八年级数学反比例函数检测卷
中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
浙教版八年级数学下册《反比例函数》单元练习检测试卷及答案解析含有详细分析

浙教版八年级数学下册《反比例函数》单元练习检测试卷及答案解析一、选择题1、下列函数中,不是反比例函数的是( )A .B .C .D .2、点A(-2,5)在反比例函数y =(k ≠0)的图象上,则k 的值是( )A .10B .5C .-5D .-103、已知函数y=(k ≠0),当x=时,y=8,则此函数的解析式为( ).A .y=B .y=C .y=D .y=4、下列函数中,图象经过点(1,-1)的反比例函数解析式是( )A .B .C .D .5、反比例函数在第一象限内的图象如图所示,点M 是图象上一点,MP ⊥x 轴,垂足为P.如果△MOP 的面积为1,那么k 的值是( )A .1B .2C .4D .6、已知点 A(x 1,y 1),B(x 2,y 2 )是反比例函数的图象上的两点,若 x 1<0<x 2,则有( )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0 7、如果等腰三角形的底边长为。
底边上的高为,则它的面积为定植S 时,则与的函数关系式为( )A .B .xSy 2=C .D . Sx y =8、如图,已知点P 是双曲线y=(k ≠0)上一点,过点P 作PA ⊥x 轴于点A ,且S △PAO =2,则该双曲线的解析式为( )A.y=﹣B.y=﹣ C.y=D.y=二、填空题9、已知与成反比例,当时,,则当时,_________.10、点P在反比例函数(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,则反比例函数的解析式为________.11、某厂有煤吨,求得这些煤能用的天数与每天用煤的吨数之间的函数关系为________________.12、已知反比例函数的图象经过A(-3,2),那么此反比例函数的关系式为____________.13、若A(x1,y1),B(x2,y2)是双曲线y=上的两点,且x1>0>x2,则y1________y2(填“>”“=”或“<”).14、如图,已知点P(4,2),过点P作PM⊥x轴于点M,PN⊥y轴于点N,双曲线=交PM于点A,交PN于点B.若四边形OAPB的面积为5,则=_____.15、如果函数是反比例函数,且当时随的增大而增大,此函数的解析式是___________________.16、设函数y=与y=-2x-6的图象的交点坐标为(a,b),则+的值是________.17、已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为________.18、如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=的图象上,CD平行于y轴,S△OCD=,则k的值为________.三、解答题19、若y=(m+3)xm2-10是反比例函数,试求其函数表达式.20、某三角形的面积为15,它的一边长为cm,且此边上高为cm,请写出与之间的关系式,并求出时,的值.21、如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).⑴求和的值;⑵过点作直线平行轴交轴于点,连结AC,求△的面积.22、已知反比例函数,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.23、为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?参考答案1、D2、D3、A.4、C5、B6、B7、C8、A9、10、y=-.11、12、13、> 14、315、16、-217、18、3 19、y=20、;时相应地值为6(cm)21、(1)a=2,b=1(2)3 22、(1)k=3;(2)k<1;(3)点C不在函数的图象上.23、(1)①(0≤x<10),②(x≥10);(2)40分钟;(3)本次消毒有效.答案详细解析【解析】1、反比例函数的一般式是(k≠0),所以A.是反比例函数,错误;B.是反比例函数,错误;C.是反比例函数,错误;D.不是反比例函数,正确.故选:D.2、试题解析:∵点A(-2,5)在反比例函数y=(k≠0)的图象上,∴k的值是:k=xy=-2×5=-10.故选D.3、试题分析:把x=时,y=8代入入y=(k≠0),解得k=×8=﹣4.所以函数的解析式为y=.故选:A.考点:待定系数法求反比例函数解析式.4、把点(1,-1)分别代入四个反比例函数解析式可得:;;;;∴图象过点(1,-1)的反比例函数是:.故选C.5、根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系S=|k|即可求得k的值.解:由于点M是反比例函数(k>0)图象上一点,则S△MOP=|k|=1;又由于k>0,则k=2.故选B.6、分析:根据反比例函数的性质判断出的正负情况,然后比较大小即可.详解:∵反比例函数的k=−3<0,∴反比例函数图象位于第二、四象限,∵∴∴故选B.点睛:考查反比例函数的图象与性质,反比例函数当时,图象在第一、三象限.在每个象限,y随着x的增大而减小,当时,图象在第二、四象限.在每个象限,y随着x的增大而增大.7、试题解析:由题意得则故选C.8、∵反比例函数的图象在二四象限,∴k<0.∵PA⊥x轴于点A,且S△PAO=2,∴k=-4,∴反比例函数的解析式为y=-.故选A.9、设y与的反比例关系式为y=(k≠0),将x=4,y=1代入,得k=2,所以y与的反比例关系式为.将x=2代入上式,得y==.10、试题分析:根据轴对称的定义,利用点Q(2,4),求出P点坐标,将P点坐标代入解析式,即可求出反比例函数解析式.试题解析:∵点Q(2,4)和点P关于y轴对称,∴P点坐标为(-2,4),将(-2,4)代入解析式得,k=xy=-2×4=-8,∴函数解析式为y=-.考点:1.待定系数法求反比例函数解析式;2.关于x轴、y轴对称的点的坐标.11、这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,煤的总吨数为1500,平均每天烧煤的吨数为x,∴这些煤能烧的天数为,故答案为:12、试题分析:设反比例函数的解析式为y=(k≠0),再把点A(-3,2)代入,求出k 的值即可.解:设反比例函数的解析式为y=(k≠0),∵反比例函数的图象经过A(−3,2),∴k=xy=(−3)×2=−6,∴反比例函数的解析式为y=.故答案为:.13、试题解析:∵反比例函数中,∴函数图象的两个分支分别位于一、三象限,且在每一象限内,随的增大而减小.∴点A位于第一象限,点B位于第三象限,故答案为:14、∵点P(4,2),∴OM=4,ON=2.∴S矩形OMPN=OM×ON=4×2=8.∵S矩形OMPN-S△OMA-S△ONB= S矩形OAP B,,∴k=315、试题解析:有题意可得:当时,随的增大而增大,函数的解析式是:点睛:反比例函数的解析式有三种形式:16、∵函数的图象与的图象的交点坐标为,∴,∴,∴.17、设点A(2,n),代入反比例函数y=可得A点纵坐标n=,反比例函数y=的图象既是关于直线y=x的轴对称图形,也是关于原点对称的中心对称图形,矩形也是轴对称和中心对称图形,又因为矩形ABCD的四个顶点在反比例函数图象上,所以可以求得A,B,C,D四点的坐标分别为故依据两点间的距离公式,可以求得矩形的两边长度,即可以求得矩形ABCD的面积为.18、试题解析:设CD与轴交于点E,当时,,即,那么,所以,而.点睛:在反比例函数中,是过双曲线上任意一点作轴的垂线段与两坐标轴围成的面积.19、试题分析:(1)此题只需根据反比例函数的定义式令m2-10=-1即可,且满足m+3≠0. 试题解析:由反比例函数的定义可知m2-10=-1,①m+3≠0,②由①得m2=9,解得m=±3,由②得m≠-3,∴m=3.