足为O.推理过程如下:因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).[设计意图]通过模型的展示让学生认识到,垂直是相交的一种特殊情形,使学生对垂直首先有一个感性的认识,进而引入相关的概念.同时通过教师对图形的描述,使学生逐步学习用几何语言描述图形的语句.[知识拓展](1)垂直是相交线中一种特殊形式,当垂直时,这个公共点即为垂足.(2)线段与线段、线段与射线、射线与射线、线段与直线或射线与直线垂直,特指它们所在的直线互相垂直.(3)根据两条直线互相垂直的定义可知:若两条直线互相垂直,则所成的四个角都为直角;反之,若两条直线相交所成的四个角中的任意一个角等于90°,则这两条直线互相垂直.2.感受生活中互相垂直的实例.【思考】生活中有许多垂直的例子,你能举出一些例子吗?教师出示图片:(提示学生观察铁轨和枕木之间的位置关系)学生从中观察相互垂直的直线,然后举出一些互相垂直的例子.[设计意图]通过对实物的感知,使学生认识到生活中处处有数学图形,在感受生活中的数学的同时加深对垂线的理解与掌握.3.例题讲解(自设).如图所示,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A.30°B.34°C.45°D.56°〔解析〕∠1和∠2既不是对顶角也不是邻补角,这就需要根据给出的∠1的度数和相关位置进行思考.根据已知条件,把CO⊥AB转化为∠AOC=∠COB=90°是关键.发现∠AOD,∠DOB分别是∠2的邻补角和对顶角后,问题即可解决.方法1:因为CO⊥AB,所以∠COB=90°,所以∠DOB=90°-∠1=90°-56°=34°.所以∠2=∠DOB=34°(对顶角相等).方法2:因为CO⊥AB,所以∠COB=90°,所以∠AOD=90°+∠1=90°+56°=146°.所以∠2=180°-146°=34°(邻补角互补).故选B.[设计意图]角度计算题,目的是考查学生利用垂直定义以及对顶角性质解决问题的能力.思路二1.实验探究.教师自制教具,将两根木条钉在一起(如图所示),固定其中一根木条a,转动木条b,请学生观察:问题:在木条b的转动过程中,哪个量也随之发生改变?师生活动:学生发言,相互补充.教师借机和学生一起回忆上节课学习的内容:对顶角和邻补角的概念和性质.教师追问(1):当a与b所成角α为90°时,其余各角分别为多少度?师生活动:教师引导学生发现,当a与b所成角α为90°时,其余各角都为90°,是木条相交中最特殊的一种情况.教师追问(2):这时木条a与b有何位置关系呢?师生活动:学生根据小学已学的知识可以知道,此时木条a与b互相垂直.[设计意图]让学生借助已有的知识发现数学问题,并解决问题,进一步提高对垂直概念的认识.2.变换角度,认识垂直.仔细观察下图,当两条直线相交时所形成的4个角中,有一个角为90°,可以得出这两条直线有何位置关系呢?师生活动:学生回答,并归纳概括出垂直的定义.教师补充指出垂线和垂足的概念,并给出垂直的符号表示.教师追问(1):如图所示,如何用符号语言表示垂直的定义呢?师生活动:学生观察图形,独立完成用符号语言表示垂直的定义,教师点拨,规范学生的书写过程.如图所示,若AB和CD相交,且∠1=90°,则直线AB和CD互相垂直,记作“AB⊥CD”(或CD⊥AB),读作“AB 垂直于CD”.如果垂足是O,记作“AB⊥CD,垂足为O”.一般地,垂直在图中用“”表示,在推理计算的过程中用“⊥”表示.教师追问(2):如何判定两条射线互相垂直?两条线段呢?师生活动:学生积极踊跃发言,教师做总结,提醒学生注意:两条线段垂直、两条射线垂直、射线与直线垂直、线段与射线垂直、线段与直线垂直,都是指它们所在的直线垂直.根据两条直线互相垂直的定义可知:若两条直线互相垂直,则相交所成的四个角为直角;反之,若两条直线的交角为直角,则这两条直线互相垂直.如图所示,这个推理过程可以写成:因为AB⊥CD(已知),所以∠AOC=∠COB=∠BOD=∠AOD=90°(垂直的定义);反之,因为∠AOC=90°(已知),所以AB⊥CD.[设计意图]教师引导学生用几何语言描述图形的位置关系,并学会用符号语言表示,培养学生表达几何图形的能力.教师追问(3):你能举出一些生活中与垂直有关的实例吗?[设计意图]学生列举身边的实物,能由实物的形状想象出直线的垂直关系,将新知识应用到对周围环境的直接感知中,有利于学生建立直观、形象的数学模型.1.用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?2.经过直线l上一点A画l的垂线,这样的垂线能画出几条?3.经过直线l外一点B画l的垂线,这样的垂线能画出几条?画法点拨:过一点画已知直线的垂线,可以用直角三角板来画,具体步骤为:(1)贴:将三角板的一条直角边紧贴在已知直线上;(2)过:使三角板的另一直角边经过已知点;(3)画:沿已知点所在直角边画出所求的直线.如图所示,图(1)是点在直线l上,图(2)是点在直线l外.两直线垂直的概念中的核心内容是直角,所以在画垂线时这个直角的位置就显得相当重要了,画错了位置,已知直线的垂线也就画错了.在画垂线时要注意让直角的一边与已知直线重合,而另一边要过已知点(即过此点画已知直线的垂线),在画垂线时要注意只有满足上述条件时,这两条直线才是垂直的.另外要画的已知直线的垂线是一条直线,千万不要画成线段或射线.提示:(1)过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上.(2)过一点包括两种情况:①点在直线外;②点在直线上.活动方式:教师出示问题,学生分小组讨论尝试,然后找学生回答讨论的结果,并找学生到黑板上画一画.师生共同归纳结论:经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线,即在同一平面内,过一点有且只有一条直线与已知直线垂直.[设计意图]通过尝试、讨论、探究,找到画已知直线垂线的方法,使学生手脑并用,加深印象.通过师生的共同总结,培养学生的归纳总结能力,同时让学生认识到作已知直线的垂线的两种情况.(补充)如图(1)所示,在三角形ABC中,∠BCA为钝角.(1)画出过点C且与线段BA垂直的直线;(2)画出过点A且与线段BC垂直的直线.〔解析〕利用三角尺的直角正确画出图形,注意垂足的位置.(1)过点C作AB的垂线,垂足在线段AB 上.(2)因为∠BCA是钝角,过点A画BC的垂线时,垂足在BC的延长线上.解:(1)过点C画AB的垂线,交AB于D,CD就是所求,如图(2)所示.(2)过点A画BC的垂线,交BC的延长线于E点,AE就是要求的垂线,如图(2)所示.[知识拓展](1)在同一平面内,经过直线上一点或直线外一点画已知直线的垂线,只能画出一条.(2)经过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在射线的反向延长线或线段的延长线上(如图所示).(3)画垂线时是实线,此时如需延长线段或反向延长射线,要用虚线延长或反向延长.1.垂线的概念:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)“有且只有”中,“有”指“存在性”,“只有”指“唯一性”.(3)“过一点”中的“点”在直线上或直线外都可以.1.下列说法中,正确的个数是()①相等的角是对顶角;②在同一平面内,过一点有且只有一条直线和已知直线垂直;③两条直线相交有且只有一个交点;④两条直线相交成直角,则这两条直线互相垂直.A.1B.2C.3D.4解析:两角相等指的是数量关系上的相等,对顶角是特殊位置关系的相等的角,故①错误;在同一平面内,过一点有且只有一条直线和已知直线垂直,故②正确;两条直线相交有且只有一个交点,故③正确;两条直线相交成直角,则这两条直线互相垂直,故④正确.即正确的个数是3.故选C.2.下列四个条件中能判断两条直线互相垂直的有()①两条直线相交所成的四个角中,有一个角是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中,有一组相邻的角相等;④两条直线相交所成的四个角中,有一组对顶角的和为180°.A.4个B.3个C.2个D.1个解析:①两条直线相交所成的四个角中有一个角是直角,是定义,能判断;②两条直线相交所成的四个角相等,则四个角都是直角,能判断;③两条直线相交所成的四个角中有一组相邻的角相等,根据邻补角的定义能求出这两个角都是直角,能判断;④两条直线相交所成的四个角中有一组对顶角的和为180°,根据对顶角相等求出这两个角都是直角,能判断.所以四个条件都能判断两条直线互相垂直.故选A.3.如图所示,过P点,画出射线OA,OB的垂线.解析:图(1)的P点在射线OA,OB之外,图(2)的P点在射线OA之外,在射线OB之上.图(2)过点P作射线OA的垂线时,要注意垂足在射线OA的反向延长线上,需要用虚线表示延长线.解:如图所示.4.如图所示,直线AB,CD相交于点O,OE⊥CD,OF⊥AB,∠BOD=25°,求∠AOE和∠DOF的度数.解:因为OE⊥CD,OF⊥AB,∠BOD=25°,所以∠AOE=90°-25°=65°,∠DOF=90°+25°=115°.第1课时1.探究垂线的概念当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.例12.垂线的画法和性质在同一平面内,过一点有且只有一条直线与已知直线垂直.例2一、教材作业【必做题】教材第5页练习第1,2题.【选做题】教材第8页习题5.1第3,4题.二、课后作业【基础巩固】1.如图所示,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°2.两条直线相交所构成的四个角中:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等.其中能判定这两条直线垂直的有()A.1个B.2个C.3个D.4个3.如图所示,在正方体中和AB同在一个平面,且和AB垂直的边有()A.1条B.2条C.3条D.4条4.如图所示,已知AB,CD相交于O,OE⊥CD于O,∠AOC=30°,则∠BOE等于()A.30°B.60°C.120°D.130°【能力提升】5.如图所示,已知直线AB和CD相交于O点,CO⊥OE,OF平分∠AOE,∠COF=34°,求∠BOD的度数.6.如图所示,已知OC⊥AB于O,∠AOD∶∠COD=1∶2.(1)若OE平分∠BOC,求∠DOE的度数;(2)若∠AOE的度数比∠COE的度数的3倍多30°,试判断OD与OE的位置关系,并说明理由.7.如图所示,直线AB,CD相交于点O,∠BOD=40°,按下列要求画图并回答问题.(1)在直线AB上方画射线OE,使OE⊥AB;(2)分别在射线OA,OE上截取线段OM,ON,使OM=ON,连接MN;(3)画∠AOD的平分线OF,交MN于点F;(4)直接写出∠COF和∠EOF的度数:∠COF=度,∠EOF=度.【拓展探究】8.(1)在图(1)中以P为顶点画∠P,使∠P的两边分别和∠1的两边垂直;(2)量一量图(1)中∠P和∠1的度数,它们之间的数量关系是;(3)同样在图(2)和图(3)中以P为顶点作∠P,使∠P的两边分别和∠1的两边垂直,分别写出图(2)和图(3)中∠P和∠1之间的数量关系(不要求写出理由).图2:,图3:;(4)由上述三种情形可以得到一个结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角.(不要求写出理由)【答案与解析】1.C(解析:因为∠1=145°,所以∠2=180°-145°=35°,因为CO⊥DO,所以∠COD=90°,所以∠3=90°-∠2=90°-35°=55°.故选C.)2.D(解析:根据垂直的定义:两直线的交角为90°时,这两条直线互相垂直进行分析即可.)3.D(解析:因为正方体的每一个面都是正方形,即每一个角都为90°,所以与AB垂直的边有4条.故选D.)4.C(解析:因为OE⊥CD,所以∠EOD=90°,因为∠AOC=30°,所以∠BOD=∠AOC=30°,所以∠BOE=∠EOD+∠BOD=90°+30°=120°.故选C.)5.解:因为CO⊥OE,所以∠COE=90°.因为∠COF=34°,所以∠EOF=90-34°=56°.又因为OF平分∠AOE,所以∠AOF=∠EOF=56°.因为∠COF=34°,所以∠AOC=56°-34°=22°.则∠BOD=∠AOC=22°.6.解:(1)因为OC⊥AB于O,所以∠AOC=∠BOC=90°.因为∠AOC=90°,∠AOD∶∠COD=1∶2,所以∠DOC=60°.因为OE平分∠BOC,∠BOC=90°,所以∠COE=45°,∠DOE=∠DOC+∠COE=60°+45°=105°. (2)OD⊥OE.理由如下:OC⊥AB于O,所以∠AOC=∠BOC=90°.因为∠AOC=90°,∠AOD∶∠COD=1∶2,所以∠DOC=60°,因为∠AOE-∠COE=2∠COE+30°,且∠AOE-∠COE=90°,所以2∠COE+30°=90°,所以∠COE=30°.因为∠DOE=∠DOC+∠COE=60°+30°=90°,所以OD⊥OE.7.解:(1)如图所示的射线OE. (2)如图所示的ON,OM,线段MN. (3)如图所示的OF平分∠AOD,交MN于点F. (4)110208.解:(1)如图(1)所示. (2)∠P+∠1=180°(3)如图(2)(3)所示. ∠P=∠1∠APB+∠1=180°(4)相等或互补在这堂课中,学生的主体地位突出,真正经历了知识形成的全过程.在自主学习、合作交流的活动中升华了对知识的理解.教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多.在本节课中的每一个学习活动,都以学生个性思维、自我感悟为前提,多次设计了让学生自主探索、合作交流的活动.通过学生和谐有效地互动,强化了学生的自主学习意识.(1)在教学过程中学生归纳的少,教师说明的多,没有让学生充分发表自己的见解.(2)在学习画垂线的过程中,部分学生画的不够规范,教师在指导上不够到位.对于知识的形成,教师要充分让学生探索、观察,用自己的语言表述发现的问题,然后充分发挥集体的合力,取长补短,逐步完善,教师再给以适当的点拨,形成结论.画已知直线的垂线,教师要注意画图的指导,一要注意规范,二要注意对知识的分析与强化,使学生对垂线有更深一步的认识.从而达到对知识的理解和掌握,对于学生出现的问题一定要及时点评.。
