两直角三角形全等的条件(教学设计)

合集下载

苏教版八年级上册直角三角形全等的判定(HL)教学设计

苏教版八年级上册直角三角形全等的判定(HL)教学设计

苏教版八年级上册直角三角形全等的判定(HL)教学设计【目标要求】学习目标1、探索寻求两个直角三角形全等的条件.2、通过作图说明两个直角三角形满足一条直角边和斜边对应相等,则两个直角三角形全等。

3、会运用“HL”证明两个直角三角形全等。

学习重点:探索寻求两个直角三角形全等的条件.学习难点:熟练运用“HL”证明两个直角三角形全等。

【尝试·探究】相关知识链接1、判定两个三角形全等的方法:、、、。

2、如图,Rt△ABC中,直角边是、,斜边:______.3..过直线外一点如何作已知直线的垂涎呢?AB第二题图知识点:判定两个直角三角形全等方法一、尝试自学a)任意画出一个Rt△ABC.。

如图使∠C=90°,再画一个Rt•△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC上,•它们全等吗?ACB1.画∠MC′N=90°。

2.在射线C′M上取B′C′= 。

3.以B′为圆心,为半径画弧,交射线C′N于点A′。

4.连接A′B′。

从中你发现了什么?是否重合?答:规律:。

简写成“斜边、直角边”或“”).b)运用“HL”证明直角三角形全等通常写成什么格式?在Rt △ABC 与Rt △DEF 中,∵⎩⎪⎨⎪⎧AC =DF BC =EF ∴ ≌ ( )犇鑫点睛:两个直角三角形全等书写三步骤:A 、写出在哪两个三角形中;B 、摆出 和 两个条件用大括号括起来;C 、写出全等结论。

二.自学检测(一) 判断题:1. 一个锐角和这个锐角的对边对应相等的两个直角三角形全等。

( )2. 一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等。

( )3. 一个锐角与一斜边对应相等的两个直角三角形全等。

( )4. 两直角边对应相等的两个直角三角形全等。

( )5. 两边对应相等的两个直角三角形全等 ( )6. 两锐角对应相等的两个直角三角形全等 ( )7. 一个锐角与一边对应相等的两个直角三角形全等。

人教版八年级数学上册12.1两直角三角形全等的条件教学设计

人教版八年级数学上册12.1两直角三角形全等的条件教学设计
-引导学生通过解决实际问题,发现数学与现实生活的紧密联系,增强数学学习的积极性。
5.总结环节:
-让学生自主总结全等三角形的判定方法,形成知识网络图,加深对知识体系的理解。
-教师通过提问、反馈等方式,检验学生对本节课重难点的掌握情况。
6.评价与反思:
-采用多元化的评价方式,如口头提问、书面作业、小组展示等,全面评估学生的学习效果。
-通过多媒体演示和黑板示例,详细讲解每种全等判定方法的特点和应用场景。
3.实践环节:
-设计不同难度层次的练习题,让学生独立完成,巩固全等判定方法。
-对于难度较大的题目,鼓励学生进行讨论,培养合作解决问题的能力。
4.应用环节:
-创设真实的情境问题,如测量距离、计算面积等,让学生运用全等知识解决,提高学生将理论知识应用于实际的能力。
1.教学活动设计:
-让学生自主总结本节课所学的全等判定方法,形成知识体系。
-教师通过提问、反馈等方式,检查学生对知识点的掌握情况。
2.教学反思:
-鼓励学生反思学习过程中的优点和不足,提高自我认知。
-教师根据学生的学习情况,调整教学策略,以提高教学效果。
五、作业布置
为了巩固本节课所学内容,检验学生对两直角三角形全等条件的掌握程度,特布置以下作业:
二、学情分析
八年级学生在前两年的数学学习中,已经掌握了平面几何的基本概念、性质和判定方法。在此基础上,学生对直角三角形有一定的了解,但可能对两直角三角形全等的判定方法掌握不够熟练。此外,学生在解决实际问题时,可能缺乏将理论知识与实际问题相结合的能力。
针对这一学情,教师在教学过程中应注重以下方面:
1.激发学生的学习兴趣,通过设置富有挑战性的问题,引导学生主动探究两直角三角形全等的条件。

《直角三角形全等的判定》教学设计

《直角三角形全等的判定》教学设计

《直角三角形全等的判定》教学设计教学目标知识与技能1. 掌握已知直角三角形的一条直角边和斜边,作直角三角形的方法。

2.掌握直角三角形全等的判定方法“HL”。

3.能用全等直角三角形的判定方法解决简单问题。

过程与方法经历探究全等直角三角形判定方法“HL”的过程,学会用操作确认、归纳发现问题结论的方法。

情感、态度与价值观通过操作确认、归纳发现结论,感知实验操作在发现问题结论中的重要作用,让学生体会到学习几何的乐趣。

教学重点难点以及措施直角三角形全等的条件、判定方法。

运用全等直角三角形的判定方法解决问题。

学生与教学内容分析这节课是在学生掌握了一般三角形全等的判定方法的基础上,探索直角三角形全等的特殊方法。

由于本班的学生个人的接受能力差异太大,所以我只能通过让学生动手画图,感受直角三角形在直角边和斜边固定时图形的唯一性。

但学生已具备了一定的学习经验,让学生自主探究直角三角形全等的判定方法,符合学生的认知过程。

然后再引入定理,让学生由感性的认识过度到理性认识。

最后再进行个别的辅导,进行针对性的习题布置。

教学媒体选择与应用交互式电子白板使用功能(展示和标注,利用手写识别功能呈现,规范演示解题步骤。

)教学准备每位学生准备一套三角板、量角器、剪刀、教师给学生准备一张纸、多媒体课件。

教学环节教学内容活动设计活动目标媒体使用及分析(交互式电子白板使用功能)用功能)一、情境探究,引小刚家需要划一块直角三角形的玻璃,尺寸如下,一条直角边为60cm,另一条直角边条为活动一作图画一个,使得,一使学生感受直角三角形,为探索直角三角形全等做好铺入新课80cm,斜边长为100cm。