∴此反比例函数的表达式为y=.20、试题分析:三角形的面积=边长×这边上高÷2,那么这边上高=2×三角形的面积÷边长,进而把相关数值代入求值即可.试题解析:∵三角形的面积=边长×这边上高÷2,三角形的面积为15cm2,一边长为xcm,此边上高为ycm,∴;当x=5时,y=6(cm).点睛:此题考查列反比例函数关系式以及求值问题,根据三角形的面积得到求一边上的高的等量关系是解决问题的关键.21、试题分析:(1)因为直线与双曲线交于点B,将B点坐标分别代入直线与双曲线的解析式,即可解得与的值.(2)先利用直线BC平行于轴确定C点坐标为,然后根据三角形面积公式计算三角形面积即可.试题解析:(1)由两图象相交于点B,得解得:a=2,b=1(2)∵点B(-3,2), 直线∥轴,∴C点坐标为,BC=3,∴ S△ABC =.22、试题分析:(1)把点A的坐标代入函数解析式,利用待定系数法求解即可;(2)根据反比例函数图象的性质得到:k-1<0,由此求得k的取值范围;(3)把点B、C的坐标代入函数解析式进行一一验证.试题解析:(1)∵点A(1,2)在这个函数的图象上,∴k﹣1=1×2,解得k=3;(2)∵在函数图象的每一支上,y随x的增大而增大,∴k﹣1<0,解得k<1;(3)∵k=13,有k﹣1=12,∴反比例函数的解析式为.将点B的坐标代入,可知点B的坐标满足函数关系式,∴点B在函数的图象上,将点C的坐标代入,由5≠,可知点C的坐标不满足函数关系式,∴点C不在函数的图象上.23、(1)分别设出喷洒药物时和喷洒完后的函数解析式,代入点(10,8)即可求解.(2)由(1)求得的反比例函数解析式,令y<2,求得x的取值范围即可.(3)将y=4分别代入求得的正比例函数和反比例函数求得的x值作差与10比较即可得出此次消毒是否有效.解:(1)①∵当0≤x<10时y与x成正比例,∴可设y=kx.∵当x=10时,y=8,∴8=10k.∴k=.∴(0≤x<10).②∵当x≥10时y与x成反比例,∴可设.∵当x=10时,y=8,∴.∴k=80.∴(x≥10).(2)当y<2时,即.解得x>40.∴消毒开始后至少要经过40分钟,学生才能回到教室.(3)将y=4代入中,得x=5;将y=4代入中,得x=20;∵20﹣5=15>10,∴本次消毒有效.。
初中数学苏科版八年级下册第11章 反比例函数11.1 反比例函数-章节测试习题

章节测试题1.【答题】已知y=y1+y2,其中y1与x成反比例,且比例系数为k1(k1≠0),y2与x成正比例,且比例系数为k2(k2≠0),当x=-1时,y=0,则k1与k2的关系是()A. k1+k2=0B. k1-k2=0C. k1k2=1D. k1k2=-1【答案】A【分析】由题意y1与x成反比例,y2与x成正比例,可用待定系数法设出,再将x=-1时,y=0代入即可表示出k1与k2的关系.【解答】解:∵,∵当x=-1时,y=0,∴0=-k1-k2,∴k1+k2=0,选A.2.【答题】已知y与x2成反比例,并且当x=-2时,y=2,那么当x=4时,y等于()A. -2B. 2C.D. -4【答案】C【分析】由题意y与x2成反比例,设y=,然后把点(-2,2),代入求出k 值,从而求出函数的解析式,求出y值.【解答】解:∵y与x2成反比例,∴y=当x=-2时,y=2,∴,∴k=8,∴.当x=4时,.选C.3.【答题】甲、乙两地相距100千米,一辆汽车从甲地开往乙地,把汽车到达乙地所用时间t(小时)表示为汽车速度v(千米/时)的函数,其函数表达式为______.【答案】【分析】根据等量关系“路程=速度×时间”写出函数关系式.【解答】解:根据题意,得.故答案为:.4.【答题】已知y1与x成正比例系数为k1,y2与x成反比例,比例系数为k2,若函数y=y1-y2的图象经过点(1,2),(2,),则8k1+5k2的值为______.【答案】9【分析】设出y1和y2的解析式,由y=y1+y2的图象经过点(1,2),(2,),代入求得k1 、k2的值,再求得8k1+5k2的值.【解答】解:设则,将点(1,2),(2,),代入得,,解得,,∴8k1+5k2==9.5.【题文】已知y=y1+y2,其中y1与x成反比例,y2与(x-2)成正比例.当x=1时,y=-1;x=3时,y=3.(1)求y与x的函数关系式;(2)当x=-1时,y的值。
八年级数学_学习·探究·诊断_反比例函数

反比例函数测试1 反比例函数的概念学习要求:理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.(一)课堂学习检测一、填空题:1.一般地,形如_______的函数称为反比例函数,其中x 是_______,y 是_______.自变量x 的取值范围是________.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系为________,是________函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为________,是________函数.(3)设三角形的底边、对应高、面积分别为a 、h 、s .当a =10时,s 与h 的关系为________,是________函数; 当s =18时,a 与h 的关系为________,是________函数. (4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系为________,是________函数.3.下列各函数、、⑤、④、③、②①x y x y x y x k y x k y 21145312-=+==+== 2431xy x y =-=、⑦⑥和⑧y =3x -1中,是y 关于x 的反比例函数的是:________(填序号).4.若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为________.二、选择题:6.已知函数,xky =当x =1时,y =-3,那么这个函数的解析式是( ). (A)xy 3=(B)x y 3-= (C)x y 31= (D)xy 31-=7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ). (A)4 (B)-4 (C)3 (D)-3三、解答题:8.已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当23-=y 当时,求x 的值.(二)综合运用诊断一、填空题:9.若函数52)2--=k x k y ((k 为常数)是反比例函数,则k 的值是________,解析式为________.二、选择题:11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x (B)xy 100=(C)x y 100100-= (D)y =100-x12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ) (A) (B) (C) (D)三、解答题:13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是________函数关系; (2)如果S =3cm 2时,h =16cm ,求①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值.(三)拓广探究思考14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且x 23-=和x =1时,y 的值都是1.求y 关于x 的函数关系式.测试2 反比例函数的图象和性质(1)学习要求:能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.(一)课堂学习检测一、填空题:1.