5.1.2 垂线 人教版七年级数学下册重难点专项练习(含答案)
![5.1.2 垂线 人教版七年级数学下册重难点专项练习(含答案)](https://img.taocdn.com/s3/m/a9108fa0e109581b6bd97f19227916888486b9f3.png)
5.1.2《垂线》重难点题型专项练习考查题型一垂线的定义典例1.(2022秋·北京·七年级北京市第一六一中学校考期末)如图,O是上一点,于点O,直线经过O点,,则的度数为( )A.100°B.105°C.115°D.125°【答案】C【分析】由,可得,由对顶角相等可得,根据角的和差即可解答.【详解】解:∵,∴,∵,∴.故选:C.【点睛】此题考查垂直的定义以及对顶角,题目很简单,解题时要仔细识图.变式1-1.(2022秋·四川泸州·七年级统考期末)已知:如图,于点O,c为经过点O的任意一条直线,那么与的关系是()A.互余B.互补C.互为对顶角D.相等【答案】A【分析】根据对顶角相等得到,利用,得到,即可推出.【详解】解:由题意得,∵,∴,∴,故选:A.【点睛】此题考查了对顶角相等,垂直的定义,余角的定义,熟记各定义是解题的关键.变式1-2.(2022春·黑龙江哈尔滨·七年级哈尔滨风华中学校考期中)如图,,直线BD 经过点O,则的度数为( )A.B.C.D.【答案】B【分析】先利用垂直的含义求解再利用邻补角的含义求解即可.【详解】解:∵,∴∵直线BD经过点O,∴故选B.【点睛】本题考查的是垂直的含义,邻补角的含义,熟练的利用垂直与邻补角的定义求解角的度数是解本变式1-3.(2022秋·辽宁本溪·七年级统考期末)如图,,,垂足为点O,,垂足为点O,则等于()A.24°B.42°C.48°D.64°【答案】B【分析】根据,,可得∠BOD=∠AOC=90°,再由,可得∠AOB=48°,即可求解.【详解】解:∵,,∴∠BOD=∠AOC=90°,∵,∴∠AOB=∠AOD-∠BOD=48°,∴∠BOC=∠AOC-∠AOB=42°.故选:B【点睛】本题主要考查了角与角间的和与差,垂直的性质,明确题意,准确得到角与角之间的关系是解题的关键.考查题型二作已知直线的垂线典例2.(2021秋·广东珠海·七年级统考期中)过点C向AB边作垂线段,下列画法中正确的是( )A.B.C.D.【分析】根据垂线段的定义逐个判断即可得出正确结论.【详解】解:A.此选项是过点A作BC边的垂线段,故错误;B.此选项是过点B作AB边的垂线段,故错误;C.此选项是过点C作AB边的垂线段,故此项正确;D.此选项是过点B作CA边的垂线段,故错误.故选:C.【点睛】本题考查了垂线段的定义及作法,是一道基础题,解题时要善于观察,准确理解垂线段的定义是解题的关键.变式2-1.(2022秋·河北承德·七年级统考期末)下列选项中,过点P画AB的垂线CD,三角尺放法正确的是( )A.B.C.D.【答案】C【分析】根据P点在CD上,CD⊥AB进行判断.【详解】解:过点P画AB的垂线CD,则P点在CD上,CD⊥AB,所以三角尺放法正确的为【点睛】本题考查了作图-基本作图,熟练掌握基本作图(过一点画已知直线的垂线)是解决问题的关键.变式2-2.(2022秋·河北石家庄·七年级校联考期中)下列各图中,过直线外的点画直线的垂线,三角尺操作正确的是()A.B.C.D.【答案】C【分析】根据垂线的作法,用直角三角板的一条直角边与l重合,另一条直角边过点P后沿直角边画直线即可;【详解】根据分析可得C的画法正确;故答案选C.【点睛】本题主要考查了垂线的作法,准确理解是解题的关键.变式2-3.(2020秋·广西·七年级广西大学附属中学校考阶段练习)下列用三角板过点P画AB的垂线CD,正确的是()A.B.C.D.【答案】D【分析】根据垂线的作法,用直角三角板的一条直角边与重合,另一条直角边过点后沿直角边画直线即可.【详解】解:根据分析可得,用直角三角板的一条直角边与重合,另一条直角边过点后沿直角边画直线,选项的画法正确,故选:.【点睛】此题主要考查了垂线的画法,在平面内,过一点有且只有一条直线与已知直线垂直.考查题型三垂线的性质的应用典例3.(2022秋·重庆云阳·七年级校考阶段练习)春节过后,某村计划挖一条水渠将不远处的河水引到农田(记作点O),以便对农田的小麦进行灌溉,现设计了四条路段,,,,如图所示,其中最短的一条路线是( )A.OA B.OB C.OC D.OD【答案】B【分析】根据垂线段的性质:垂线段最短,可得答案.【详解】由垂线段最短,得四条线段,,,,如图所示,其中最短的一条路线是,故选:B.【点睛】本题考查了垂线段的的性质,熟记性质是解题关键.变式3-1.(2022·江苏盐城·校考三模)如图,是测量学生跳远成绩的示意图,即的长为某同学的跳远成绩,其依据是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线与已知直线垂直【答案】C【分析】由点到直线的距离的定义及跳远比赛的规则作出判断.【详解】解:能正确解释这一现象的数学知识是垂线段最短,故选:C.【点睛】此题考查了垂线段最短的性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.变式3-2.(2022秋·河北保定·七年级校考期中)如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.垂线段最短【答案】D【分析】根据垂线段最短解答即可.【详解】解:过点C作于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是:垂线段最短.故选D.【点睛】本题考查了垂线段的性质,熟练掌握垂线段性质是解答本题的关键.从直线外一点到这条直线上各点所连的线段中,垂线段最短.变式3-3.(2022秋·河南安阳·七年级统考期末)如图,从位置O到直线公路l有四条小道,其中路程最短的是()A.OA B.OB C.OC D.OD【答案】C【分析】根据垂线的性质即可得到结论.【详解】解:根据垂线段最短得,能最快到达公路l的小道是OC,故选C.【点睛】本题考查了垂线段最短,熟记垂线的性质是解题的关键.考查题型四点到直线的距离典例4.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,直角三角形中,,,垂足是点,则下列说法正确的是()A.线段的长表示点到的距离B.线段的长表示点到的距离C.线段的长表示点到的距离D.线段的长表示点到的距离【答案】C【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A.线段的长度表示点A到的距离,说法错误,不符合题意;B.线段的长度表示点C到的距离,说法错误,不符合题意;C.线段的长度表示点B到的距离,说法正确,符合题意;D.线段的长度表示点B到的距离,说法错误,不符合题意;故选C.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.变式4-1.如图,P为直线l外一点,A,B,C在l上,且PB⊥l,下列说法中,正确的个数是()①PA,PB,PC三条线段中,PB最短;②线段PB叫做点P到直线l的距离;③线段AB的长是点A到PB 的距离;④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;从直线外一点到这条直线上各点所连的线段中,垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段,根据垂线段最短可知,PA,PB,PC三条线段中,PB最短;故原说法正确;②线段BP是点P到直线l的垂线段,故线段BP的长度叫做点P到直线l的距离,故原说法错误;③线段AB是点A到直线PB的垂线段,故线段AB的长度叫做点P到直线l的距离,故故原说法正确;④由题意及图形无法判断线段AC的长是点A到PC的距离,故原说法错误;综上所述,正确的说法有①③;故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.变式4-2.(2022春·广东梅州·七年级校考阶段练习)如图,已知三角形ABC中,∠ACB=90°,CD⊥AB,垂足为D,则表示点A到直线CD距离的是( )A.线段CD的长度B.线段AC的长度C.线段AD的长度D.线段BC的长度【答案】C【分析】根据点到直线的距离的概念:直线外一点到这条直线的垂线段的长度即为该点到这条直线的距离作答即可.【详解】解:点A到CD的距离是线段AD的长度.故选C.【点睛】本题主要考查了点到直线的距离的概念,解题的关键是熟练掌握并理解点到直线的距离的概念.变式4-3.(2022秋·山东济宁·七年级统考期末)如图,点A在直线l1上,点B,C在直线l2上,AB⊥l2于点B,AC⊥11于点A,AB=4,AC=5,则下列说法正确的是( )A.点B到直线l1的距离等于4B.点A到直线l2的距离等于5C.点B到直线l1的距离等于5D.点C到直线l1的距离等于5【答案】D【分析】根据点到直线的距离的定义求解即可.【详解】解:∵AB⊥于点B,AC⊥于点A,AB=4,AC=5,∴点A到直线的距离等于4,点C到直线的距离等于5,故选:D.【点睛】本题考查了点到直线的距离,利用点到直线的距离定义是解题关键.。
人教版七年级下册数学习题:5.1.2垂线 练习题
![人教版七年级下册数学习题:5.1.2垂线 练习题](https://img.taocdn.com/s3/m/0ba718380975f46526d3e102.png)
垂线练习题1、到直线L 的距离等于2cm的点有()A、0个B、1个C、无数个D、无法确定2、如图,能表示点到直线(线段)的距离的线段有()A、2条B、3条C、4条D、5条3、与一条已知直线垂直的直线有()A.1条 B.2条 C.3条 D.无数条4、点到直线的距离是指( )A 从直线外一点到这条直线的垂线。
B. 从直线外一点到这条直线的垂线段。
C. 从直线外一点到这条直线的垂线的长。
D. 从直线外一点到这条直线的垂线段的长。
5、在下列语句中,正确的是().A.在同一平面内,一条直线只有一条垂线B.在同一平面内,过直线上一点的直线只有一条C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.在同一平面内,垂线段就是点到直线的距离6、学校的国旗的旗杆与地面的位置关系属于()A直线与直线平行B直线与直线垂直C直线与平面平行D直线与平面垂直7、如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD与∠FOB的大小关系是()A .∠EOD 比∠FOB 大 B .∠EOD 比∠FOB 小C .∠EOD 与∠FOB 相等 D .∠EOD 与∠FOB 大小关系不确定8、直线外____与直线上各点连结的所有线段中,______最短。
9、过一个钝角的顶点向一边作垂线把这个钝角分成的两个角的比为1∶6,则这个钝角为__10、如图,OA ⊥OC, ∠AOB: ∠AOC=2:3,∠BOC= 。
11、如图,已知三条直线AB 、CD 、EF 相交于O ,且EF ⊥AB ,(1)若 ∠DOE=50°,则∠BOD= , ∠AOD= .(2)若∠COB=β,则∠BOD= , ∠DOE= 。
12. 如图,已知三条直线AB 、CD 、EF 相交于O ,且EF ⊥AB ,(1)若∠DOE=50°,则∠BOD= , ∠AOD= .(2)若∠COB=β,则∠BOD=, ∠DOE= 。