来到玻璃店,老板拿出一块长方形玻璃,只量了两个直角边,就把玻璃划好了。

小刚不明白,你知道为什么吗?但是小刚不放心,他又来到第二家店,老板也只量了两个边,但是一条直角边和斜边,也把玻璃划好了,你知这是又为什么吗?(引入课题)条直角边,斜边。

垫。

二、动手实践,探索规律斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等。

八年级数学下册《直角三角形全等的判定》教案、教学设计

八年级数学下册《直角三角形全等的判定》教案、教学设计
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的直角三角形应用,如楼梯、桥梁等,引导学生观察和思考直角三角形的特征及其在全等判定中的应用。
2.提问:“同学们,我们已经学过全等三角形的判定方法,那么直角三角形有哪些特殊的地方呢?如何判断两个直角三角形全等?”通过问题引导学生回顾旧知,为新课的学习做好铺垫。
3.引入本节课的教学目标,让学生明确学习直角三角形全等判定的意义和作用。
(二)讲授新知
1.通过具体的直角三角形例子,讲解SAS、ASA、AAS和HL四种判定方法,让学生理解并掌握这四种方法的含义和应用。
- SAS:已知两个直角三角形的两边和夹角相等,可以判定这两个三角形全等。
- ASA:已知两个直角三角形的夹角和两边相等,可以判定这两个三角形全等。
三、教学重难点和教学设想
(一)教学重难点
1.重点:直角三角形全等的判定方法(SAS、ASA、AAS和HL)的掌握和应用。
2.难点:
-理解并灵活运用不同的全等判定方法解决实际问题。
-在复杂几何图形中识别直角三角形全等的条件,并运用全等性质进行推理。
-将全等三角形的判定与几何图形的性质相结合,解决综合性的几何问题。
- AAS:已知两个直角三角形的两个角和一边相等,可以判定这两个三角形全等。
- HL:已知两个直角三角形的斜边和直角边相等,可以判定这两个三角形全等。
2.结合具体例题,逐一演示这四种判定方法的应用,让学生在实际操作中理解和掌握。
3.强调直角三角形全等判定中的关键步骤和注意事项,如正确识别对应边、对应角等。
4.小组合作题:布置一道需要小组合作完成的题目,要求学生在小组内部分工合作,共同探究解决问题的策略,提高学生的团队协作能力。

《全等三角形的判定》 教学设计

《全等三角形的判定》 教学设计

《全等三角形的判定》教学设计一、教学目标1、知识与技能目标学生能够理解全等三角形的概念,掌握全等三角形的性质。

学生能够熟练掌握全等三角形的判定定理(SSS、SAS、ASA、AAS、HL),并能运用这些定理进行简单的推理和证明。

2、过程与方法目标通过观察、比较、操作等活动,培养学生的动手能力、观察能力和逻辑思维能力。

经历探索全等三角形判定定理的过程,让学生体会从一般到特殊、从简单到复杂的数学思维方法。

3、情感态度与价值观目标通过合作学习,培养学生的团队合作精神和交流能力。

让学生在数学学习中体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点全等三角形的判定定理(SSS、SAS、ASA、AAS、HL)。

运用全等三角形的判定定理进行推理和证明。

2、教学难点灵活运用全等三角形的判定定理解决实际问题。

理解 HL 定理的适用条件。

三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、导入新课展示两个形状、大小完全相同的三角形,让学生观察并说出它们的特点。

引导学生回忆三角形的相关知识,如三角形的边、角等。

提出问题:如何判断两个三角形是否全等?从而引出本节课的主题——全等三角形的判定。

2、讲授新课全等三角形的概念给出全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

通过演示两个三角形重合的过程,让学生直观地理解全等三角形的概念。

强调全等三角形的对应边相等,对应角相等。

全等三角形的性质引导学生根据全等三角形的概念,思考全等三角形的性质。

总结全等三角形的性质:全等三角形的对应边相等,对应角相等。

全等三角形的判定定理SSS 定理给出两个三角形的三条边分别相等的条件,让学生通过动手操作,将两个三角形重合,从而得出 SSS 定理:三边对应相等的两个三角形全等。

通过例题,让学生运用 SSS 定理进行证明。

SAS 定理给出两个三角形的两条边及其夹角分别相等的条件,让学生通过操作和观察,得出 SAS 定理:两边和它们的夹角对应相等的两个三角形全等。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

直角三角形全等的判定(HL)教学设计

直角三角形全等的判定(HL)教学设计

课题:12.2.4直角三角形全等的判定(HL)课型:新授课【教学内容】直角三角形全等的判定(HL)【学习目标】1.知识与技能:(1)探索并掌握直角三角形全等的判定方法“HL”;(2)能够合理选择恰当的直角三角形判定方法来解决问题。

2.过程与方法:经历探索直角三角形全等判定方法的过程,体会利用操作、证明、归纳获得数学结论的过程,培养学生反思的习惯和理性的思维习惯。

3.情感态度与价值观:通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性。

【学习重点】掌握判定两个直角三角形全等的特殊方法-HL。

【学习难点】灵活应用直角三角形的判定方法解决问题。

【教法学法】探究、讨论、归纳法【教学准备】直角三角形板、两张透明纸、圆规直尺【课时安排】1课时【教学流程】预习提纲1.斜边与一条直角边分别相等的两个直角三角形.(简写成“”或“”).2.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC (填“全等”或“不全等”)根据(用简写法).3.略.4.课后练习题……(略).课堂流程教案一、情境导入、目标引领(时间:5分钟)1、判定两个三角形全等的方法有:、、、。

2、这些方法能判定直角三角形全等吗?3、思考:对于两个直角三角形,除了直角相等外,还要添几个条件,这两个直角三角形就全等呢?我们知道直角三角形是特殊的三角形,所以可以用一般三角形全等的判定方法: SSS 、SAS、ASA、AAS。

只要添加一边一锐角或两直角边分别相等,这两个直角三角形就全等了。

4.问题:如果两个直角三角形满足斜边和一条直角边分别相等,那么这两个直角三角形全等吗?二、自主学习、合作探究(时间:10分钟)探究:动手画一画(小组比较)1.任意画出一个Rt△ABC,∠C=90°,再画一个Rt△A´B´C´,使得∠C´= 90°,B´C´=BC,A´B´= AB。