反比例函数ky =(k 为常数,k ≠0)的图象是________;当k >0时,双曲线的两支分别位于________象限,在每个象限内y 值随x 值的增大而________;当k <0时,双曲线的两支分别位于________象限,在每个象限内y 值随x 值的增大而________.2.如果函数y =2x k +1的图象是双曲线,那么k =________.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而________. 4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第________象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是________.二、选择题:6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ). (A)xmy =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9.反比例函数22)12--=m x m y (,当x >0,y 随x 的增大而增大,则m 的值是( ).(A)±1 (B)小于21的实数 (C)-1(D)110.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3 (C)y 3<y 2<y 1(D)y 1<y 3<y 2三、解答题:11.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值;(3)当y >2时,求x 的范围.一、填空题:12.若点A (2,y 1),B (5,y 2)在双曲线xy 2-=上,则y 1、y 2的大小关系是________. 13.写出一个反比例函数的解析式,使它的图象不经过第一、三象限:__________. 二、选择题:14.已知直线y =kx +b 的经过第一、二、四象限,则函数xkby =的图象在( ). (A)第一、三象限 (B)第二、四象限 (C)第三、四象限 (D)第一、二象限15.对于函数xy 2-=,下列结论中,错误的是( ). (A)当x >0时,y 随x 的增大而增大 (B)当x <0时,y 随x 的增大而减小(C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大16.反比例函数xy x y x y 3213=-==、、的共同特点是( ).(A)它们的图象位于相同的象限(B)x 的取值范围是全体实数 (C)图象与坐标轴都没有交点(D)函数值都不大于1三、解答题:17.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围.(三)拓广、探究、思考18.已知:如图,反比例函数的图象经过点A 、B ,点A 的坐标为(1,3),点B 的纵坐标为1,点C 的坐标为(2,0).(1)求该反比例函数的解析式; (2)求直线BC 的解析式;(3)若直线BC 与该反比例函数图象的另一个交点为D ,求点D 的坐标.学习要求:会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.(一)课堂学习检测一、填空题:1.若反比例函数xky =与一次函数y =3x +b 都经过点(1,4),则kb =________. 2.反比例函数xy 6-=的图象一定经过点(-2,________). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是________. 4.如图,反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴、y 轴作垂线,垂足分别P 、Q ,若矩形APOQ 的面积为8,则这个反比例函数的解析式为________.二、选择题:5.函数xky =与y =kx +k (k ≠0)在同一坐标系中的图象有可能是( ).6.若双曲线经过点(-2,-3),则下列各点不在双曲线上的是 ( ). (A)(2,3) (B)(3,2) (C)(-3,-2)(D))31,21(7.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2(B)2- (C)2± (D)±2三、解答题:8.已知正比例函数和反比例函数的图象交于点(-2,1),求这两个函数的解析式以及它们另一个交点的坐标.(二)综合运用诊断一、填空题:9.已知关于x 的一次函数y =-2x +m 和反比例函数n y 1+=的图象都经过A (-2,1),则m=________,n =________. 10.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为________. 11.函数xy 2=在第一象限内的图象如图所示,在同一直角坐标系中,将直线y =-x +1沿y 轴向上平移2个单位,所得直线与函数xy 2=的图象的交点共有________个.二、选择题:12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限13.若点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)都在反比例函数xy 4=的图象上,且x 1<x 2<x 3,则下列结论正确的是( ).(A)y 1>y 2>y 2 (B)y 3>y 2>y 1 (C)y 2>y 1>y 3 (D)不能确定14.已知A 、C 是双曲线xy 1=上任意两点,AB ⊥x 轴于B ,CD ⊥y 轴于D ,记Rt △OAB 的面积为S 1,Rt △OCD 的面积为S 2,则下列结论正确的是( ). (A)S 1>S 2 (B)S 1<S 2 (C)S 1=S 2 (D)无法比较S 1与S 2的大小三、解答题:15.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.(三)拓广、探究、思考16.已知反比例函数ky =和一次函数y =ax +b 的图象的一个交点为A (-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,求反比例函数与一次函数的解析式.测试4 反比例函数的图象和性质(3)学习要求:进一步理解和掌握反比例函数的图象和性质;会解决与一次函数与反比例函数有关的问题.(一)课堂学习检测一、填空题:1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是________. 2.观察函数xy 2-=的图象,当x =2时,y =________;当x <2时,y 的取值范围是________;当y ≥-1时,x 的取值范围是________. 3.如果双曲线xky =经过点),2,2(-那么直线y =(k -1)x 一定经过点(2,________). 4.在同一坐标系中,正比例函数y =-3x 与反例函数xky =(k >0)的图象有______个交点. 5.如果(-t ,-2t )在双曲线xky =上,那么k ________0,双曲线在第________象限. 二、选择题:6.如图,点B 、P 在函数xy 4=(x >0)的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4)(C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等三、解答题:7.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C '的坐标.8.已知反比例函数my 3-=和一次函数y =kx -1的图象都经过点P (m ,-3m ),求点P 的坐标和这两个函数的解析式.(二)综合运用诊断一、填空题:9.