13、已知直线AB 、CD 交于O, OE CD ,OF AB ,且,求和的度数⊥⊥065=∠FOD BOE ∠AOC ∠_ E_ B 10题C OBA CA ED BFO 11题图CA ED BFO 12题图14、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.15、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC. 请说明OD 与OE 的位置关系.16、如图,分别画出点A 、B 、C 到BC 、AC 、AB 的垂线段,再量出A 到BC 、点B 到AC 、 点C 到AB 的距离.E ODCBAE DCBACBA17、如图,直线AB与CD相交于点O,若∠AOD=80°,∠BOE-∠BOC=40°,求∠DOE的度数.。
人教版 七年级数学下册 5.1.2 垂线(一) 精品课时作业习题(含解析)
![人教版 七年级数学下册 5.1.2 垂线(一) 精品课时作业习题(含解析)](https://img.taocdn.com/s3/m/408165695727a5e9846a6126.png)
作业2 §5.1.2 垂线(一)典型例题【例1】 ①两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直;②两条直线相交,若有一组对顶角互补,则这条直线互相垂直;③两条直线相交,若所成的四个角相等,则这两条直线垂直;④两条直线相交,若有一组邻补角相等,则这两条直线垂直.其中说法正确的有( )A.1个B.2个C. 3个D. 4个【解析】 题中的4个说法,都是关于两条直线垂直的判定问题.根据垂直定义,只要推出两条直线相交所成的四个角中有一个角是直角,就可以判断两条直线互相垂直.①是垂直的定义,所以正确;②有一组对顶角互补,因为对顶角相等,所以这两个角都是90°,所以正确;③两条直线相交,所成的四个角相等,都是90°,所以正确;④有一组邻补角相等,而邻补是互补的,所以这两个角都是90°,所以正确.【答案】 D【例2】 如图5-16,过点A 、B 分别画OB 、OA 的垂线.图5-16 图5-17【解析】 画线段或射线的垂线,就是画这条线段或射线所在直线的垂线,本例中的垂足分别在OB 的反向延长线上和OA 的延长线上.【答案】如图5-17所示,直线AE 为过点A 与OB 垂直的直线,垂足为E;直线BD 为过点B 与OA 垂直的直线,垂足为D.【例3】 如图5-18,点O 为直线AB 上一点,OC 为一射线,OE 平分∠AOC ,OF 平分∠BOC(1)若∠BOC=50°,试探究OE 、OF 的位置关系;(2)若∠BOC=α(0°<x <180°),(1)中OE 、OF 的位置关系是否仍成立?请说明理由,由此你发现了什么规律?图5-18【解析】 要探究OE 、OF 的位置关系,可先用三角尺或量角器检测∠EOF 的大小来判断OE 、OF 的关系,再通过计算加以说明;第(2)问用代数代表示∠EOF ,再归纳出结论.【答案】 (1)由量角器测得∠EOF=90°,因此OE ⊥OF.由邻补角的定义,可得∠AOC=180°-∠BOC=130°.由OE 平分∠AOC ,OF 平分∠BOC 可得∠COF=21∠BOC=25°, ∠COE=21∠AOC=65°. 所以∠EOF=∠COF+∠COE=90°.因此OE ⊥OF.(2)OE ⊥OF 仍成立.因为∠AOC=180°-α,∠COF=21α,∠COE=21(180°-α)=90°-21α. 所以∠EOF=∠COF+∠COE=21α+(90°-21α)=90°. 由此发现:无论∠BOC 度数是多少,∠EOF 总等于90°.即邻补角的平分线互相垂直.总分100分 时间40分钟 成绩评定___________一、填空题(每题5分,共50分)课前热身1.两条直线互相垂直时,所得的四个角中有__________个直角.答案:42.过一点________条直线与已知直线垂直.答案:有且只有课上作业3.如图5-19,OA ⊥OB 于O ,直线CD 经过点O ,∠AOD=35°,则∠BOC=________.答案:125°4.如图5-20,直线AB 与CD 相交于点O ,EO ⊥AB 于O ,则∠1与∠2的关系是________.图5-19 图5-20答案:互为余角5.如图5-21,O 是直线AB 上一点OC ⊥OD ,有以下两个结论:①∠AOC 与∠BOD 互为余角;②∠AOC 、∠COD 、∠BOD 互为邻补角.其中说法正确的是________(填序号).图5-21 图5-22答案:①6.如图5-22,已知OC ⊥AB ,OE ⊥OD ,则图中互余的角共有________对.答案:4课下作业7.如果CD ⊥AB 于D ,自CD 上任一点向AB 作垂线,那么所画垂线均与CD 重合,这是因为________. 答案:过一点有且只有一条直线与已知直线垂直8.如图5-23,直线AB 、CD 、EF 交于一点O ,CO ⊥EF 且∠GOB=30°,∠AOC=40°,则∠COE=________. 答案:20°9.从钝角∠AOB 的顶点O 引射线OC ⊥OA ,若∠ACO ∶∠COB=3∶1,则∠AOB=________.答案:120°10.如图5-24,直线AB 、CD 相交于O ,EO ⊥AB ,OB 平分∠DOF ,若∠EOC=115°,则∠BOF=________.∠COF=________.图5-23 图5-24答案:25°;130°二、选择题(每题5分,共10分)模拟在线11.(辽宁)如图5-25,∠PQR 等于138°,SQ ⊥QR ,TQ ⊥PQ 则∠SQT 等于( )A.42°B.64°C.48°D.24°图5-25答案:A12.(四川)如图5-26所示,AB 、CD 相交于点O ,OE ⊥AB ,那么下列结论错误的是( )A.∠AOC 与∠COE 互为余角E.∠BOD 与∠COE 互为余角C.∠COE 与∠BOE 互为补角D.∠AOC 与∠BOD 是对顶角图5-26答案:C三、解答题(每题20分,共40分)13.OC 把∠AOB 分成两部分且有下列两个等式成立:①∠AOC=31直角+31∠BOC ;②∠BOC=31平角-21∠AOC ,问∶ (1)OA 与OB 的位置关系怎样?(2)OC 是否为∠AOB 的平分线?并写出判断的理由.答案:(1)OA ⊥OB (2)O(C 为∠AOB 的平分线,因为∠BOC=∠AOC=45°.14.如图5-27,已知AB 、C D 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线.图5-27(1)若∠AOC∶∠COG=4∶7,求∠DOF的大小;(2)若∠AOC∶∠DOH=8∶29,求∠COH的大小.答案:(1)∠DOF=110°(2)∠COH=107.5°。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(4)
![人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(4)](https://img.taocdn.com/s3/m/10deac135ef7ba0d4b733b4c.png)
5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,经过直线l外一点A作l的垂线,能画出()A.4条B.3条C.2条D.1条2.下列说法中正确的是()A.在同一平面内,两条直线的位置只有两种:相交和垂直B.有且只有一条直线垂直于已知直线C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离3.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段就是点到直线的距离4.如图,在一张透明的纸上画一条直线l,在l外任取一点Q,并折出过点Q且与l垂直的直线,能折出这样的直线的条数为( )A.0条B.1条C.2条D.无数条5.体育课上,老师测量跳远成绩的依据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.平行线间的距离相等6.体育课上,老师测量跳远成绩的依据是( )A.垂直的定义 B.两点之间线段最短C.垂线段最短 D.两点确定一条直线7.下列说法中,正确的是( )A.垂线最短 B.两点之间直线最短C.如果两个角互补,那么这两个角中一个是锐角,一个是钝角 D.同角的补角相等8.下列说法中正确的有()(1) 钝角的补角一定是锐角(2) 过己知直线外一点作这条直线的垂线有且只有一条(3) —个角的两个邻补角是对顶角(4) 等角的补角相等(5) 直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线l的距离是3cm .A.2个B.3个C.4 个D.5 个9.下列说法中,正确的是( )A.过直线外一点可以画无数条直线与这条直线垂直B.过直线外一定点不可以画这条直线的垂线C.过直线外一点可以画这条直线的一条垂线D.如果两条直线不相交,那么这两条直线有可能互相垂直二、填空题1.如图,AH⊥BC,垂足为H,若AB=1.7cm,AC=2cm,AH=1.1cm,则点A到直线BC的距离是_____cm.2.点到直线的距离是指这点到这条直线的________.3.如图,跳远比赛时,小明从点A起跳落在沙坑内B处,跳远成绩是4.8米,则起跳点A与落脚点B之间的距离_____(填“大于”、“小于”或“等于”)4.8米.4.邻补角的两条平分线互相_________.5.如图,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE与直线AB的位置关系是___________三、解答题1.作图并写出结论:如图,点P 是∠AOB 的边OA 上一点,请过点P 画出OA ,OB 的垂线,分别交BO 的延长线于M 、N ,线段 的长表示点P 到直线BO 的距离;线段 的长表示点M 到直线AO 的距离; 线段ON 的长表示点O 到直线 的距离;点P 到直线OA 的距离为 .2.如图,直线AB 与CD 相交于点O ,OE⊥AB,OF⊥CD.(1)图中∠COE 的余角是 .(请符合条件的角都写出来);(2)图中除直角外,还有相等的角,请写出三对;① ;② ;③ .(3)若∠AOF=3∠COE,求∠COE 的度数(请写出解答过程).3.如图,直线AB 、CD 、MN 相交于点O ,FO⊥BO,OM 平分∠DOF(1)请直接写出图中所有与∠AON 互余的角:.(2)若∠AOC=52∠FOM,求∠MOD 与∠AON 的度数.4.如图,已知直线AB 和CD 相交于O 点,射线OE AB ⊥于O ,射线OF CD ⊥于O ,且BOF 25.∠=求:AOC ∠与EOD ∠的度数.5.如图,已知O为直线AB上的一点,CD⊥AB于点O,PO⊥OE于点O,OM平分∠COE,点F 在OE的反向延长线上.(1)当OP在∠BOC内,OE在∠BOD内时,如图①所示,直接写出∠POM和∠COF之间的数量关系;(2)当OP在∠AOC内且OE在∠BOC内时,如图②所示,试问(1)中∠POM和∠COF之间的数量关系是否发生变化?并说明理由.参考答案一、单选题1.D解析:平面内经过一点有且只有一条直线垂直于已知直线,据此可得.详解:经过直线l外一点画l的垂线,能画出1条垂线,故选D.点睛:本题主要考查垂线,解题的关键是掌握在平面内,过一点有且只有一条直线与已知直线垂直.2.C解析:同一平面内,两条直线可能相交或者平行,一条直线的垂线有很多条,根据平行公理的推论,两条直线都与第三条直线平行则这两条直线平行,点到直线的距离指的是线段的长度.详解:A、在同一平面内,两条直线的位置只有两种:相交和平行,垂直是相交的一种情况,故该选项错误;B、一条直线的垂线有无数条,故该选项错误;C、根据平行公理的推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故该选项正确;D、点到直线的距离指的是垂线段的长度,而非垂线段,故该选项错误.故选C.点睛:本题考查了相交线的位置关系、垂线、点到直线距离的定义以及平行公理的推论,属于基础考题,比较简单.3.C解析:根据垂线的定义、直线的定义、垂线的性质、垂线段的定义逐一进行分析即可得.详解:A、在平面上,一条直线有无数条垂线,错误;B、过直线上一点的直线有无数条,错误;C、在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条,正确;D、垂线段是线段,是图形,垂线段的长度是点到直线的距离,错误,故选C.点睛:本题考查了垂线、垂线段、垂线的性质等知识,熟练掌握相关的概念以及性质是解题的关键.4.B解析:试题根据垂线的性质,这样的直线只能作一条.故选B.点睛:根据垂线的基本性质:过直线上或直线外的一点,有且只有一条直线和已知直线垂直,容易判断.5.C解析:根据垂线段最短的性质解答.详解:老师测量跳远成绩的依据是:垂线段最短.