直角三角形全等的判定(HL)(教学设计)-八年级数学上册同步备课系列(人教版)

 直角三角形全等的判定(HL)(教学设计)-八年级数学上册同步备课系列(人教版)

12.2.4直角三角形全等的判定(HL)教学设计一、教学目标:1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.二、教学重、难点:重点:掌握判定两个直角三角形全等的特殊方法-HL.难点:熟练选择判定方法,判定两个直角三角形全等.三、教学准备:课件、三角尺、圆规等。

四、教学过程:复习回顾1.判定两个三角形全等方法____________________.2.如图,AB⊥BE于B,DE⊥BE于E.(1)若∠A=∠D,AB=DE.则与△DEF______(填“全等”或“不全等”)根据______(用简写法).(2)若∠A=∠D,BC=EF.则△ABC与△DEF______(填“全等”或“不全等”)根据______(用简写法).(3)若AB=DE,BC=EF.则△ABC与△DEF_______(填“全等”或“不全等”)根据______(用简写法).若AB=DE,AC=DF,此时△ABC与△DEF还会全等吗?知识精讲探究:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使得∠C′=90°,B′C′=BC,A′B′=A B.把画好的Rt△A′B′C′剪下,放到Rt△ABC上,它们全等吗?斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).注意:(1)“HL”定理是仅适用于Rt△的特殊方法.因此,判定两个直角三角形全等的方法除了可以使用“SSS”、“SAS”、“ASA”、“AAS”外还可以使用“HL”.(2)应用HL定理时,虽只有两个条件,但必须先有两个Rt△.书写格式为:在Rt△ABC和Rt△A′B′C′中,==AB A B BC B C′′′′∴Rt△ABC≌Rt△A′B′C′(HL)典例解析例1.如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=B D.求证BC=AD.证明:∵AC ⊥BC ,BD ⊥AD ,∴∠C 与∠D 都是直角,在Rt △ABC 和Rt △BA D 中,BDAC BA AB ∴Rt △ABC ≌Rt △BAD (HL),∴BC =AD.【针对练习】如图,C 是路段AB 的中点,两人从C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D 、E 两地.DA ⊥AB ,EB ⊥A B.D ,E 与路段AB 的距离相等吗?为什么?解:AD =BE ,理由如下:依题意可得,AC =BC ,CD =CE .∵DA ⊥AB ,EB ⊥AB ,∴∠A =∠B =90°,在Rt △ACD 和Rt △BCE 中,BCAC CE CD ∴Rt △ACD ≌Rt △BCE (HL),∴AD =BE.例2.如图,AC ⊥AD ,BC ⊥BD ,AC=BD ,求证:AD=BC .证明:连接D C.∵AC ⊥AD ,BC ⊥BD ,∴∠A =∠B =90°,在Rt △ADC 和Rt △BC D 中,AB BA AC BD∴Rt △ADC ≌Rt △BCD (HL),∴AD =BC.【针对练习】已知:如图,AB ,AD DC ,AB AD ,求证:BC DC .证明:连接AC,如下图,∵AB ⊥BC,AD ⊥DC,∴∠B =∠D =90°,在Rt △ABC 和Rt △AD C 中,AC AC AD AB∴Rt △ABC ≌Rt △ADC (HL),∴BC =BD.例3.如图,已知AD 是△ABC 的角平分线,且BD =CD ,DE 、DF 分别垂直于AB 、AC ,垂足分别为E 、F .求证BE =CF.证明:AD 平分∠BAC ,∴∠BAD =∠CAD ,∵DE 、DF 分别垂直于AB 、AC ,∴∠AED =∠AFD =90°,在△AED 和△AFD 中,AED AFD EAD FAD AD AD∴△AED ≌△AFD (AAS),∴DE =DF ,在Rt △BDE 和Rt △CDF 中,BD CD DE DF∴Rt △BDE ≌Rt △CDF (HL ),∴BE =CF .【针对练习】已知:如图,点A 、E 、C 同一条直线上,AB ⊥BC ,AD ⊥DC ,AB =A D .求证:BE =DE.证明:∵AB ⊥BC ,AD ⊥DC ,∴在Rt ABC 与Rt ADC 中,AB AD AC AC,∴Rt ABC ADC ≌R t (HL ),∴∠BAE =∠DAE ,在ABE △与ADE 中,AB AD BAE DAE AE AE,∴ABE ADE ≌(SAS ),∴BE =DE .例4.如图,在△AB C 中,∠C =90°,AD 是∠CAB 的角平分线,DE ⊥AB 于E ,点F 在边AC 上,连接DF .(1)求证:AC =AE ;(2)若DF =DB ,试说明∠B 与∠AFD 的数量关系;(3)在(2)的条件下,若AB =m ,AF =n ,求BE 的长(用含m ,n 的代数式表示).(1)证明:∵∠C =90°,DE ⊥AB ,∴∠C =∠AED =90°,在△ACD 和△AE D 中,C AED CAD EAD AD AD,∴△ACD ≌△AED (AAS ),∴AC =AE ;(2)解:∠B +∠AFD =180°,理由如下:由(1)得:△ACD ≌△AED ,∴DC =DE ,在Rt △CDF 和Rt △ED B 中,DC DE DF DB,∴Rt△CDF≌Rt△EDB(HL),∴∠CFD=∠B,∵∠CFD+∠AFD=180°,∴∠B+∠AFD=180°;(3)解:由(2)知,Rt△CDF≌Rt△EDB,∴CF=BE,由(1)知AC=AE,∵AB=AE+BE,∴AB=AC+BE,∵AC=AF+CF,∴AB=AF+2BE,∵AB=m,AF=n,∴BE=12(m﹣n).课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。

北师大版数学八年级下册1.2《直角三角形全等的判定》(第2课时)教学设计

北师大版数学八年级下册1.2《直角三角形全等的判定》(第2课时)教学设计

北师大版数学八年级下册1.2《直角三角形全等的判定》(第2课时)教学设计一. 教材分析北师大版数学八年级下册1.2《直角三角形全等的判定》是学生在学习了全等图形的概念和性质、全等三角形的判定方法的基础上进行学习的。