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是________.10.如图,在直角坐标系中,直线y =6-x 与函数xy 5=(x >0)的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是________.11.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为________.12.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与x k y 2=(k 2≠0)的图象没有公共点,则k 1k 2________0. 二、选择题:13.若m <-1,则函数①),0(>=x xmy ②y =-mx +1, ③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ). (A)①④ (B)②(C)①② (D)③④14.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题:15.已知A 、B 两点是反比例函数)0(2>=x y 的图象上任意两点,如图,过A 、B 两点分别作y 轴的垂线,垂足为C 、D ,连结AB 、AO 、BO ,求梯形ABDC 的面积与△ABO 的面积比.16.如图,直线y =-2x -2与双曲线xky =在第二象限内的交点为A ,与两坐标轴分别交于B 、C 两点,AD ⊥x 轴于点D ,如果△ADB 与△COB 全等,求k 的值.(三)拓广、探究、思考17.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式; (2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.18.如图,一次函数的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数的图象交于C 、D两点,如果A 点的坐标为(2,0),C 、D 两点分别在第一、三象限,且OA =OB =AC =BD ,试求该一次函数和反比例函数的解析式.(提示:等腰直角三角形中,斜边:直角边1:2=)测试5 实际问题与反比例函数(1)学习要求:能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.(一)课堂学习检测一、填空题:1.一个水池装水12立方米,如果从水管中每小时流出x 立方米的水,经过y 小时可以把水放完,那么y 与x 的函数关系式是________,自变量x 的取值范围是________. 2.三角形的面积为6cm 2,如果它的一边为y cm ,这边上的高为x cm ,那么y 与x 之间是________函数关系,以x 为自变量的函数解析式为________.二、选择题:3.长方体的体积为40cm 3,此长方体的底面积y (cm 2)与其对应高x (cm)之间的函数关系用图象大致可以表示为下面的( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ).(A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系(C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y 与x 之间的关系的式子是( ). (A)y =3000x(B)y =6000x(C)xy 3000=(D)xy 6000=(二)综合运用诊断一、填空题:6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为V (km/h),到达时所用的时间为t (h ),那么t 是V ________的函数,V 关于t 的函数关系式为________. 7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半二、选择题:8.有一面积为60的梯形,其上底是下底长的三分之一,若下底长为x ,高为y ,则y 关于x 的函数关系式是( ).(A))0(45>=x x y (B))0(30>=x x y (C))0(90>=x xy (D))0(15>=x xy 三、解答题:9.一个长方体的体积是100cm 3,它的长是y (cm),宽是5cm ,高是x (cm). (1)写出长y (cm)关于高x (cm)的函数关系式,以及自变量x 的取值范围; (2)画出(1)中函数的图象; (3)当高是3cm 时,求长.测试6 实际问题与反比例函数(2)学习要求:根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题(一)课堂学习检测一、填空题:1.一定质量的氧气,密度ρ是体积V 的反比例函数,当V =8m 3时,ρ=1.5kg/m 3,则ρ与V 的函数关系式为________.2.由电学欧姆定律知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R =20Ω时,电流强度I =0.25A .则(1)电压U =________V ; (2)I 与R 的函数关系式为________; (3)当R =12.5Ω时的电流强度I =________A ; (4)当I =0.5A 时电阻R =________Ω.3.如图所示的是一蓄水池每小时的排水量V (m 3/h)与排完水池中的水所用的时间t (h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为________m 3; (2)此函数的解析式为________;(3)若要在6小时内排完水池中的水,那么每小时的排水量至少应该是________m 3; (4)如果每小时的排水量是5m 3,那么水池中的水将用________小时排完.二、解答题:4.一定质量的氧气,当它的体积V=4m3时,它的密度ρ=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?(二)综合运用诊断一、选择题:5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小张用10元去买笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题:6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个封闭电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A,那么把这个用电器接在这个封闭电路中,会不会被烧?试通过计算说明理由.(三)拓广、探究、思考三、解答题:8.某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题图中所提供的信息解答下列问题:(1)药物燃烧时y 关于x 的函数关系式为________,自变量x 的取值范围是________;药物燃烧后y 关于x 的函数关系式为________. (2)研究表明,当空气中每立方米的含药量小于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过________分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?全章测试(1)一、填空题:1.若反比例函数xky =的图象经过(-3,4),则k =________. 2.双曲线52)1--=m x m y (在第二、四象限,则m =________.3.已知y 与x -1成反比例,当x =0.5时,y =-3,那么当x =2时,y =________. 4.若反比例函数xk y 1+=与正比例函y =2x 的图象没有交点,则k 的取值范围是________;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是________. 