故选C.点睛:本题考查了垂线段最短,掌握垂线段的性质是解题的关键.6.C解析:根据垂线段最短的性质解答.详解:老师测量跳远成绩的依据是:垂线段最短.故选:C.点睛:本题考查了垂线段最短在实际生活中的应用,是基础题.7.D解析:分析:根据线的性质,直线的性质,补角的性质解答即可.详解:A、垂线段最短,故选项错误;B、两点之间线段最短,故选项错误;C、可以为两个直角,故选项错误;D、同角的补角相等,故选项正确.故选D.点睛:本题考查了垂线的性质,直线的性质,补角的性质,是基础知识要熟练掌握图形的性质. 对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.8.D解析:①180°-钝角=锐角,钝角的补角一定是锐角,故①正确;②过已知直线外一点作已知直线的垂线有且只有一条,故②正确;③一个角的两个邻补角是对顶角,故③正确;④等角的补角相等,故④正确;⑤直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线l的距离是3cm,故⑤正确;故选D.9.C解析:利用垂线的定义结合两直线的位置关系分别分析得出即可.详解:A、过直线外一点可以画一条直线与这条直线垂直,故此选项错误;B、过直线外一定点可以画一条直线的垂线,故此选项错误;C、过直线外一点可以画这条直线的一条垂线,故此选项正确;D、如果两条直线不相交,那么这两条直线有可能互相平行,故此选项错误;故选:C.点睛:此题主要考查了垂线的定义以及两直线的位置关系,正确把握相关定义是解题关键.二、填空题1.1解析:分析:根据点到直线的距离的定义回答即可.详解:点A到直线BC的距离是线段AH的长度,是1.1cm.故答案为:1.1.点睛:考查了点到直线的距离.点到直线的距离是指点到直线的垂线段的长度.根据定义回答即可.2.垂线段的长度解析:点到直线的距离是指这点到这条直线的垂线段的长度,故答案为垂线段的长度.3.大于解析:试题跳远成绩为距离起跳线最近的点到起跳线的距离,即垂线段的长.∵垂线段最短,小明的跳远成绩是4.8米,∴小明从起跳点到落脚点之间的距离大于4.8米.故答案为大于.4.垂直解析:利用邻补角的定义以及角平分线的性质得出即可.详解:邻补角的两条平分线互相垂直.故答案为垂直.点睛:此题主要考查了垂线的定义以及邻补角的定义,正确把握邻补角定义是解题关键.5.垂直详解:解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB.故答案为:∴OE⊥AB.三、解答题1.PN,PM,PN,0分析:先根据题意画出图形,再根据点到直线的距离的定义得出即可.详解:如图所示:线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON 的长表示点O到直线PN的距离;点P到直线OA的距离为0,故答案为PN,PM,PN,0.点睛:本题考查了点到直线的距离,能熟记点到直线的距离的定义是解此题的关键.2.(1)∠AOC,∠EOF,∠BOD;(2)∠AOC=∠EOF;∠AOC=∠BOD;∠EOF=∠BOD;(3)45°.分析:(1)根据余角的定义和余角的性质解答即可;(2)根据余角的性质和对顶角相等即可找出三对相等角;(3)根据∠AOF=3∠COE以及∠AOC=∠EOF,可知∠AOC=∠EOC=∠EOF,进一步即可求出结果.详解:解:(1)∵OE⊥AB,OF⊥CD,∠AOC=∠DOB,∴∠COE+∠AOC=90°,∠COE+∠EOF=90°,∠COE+∠BOD=90°;∴图中∠COE的余角是∠AOC,∠EOF,∠BOD;故答案为:∠AOC,∠EOF,∠BOD;(2)根据同角的余角相等可得:∠AOC=∠EOF;∠EOF=∠BOD;根据对顶角相等可得:∠AOC=∠BOD.∴相等的3对角是:①∠AOC=∠EOF;②∠AOC=∠BOD;③∠EOF=∠BOD.故答案为:∠AOC=∠EOF;∠AOC=∠BOD;∠EOF=∠BOD;(3)∵∠AOF=3∠COE,∠AOC=∠EOF,∴∠COE=∠AOC,∵OE⊥AB,∴∠COE+∠AOC=90°,∴∠COE=45°.故∠COE的度数是45°.点睛:本题考查了垂直的定义、对顶角相等、角度的计算和余角的定义及性质等知识,属于基本题型,熟练掌握基本知识是解题关键.3.(1)∠FOM,∠MOD,∠CON;(2)20°,70°分析:(1)根据垂直的定义可得∠BOF=∠AOF=90°,由角平分线的定义和对顶角相等可得与∠AON 互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,用含x的式子表示出∠FOD和∠AOC的度数,然后由∠AOC=∠BOD,得出∠FOD+∠AOC=90°,据此列方程求解,再由(1)中∠MOD与∠AON互余可得出∠AON的度数.详解:解:(1)∵FO⊥BO,∴∠BOF=∠AOF=90°,∴∠BOM+∠FOM=90°,又∠BOM=∠AON,∴∠AON+∠FOM=90°.∵OM平分∠DOF,∴∠DOM=∠FOM,又∵∠DOM=∠CON,∴与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,∵OM平分∠FOD,∴∠MOD=∠FOM=x°,∴∠FOD=2x°,∠AOC=52∠FOM=5x2°,又∵FO⊥BO,∠AOC=∠BOD,∴∠FOD+∠AOC=90°,即2x+5x2=90,解得:x=20.即∠MOD=20°,由(1)可知∠MOD 与∠AON 互余,∴∠AON=90°-∠MOD=90°-20°=70°.故∠MOD 的度数为20°,∠AON 的度数为70°.点睛:本题考查了垂直的定义,角的平分线的定义,余角的定义与性质以及对顶角相等,正确理解相关概念是关键.4.∠AOC=115°, ∠EOD=25°.分析:根据垂线的性质和余角及补角的定义可求出∠ AOC,由垂线的性质和余角的定义可求出∠EOD 详解:解:∵OF⊥CD,∴∠COF=90°,∴∠BOC=90°-∠BOF=65°,∴∠AOC=180°-65°=115°.∵OE⊥AB,∴∠BOE=90°,∴∠EOF=90°-25°=65°,∵OF⊥CD∴∠DOF=90°∴∠EOD=∠DOF −∠EOF =90°-65°=25°.点睛:垂线的性质及补角和余角的定义都是本题的考点,正确找出角之间的关系是解题的关键.5.(1)∠POM=12∠COF,理由见解析;(2)∠POM=12∠COF,理由见解析解析:(1)利用垂直的定义,CD⊥AB,PO⊥EO,等量代换得∠COP=∠BOE,利用角平分线的性质,得∠POM=12∠POB=12(90°-∠POC),∠COF=90°-∠COP,得出结论;(2)利用垂直的定义,同角的余角相等可得∠COP=∠AOF,可推出∠COP+∠COB=∠AOF+∠AOC,即∠BOP=∠COF,由对顶角相等得∠AOF=∠BOE=∠COP,利用角平分线的性质,得∠COP+∠COM=∠BOE+∠MOE,即∠POM=12∠BOP,等量代换得出结论.详解:解:(1)∠POM=12∠CO F.证明:∵CD⊥AB,∴∠COP+∠BOP=90°,∵OP⊥OE,∴∠BOE+∠BOP=90°,∴∠COP=∠BOE,∵OM 平分∠COE,∴∠POM=∠MOB=12∠POB=12 (90°−∠POC),∵∠COF=90°−∠COP ,∴∠POM=12∠COF;(2)不发生变化.理由:∵CD⊥AB 于点O ,∴∠AOP+∠COP=90°.∵PO⊥OE 于点O ,∴∠AOP+∠AOF=90°,∴∠COP=∠AOF.又∵∠AOC=∠COB=90°,∴∠COP+∠COB=∠AOF+∠AOC,即∠BOP=∠COF.∵∠AOF=∠BOE,∴∠COP=∠BOE.∵OM 平分∠COE,∴∠COM=∠MOE,∴∠COP+∠COM=∠BOE+∠MOE,∴∠POM=12∠BOP,∴∠POM=12∠COF.故答案为:(1)∠POM=12∠COF,理由见解析;(2)∠POM=12∠COF,理由见解析. 点睛:本题考查垂线, 角平分线的定义,解题的关键是熟练掌握垂直的定义和角平分线的性质.。
新人教版数学七年级下《5.1.2垂线》课时练习含答案解析
![新人教版数学七年级下《5.1.2垂线》课时练习含答案解析](https://img.taocdn.com/s3/m/a99aefaa5acfa1c7ab00ccaf.png)
新人教版数学七年级下册第五章第一节相交线课时练习一、填空题(共15小题)1.下面说法中错误的是()A.两条直线相交,有一个角是直角,则这两条直线互相垂直B.若两对顶角之和为1800,则两条直线互相垂直C.两条直线相交,所构成的四个角中,若有两个角相等,则两条直线互相垂直D.两条直线相交,所构成的四个角中,若有三个角相等,则两条直线互相垂直答案:C知识点:垂线对顶角邻补角解析:解答:垂线的概念是:当两条直线相交,有一个角是直角时,即两条直线互相平行.依据此概念,我们可以判断,选项A正确.选项B中,两对顶角之和为180°,则说明两对顶角均为90°,选项B 也正确.在选项D中,两条直线相交,所构成的四个角中,若有三个角相等,根据对顶角的性质,说明四个角都相等,又因为四个角的度数和为360°,则说明四个角都是90°,选项D也正确.因为两条直线相交,形成两对对顶角,对顶角是相等的,但是不能说明该角一定是90°,所以选项C错误.分析:掌握相交线形成的对顶角知识,以及垂线的概念,就能轻松解答本题.本题考查垂线.2.如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A.2个B.3个C.4个D.1个答案:B知识点:垂线解析:解答:两条直线互相垂直,其所形成的夹角都是直角.根据题意,AB⊥CD,则∠ADC和∠BDC都是直角;同时,AC⊥BC,所以∠ACB也是直角.为此,图形中一共有3个直角.分析:掌握垂线的概念,就能轻松解答本题.本题考查垂线.3.如图所示,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°答案:C知识点:垂线角平分线解析:解答:两条直线互相垂直,其所形成的夹角都是直角.根据题意,EO⊥CD,则∠EOD和∠EOC都是直角;又因为AB平分∠EOD,所以∠AOD为45°.∠AOD与∠COB是对顶角,所以∠COB也是45°.因为∠COB与∠BOD互补,所以∠BOD=180°-45°=135°.分析:掌握垂线的概念,以及角平分线和对顶角的性质,就能轻松解答本题.本题考查垂线.4.点P为直线外一点,点A、B、C为直线上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线的距离为()A.4cm B.5cm C.小于2cm D.不大于2cm答案:D知识点:点到直线的距离垂线段最短解析:解答:点到直线的最短距离为过点作出的与已知直线的垂线段.在题干中,已知的最短距离为2cm,则选项A和选项B都是不正确的.又因为题干中没有明确告诉PC是否垂直于直线,当两线垂直时,则点P到直线的距离为2cm;若两直线不垂直,则点P到直线的距离为小于2cm.所以,只能选D.分析:点到直线的最短距离为过点作出的与已知直线的垂线段,是解答本题的关键.本题考查点垂线段最短.5.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A.①②③B.①②④C.①③④D.②③④答案:C知识点:垂线解析:解答:由题意可知,OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.同时,OB⊥OD,所以∠BOD=90°,即∠COD+∠BOC=90°.依次,可以判定∠AOB=∠COD,所以①正确.又因为不能推断出∠AOB与∠COD的具体角度,所以②不正确.∠AOD=∠AOB+∠BOC+∠COD,所以∠BOC+∠AOD=∠BOC+∠AOB+∠BOC+∠COD=90°+90°=180°.因为∠AOB=∠COD,所以∠AOC-∠COD=∠AOC-∠AOB=∠BOC,所以④正确.为此,选C.分析:在掌握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.6.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(•).A.26°B.64°C.54°D.以上答案都不对答案:B知识点:垂线对顶角解析:解答:由题意可知,AB⊥CD于点O,所以∠BOC=∠AOD=90°,同时,∠1与∠DOF是对顶角,∠1=26°,所以∠DOF=26°.∠AOD=∠AOF+∠DOF,所以∠AOF=∠AOD-∠DOF=90°-26°=64°.所以选B.分析:在掌握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.7.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段就是点到直线的距离答案:D知识点:垂线解析:解答:概念理解型题.