本节课主要让学生掌握HL(斜边-直角边)判定两个直角三角形全等,并能够运用这一方法解决实际问题。

教材通过丰富的例题和练习,引导学生探索、发现、验证和应用知识,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念和性质、全等三角形的判定方法。

但部分学生对于如何运用判定方法解决实际问题还不够熟练,特别是对于一些复杂图形的处理能力有待提高。

此外,学生的数学思维能力、观察能力和合作能力也有待进一步提高。

三. 教学目标1.理解HL(斜边-直角边)判定两个直角三角形全等的条件;2.学会运用HL判定方法解决实际问题;3.培养学生的逻辑思维能力、观察能力、合作能力。

四. 教学重难点1.教学重点:掌握HL(斜边-直角边)判定两个直角三角形全等的方法;2.教学难点:如何运用HL判定方法解决实际问题。

五. 教学方法1.情境教学法:通过生活情境导入,激发学生的学习兴趣;2.问题驱动法:引导学生发现并提出问题,培养学生解决问题的能力;3.合作学习法:学生进行小组讨论,培养学生的合作能力;4.实践操作法:让学生动手操作,提高学生的实践能力。

六. 教学准备1.准备相关的教学素材,如PPT、例题、练习题等;2.准备教学课件,以便进行多媒体教学;3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活情境,如建筑工人测量角度,引入直角三角形全等的概念。

提问:如何判断两个直角三角形是否全等?2.呈现(10分钟)展示PPT,引导学生发现并提出问题。

如:如果已知一个直角三角形的斜边和一条直角边,如何求解另一个直角三角形的对应边长?3.操练(10分钟)学生进行小组讨论,让学生通过合作学习,探索并验证HL判定两个直角三角形全等的方法。

《直角三角形全等的判定》教学设计

《直角三角形全等的判定》教学设计

一、基本信息希沃为课堂教学注入新的活力,使课堂内容更加精彩,设备所选技术及技术应用目的自带的强大资源库,里面囊括了针对不同学科开发的各种音像、图片教育资源,为老师编辑课件及课堂演示储备了海量素材。

教学过程 1.判定两个三角形全等方法,,,,。

2.如图,Rt △ABC 中,直角边、,斜边3.如图,AB ⊥BE 于B ,DE ⊥BE 于E ,(1)若∠A=∠D ,AB=DE ,则△ABC 与△DEF 是否全等______,根据______(用简写法)(2)若∠A=∠D ,BC=EF ,则△ABC 与△DEF 是否全等______,根据______(用简写法)(3)若AB=DE ,BC=EF ,则△ABC 与△DEF 是否全等______,根据______(用简写法)(4)若AB=DE ,BC=EF ,AC=DF ,则△ABC 与△DEF 是否全等______,根据______(用简写法)探究1:如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?方法一:测量斜边和一个对应的锐角.(AAS)方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)⑵如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?下面让我们一起来验证这个结论。

动手操作:画出一个Rt△ABC,使∠C=90°.再画一个直Rt△A'B'C',使∠C'=90°,B'C'=BC,A'B'=AB.把画好的直角三角形A'B'C'剪下,放到△ABC上,全等吗?作法:(1)画∠MC'N=90°;(2)在射线C'M上截取B'C'=BC;(3)以点B'为圆心,AB为半径画弧,交射线C'N于点A';(4)连接A'B'.想一想:从中你能发现什么规律?归纳:斜边和一条直角边对应相等的两个直角三角形全等。

《直角三角形全等的判定(HL)》教案讲课教案

《直角三角形全等的判定(HL)》教案讲课教案

《直角三角形全等的判定》教学设计中心发言人:DH教学目标:(1)明确两个直角三角形的全等,可以利用“边边边,边角边,角边角,角角边”来证明;但是由于直角相等,所以两个直角三角形全等的判定,只需要增加两个条件即可。

(2)探索和掌握直角三角形全等的特殊判定方法:斜边和一条直角边对应相等的两个直角三角形全等,并会用“SSS,SAS,ASA,AAS及HL”证明两个直角三角形全等。

教学重点:探索和掌握直角三角形全等的特殊判定方法:斜边和一条直角边对应相等的两个直角三角形全等,并会用“SSS,SAS,ASA,AAS及HL”证明两个直角三角形全等。

教学难点:(1)满足“边边角”分别对应相等的两个三角形不一定全等,但满足“斜边和一条直角边对应相等的两个直角三角形”符合“边边角”的条件,两个直角三角形却是全等的。

(2)要注意用HL直角三角形全等的证明格式集体备教教学过程:1、复习与回顾:(1)判定两个三角形全等的方法是,,,(2)回顾直角三角形的边、角的名称及相关性质。

2、尝试归纳两个直角三角形全等的判定方法:如图,AB⊥BE于B,D E⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF (填“全等”或“不全等”),根据(用简写法)。

(2)若∠A=∠D,BC=EF,则△ABC与△DEF (填“全等”或“不全等”),个性补教AB CE FD根据(用简写法)。

(3)若AB=DE,BC=EF,则△ABC与△DEF (填“全等”或“不全等”),根据(用简写法)。

(4)若∠A=∠D,AC=DF则△ABC与△DEF (填“全等”或“不全等”),根据(用简写法)。

归纳:两个直角三角形全等的类型:ASA ,AAS ,SAS ,AAS (一锐角一直角边,一锐角一斜边,两直角边,共四种情形) 3、探究:一斜边一直角边对应相等,两直角三角形是否全等?(1)情景引入如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。

人教版数学八年级上册《直角三角形全等的判定》教学设计

人教版数学八年级上册《直角三角形全等的判定》教学设计

人教版数学八年级上册《直角三角形全等的判定》教学设计一. 教材分析人教版数学八年级上册《直角三角形全等的判定》是初中数学的重要内容,主要让学生掌握直角三角形全等的判定方法。

本节内容是在学生已经掌握了三角形全等的判定方法的基础上进行学习的,通过本节内容的学习,使学生能够灵活运用直角三角形全等的判定方法解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形全等的概念和判定方法有一定的了解。

但学生在解决实际问题时,还不能灵活运用所学知识。

因此,在教学过程中,教师要注重引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.理解直角三角形全等的判定方法。