5.全程为300km 的高速公路上,汽车的速度V (km/h)与时间t (h)之间的函数关系式为________,其图象经过第________象限.二、选择题:6.下列函数中,是反比例函数的是(A)32x y = (B)32xy = (C)x y 32= (D)x y -=327.若反比例函数的图象如右图所示,则它的解析式是( ).(A))0(1>=x x y(B))0(1>-=x x y (C))0(1<=x xy (D))0(1<-=x x y8.xy 2-=图象上有两点A (x 1,y 1)和B (x 2,y 2),若y 1<y 2<0,则下列关于x 1、x 2的大小关系正确的是( ). (A)x 1>x 2 (B)x 1=x 2 (C)x 1<x 2 (D)无法确定9.当x <0时,函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大,则k 满足( ). (A)k >1(B)1<k <2(C)k >2(D)k <110.直线y =ax 与双曲线xby =没有公共点,可以判断a 和b 一定满足( ). (A)ab =1(B)a +b =0(C)ab >0(D)ab <011.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ). (A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0(D)k <0,b <0,a >0三、解答题:12.作出函数xy 12=的图象,并根据图象回答下列问题: (1)当x =-2时,y 的值;(2)当2<y <3时,x 的取值范围; (3)当-3<x <2时,y 的取值范围.13.若正比例函数y =ax 的图象与反比例函数xay -=6的图象有一个交点的横坐标是1.求:(1)两个函数的解析式;(2)两个函数图象的交点的坐标.14.如图,已知一次函数y =kx +b 的图象与反比例函数xy 8-=的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2. (1)求一次函数的解析式; (2)求△AOB 的面积.附加题:15.如图,矩形ABCD 中,AB =6,BC =8,A 、C 两点间的距离为10,P 是BC 边上的一个动点,过D 作DE ⊥AP 于E ,设AP =x ,DE =y ,求y 与x 的函数关系式,并求自变量x 的取值范围.16.已知正比例函数的图象与双曲线的交点到x 轴的距离为1,到y 轴的距离为2,求它们的解析式.全章测试(2)一、选择题:1.在物理学中压力F ,压强p 与受力面积S 的关系是:SFP,则下列描述中正确的是( ). (A)当压力F 一定时,压强p 是受力面积S 的正比例函数 (B)当压强p 一定时,压力F 是受力面积S 的反比例函数 (C)当受力面积S 一定时,压强p 是压力F 的反比例函数 (D)当压力F 一定时,压强p 是受力面积S 的反比例函数2.已知反比例函数的图象经过点P (-2,1),则这个函数的图象位于( ). (A)第一、三象限 (B)第二、三象限 (C)第二、四象限 (D)第三、四象限3.若r 为圆柱底面的半径,h 为圆柱的高,当圆柱的侧面积一定时,h 与r 之间函数关系的图象大致是( ).4.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524 (B)不小于3m 3524 (C)不大于3m 3724 (D)不小于3m 3724 5.若反比例函数)0(<=k xky 的图象经过点(-2,a ),(-1,b ),(3,c ),则a 、b 、c 的大小关系为( ). (A)c >a >b(B)c >b >a (C)a >b >c (D)b >a >c6.一次函数y =kx +b 与反比例函数xy 2=的图象如图,则关于x 的方程kx +b =x 2的解为( ).(A)x 1=1,x 2=2(B)x 1=-2,x 2=-1 (C)x 1=1,x 2=-2(D)x 1=2,x 2=-1 7.已知k 1<0<k 2,则函数y =k 1x 和xk y 2=的图象大致是( ).二、填空题:8.若反比例函数经过点(-2,3),则它的解析式为__________. 9.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内;③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为__________.10.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为__________.三、解答题:11.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的长度y (m)是面条的横截面积S (mm 2)的反比例函数,其图象如图所示. (1)写出y (m)与S (mm 2)的函数关系式;(2)求当面条的横截面积是1.6mm 2时,面条的总长度是多少米?12.某厂从2001年起开始投入资金改进技术,经技术改进后,其产品的生产成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从你所学习过的一次函数、反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2005年已投入技改资金5万元,预计生产成本每件比2004年降低多少万元? 13.如图,已知直线y 1=x +m 与x 轴、y 轴分别交于点A 、B ,与双曲线xky2(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2). (1)分别求出直线及双曲线的解析式; (2)求出点D 的坐标;(3)利用图象直接写出当x 在什么范围内取值时,y 1>y 2.14.如图,正方形ABCD 的边长是2,E 、F 分别在BC 、CD 两边上,且E 、F 与BC 、CD 两边的端点不重合,△AEF 的面积是1,设BE =x ,DF =y , (1)求y 关于x 的函数解析式及自变量x 的取值范围; (2)判断(1)中的函数是否为反比例函数.15.将321-=x 代入反比例函数xy 1-=中,所得函数值记为y 1,将y 1的值代入x =y 1+1中,得到x 2的值;将x 2的值再次代入函数xy 1-=中,所得函数值记为y 2,再将y 2的值代入x =y 2+1中得到x 3;再次将x 3代入函数xy 1-=中,所得函数值记为y 3,…,如此继续下去. (1)完成下表:(2)观察上表,你发现了什么规律?猜想y 2009=_______。
八年级数学下册《第17章 反比例函数》单元综合测验试题(无答案) 新人教版

1x新疆克拉玛依市第十三中学八年级数学下册 八年级数学《第17章 反比例函数》单元测验 新人教版一. 选择题(每小题3分,共30分)1.下列函数中 y 是x 的反比例函数的是( ) (A)32x y =(B 32xy =(C)xy 32=(D)xy -=32 2、点(3,-4)在反比例函数k y x=的图象上,则下列各点中,在此图象上的是( )(A )(3,4) (B ) (-2,-6) (C )(-2,6) (D )(-3,-4)3、若点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)都是反比例函数xy 1-=的图象上的点,并且x 1<0<x 2<x 3,则下列各式中正确的是( )(A )y 1<y 2<y 3 (B )y 2<y 3<y 1 (C )y 3<y 2<y 1 (D )y 1<y 3<y 24、反比例函数y= xk(k ≠0)的图象过点P (-3,2),则它的图象所在象限是( )象限。