垂直于一条直线的垂线有无数条,所以选项A错误.两点之间才只有一条直线,过一点的直线有无数条,所以选项B错误.选项C是最容易出现混淆的地方.在概念中,同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条;但是,在该选项中,没有注明同一平面,所以选项C错.点到直线的距离就是垂线段,所以选项D正确.分析:概念理解型题,在解答时要注意对概念的正确理解,尤其是像选项C这种属于特别容易混淆的题目.本题考查垂线.8.如图所示,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC; ②AD与AC互相垂直; ③点C到AB的垂线段是线段AB; ④点D到BC的距离是线段AD的长度; ⑤线段AB的长度是点B到AC的距离; ⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个答案:B知识点:垂线点到直线的距离解析:解答:根据题意,∠BAC=90,所以AB⊥AC,①正确.AD⊥BC于D,所以AD与AC不垂直,②不正确.点到直线的距离为垂线段,所以点C到AB的垂线段是线段AB,③正确.点D到BC 的距离应为过D点垂直于AC的垂线段,AD与AC不垂直,所以④错误.因为AB⊥AC,点B到AC的距离为AB,所以⑤⑥正确.AD与BD的具体长度无法推断,所以不能确定二者的大小关系,⑦错误.分析:概念理解型题,掌握垂直和点到直线的具体的概念,是解答本题的关键.本题考查垂线.9.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°答案:C知识点:垂线对顶角邻补角解析:解答:由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON ﹣∠MOC得出答案.解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.分析:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.10.已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,则C点的个数为().A.3个B.4个C.5个D.6个答案:B知识点:垂线解析:解答:已知每个小方格的边长为1,所以每个小方格的面积为1个平方单位.要使点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,需要从两个方面来思考:一是以A为三角形的顶点,则A到BC是距离为1,BC的距离为2时才能使面积为1个平方单位,于是,这样的点有2个.同理,若以B为三角形的顶点,这样的点也同样有2个.所以,选B.分析:从点到直线的距离,以及三角形的面积计算方法入手,就能轻松解答.本题考查垂线.11.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.答案:A知识点:垂线;平行线解析:解答:根据题意画出图形即可.故选:C.分析:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.12.下列语句正确的是()A.两条直线相交成四个角,如果有两个角相等,那么这两条直线互相垂直B.两条直线相交成四个角,如果有两对角相等,那么这两条直线互相垂直C.两条直线相交成四个角,如果有三个角相等,那么这两条直线互相垂直D.两条直线相交成四个角,如果有两个角互补,那么这两条直线互相垂直答案:C知识点:垂线解析:解答:概念理解型题.两条直线相交,其中有一个夹角是直角,说明这两条直线互相垂直.同时,两条直线相交,形成四个角,分为两对对顶角,对顶角是相等的.但是,两条直线垂直必须相交,两条直线相交未必垂直,所以,可以推断出选项A、选项B都错误.在选项D中,两条直线任意相交,都能满足有两个角互补,所以D错误.在选项C中,有三个角相等,可以推导出这四个角都相等,并且都是直角,所以选项C正确.分析:概念理解型题,掌握垂直的概念,是解答本题的关键.本题考查垂线.13.过线段外一点画这条线段的垂线,垂足一定在()A.线段上B.线段的端点上C.线段的延长线上D.以上情况都有可能答案:D知识点:垂线解析:解答:由于线段有两个端点,所线段的长度是固定的.由于点的位置不确定,所以过线段外一点画这条线段的垂线,垂足有可能在线段上、线段的端点上和线段的延长线上.这个知识点可以从三角形的高的画法上得到验证.所以,选D.分析:概念理解型题,掌握垂直的作法,是解答本题的关键.本题考查垂线.14.如图,直线AD⊥BD,垂足为D,则点B到线段AC的距离是()A.线段AC的长B.线段AD的长C.线段BC的长D.线段BD的长答案:D知识点:点到直线的距离解析:解答:点到直线的距离为垂线段,因为直线AD⊥BD,垂足为D,所以点B到线段AC的距离是线段BD的长,所以选D.分析:概念理解型题,掌握到直线的距离为垂线段,是解答本题的关键.本题考查点到直线的距离.15.如图,OM⊥NP,ON⊥NP,所以OM和ON重合,理由是()A.两点确定一条直线B.经过一点有且只有一条直线和已知直线垂直C.过一点只能作一条垂线D.垂线段最短答案:B知识点:垂线解析:解答:概念理解型题.经过一点有且只有一条直线与已知直线垂直.因为OM⊥NP,ON⊥NP,两条经过O点的直线都垂直于NP,所以选B.分析:概念理解型题,掌握经过一点有且只有一条直线与已知直线垂直,是解答本题的关键.本题考查垂线.二、填空题(共5小题)1.当两条直线相交所成的四个角中_________,叫做这两条直线互相垂直,其中的一条直线叫_________,它们的交点叫_________.答案:有一个直角另一条直线的垂线垂足知识点:垂线解析:解答:概念理解型题.两条直线相交,所形成的夹角中,有一个角为直角,说明这两条直线互相垂直.相互垂直的两条直线,其中一条直线叫另一条直线的垂线.两条直线互相垂直,它们的交点叫垂足.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.2.过直线上或直线外一点,_________与已知直线垂直.答案:有且只有一条直线知识点:垂线解析:解答:概念理解型题.过直线外一点,有且只有一条直线与已知直线垂直.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.3.如图所示,若AB⊥CD于O,则∠AOD=_______;若∠BOD=90°,则AB____CD.答案:90°⊥知识点:垂线解析:解答:概念理解型题.两条直线互相垂直,所形成的夹角为直角,也就是90°.如果两条直线相交,所形成的夹角中,有一个角为90°,则这两条直线互相垂直.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.4.如图所示,已知AO⊥BC于O,那么∠1与∠2________.答案:互余知识点:垂线;余角解析:解答:概念理解型题.两条直线互相垂直,所形成的夹角为直角,也就是90°.因为AO⊥BC于O,所以∠AOC=90°.因为∠1+∠2=∠AOC.所以,∠1与∠2互余.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.5.如果CD⊥AB于D,自CD上任一点向AB作垂线,那么所画垂线均与CD重合,这是因为__________________________________.答案:在同一平面内,过一点有且只有一条直线与已知直线垂直知识点:垂线解析:解答:概念理解型题.过直线外一点有且只有一条直线与已知直线垂直.因为CD⊥AB于D,所以自CD上任一点向AB作垂线,那么所画垂线均与CD重合.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.三、解答题(共5小题)1.如图,已知A,O,E三点在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD 与∠DOE之间有怎样的关系?说明理由.答案:相等理由:∠AOB+∠DOE=90°,且A、O、E三点共线,所以∠BOC+∠COD=90°.因为OB平分∠AOC,所以∠AOB=∠BOC,通过等量代换,可以得知∠COD与∠DOE相等.知识点:垂线解析:解答:由题意可知,∠AOB+∠DOE=90°,且A、O、E三点共线,所以∠BOC+∠COD=90°.因为OB平分∠AOC,所以∠AOB=∠BOC,通过等量代换,可以得知∠COD与∠DOE相等.分析:掌握相交线相关知识,是解答本题的关键.本题考查垂线.2.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.答案:∠2=60°,∠3=30°知识点:垂线解析:解答:因为∠1与∠3是对顶角,所以∠1=∠3,因为∠1=30°,所以∠3=30°.因为AB⊥CD,所以∠BOD=90°,因为∠2+∠3=∠BOD,所以∠2=90°-∠3=60°.分析:掌握相交线相关知识,是解答本题的关键.本题考查垂线.3.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD,(1)图中除直角外,还有相等的角吗?请写出两对:①____________;②____________.(2)如果∠AOD=40°,则①∠BOC=_______;②OP是∠BOC的平分线,所以∠COP=______度;③求∠BOF的度数.答案:(1)∠AOD=∠BOC ∠BOP=∠COP(2)①40°②20°③50°知识点:垂线;相交线解析:解答:由题意可知,∠AOD与∠BOC是对顶角,所以二者相等.因为OP是∠BOC的角平分线,所以∠BOP=∠COP.由第一问得到的答案,)如果∠AOD=40°,所以∠BOC=40°.OP是∠BOC 的平分线,所以∠COP=20°.因为OF⊥CD,所以∠COF=90°,所以∠BOF=90°-40°=50°.分析:掌握相交线相关知识,是解答本题的关键.本题考查垂线.4.如图,已知∠AOB,OE平分∠AOC,OF平分∠BOC.(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度数;(2)猜想∠EOF与∠AOB的数量关系;(3)若∠AOB+∠EOF=156°,则∠EOF是多少度?答案:(1)∠EOF =45°(2)∠EOF =∠AOB(3)∠EOF =52°知识点:垂线解析:解答:(1)∵∠AOC =∠AOB +∠BOC ,∴∠AOC =90°+60°=150°.∵OE 平分∠AOC ,∴∠EOC =150°÷2=75°.∵OF 平分∠BOC ,∴∠COF =60°÷2=30°.∵∠EOC =∠EOF +∠COF,∴∠EOF =75°-30°=45°. (2)∵OE 平分∠AOC ,OF 平分∠BOC .∴∠COE =∠AOC ,∠COF =∠BOC ∵∠AOB =∠AOC -∠BOC ∴∠EOF =∠COE -∠COF =∠AOC -∠BOC =(∠AOC -∠BOC )=∠AOB (3)∵OE 平分∠AOC ,OF 平分∠BOC ,∴∠COE =∠AOC ,∠COF =∠BOC , ∴∠EOF =∠AOC -∠BOC =(∠AOC -∠BOC )=∠AOB .又∵∠AOB +∠EOF =156°, ∴∠EOF =52°.分析:此题难度较大,要通过角度转换.本题考查相交线所形成的角度.5.直线AB 、CD 相交于点O.(1)OE 、OF 分别是∠AOC 、∠BOD 的平分线.画出这个图形.(2)射线OE 、OF 在同一条直线上吗?(直接写出结论)(3)画∠AOD 的平分线OG .OE 与OG 有什么位置关系?并说明理由.答案:(1)如图中红线所示(2)射线OE 、OF 在同一条直线上EFD O BCA G(3)OE⊥OG 理由:∵EF平分∠AOC和∠BOD,并且∠AOC=∠BOD,∴∠AOE=∠DOF.∵OG 平分∠AOD,∴∠AOG=∠DOG.∵∠AOE+∠DOF+∠AOG+∠DOG=180°,∴∠DOF+∠DOG =180°÷2=90°,∴OE⊥OG.知识点:垂线;角平分线解析:解答:(1)直接画图即可.(2)因为∠AOC与∠BOD是对顶角,所以两角的角平分线是在同一直线上.(3)∵EF平分∠AOC和∠BOD,并且∠AOC=∠BOD,∴∠AOE=∠DOF.∵OG平分∠AOD,∴∠AOG=∠DOG.∵∠AOE+∠DOF+∠AOG+∠DOG=180°,∴∠DOF+∠DOG=180°÷2=90°,∴OE⊥OG.分析:此题掌握了角平分的性质是解题的关键.本题考查垂线和角平分线.。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(9)
![人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(9)](https://img.taocdn.com/s3/m/eb0a1aeb5f0e7cd185253612.png)