2.能够运用直角三角形全等的判定方法解决实际问题。

3.提高学生的空间想象能力和解决问题的能力。

四. 教学重难点1.重点:直角三角形全等的判定方法。

2.难点:如何运用直角三角形全等的判定方法解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形全等的判定方法。

2.利用多媒体展示实例,帮助学生直观理解直角三角形全等的概念。

3.采用小组合作交流的方式,让学生在讨论中加深对直角三角形全等判定方法的理解。

4.运用巩固练习法,提高学生运用直角三角形全等判定方法解决实际问题的能力。

六. 教学准备1.多媒体教学设备。

2.直角三角形的相关模型和图片。

3.练习题。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何判断直角三角形是否全等。

例如,一个直角三角形的一个锐角和另一个直角三角形的对应锐角相等,这两个三角形是否全等?2.呈现(10分钟)教师通过讲解和展示实例,向学生介绍直角三角形全等的判定方法。

直角三角形全等的判定方法有:(1)HL判定法:如果两个直角三角形的斜边和一个锐角分别相等,那么这两个三角形全等。

(2)ASA判定法:如果两个直角三角形的两个锐角和它们之间的边分别相等,那么这两个三角形全等。

《直角三角形全等的判定》教学设计

《直角三角形全等的判定》教学设计

《直角三角形全等的判定》教学设计一、内容和内容解析(一)内容直角三角形全等的判定:“斜边、直角边”.(二)内容解析本课是在学习了全等三角形的四个判定方法(“边边边”、“边角边”、“角边角”、“角角边”)的基础上,进一步探索两个直角三角形全等的判定方法.直角三角形是三角形中的一类,判定两个直角三角形全等,可以用已学过的所有全等三角形的判定方法,但两个直角三角形中已有一对直角是相等的,因此在判定两个直角三角形全等时,只需另外找到两个条件即可,由于直角三角形的这种特殊性,判定两个直角三角形全等的方法又有别于其它的三角形.教科书首先给出一个“思考”,让学生认识到判定两个直角三角形全等与判定两个普通三角形全等的不同之处.然后通过探究5的作图实验操作,让学生经历探究满足斜边和一条直角边分别相等的两个直角三角形是否全等的过程,然后在学生总结探究出的规律的基础上,直接以定理的方式给出“斜边、直角边”判定方法.最后,教科书给出一个例题,让学生在具体问题中运用“斜边、直角边”证明两个直三角形全等,并得到对应边相等.基于以上分析,本节课的重点是:“斜边、直角边”判定方法的运用.二、目标及目标解析(一)目标1.理解“斜边、直角边”能判定两个直角三角形全等.2.能运用“斜边、直角边”证明两个直角三角形全等,并得到对应边、对应角相等.(二)目标解析1.学生经历探索两个直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.学生能从具体的问题中找出符合“斜边、直角边”条件的两个直角三角形,并能证明这两个直角三角形全等.三、教学问题诊断分析由于直角三角形是特殊的三角形,它具备一般三角形所没有的特殊性质.例如,对一般三角形来说,已知两边和其中一边的对角分别相等,不能判定两个三角形全等,而对于直角三角形来说,已知斜边和一直角边分别相等,能够得到两个直角三角形全等.直角三角形的斜边和一直角边确定了,根据勾股定理,得到第三边也是确定的,从而可以利用“边边边”或“边角边”证明满足斜边和一条直角边分别相等的两个直角三角形全等.但是勾股定理是后面学习的内容,在这里不能运用勾股定理来证明这个结论,只能通过实验操作、观察得出定理.基于以上分析本节课的难点是:“斜边、直角边”判定方法的理解.四、教学过程设计(一)引言前面我们学习了全等三角形的四个判定方法(“边边边”“边角边”“角边角”“角角边”),本节课我们继续研究两个直角三角形全等的判定方法.问题1:对于两个直角三角形,除了直角相等的条件外,还要满足哪几个条件,这两个直角三角形就全等了?两个直角三角形满足的条件全等依据方法1两条直角边分别相等“SAS”方法2一个锐角和一条直角边分别相等“ASA”或“AAS”方法3一个锐角和斜边分别相等“AAS”追问:如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗?师生活动:师生共同得出上面的三个判定方法,学生思考猜想:满足斜边和一条直角边分别相等的两个直角三角形是否全等.【设计意图】直接进入本节课学习的内容,培养学生分类讨论的思想.让学生大胆提出猜想.(二)探索新知问题2:探究5任意画出一个RtABC,使∠C=90°,再画一个RtA′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的A′B′C′剪下来,放到ABC上,它们全等吗?画法:(1)画∠MC′N=90°;(2)在射线C′M上截取B′C′=BC;(3)以点B′为圆心,AB为半径画弧,交C′N于点A′;(4)连接A′B′.追问:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?文字语言:斜边和一条直角边分别相等的两个直角三角形全等.(简写成“斜边、直角边”或“HL”)符号语言:在RtABC与RtA′B′C′中,∴RtABCRtA′B′C′(HL).师生活动:师生共同进行尺规作图,学生进行操作,观察是否全等.然后教师引导学生得出“斜边、直角边”判定方法,掌握文字和符号语言.【设计意图】通过作图、剪图、比较图的过程让学生获得“斜边、直角边”的判定方法,培养学生发现问题的能力,锻炼学生用数学语言的能力.(三)应用新知,解决问题问题3:例5:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD证明:AC⊥BC,BD⊥AD∴∠C与∠D都是直角在RtABC与RtBAD′中,∴RtABCRtBAD(HL).∴BC=AD.追问:若图中AC,BD相交于点E,图中还有全等三角形吗?怎样证明?师生活动:学生先口述理由,然后写出完整的证明过程,教师规范步骤.【设计意图】让学生初步熟悉根据“HL”证明两个直角三角形全等的一般程序.同时意识到,除了“HL”,前面所学的判定也可以用来证明两个直角三角形全等.(四)综合运用,巩固提高问题4:完成教科书第43页练习1、2题.1.如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D,E与路段AB的距离相等吗?为什么?答: D,E与路段AB的距离相等.证明:由题意可知:DC=EC.DA⊥AB,EB⊥AB,∴∠A与∠B都是直角.又C是路段AB的中点,∴AC=BC.在RtACD与RtBCE中,∴RtACDRtBCE(HL).∴AD=BE.2.如图, AB=CD, AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF.求证:AE=DF证明: AE⊥BC,DF⊥BC,∴∠AEB与∠DFC都是直角.又CE=BF,∴BE=CF.在RtABE与RtDCF中,∴RtABERtDCF(HL).∴AE=DF.师生活动:学生板演,写出完整的证明过程,教师点评.【设计意图】进一步巩固“斜边、直角边”的应用.(五)小结反思教师和学生一起回顾本节课所学的内容,并请学生回答以下问题:1.这节课我们学习了哪个判定直角三角形全等的方法?2.判定两个直角三角形全等总共有哪些方法?师生活动:教师引导,学生小结.【设计意图】回顾两个直角三角形全等的几种判定方法,形成知识体系.(六)布置作业:教科书习题12.2第7、8题.五、目标检测设计1.如图AB⊥BD,CD⊥BD,AD=BC.求证:AB=DC.【设计意图】本题考查学生寻找“HL”条件证明两个直角三角形全等,并得到对应边相等的能力.2.如图DE⊥BD,DE⊥CE,点A在DE上,AB=AC,BD=AE.求证: AB⊥AC.【设计意图】本题考查学生寻找“HL”条件证明两个直角三角形全等,并运用全等三角形的性质,进行分析、解决问题的能力.。