A 一、三B 三、四C 二、四D 一、二 5、函数与(k ≠0)的图象的交点个数是( )A. 0B. 1C. 2D. 不确定6.某厂现有800吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( ) (A )x y 300=(x >0) (B )xy 300=(x ≥0) (C )y =300x (x ≥0) (D )y =300x (x >0)7、如图,点p 是x 轴上的一个动点,过点p 作x 轴的垂线,交双曲线)0(≠=k xky 于点Q ,连接OQ ,当点p 沿x 轴的正半轴方向运动时,POQ Rt ∆的面积( ) A.逐渐增大 B.不变 C.逐渐减小 D.无法确定8、反比例函数xky =的图像如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N,如果2=∆MO N S ,则k 的值是()A.2B.-2C.4D.-4 9、函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )10、某气球内充满了一定质量的气体,当温度不变时,气球 内气体的气压P(kPa)是气体体积V(m 3)的反比例函数,其图 象如图所示. 当气球内的气压大于140kPa 时,气球将爆炸, 为了安全起见,气体体积应( ). (A ) 不大于3m 3524;(B)不小于3m 3524;(C)不大于3m 3724;(D)不小于3m 3724二、填空题(每空3分,共24分)11.若函数28)3(m x m y -+=是反比例函数,则m 的取值是12.已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y =13.函数21+-=x y 中自变量x 的取值范围是 14.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 15.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是 ____ 16.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 _____ 17. 近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜的镜片焦距为0.25米,则y 与x 的函数关系式为 。
苏教版初中数学八年级下册《反比例函数》单元试卷及参考答案

苏教版初中数学八年级下册《反比例函数》单元试卷(总分:100分 考试时间:90分钟)一、选择题(每题3分,共24分)1. 反比例函数21m y x--=(m 为常数)的图像在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2. 某物质的密度ρ(kg/m 3)关于其体积V (m 3)的函数图像如图所示,那么ρ与V 之间的函数表达式是 ( ) A. ρ=12V B. ρ=2V C. ρ=6VD. V ρ=3第2题 第4题 第5题 第7题 第8题3. 在同一平面直角坐标系中,正比例函数2y x =的图像与反比例函数42ky x-=的图像没有交点,则实数k 的取值范围在数轴上可表示为 ( ) A B C D4. 如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图像经过顶点B ,则k 的值为 ( ) A.一12 B.一27 C.一32 D.一36 5. 如图,A 是双曲线2y x=在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C的位置也随之变化.设点C 的坐标为(,)m n ,则m 、n 满足的表达式为 ( ) A.2n m =- B.2n m =- C.4n m =- D.4n m=- 6. 已知(,)P a b 是反比例函数1y x=图像上异于点(一1,-1)的一个动点,则 1111a b+++的值为 ( ) A. 2 B. 1 C. 32 D. 127. 如图,A 、B 是双曲线ky x=上的两点,过点A 作AC x ⊥轴,交OB 于点D ,垂足为C .若ADO ∆的面积为1,D 为OB 的中点,则k 的值为 ( )A.43B.83 C. 3 D. 48. 如图,在平面直角坐标系中,直线33y x =-+与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线(0)ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好落在该双曲线上,则a 的值是 ( )A. 1B. 2C. 3D. 4 二、填空题(每题2分,共20分)9. 在ABC ∆的三个顶点(2,3)A -、(4,5)B --、(3,2)C -中,可能在反比例函数(ky k x=>0) 的图像上的是点 .10. 已知函数23k y x-=,当x <0时,y 随x 的增大减小,则k 的取值范围是 . 11. 已知直线2y x =与双曲线ky x=的一个交点是(2,)A m ,则点A 的坐标是 ,双曲线y = .12. 在对物体做功一定的情况下,力F (N)与此物体在力的方向上移动的距离s (m)之间成反比例函数关系,其图像如图所示,且点(5,1)P 在其图像上,则当力达到10 N 时,物体在力的方向上移动的距离是 m.第12题 第13题 第14题13. 如图,等边三角形AOB 的顶点A 的坐标为(-4,0),顶点B 在反比例函数(0)ky x x=<的图像上,则k = .14. 如图, A 是反比例函数图像上的一点,过点A 作ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,若ABCD 的面积为8,则此反比例函数的表达式为 .15. 如图,一次函数y kx b =+的图像经过点(3,2)P ,与反比例函数2(0)y x x=>的图像交于点(,)Q m n .当一次函数y 的值随x 值的增大而增大时,m 的取值范围是 .第l5题 第17题 第18题16. 点1(1,)a y -、2(1,)a y +在反比例函数(ky k x=>0)的图像上,若12y y <,则a 的取值范围是 .17. 如图, A 是y 轴正半轴上的一点,过点A 作x 轴的平行线,交反比例函数4y x=-的图像于点B ,交反比例函数ky x =的图像于点C .若:3:2AB AC =,则k 的值是 . 18. 如图,直线26,3y x y x ==分别与双曲线ky x =在第一象限内交于点A 、B ,若8OAB S ∆=,则k = .三、解答题(共56分)19. (8分)我们学过反比例函数,例如,当矩形面积S 一定时,长a 是宽b 的反比例函数,其函数表达式可以写成Sa b=(S 为常数,0S ≠).请你仿照上例另举出一个在日常生活、生产或学习中具有反比例函数关系的实例,并写出它的函数表达式.20. (8分)(2015·甘孜改编)如图,一次函数5y x =-+的图像与反比例函数(0)ky k x=≠在第一象限内的图像交于(1,)A n 和(4,)B m 两点. (1)求反比例函数的表达式;(2)在第一象限内,当一次函数5y x =-+的值大于反比例函数(0)ky k x=≠的值时,写出自变量x 的取值范围.第20题21. (8分)如图,在方格纸中(小正方形的边长为1 ), 反比例函数ky x=的图像与直线的交点A 、B 均在格点上,根据所给的平面直角坐标系(O 是坐标原点).解答下面的问题:(1)分别写出点A 、B 的坐标后,把直线AB 向右平移5个单位长度。
八年级数学反比例函数练习题