5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.点P是直线l外一点,A为垂足,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定2.如图,PO⊥OR,OQ⊥PR,则点P到OQ所在直线的距离是哪一条线段的长( )A.PO B.RO C.OQ D.PQ3.下列说法中正确的是()A.直线外一点与直线上各点连接的线段中,垂线最短 B.点到直线的距离是这点到直线的垂线段C.过一点有且只有一条直线与已知直线平行 D.在同一平面内,垂直于同一条直线的两直线平行4.下列说法正确的是( )A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直5.点到直线的距离是指()A.从直线外一点到这条直线的垂线段B.从直线外一点到这条直线的垂线,C.从直线外一点到这条直线的垂线段的长D.从直线外一点到这条直线的垂线的长6.如图,某地进行城市规划,在一条新修公路旁有一超市,现要建一个汽车站.为了使超市距离车站最近,请你在公路上选一点来建汽车站,应建在( )A.点A B.点B C.点C D.点D7.如图是一跳远运动员跳落沙坑时留下的痕迹,则表示该运动员成绩的是( )A.线段AP1的长B.线段AP2的长C.线段BP3的长D.线段CP3的长8.点P是直线l外一点,PA垂直于直线l,垂足为A ,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定9.已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,则∠EOF的度数是( ) A.45°B.15°C.30°或60°D.45°或15°二、填空题1.如图所示,BA⊥l1于点A,CB⊥l2于点B,AD⊥l2于点B,则点B到直线l1的距离是线段_____的长度.2.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B到AC的距离为_____.3.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是_____.4.如图,立定跳远比赛时,小明从点A起跳落在沙坑内B处,跳远成绩是4.6米,则小明从起跳点到落脚点的距离________4.6米(填“大于”“小于”或“等于”).5.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是_____,理由_____.三、解答题1.奥运会上,跳水运动员入水时,形成的水花是评委评分的一个标准,如图所示为一跳水运动员的入水前的路线示意图.按这样的路线入水时,形成的水花很大,请你画图示意运动员如何入水才能减小水花?2.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂,()1不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.()2另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由.3.如图O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线①求∠COD的度数.②判断OD与AB的位置关系,并说明理由.4.直线AB,CD相交于点O,OE⊥AB,O为垂足,如果∠EOD = 38°,求∠AOC 和∠COB 的度数.5.直线AB、CD相交于点O,OE平分∠BOD.OF⊥CD,垂足为O,若∠EOF=54°.(1)求∠AOC的度数;(2)作射线OG⊥OE,试求出∠AOG的度数.参考答案一、单选题1.B解析:根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.详解:解:∵点P是直线l外一点,A为垂足,且PA=4cm,∴P到l的距离是PA的长度,故选B.点睛:本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.2.D解析:找到点P到OQ的垂线段是PQ,垂线段PQ的长就是点P到OQ的距离.详解:因为OQ⊥PR所以点P到OQ所在直线的距离是线段QP的长.故选D.点睛:此题主要考查了点到直线的距离,关键是掌握点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.3.D解析:根据垂线段最短的性质,平行公理对各选项分析判断后利用排除法求解.详解:A. 应为直线外一点与直线上各点连接的线段中,垂线段最短,故本选项错误;B. 应为点到直线的距离是这点到直线的垂线段的长度,故本选项错误;C. 应为过直线外一点有且只有一条直线与已知直线平行,故本选项错误;D. 在同一平面内,垂直于同一条直线的两直线平行,故本选项正确.故选:D.点睛:考查垂线段最短的性质以及平行公理,比较基础,熟记概念是解题的关键.4.D解析:试题A. 两点之间的距离是两点间的线段的长度,故此选项错误;B. 同一平面内,过直线外一点有且只有一条直线与已知直线平行,故此选项错误;C. 与同一条直线垂直的两条直线平行,故此选项错误;D. 同一平面内,过一点有且只有一条直线与已知直线垂直,故此选项正确.故选D.5.C解析:根据点到直线的距离的定义解答本题.详解:解:垂线段是一个图形,距离是指垂线段的长度,故A错误;垂线是直线,没有长度,不能表示距离,故B错误;符合点到直线的距离的定义,故C正确;垂线是直线,没有长度,不能表示距离,故C错误.故选C.6.C解析:分析:根据“垂线段最短”进行分析判断即可.详解:由下图可知,在连接超市O和公路l上的四点A、B、C、D的连线中,只有OC⊥l,∴在线段OA、OB、OC和OD中,OC最短,∴为了使超市距离车站最近,车站应该修建在C点处.故选C.点睛:熟知“在连接直线外一点与直线上各点的所有连线中,垂线段最短”是解答本题的关键.7.B解析:根据垂线段的性质,则表示该运动员成绩的是线段AP2的长度,故选B.点睛:本题考查了垂线段:从直线外一点引一条直线的垂涎,这点和垂足之间的线段叫做垂线段,垂线段的性质:垂线段最短.8.B解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),所以,点P到直线l的距离等于4 cm,故选B.9.A解析:根据垂线的定义,可得∠AOB的度数,根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COE、∠COF的度数,根据角的和差,可得答案.详解:如图1,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB+∠BOC=150°,∵OE平分∠AOC,OF平分∠BOC,∴∠COE=12∠AOC=12×150°=75°,∠COF=12∠BOC=12×60°=30°,由角的和差,得∠EOF=∠COE-∠COF=75°-30°=45°;如图2,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB-∠BOC=30°,∵OE平分∠AOC,OF平分∠BOC,∴∠COE=12∠AOC=12×30°=15°,∠COF=12∠BOC=12×60°=30°,由角的和差,得∠EOF=∠COE+∠COF=15°+30°=45°,故选A.点睛:本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差,正确地进行分类讨论、准确画出图形是解题的关键.二、填空题1.BA解析:根据点到直线的距离是垂线段的长度,可得答案.详解:由题意,得点B到直线l1的距离是线段BA的长度,故答案为:BA.点睛:本题考查了点到直线的距离,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.2.4解析::∵AC⊥BC,∴点B到AC的垂线段为线段BC,∴点B到AC的距离为线段BC的长度4 3.垂线段最短分析:根据垂线段的性质解答即可.解:根据是:直线外一点与直线上各点连接而得到的所有线段中,垂线段最短.故答案为垂线段最短.点睛:本题考点:垂线段的性质.4.大于解析:详解:解:∵根据跳远成绩为距离起跳线最近的点到起跳线的距离,即垂线段的长,又∵垂线段最短,∴小明从起跳点到落脚点之间的距离大于4.6米,故答案为大于.5.PN, 垂线段最短解析:详解:∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为PM,垂线段最短.三、解答题1.详见解析解析:根据如水角度越接近90°,水花越小,进而得出入水点.详解:作表示运动员的点作水面的垂线段.点睛:此题主要考查了应用设计作图,根据题意得出入水点是解题关键.2.(1)作图见解析;(2)垂线段最短.解析:(1)线段AC和BD的交点即是水厂的位置.(2)过点H作直线EF的垂线段即可.解:()1连接AC和BD,线段AC和BD的交点H点就是水厂的位置.()2理由是:垂线段最短.点睛:本题主要考查了两点之间线段最短和垂线段最短在生活中的应用,解题时要注意它们的综合应用.3.(1)45°(2)OD⊥AB.理由见试题解析.详解:(1)∵OC平分∠AOD,设∠AOC=∠COD=x°,则∠AOD=2x°∵∠AOC=13∠BOC,∵∠AOC+∠BOC=180°,∴x°+3x°=180°,解得x=45,∴∠COD=45°.(2)OD⊥AB.理由如下:由(1)知,∠AOD=2x°=90°,∴OD⊥AB.4.∠AOC=52°,∠COB=128°.解析:先根据垂直的定义求出∠BOE=90°,然后求出∠BOD的度数,再根据对顶角相等求出∠AOC的度数,再根据邻补角的定义求出∠COB的度数.详解:解:∵OE⊥AB,∴∠BOE=90°,∵∠EOD=38°,∴∠BOD=∠BOE-∠EOD=90°-38°=52°,∴∠AOC=∠BOD=52°(对顶角相等),∠COB=180°-∠BOD=180°-52°=128°,故答案为∠AOC=52°,∠COB=128°.点睛:本题考查了垂线的定义,对顶角相等,邻补角的和等于180°,要注意领会由垂直得直角这一要点.5.(1)72°(2)54°或126°分析:(1)依据垂线的定义,即可得到∠DOE的度数,再根据角平分线的定义,即可得到∠BOD的度数,进而得出结论;(2)分两种情况讨论,依据垂线的定义以及角平分线的定义,即可得到∠AOG的度数.详解:(1)∵OF⊥CD,∠EOF=54°,∴∠DOE=90°﹣54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°;(2)如图,若OG在∠AOD内部,则由(1)可得,∠BOE=∠DOE=36°,又∵∠GOE=90°,∴∠AOG=180°﹣90°﹣36°=54°;如图,若OG在∠COF内部,则由(1)可得,∠BOE=∠DOE=36°,∴∠AOE=180°﹣36°=144°,又∵∠GOE=90°,∴∠AOG=360°﹣90°﹣144°=126°.综上所述,∠AOG的度数为54°或126°.点睛:本题主要考查了角平分线的定义及性质以及垂线的定义,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(2)
![人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(2)](https://img.taocdn.com/s3/m/11517feea21614791611286e.png)
4.BN 垂线段最短
解析:试题分析:根据生活实际,确定量取的位置,然后根据点到直线的距离确定跳远的成绩BN,因此明确理论依据为:垂线段最短.
故答案为:(1)BN(2)垂线段最短
5.有且只有
解析:试题
根据垂线的性质:平面内,过一点有且只有一条直线与已知直线垂直.
故答案为有且只有.
三、解答题
∵CD⊥OB,
∴∠AOB+∠ODC=90°,
∴与∠AOB互余的角是∠OCE与∠ODC.
点睛:
本题考查的是作图-基本作图,熟知垂线的作法是解答此题的关键.
4.(1)画图见解析;(2)OA;(3)CP;(4) .
解析:试题分析:(1)画出图形如图所示;(2)线段PH的长度是点P到直线OA的距离;(3)线段PC的长度是点C到直线OB的距离.(4)根据点到直线的距离垂线段最短可得线段PC、PH、OC这三条线段大小关系是PH<PC<OC.
4.D
解析:详解:
∵PO丄OR, OQ丄PR,
∴PO是点P到线段OR的距离,OQ是点O到PR的距离,OR是点R到线段PO的距离,PQ是P到线段OQ的距离,RQ是R到OQ的距离
∴共计有5条.
故选D.
5.A
解析:过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.