人教版数学八年级上册《“斜边、直角边”判定直角三角形全等》教学设计2

人教版数学八年级上册《“斜边、直角边”判定直角三角形全等》教学设计2

人教版数学八年级上册《“斜边、直角边”判定直角三角形全等》教学设计2一. 教材分析《“斜边、直角边”判定直角三角形全等》是人教版数学八年级上册第三章的内容。

这部分内容是在学生已经掌握了全等图形的概念、判定方法以及直角三角形的性质的基础上进行学习的。

本节课的主要内容是让学生掌握利用“斜边、直角边”判定两个直角三角形全等的方法,并能够运用这一方法解决实际问题。

教材通过例题和练习题的形式,帮助学生理解和掌握这一判定方法。

二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念、判定方法以及直角三角形的性质。

但学生在运用这些知识解决实际问题时,往往会遇到困难。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握利用“斜边、直角边”判定两个直角三角形全等的方法,并能够运用这一方法解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:利用“斜边、直角边”判定两个直角三角形全等的方法。

2.难点:如何引导学生将理论知识与实际问题相结合,提高解决问题的能力。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生发现和总结规律。

2.合作学习法:学生分组讨论,共同解决问题,培养学生的团队合作意识。

3.实践操作法:学生动手操作,观察、分析、总结,提高学生的动手能力和观察能力。

六. 教学准备1.教具:直角三角形模型、多媒体设备。

2.学具:学生用书、练习册、铅笔、橡皮。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾全等图形的概念、判定方法以及直角三角形的性质。

为新课的学习做好铺垫。

2.呈现(10分钟)教师通过多媒体展示几个实际问题,让学生观察、思考。

引导学生发现这些问题都可以归结为判断两个直角三角形是否全等的问题。

1.2直角三角形全等的判定(HL定理)(教案)

1.2直角三角形全等的判定(HL定理)(教案)
2.教学难点
-理解HL定理的适用条件:仅适用于直角三角形,非直角三角形不适用。
-识别全等证明中的已知条件和未知条件,特别是如何从题目中提取关键信息。
-理解全等证明的逻辑顺序,如何从已知条件出发,逐步推导出全等关系。
-解决实际问题时,如何构建直角三角形模型,并将HL定理应用于问题求解。
举例:在解决一个直角三角形的斜边和一条直角边长度已知的问题时,学生可能难以直接联想到使用HL定理。难点在于如何引导学生从问题中识别出这是一个直角三角形全等的问题,并应用HL定理来求解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直角三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的教学中,我尝试了多种方法来帮助学生理解和掌握直角三角形全等的判定方法——HL定理。首先,通过日常生活中的例子导入新课,我发现学生的兴趣被成功激发,他们对于几何学的实际应用表现出了浓厚的兴趣。这一点让我感到欣慰,也让我认识到,将理论知识与生活实际相结合是提高学生学习兴趣的有效途径。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形全等的判定方法——HL定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直角三角形全等的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

初中数学初二数学上册《直角三角形全等的判定》教案、教学设计

初中数学初二数学上册《直角三角形全等的判定》教案、教学设计
5.教学环境:
-创设轻松愉快的学习氛围,鼓励学生积极参与,勇于提问,敢于表达。
-建立良好的班级纪律,保证课堂教学的有序进行。
-利用学校教学资源,如数学实验室、多媒体教室等,为学生提供丰富的学习资源。
四、教学内容与过程
(一)导入新课
在导入环节,我将采用生活实例引发学生对直角三角形全等判定方法的思考。首先,我会向学生展示一张由两个直角三角形组成的楼梯图片,并提出问题:“如何判断这两个直角三角形是否全等?”让学生在观察图片的基础上,尝试回答问题。接着,我会让学生拿出提前准备好的两个直角三角形纸片,进行实际操作,观察、思考如何判断它们是否全等。
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.复习全等三角形的判定方法,引导学生回顾SSS、SAS、ASA、AAS等判定方法。
2.引导学生观察直角三角形的特殊性,即有一个角是直角,从而得出直角三角形的全等判定方法。
3.逐一讲解直角三角形全等的五种判定方法(SSS、SAS、ASA、AAS、HL),并结合实例进行说明。
4.教学步骤:
-导入:通过生活中的直角三角形实例,引发学生思考,激发学习兴趣。
-探究:引导学生复习全等三角形的判定方法,自主探究直角三角形全等的判定方法。
-讲解:结合实例,详细讲解五种判定方法的适用条件,帮助学生理解和记忆。
-应用:设计不同难度的练习题,让学生在实际操作中巩固所学知识。
-总结:通过师生共同总结,梳理本节课的知识点,形成知识网络。
此外,初二学生的抽象思维能力逐渐增强,他们对于直观、具体的实例更容易产生兴趣。因此,在本章节的教学中,教师应充分关注学生的认知特点,结合实际情境,激发学生的学习兴趣,帮助他们建立清晰的知识体系。
同时,初二学生正处于青春期,个体差异较大,学习态度、学习习惯等方面存在一定差异。教师需针对不同学生的特点,因材施教,使每个学生都能在原有基础上得到提高,从而提高整体教学效果。在此基础上,注重培养学生的团队合作精神,让学生在交流与合作中共同进步。