第一课时[A 组]1、下列函数中,哪些是反比例函数?( )(1)y=-3x ; (2)y=2x+1; (3) y=-x 2;(4)y=3(x-1)2+1; 2、下列函数中,哪些是反比例函数(x 为自变量)?说出反比例函数的比例系数:(1) x y 1-= ;(2)xy=12 ;(3) xy=-13 (4)y=3x3、列出下列函数关系式,并指出它们是分别什么函数.说出比例系数①火车从安庆驶往约200千米的合肥,若火车的平均速度为60千米/时,求火车距离安庆的距离S(千米)与行驶的时间t(时)之间的函数关系式 ②某中学现有存煤20吨,如果平均每天烧煤x 吨,共烧了y 天,求y 与x 之间的函数关系式. 4、.已知一个长方体的体积是100立方厘米,它的长是ycm ,宽是5cm ,高是xcm . (1) 写出用高表示长的函数式; (2) 写出自变量x 的取值范围; (3) 当x =3cm 时,求y 的值5、已知y 与x 成反比例,并且x =3时y =7,求: (1)y 和x 之间的函数关系式;(2)当13x =时,求y 的值; (3)y =3时,x 的值。
7、写出一个经过点(-3,6)的反比例函数 你还能写出另外一个也经过点(-3,6)的双曲线吗?8、当m 为何值时,函数224-=m x y 是反比例函数,并求出其函数解析式.9、已知y 成反比例,且当4b =时,1y =-。
求当10b =时,y 的值。
10:画出下列函数双曲线,y=-x 2的图象,已知点A (-3,a )、B (-2,b ),C(4,c)在双曲线,y=-x 2的图象令上,请把[B 组]11、已知函数221()m y m m x -=+,当m 取何值时(1)是正比例函数;(2)是反比例函数。
12、(1)已知y =y1+y2,y1与x 成正比例,y2与x 成反比例, 并且x =2和x =3时,y 的值都等于 19.求y 和x 之间的函数关系式(2)若y 与2x -2成反比例,且当x=2时,y=1,则y 与x 之间的关系式为13、(03广东)如图1,某个反比例函数的图像经过点P .则它的解析式( )(A )xy 1=(x >0) (B )x y 1-= (x >0)(C )xy 1=(x <0) (D )x y 1-= (x <0)第二课时[A 组]1、xy 3-=的图像叫 ,图像位于 象限,在每一象限内,当x 增大时,则y ;函数4y x=图象在第象限,在每个象限内y 随x 的减少而 2:、根据下列表格中x 与y 的对应值:(1)在直角坐标系中,描点画出图象;(2)试求式。
专题. 反比例函数(对称性问题)(培优篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)

专题11.25反比例函数(对称性问题)(培优篇)(专项练习)一、单选题1.如图,若双曲线(0)ky k x=>与它的一条对称轴y x =交于A 、B 两点,则线段AB 称为双曲线(0)k y k x =>的“对径”.若双曲线(0)ky k x=>的对径长是k 的值为()A .2B .4C .6D .2.如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y=和y=的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①=;②阴影部分面积是(k 1+k 2);③当∠AOC=90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是()A .①②③B .②④C .①③④D .①④3.如图,点A 与点B 关于原点对称,点C 在第四象限,∠ACB=90°.点D 是x 轴正半轴上一点,AC 平分∠BAD ,E 是AD 的中点,反比例函数ky x=(0k >)的图象经过点A,E .若△ACE 的面积为6,则k 的值为()A .4B .6C .8D .124.已知某函数的图象C 与函数3y x=的图象关于直线2y =对称.下列命题:①图象C与函数3y x =的图象交于点3,22⎛⎫⎪⎝⎭;②点1,22⎛⎫- ⎪⎝⎭在图象C 上;③图象C 上的点的纵坐标都小于4,④()11,A x y ,()22,B x y 是图象C 上任意两点,若12x x >,则12y y >.其中真命题是()A .①②B .①③④C .②③④D .①②④5.如图,反比例函数y =kx(x <0)的图象经过点A (﹣2,2),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B '在此反比例函数的图象上,则t 的值是()A .5B .2C .42-D .56.点()1,3-关于y 轴的对称点在反比例函数ky x=的图像上,下列说法不正确的是()A .y 随x 的增大而减小B .点()1,3在该函数的图像上C .当1x ≥时,03y <≤D .该函数图像与直线y x =33337.如图,矩形AOBC 的顶点坐标分别为(0,3),(0,0),(4,0),(4,3)A O B C ,动点F 在边BC 上(不与B C 、重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G .给出下列命题:①若4k =,则OEF 的面积为163;②若218=k ,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <<;④若2512DE EG ⋅=,则1k =.其中正确的命题个数是()A .1个B .2个C .3个D .4个8.已知某函数的图象C 与函数3y x=的图象关于直线2y =对称下列命题:①图象C 与函数3y x =的图象交于点3,22⎛⎫⎪⎝⎭;②1,22⎛⎫- ⎪⎝⎭在图象C 上;③图象C 上的点的纵坐标都小于4;④()11,A x y ,()22,B x y 是图象C 上任意两点,若12x x >,则12y y >,其中真命题是()A .①②B .①③④C .②③④D .①②③④9.如图,一次函数1y x =+和2y x =与反比例函数2y x=的交点分别为点A 、B 和C ,下列结论中,正确的个数是()①点A 与点B 关于原点对称;②OA OC =;③点A 的坐标是(1,2);④ABC ∆是直角三角形.A .1B .2C .3D .410.如图,矩形AOBC 的边3OA =,4OB =,动点F 在边BC 上(不与B 、C 重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D和G .给出以下命题:①若6k =,则OEF 的面积为92;②若218=k ,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <≤;④若256DE EG ⋅=,则2k =;其中正确的命题个数是()A .1个B .2个C .3个D .4个二、填空题11.已知A 、B 两点为反比例函数()0ky k x=<的图像上的动点,他们关于y 轴的对称点恰好落在直线21y x m =++上,若点A 、B 的坐标分别为1122(,),(,)x y x y 且120x x +≠,则1212y yx x +=+________.12.如图反比例函数ky x=的图像经过点A ,点B 与点A 关于x 轴对称,点C 是y 轴上一点,若ABC ∆的面积为2,则该反比例函数的解析式为_____________13.如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线为ky x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是.14.如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)ky k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知2CD =.若该反比例函数图象与DE 交于点Q ,则点的Q 横坐标是_________.15.如图,P 是反比例函数12(0)y x x=>上的一个动点,过P 作PA x ⊥轴,PB y ⊥轴.(1)若矩形的对角线10AB =,则矩形OAPB 周长为________;(2)如图,点E 在BP 上,且2BE PE =,若E 关于直线AB 的对称点F 恰好落在坐标轴上,连结,,AE AF EF ,则AEF △的面积为___________.16.