详解:
根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,
A.1个B.2个C.3个D.4个
3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )
新人教版七年级数学下册同步测试 5.1.2垂线(含答案)
![新人教版七年级数学下册同步测试 5.1.2垂线(含答案)](https://img.taocdn.com/s3/m/3ab25fbb10a6f524ccbf85fe.png)
新人教版七年级数学下册同步测试5.1.2 垂线知识要点:1.垂线的定义:当两条直线相交所成的四个角中有一个角为90°时,这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.符号:如AB⊥CD.2.垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直(基本事实).“有且只有”说明了垂线的存在性和唯一性,“过一点”中的这一点,可以在已知直线上,也可以在已知直线外.3.垂线的画法一落:让三角尺的一条直角边落在已知直线上,使其与已知直线重合;二移:沿直线移动三角尺,使其另一条直角边经过已知点;三画:沿此直角边画直线,则这条直线就是已知直线的垂线.4.垂线段的性质:连接直线外一点与直线上各点的所有线段中,出线端最短.5.点到直线的距离的定义直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.一、单选题1.如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由()A.垂线段最短B.过两点有且只有一条直线C .过一点可以作无数条直线D .两点之间线段最短2.如图,经过直线l 外一点A 作l 的垂线,能画出( )A .4条B .3条C .2条D .1条3.点A 在直线m 外,点B 在直线m 上,A B 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A .a b >B .a b ≤C .a b ≥D .a b <4.如图,直线EO ⊥CD ,垂足为点O ,AB 平分∠EOD ,则∠BOD 的度数为( )A .120°B .130°C .135°D .140°5.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°6.如图所示,已知AC ⊥BC ,CD ⊥AB ,垂足分别是C ,D ,那么以下线段大小的比较必定成立的是( )A .CD AD >B .AC BC < C .BC BD > D .CD BD <7.如图,直线AB 、CD 相交于点O ,下列条件中,不能说明AB ⊥CD 的是( )A .∠AOD =90°B .∠AOC =∠BOCC .∠BOC +∠BOD =180°D .∠AOC +∠BOD =180°8.如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是( )A .PAB .PBC .PCD .PD9.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短二、填空题10.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短. 理由是_______________________.11.如图,OC⊥AB,OE为∠COB的平分线,∠AOE的度数为_______12.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON 的度数为_________.13.在______内,过一点有且只有一条直线与已知直线垂直.三、解答题14.如下图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=25°,求∠COE、∠AOE、∠AOG的度数。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(1)
![人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(1)](https://img.taocdn.com/s3/m/fdc1d371a0116c175e0e4812.png)
5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.2.下列作图能表示点A到BC的距离的是( )A.A B.B C.C D.D3.如图,直线a//b,则直线a,b之间距离是()A.线段AB的长度B.线段CD的长度C.线段EF的长度D.线段GH的长度4.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,正确的有 ( )①BC与AC互相垂直;②AC与CD互相垂直;③点A到BC的垂线段是线段BC;④点C到AB的垂线段是线段CD;⑤线段BC是点B到AC的距离;⑥线段AC的长度是点A到BC的距离.A.2个B.3个C.4个D.5个5.如图所示,AC⊥BC与C,CD⊥AB于D,图中能表示点到直线(或线段)的距离的线段有()A.1条B.2条C.3条D.5条6.如图,下列说法不正确的是()A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段7.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的数学知识是( )A.两点之间的所有连线中,线段最短B.点到直线的距离C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短8.如图,直线AB,CD相交于点O,OE⊥CD,OF⊥AB,∠EOF=32°,则∠BOC的大小为( )A.120°B.122°C.132°D.148°9.如图,直线AB、CD、EF相交于点O,且AB⊥CD,若∠BOE=35°,则∠DOF=()A.65°B.45°C.35°D.55°二、填空题1.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:_____.2.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是_______________________.3.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是________________________________.4.如图,在一块直角三角板ABC中,AB>AC的根据是_____.5.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是_____.三、解答题1.读下列语句,并完成作图.()1如图1,过点P分别作OA、OB的垂线段PM、PN.()2如图2,①过点C,作出AB的垂线段CM;②过点A作出表示点A到BC的距离的线段AN.2.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).3.如图,点P,Q分别是∠AOB的边OA,OB上的点.(1)过点P画OB的垂线,垂足为H;(2)过点Q画OA的垂线,交OA于点C,连接PQ;(3)线段QC的长度是点Q到的距离,的长度是点P到直线OB的距离,因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段PQ、PH的大小关系是(用“<”号连接).4.如图,在直线MN的异侧有A、B两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN上取一点C,使线段AC最短.依据是______________.(2)在直线MN上取一点D,使线段AD+BD最短.依据是______________________.5.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.参考答案一、单选题1.C解析:试题分析:根据题意画出图形即可.解:根据题意可得图形,故选C.点评:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.B分析:由点到直线的距离知点A到BC的距离就是过A向BC作垂线所得垂线段的长度. 逐一进行判断即可.详解:解:A.BD表示点B到AC的距离,故A选项错误;B. AD表示点A到BC的距离,故B选项正确;C. AD表示点D到AB的距离,故C选项错误;D. CD表示点C到AB的距离,故D选项错误;故选B.点睛:本题主要考查了点到直线的距离,直线外一点到直线的垂线段的长度,叫做点到直线的距离.3.B解析:根据两直线的距离的定义即可判断.详解:∵a//b,CD⊥a,AD⊥b,∴直线a,b之间距离是CD的长度.此题主要考查两直线的距离,解题的关键是找到两直线间的垂线段.4.B分析:根据垂直定义和点到直线距离的定义对各选项进行逐一分析即可.详解:解:∵∠ACB=90°,∴AC⊥BC,故①正确;AC与DC相交不垂直,故②错误;点A到BC的垂线段是线段AC,故③错误;点C到AB的垂线段是线段CD,故④正确;线段BC的长度是点B到AC的距离,故⑤错误;线段AC的长度是点A到BC的距离,故⑥正确.故选B.5.D解析:试题表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故选D.6.C解析:根据点到直线的距离的定义:直线外一点到这条直线的垂线段的长度叫做点到直线的距离,结合图示对各个选项逐一分析即可作出判断.详解:A、点B到AC的垂线段是线段AB,正确;B、点C到AB的垂线段是线段AC,正确;C. 点A到BC的垂线段是线段AD,故错误;D. 点B到AD的垂线段是线段BD,正确;故选C.本题考查了点到直线距离的概念,解题的关键是明确点到直线的距离的定义:直线外一点到这条直线的垂线段的长度叫做点到直线的距离7.D解析:根据垂线段的性质进行作答.详解:由题知,AB⊥CD,所以选D.点睛:本题考查了垂线段的性质,熟练掌握垂线段的性质是本题解题关键.8.D解析:分析:由OE⊥CD,OF⊥AB,可得∠COE=90°, ∠BOF=90°;又由∠EOF=32°,可求出∠COF的度数,然后根据∠BOC=∠BOF+∠COF求出结论即可.详解:∵OE⊥CD,OF⊥AB,∠COE=90°, ∠BOF=90°,∵∠EOF=32°,∴∠COF=90°-32°=58°,∴∠BOC=∠BOF+∠COF=90°+58°=148°.故选D.点睛:题考查了垂线的定义和角的和差,若两条直线相交所成的角为90°,那么这两条直线垂直,交点叫垂足.求出∠EOF=32°是解答本题的关键.9.D解析:∵AB⊥CD,∴∠BOC=90°,∵∠BOE=35°,∴∠COE=∠BOC-∠BOE=90°-35°=55°,∵直线EF和直线CD相交于点O,∴∠DOF=∠COE=55°.故选D.二、填空题1.垂线段最短解析:根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.2.垂线段最短解析:试题分析:点到直线的所有线段中垂线段最短.考点:垂线段的性质3.垂线段最短.分析:根据垂线段最短作答.详解:解:根据“连接直线外一点与直线上所有点的连线中,垂线段最短”,所以沿AB开渠,能使所开的渠道最短,故答案为“垂线段最短”.点睛:本题考查垂线段最短的实际应用,属于基础题目,难度不大.4.垂线段最短.解析:根据从直线外一点到这条直线所作的垂线段最短可得.详解:∵AC⊥BC,∴AB>AC,其依据是:垂线段最短,故答案为:垂线段最短.点睛:本题主要考查垂线段最短的性质,解题的关键是掌握从直线外一点到这条直线所作的垂线段最短.5.两点确定一条直线解析:应用的数学知识是:过两点有且仅有一条直线.故答案为过两点有且只有一条直线.三、解答题1.(1)见解析;(2)见解析.解析:(1)根据点到直线距离的作法利用直角三角尺分别作出即可;(2)分别过点C作CM⊥AB,AN⊥BC,注意要延长BC得出.详解:解:()1如图1所示:()2如图2所示.点睛:此题主要考查了点到直线的垂线作法以及钝角三角形中高线的作法,正确作出钝角三角的高线是解题关键.2.(1)见解析;(2)见解析;(3)OA , PC的长度, PH<PC<OC.解析:(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.详解:(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.点睛:本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.3.(1)画图见解析;(2)见解析;(3)直线OA,线段PH;PH<PQ.解析:(1)根据垂线的概念、结合网格特点作图即可;(2)根据垂线的概念、结合网格特点和线段的作法作图;(3)根据垂线段最短进行比较即可.详解:(1)如图,直线PH即为所求;(2)如图,直线QC即为所求;(3)线段QC的长度是点Q到直线OA的距离,线段PH的长度是点P到直线OB的距离,根据直线外一点和直线上各点连接的所有线段中,垂线段最短可知PH<PQ,故答案为直线OA,线段PH;PH<PQ.点睛:本题考查了复杂作图和垂线段的性质,掌握基本尺规作图、得到复杂图形,连接垂线段最短是解题的关键.4.垂线段最短两点之间,线段最短解析:(1)过A作AC⊥MN,AC最短;(2)连接AB交MN于D,这时线段AD+BD最短.详解:(1)过A作AC⊥MN,根据垂线段最短,故答案为垂线段最短;(2)连接AB交MN于D,根据是两点之间线段最短,故答案为两点之间线段最短.点睛:本题主要考查了垂线段的性质和线段的性质,关键是掌握垂线段最短;两点之间线段最短.5.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.解析:(1)依据垂线的定义以及对顶角相等,即可得∠BOE的度数;(2)依据平角的定义以及垂线的定义,即可得到∠AOE的度数;(3)分两种情况:若F在射线OM上,则∠EOF=∠BOD=30°;若F'在射线ON上,则∠EOF'=∠DOE+∠BON-∠BOD=150°.详解:解:(1)∵EO⊥CD,∴∠DOE=90°,又∵∠BOD=∠AOC=36°,∴∠BOE=90°-36°=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=16∠COD=30°,∴∠AOC=30°,又∵EO⊥CD,∴∠COE=90°,∴∠AOE=90°+30°=120°;(3)分两种情况:若F在射线OM上,则∠EOF=∠BOD=30°;若F'在射线ON上,则∠EOF'=∠DOE+∠BON-∠BOD=150°;综上所述,∠EOF的度数为30°或150°.故答案为(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.点睛:本题考查了角的计算,对顶角,垂线等知识点的应用,关键是分类讨论思想的运用.。
最新人教版七年级数学下册练习5.1.2垂线(1)(含答案)
![最新人教版七年级数学下册练习5.1.2垂线(1)(含答案)](https://img.taocdn.com/s3/m/f3685d3c76c66137ee0619cb.png)
一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段D CBADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线②在平面内,过直线外一点有且只有一条直线垂直于已知直线③在平面内,过一点可以任意画一条直线垂直于已知直线④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,∠AOD=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,。
人教版数学七年级下册 5.1.2 垂线 练习(含答案) (1)
![人教版数学七年级下册 5.1.2 垂线 练习(含答案) (1)](https://img.taocdn.com/s3/m/671bc04a67ec102de2bd89c2.png)