冀教版数学八年级上册《17.4 直角三角形全等的判定》教学设计1

冀教版数学八年级上册《17.4 直角三角形全等的判定》教学设计1

冀教版数学八年级上册《17.4 直角三角形全等的判定》教学设计1一. 教材分析冀教版数学八年级上册《17.4 直角三角形全等的判定》是直角三角形全等知识的一部分。

本节课的主要内容是让学生掌握HL(Hypotenuse-Leg)判定法,即直角三角形中,如果两个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等。

学生通过本节课的学习,可以进一步理解全等形的概念,提高解决几何问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了全等形、三角形的全等条件(SAS、ASA、AAS)以及直角三角形的性质。

但部分学生对全等形的概念理解不深,对直角三角形全等的判定方法辨识不清,运用不灵活。

因此,在教学过程中,教师需要关注学生的知识基础,引导学生理解全等形的概念,并通过实例分析,让学生掌握直角三角形全等的判定方法。

三. 教学目标1.知识与技能目标:让学生掌握HL判定法,能运用HL判定法判断两个直角三角形是否全等。

2.过程与方法目标:通过观察、分析、归纳,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生在解决实际问题中体验到数学的价值。

四. 教学重难点1.教学重点:掌握HL判定法,能运用HL判定法判断两个直角三角形是否全等。

2.教学难点:对HL判定法的理解与应用,能灵活运用HL判定法解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、小组合作法、引导发现法等教学方法。

通过生动有趣的实例,引导学生观察、分析、归纳直角三角形全等的判定方法,激发学生的学习兴趣,培养学生的逻辑思维能力和空间想象能力。

六. 教学准备1.准备相关的教学案例和图片,用于引导学生观察和分析。

2.准备PPT,展示教学内容和实例分析。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题:在直角三角形ABC中,AB是斜边,AC是直角边,如果在另一个直角三角形DEF中,DF是斜边,DE是直角边,并且AB=DF,AC=DE,那么这两个直角三角形全等吗?2.呈现(10分钟)教师通过PPT呈现直角三角形全等的判定方法(HL判定法),并用实例进行解释和演示。

直角三角形全等判定学案苏科版(教案)

直角三角形全等判定学案苏科版(教案)