5.1.2 垂线练习一、选择题1.如图所示,点P到直线l的距离是()A. 线段PA的长度B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度2.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A. 125°B. 115°C. 105°D. 135°3.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()A. ∠2=45°B. ∠1=∠3C. ∠AOD与∠1互为补角D. ∠1的余角等于75°30′4.如图AB、CD交于点O,OE⊥AB于O,则下列不正确的是()A. ∠AOC与∠BOD是对顶角B. ∠BOD和∠DOE互为余角C. ∠AOC和∠DOE互为余角D. ∠AOE和∠BOC是对顶角5.如图,直线AB⊥CD于点O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 互为余角B. 互为补角C. 互为对顶角D. 互为邻补角6.如图,点O为直线AB上一点,∠AOC=55°,过点O作射线使得OD⊥OC,则∠BOD的度数是()A. 35°B. 45°C. 35°或145°D. 45°或135°7.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A. 155°B. 145°C. 135°D. 125°8.如图,直线AB⊥CD于点O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 互为余角B. 互为补角C. 互为对顶角D. 互为邻补角9.如图,AO⊥BO于点O,∠AOC=∠BOD,则∠COD等于A. 80ºB. 90ºC. 95ºD. 100º10.如图,三条直线相发开点O,若CO⊥AB,∠1=55°,则∠2等于()A. 30°B. 35°C. 45°D. 55°二、11.如图,CD⊥AB,垂足为C,∠1=130°,则∠2=______度.12.如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD=______度.13.如图,已知直线AB,CD相交于点O,EO⊥AB,垂足为O.若∠EOC=32°,则∠AOD度数为______.14.如图,直线AB、CD相交于点O,OE⊥AB于O,∠COE=52°,则∠BOD=_____度.15.如图,已知∠1=28°,∠AOC=90°,点B、O、D在同一条直线上,则∠2的度数为.16.如图,直线AB、CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD=______度.三、计算题17.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=116°,求∠AOD的度数.18.如图直线AB、CD相交于点O,OA平分∠EOC,FO⊥AB.若∠DOE=3∠EOA,求∠DOF的度数.19.如图,已知直线AB、CD相交于点O,OE⊥AB于O,∠AOE:∠COE=9:5,求∠BOD的度数。
人教版七年级数学下册垂线2同步练习题
![人教版七年级数学下册垂线2同步练习题](https://img.taocdn.com/s3/m/2f57285fff4733687e21af45b307e87101f6f808.png)
5.1.2 垂线一、填空题1.当两条直线相交所成的四个角中有一个角是______时,就说这两条直线互相垂直,其中一条直线是另一条直线的_______,它们的交点叫做_______.垂直是相交的一种特殊情形.2.过一点___________直线与已知直线垂直.3.“神舟”六号发射塔与地平面的夹角为__________度,它与地面的位置关系为_________.4.连接直线外一点与直线上各点的所有线段中,__________最短,直线外一点到这条直线的垂线段的长度,叫做点到直线的________.如图,过点O 作四条与直线l 相交的直线,交点分别为点A、B、C、D,其中OC⊥l,则在OA、OB、OC、OD 这四条线段中,________最短,点O 到直线l 的距离是线段______的长.第4题图第5题图第6题图5.如图,OB⊥OA,直线CD 过点O,且∠AOC=25°,则∠BOC=______,∠BOD=_______.6.如图,AC⊥BC,CD⊥AB.(1)图中共有______个直角;(2)图中点C 到直线AB 的距离是线段______的长度,点B 到直线AC 的距离是线段_____的长度,点B 到直线CD 的距离是线段______的长度;(3)线段AD 的长表示___________的距离.7.如图,AB、CD 相交于点O,AC⊥CD 于点C.若∠BOD =38°,则∠A =__________.第7题图第8题图二、选择题8.如图,∠1+∠2等于 ( ) A.60° B.90° C.110° D.180°9.①过直线上一点作该直线的垂线不止一条;②直线a 的垂线有无数条;③相交的直线不一定垂直,但垂直的直线必定相交;④过直线外一点作已知直线的垂线有且只有一条.上述说法中不正确的有 ( )A.1个 B.2个 C.3个 D.4个10.过一条线段外一点,画这条线段的垂线,垂足在 ( ) A.这条线段上B.这条线段的端点C.这条线段的延长线上D.这条线段上或这条线段的延长线上11.跳远比赛时,小新从点A 跳落在沙坑内B 处(如图所示),这次小新的跳远成绩是3.4m,则小新从起跳点到落脚点之间的距离 ( )A.等于3.4m B.小于3.4m C.大于3.4m D.不能确定12.如图,点P 在∠AOC 的边OA 上.(1)过点P 画OA 的垂线PB,交OC 于点B;(2)画出点P 到OC 的垂线段PM ;(3)上述作图中,哪一条线段的长表示点P 到OB 的距离?(4)比较PM 与OP 的大小,并说明理由.13.如图所示,直线AB、CD 相交于点O,OM ⊥AB.(1)若∠1=∠2,判断ON 与OD 的位置关系,并说明理由;(2)若∠1=1∠BOC,求∠AOC 和∠MOD 的度数.414.如图,A 处是某学生的家,B 处是学校,l 是一条公路,学生要去学校,如何走最近? 该学生要去公路怎样走最近? 请在图中画出相应的路线,并简述理由.15.已知线段AB 的长为acm,点A、B 到直线l 的距离分别为6cm,4cm.请画图说明在下列条件下符合条件的直线l有几条.(1)a=3;(2)a=10;(3)a=15.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
5.1.2垂线课后习题讲解(一)
![5.1.2垂线课后习题讲解(一)](https://img.taocdn.com/s3/m/45ffafa7ad51f01dc381f11d.png)
又∵∠DOE=∠BOD ∴2∠EOF+2∠DOE=180° ∴∠EOF+∠DOE=90° ∴∠DOF=90° ∴OF⊥CD.
13 如图,直线AB、CD相交于点O,OM⊥AB,若∠1=∠2, 求证NO⊥CD.
分析:∵OA⊥OC ∴∠AOC=90°
A B
B
∵∠AOB∶∠AOC=2∶3
∴∠AOB=60°
情况一:OB在∠AOC的内部
∠BOC=∠AOC-∠AOB=90°-60°=30°
情况二:OB在∠AOC的外部
O
C
∠BOC=∠AOC+-∠AOB=90°+60°=150°
3. 如图(1)OA⊥OB,OC⊥OD,则 A .∠AOC=∠AOD B.∠AOD=∠BOD C.∠AOC=∠BOD D.以上结论都不对
∠AOB+∠DOC=∠AOC+∠COB+∠DOC =∠AOC+∠BOD =90°+90°=180°
D
A
C
OB
11.如图,已知直线a、b,P是a上一点,过P分 别画a、b的垂线.
注意:垂线是直线, 因此两端必须出头。 画完垂线后必须标 上垂直符号
n
m
12.如图,直线AB、CD相交于O,作∠DOE=∠BOD,OF平分∠AOE,求证OF⊥CD.
( C)
4 .如图,直线AB、CD相交于点O,OE⊥AB
于O,∠COE=55°,则∠BOD的度数是 ( D ).
A.40° B.45° C.30° D.35°
分析:∵OE⊥AB
∴∠AOE=90°
人教版数学七年级下册 第五章 相交线与平行线 5.1.2 垂线 同步练习
![人教版数学七年级下册 第五章 相交线与平行线 5.1.2 垂线 同步练习](https://img.taocdn.com/s3/m/beb6520f7f1922791788e881.png)
人教版数学七年级下册第五章相交线与平行线 5.1.2 垂线同步练习一、单选题(共10题;共20分)1.若线段AM,AN分别是ΔABC边上的高线和中线,则()A. AM>ANB. AM≥ANC. AM<AND. AM≤AN2.如图,连接直线l外一点P与直线l上各点O,A1,A2,A3,⋯,其中PO⊥l,这些线段PO,PA1,PA2,PA3,⋯中,最短的线段是()A. POB. PA1C. PA2D. PA33.如图,AC⊥BC,AC=4.5,若点P在直线BC上,则AP的长可能是( ).A. 5B. 4C. 3D. 24.如图,把河AB中的水引到村庄C拟修水渠中最短的是()A. CMB. CNC. CPD. CQ5.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A. 0条B. 1条C. 2条D. 无数条6.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A. 40°B. 50°C. 60°D. 140°7.在同-平面内,若∠A与∠B的两边分别垂直,且∠A比∠B的3倍少40°,则∠A的度数为()A. 20°B. 55°C. 20°或125°D. 20°或55°8.如图,点O为直线AB上一点,OC⊥OD. 如果∠1=35°,那么∠2的度数是()A. 35°B. 45°C. 55°D. 65°9.如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A. 2个B. 3个C. 4个D. 5个10.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共7题;共7分)11.如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是________.12.如图,在Rt △ABC. ∠B=90°,在边AB、AC上分别截取AD,AE,使AD=AE,分别DE的长为半径作弧,两弧在∠BAC内交于点M,作射线AM交BC边于以D、E为圆心,以大于12点F.若FB=2,则点F到AC的距离为________.13.如图,线段AB=15cm,线段AD=12cm,线段AC=9cm,则点A到BC的距离为________ cm.14.如图,CD⊥AB,垂足是点D,AC=7,BC=5,CD=4,点E是线段AB上的一个动点(包括端点),连接CE,那么CE长的范围是________.15.已知∠A的两边与∠B的两边分别垂直,且∠A比∠B的3倍少40°,那么∠A=________ °16.如图,已知OC⊥OA,OD⊥OB.若∠AOB=148°,则∠COD=________.17.如图,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.将三角尺OCD绕点O 按每秒30°的速度沿顺时针方向旋转一周,在旋转的过程中,当第________秒时,直线CD恰好与直线MN垂直.三、解答题(共4题;共20分)18.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC:∠AOD=7:11,求∠DOE的度数.19.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°.求∠COF的度数.20.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)说明理由21.如图所示,码头、火车站分别位于A,B两点,直线a和b分别表示铁路与河流.(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.四、综合题(共1题;共10分)22.如图,OA⊥OC,OB⊥OD.(1)∠AOD与∠BOC相等吗?为什么?(2)已知∠AOB=140°,求∠COD的度数.答案解析部分一、单选题1.【答案】D【解析】【解答】解:由垂线段最短,可知ΔABC同一条边上的高线不可能比中线长,只有当中线和高线重合时,AM=AN,因此AM≤AN,故答案为:D.【分析】根据垂线段最短即可判断.2.【答案】A【解析】【解答】解:∵PO⊥l,∴这些线段PO,PA1,PA2,PA3,…中,最短的线段是PO.故答案为:A.【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”作答即可.3.【答案】A【解析】【解答】解:已知,在△ABC中,AC⊥BC,AC=4.5,根据垂线段最短,可知AP的长不可小于4.5,当P和C重合时,AP=4.5,故答案为:A.【分析】利用垂线段最短,可得AP的取值范围是AP≥4.5,根据各选项可得答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:(每小题3分,共18分)
1.如图1所示,下列说法不正确的是( )
A.点B到AC的垂线段是线段AB
B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段
D.线段BD是点B到AD的垂线段
D C
B
A
D
C
B
A
O D
C
B
A
(1) (2) (3)
2.如图1所示,能表示点到直线(线段)的距离的线段有( )
A.2条
B.3条
C.4条
D.5条
3.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线
②在平面内,过直线外一点有且只有一条直线垂直于已知直线
③在平面内,过一点可以任意画一条直线垂直于已知直线
④在平面内,有且只有一条直线垂直于已知直线.
A.1个
B.2个
C.3个
D.4个
4.如图2所示,AD⊥BD,BC⊥CD,AB=a cm,BC=b cm,则BD的范围是( )
A.大于a cm
B.小于b cm
C.大于a cm或小于bcm
D.大于b cm且小于a cm
5.到直线L的距离等于2cm的点有( )
A.0个
B.1个
C.无数个
D.无法确定
6.点P为直线m外一点,点A,B,C为直线m上三点,P A=4cm,PB=5cm,PC=2cm,
则点P到直线m的距离为( )
A.4cm
B.2cm;
C.小于2cm
D.不大于2cm
二、填空题:(每小题3分,共12分)
1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,
∠AOD=∠_______=∠_______=∠_______=90°.
2.过一点有且只有________直线与已知直线垂直.
3.画一条线段或射线的垂线,就是画它们________的垂线.
4.直线外一点到这条直线的_________,叫做点到直线的距离.
三、训练平台:(共15分)
如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,
求∠DOG 的度数.
四、提高训练:(共15分)
如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.
五、探索发现:(共20分)
如图6所示,O 为直线AB 上一点,∠AOC =
1
3
∠BOC ,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.
六、中考题与竞赛题:(共20分)
(2001.杭州)如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M ,N 分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,离村庄N 最近,请你在AB 上分别画出P ,Q 两点的位置.
答案:
一、1.C 2.D 3.C 4.D 5.C 6.D
二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.垂线段的长度 三、∠DOG =55°
四、解:如图3所示.
l
A
五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,
∴1
3
∠BOC+∠BOC=180°,
∴4
3
∠BOC=180°,
∴∠BOC=135°,∠AOC=45°,
又∵OC是∠AOD的平分线,
∴∠COD=∠AOC=45°.
(2)∵∠AOD=∠AOC+∠COD=90°,
∴OD⊥AB.
六、解:如图4所示.。