课题:、直角三角形全等的判断(一)教课目的.使学生能娴熟地应用判断一般三角形全等的方法判断两个直角三角形全等..使学生掌握斜边、直角边公义及其应用.教课要点和难点斜边、直角边公义的应用.学习过程:一、情形创建:、直角三角形全等的条件有哪些?、你以为具备这样条件的两个直角三角形必定全等吗?为何?二、探究活动:我们知道:斜边和一对锐角相等的两个直角三角形,能够依据“”判断它们全等;一对直角边和一对锐角相等的两个直角三角形,能够依据“”或“”判断它们全等;两对直角边相等的两个直角三角形,能够依据“”判断它们全等.假如两个直角三角形的斜边和一对直角边相等(边边角 ),这两个三角形能否可能全等呢?如图() ,在△与△'''中,若='',='',∠=∠'=∠,这时△与△'''能否全等?研究这个问题,我们先做一个实验:把△与△'''拼合在一同 (教师演示 )如图 () ,因为∠=∠'''=∠,所以、( ')、'三点在一条直线上,所以,△'是一个等腰三角形,能够知道∠=∠'.依据公义可知△'''≌△.下边,我们再用绘图的方法来考证:画一个△,使∠=°,直角边的长为,斜边的长为.()把△剪下,两位同学比较一下,看看两人剪下的△能否能够重合..上边的和操作,明“斜和直角相等的两个直角三角形全等定直角三角形的“斜、直角”公义(称 ).三、例教课:、如,在△中,已知是中点,⊥,⊥,垂足分是、,=.求:、如:假如∠300,那么1,你能明个?2”.就是判AE FBD CAB DC四、小因为直角三角形是特别三角形,因此不能够用判断一般三角形全等的四种方法,能够用“斜、直角”公义判断两个直角三角形全等.“”只好用于判断直角三角形全等,不能用于判断一般三角形全等.所以判断两个直角三角形全等的方法有五种:“、”、“”、“”“”.五、稳固(一)、基拥有以下条件的△与△''' (此中∠=∠'=∠ )能否全等?假如全等,在 ( ) 里填写原因;假如不全等,在 ( )里打“×”:()='',∠=∠'⋯⋯⋯⋯⋯⋯⋯⋯⋯( )()='',=''⋯⋯⋯⋯⋯⋯⋯⋯( )()∠=∠',∠=∠'⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )()='',∠=∠'⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )()='',=''⋯⋯⋯⋯⋯⋯⋯⋯⋯( )如,已知∠=∠=∠,若要使△≌△,需要什么条件?把它分写出来( 有几种不一样的方法就写几种):.已知,如图,△中,,是角均分线,,则以下说法正确的有几个()A()均分∠;()△≌△;();()⊥.E F ()个()个CB()个()个D(二)提高练习、、第题、第题.已知:如图,在△中,∠°,⊥于,∠°,. 求,CB D A 过等腰直角三角形的直角极点任画一条直线,分别作⊥,⊥,垂足分别为、.()试画出此题的图形.(提示:有两种不一样的图形)()在你所画的两种图形中分别说明△≌△的原因.()若已知: 4cm, 3cm,求的长.六部署作业评论与反省学习是一件增加知识的工作,在茫茫的学海中,也许我们困苦过,在困难的竞争中,也许我们疲惫过,在失败的暗影中,也许我们绝望过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)AC=DF,CB=FE,AB=DE ( )
(5)∠A=∠D,∠B=∠E ( ) (6) AC=DF,AB=DE ( )
设计目的:通过对此问题的探究,使学生处于与原有的认知相矛盾的冲突中,从而引入本节课的内容。
生:学生观察思考后,进行口答。
(二)展开实验,主动参与探究
在Rt△ABC与Rt△A'B'C'中
BC= B'C'
A'B'=AB
∴ Rt△ABC≌ Rt△A'B'C'(HL)
强调;此结论在一般的两个三角形中是不成立的,但是在两个直角三角形中却正确。也就是说"边边角"在特殊情况下也能够成立。
(三)应用迁移,巩固提高
例1:如图,AD⊥BE,垂足C是BE的中点,
AB=DE,那么△ABC≌Fra bibliotek△DEC成立吗?
设计目的:使学生初步会用所学的定理判断两直角三角形全等。
生:独立思考后口述
例2:如图所示,在△ABO和△ACO中,∠ABO=∠ACO=90°_____=_____则Rt△ABO≌Rt△ACO
(这是一道开放性题目,答案不唯一,目的是为了培养学生的发散性思维。在思考中要引导学生注意题目中已经隐含了两个条件。)
二、教学目标
①、知识与技能目标:进一步熟练掌握三角形全等的条件,掌握直角三角形全等的条件;培养学生的推理能力,有条理地表达能力。
②、方法与过程目标:探索直角三角形全等的条件,运用直角三角形全等的条件来解决实际问题;
③、情感与态度目标:通过探究直角三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想的良好思维品质,以及发现问题的能力。
分析:欲证BC=AD,只需证明△ABC≌△BAD,由于这两个三角形都是直角三角形,因此可首先利用直角三角形全等的判定方法去判定。由于这两个三角形中已经知道了有一组直角边对应相等,所以只要斜边相等即可说明全等。
证明:∵ AC⊥BC,BD⊥AD
∴∠C=∠D=90°
在Rt△ABC 与Rt△BAD 中
实验:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△ A'B'C' ,使 B'C' =BC,A'B' =AB,把画好的Rt△A'B'C' 剪下,放到Rt△ABC上,看看它们是否全等?
(首先引导学生探讨画法)
画法:1.画∠MC ' N=90° 2.在射线C'M上取B'C'=BC
例3:如图:AB=CD,AE⊥BC,DF⊥BC,CE=BF.
求证:AE=DF
设计目的:培养学生简单的综合运用所学知识解决问题的能力。
生:自己独立完成,一学生版演。(证明略)
例4:如图,AC⊥BC,BD⊥AD,AC=BD.
求证:BC=AD.
师:如图,具备下列条件的Rt△ABC与Rt△DEF,(其中∠C=∠F=90ο)是否全等,在( )里填写理由,如果不全等,在( )里打"╳"
(1)AC=DF,∠A=∠D ( )
(2)AC=DF, BC=EF ( )
(3)AB=DE,∠B=∠E ( )
3.以为B'圆心,AB为半径画弧,交射线C'N于点A'.
4.连接A'B' 则△ A'B'C'就是所画的图形
探究规律:
通过实验可以得到两个直角三角形全等的判定的另一种方法:
斜边和一直角边对应相等的两个直角三角形全等(可以简写成"斜边、直角边公理"或"HL")
然后引导学生用数学符号语言来准确表达这个结论:
三、教学重点、难点
重点:掌握判定两直角三角形全等的条件;运用直角三角形全等的条件来解决实际问题
难点:探索"HL",灵活运用直角三角形全等的条件来解决实际问题
四、教学方式
采用师生互动,合作交流,实验探究的参与式教学。
学生活动需准备的材料:直尺、圆规、三角板、剪刀、两张硬纸片。
证明∵ DA⊥AB,EB⊥AB
∴∠A=∠B=90°
在Rt△ACD与 Rt△BCE 中
AC=BC
CD=CE
∴Rt△ACD ≌Rt△BCE(HL)
∴AD=BE
即D、E与路段AB的距离相等
(四)小结反思,拓展升华
让学生谈谈自己这节课的收获是什么?在交谈中归纳本节课所学的内容。
备选例题:
已知:如图,在△ABC和△A′B′C′中,CD、C′D′分别是高,并且AC=A′C′,CD=C′D′,∠ACB=∠A′C′B′
求证:△ABC≌△A′B′C′
(五)布置作业
课本P104 7,8
读书以过目成诵为能,最是不济事。——郑板桥
读书以过目成诵为能,最是不济事。——郑板桥
两直角三角形全等的条件(教学设计)
一、教学内容的背景和分析
本节课是学生在学习了一般三角形全等的条件后教材安排的一课时内容。直角三角形的全等在生活中随处可见,它不仅是研究其他图形的基础,而且在解决实际问题中有着广泛的运用。本节课是探索和掌握直角三角形全等的条件,学好本节课的知识对学生更好地认识现实世界、发展空间观念和推理能力都有非常重要地作用。
AB=BA
AC=BD
∴ Rt△ABC≌ Rt△BAD(HL)
∴ BC=AD(全等三角形的对应边相等)
例5:如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿着两条直线行走,并同时到达D、E 两地。DA⊥AB,EB⊥AB. D、E与路段AB的距离相等吗?为什么?
分析:要判断D、E与路段AB的距离相等,即AD=BE,只需证明Rt△ACD与 Rt△BCE全等。
①、学生学习本节内容的认知基础:学生刚刚学习了有关三角形全等的基础知识,以及利用尺规作三角形,这些知识是学习本节课的认知基础,本节课正是在此基础上展开的。
②、学生容易出现的学习障碍或困难:学生虽然已经有了以上的认知基础,但由于八年级的学生的认知水平有限,所学知识还不能融会贯通,在三角形全等条件的综合运用上,学生也存在思维上的难点,"HL"的判定方法学生难以认可。这两个问题既是本节课的重点,也是本节课的难点,解决问题的主要思路是让学生动手实验,合作交流,在活动中去领会、感悟。
五、教学过程设计:
(一)创设与已有的认知冲突的情景,诱发学生的参与动机
师:判定两三角形全等有哪些方法?若这两个三角形是直角三角形,这些方法适用吗?
设计目的:使学生对已有的方法进行复习巩固,并且理解直角三角形是一种特殊的三角形,因此以前所学的判定方法仍然适用。
生:独立思考并口答。
相关文档
最新文档