如图,Rt △AOB 的顶点O 是坐标原点,点B 在x 轴上,∠OAB =90°,反比例函数7y x=(0x >)的图象关于AO 所在的直线对称,且与AO 、AB 分别交于D 、E 两点,过点A 作AH ⊥OB 交x 轴于点H ,过点E 作EF //OB 交AH 于点G ,交AO 于点F ,则四边形OHGF 的面积为_________17.如图,矩形AOBC 的顶点坐标分别为(03)A ,、00O (,)、(40)B ,、(43)C ,,动点F 在边BC 上(不与B 、C 重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G ,给出下列命题:①若4k =,则OEF 的面积为163;②若218=k ,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <≤;④若2512DE EG ⋅=,则2k =.其中正确的命题的序号是________.(写出所有正确命题的序号)18.如图,在平面直角坐标系xOy 中,菱形ABCD 与菱形GFED 关于点D 成中心对称,点C ,G 在x 轴的正半轴上,点A ,F 在反比例函数y =kx(k >0,x >0)的图象上,延长AB 交x 轴于点P (1,0),若∠APO =120°,则k 的值是_____________.三、解答题19.综合与探究如图1,反比例函数的图象8y x=-经过点A ,点A 的横坐标是-2,点A 关于坐标原点O 的对称点为点B ,作直线AB .(1)判断点B 是否在反比例函数8y x=-的图象上,并说明理由;(2)如图1,过坐标原点O 作直线交反比例函数8y x=-的图象于点C 和点D ,点C 的横坐标是4,顺次连接AD ,DB ,BC 和CA .求证:四边形ACBD 是矩形;(3)已知点P 在x 轴的正半轴上运动,点Q 在平面内运动,当以点O ,B ,P 和Q 为顶点的四边形为菱形时,请直接写出此时点P 的坐标.20.如图,一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD x ⊥轴于点D ,CB CD =,点C 关于直线AD 的对称点为点E .(1)点E 是否在这个反比例函数的图像上?请说明理由;(2)连接AE 、DE ,若四边形ACDE 为正方形.①求k 、b 的值;②若点P 在y 轴上,当PE PB -最大时,求点P 的坐标.21.如图,在平面直角坐标系xOy 中,直线2y x =与双曲线ky x=与相交于A ,B 两点(点A 在点B 的左侧).(1)当25AB =k 的值;(2)点B 关于y 轴的对称点为C ,连接AC BC ,;①判断ABC 的形状,并说明理由;②当ABC 的面积等于16时,双曲线上是否存在一点P ,连接AP BP ,,使PAB 的面积等于ABC 面积?若存在,求出点P 的坐标,若不存在,请说明理由.22.如图,矩形ABCD 的面积为8,它的边CD 位于x 轴上.双曲线4y x=经过点A ,与矩形的边BC 交于点E ,点B 在双曲线4ky x+=上,连接AE 并延长交x 轴于点F ,点G 与点О关于点C 对称,连接BF ,BG .(1)求k 的值;(2)求BEF △的面积;(3)求证:四边形AFGB 为平行四边形.23.如图,直线y x m =-+与反比例函数ky x=的图象相交于点()2A n -,,与x 轴交于点()20B ,.(1)求m 和k 的值.(2)若点()P t t ,与点O 关于直线AB 对称,连接AP .①求点P 的坐标;②若点M在反比例函数kyx=的图象上,点N在x轴上,以点A P M N,,,为顶点的四边形能否为平行四边形?若能,直接写出点M的坐标;若不能,请说明理由.24.如图,菱形OABC的点B在y轴上,点C坐标为(12,5),双曲线kyx=的图象经过点A.(1)菱形OABC的边长为____;(2)求双曲线的函数关系式;(3)①点B关于点O的对称点为D点,过D作直线l垂直于y轴,点P是直线l上一个动点,点E在双曲线上,当P、E、A、B四点构成平行四边形时,求点E的坐标;②将点P绕点A逆时针旋转90°得点Q,当点Q落在双曲线上时,求点Q的坐标.参考答案1.B【分析】根据题中的新定义:可得出对径AB=OA+OB=2OA ,由已知的对径长求出OA 的长,过A 作AM 垂直于x 轴,设A (a ,a )且a>0,在直角三角形AOM 中,利用勾股定理列出关于a 的方程,求出方程的解得到a 的值,确定出A 的坐标,将A 的坐标代入反比例解析式中,即可求出k 的值.解:过A 作AM ⊥x 轴,交x 轴于点M,如图所示:设A (a ,a ),a >0,可得出AM =OM =a ,又∵双曲线的对径AB=,∴OA =OB=在Rt △AOM 中,根据勾股定理得:AM 2+OM 2=OA 2,则a 2+a 2=()2,解得:a =2或a =−2(舍去),则A (2,2),将x =2,y =2代入反比例解析式得:2=2k,解得:k =4故选B 2.D解:试题分析:过点C 作CD ⊥y 轴于点D ,过点A 作AE ⊥y 轴于点E .∵111··222ABCD CD OB AE OB S ==四边形,∴CD=AE .由题意,易得四边形ONCD 与四边形OMAE 均为矩形,∴CD=ON ,AE=OM ,∴ON=OM .∵,CN·ON=2k ,AM·OM=1k ∴12k AMCN k =,结论①正确.由题意1k >0,2k <0,∴阴影部分的面积为121211()()22k k k k +=-,∴结论②错误.当∠AOC=90°时,易得△CON ∽△OAM ,要使12k k =成立,则需△CON ≌△OAM ,而△CON 与△OAM 不一定全等,故结论③错误.若四边形OABC 为菱形,则OA=OC ,∵ON=OM ,∴Rt △ONC ≌Rt △OMA (HL ),∴1k =2k ,即1k =-2k ,∴两双曲线既关于x 轴对称,也关于y 轴对称,结论④正确.考点:反比例函数的性质、三角形全等.3.C【分析】过A 作,AF OD EG OD ⊥⊥,连接OC 、OE ,根据点A 与点B 关于原点对称,∠ACB=90°,AC 平分∠BAD 得出//AE OC ,从而得出三角形AEC 的面积与三角形AOE的面积相等,设,k A m m ⎛⎫⎪⎝⎭,根据E 是AD 的中点得出2,2k E m m ⎛⎫ ⎪⎝⎭得出三角形OAE 的面积等于四边形AFGE 的面积建立等量关系求解.解:过A 作,AF OD EG OD ⊥⊥,连接OC ,连接OE :∵点A 与点B 关于原点对称,∠ACB=90°∴,OA OB OC OCA OAC ==∠=∠又∵AC 平分∠BAD ∴OAC CAD =∠∠∴//AE OC ∴AEO AECS S ∆∆=设,k A m m ⎛⎫⎪⎝⎭,根据E 是AD 的中点得出:2,2k E m m ⎛⎫ ⎪⎝⎭∴1622AEO AFGE kk S S m m m ∆⎛⎫==+⨯⨯= ⎪⎝⎭四解得:8k =故答案选:C .【点拨】本题考查反比例函数与几何综合,有一定的难度.将三角形AEC 的面积转化与三角形AOE 的面积相等是解题关键.4.A【分析】根据轴对称的性质和图象点的特征可知①正确;根据点1,22⎛⎫- ⎪⎝⎭关于y=2的对称点坐标在函数3y x =图象上,即可判定②正确;由3y x =上任意一点为(),x y ,则点(),x y 与2y =对称点的纵坐标为34x-可判断③错误;由关于2y =对称点性质可判断④不正确;解: 点3(2,2)是函数3y x =的图象的点,也是对称轴直线2y =上的点,∴点3(2,2)是图象C 与函数3y x =的图象交于点;∴①正确;点1(2,2)-关于2y =对称的点为点1(2,6),1(2,6)在函数3y x =上,∴点1(2,2)-在图象C 上;∴②正确;3y x=中0y ≠,0x ≠,取3y x=上任意一点为(),x y ,则点(),x y 与2y =对称点的纵坐标为34x-;∴图象C 上的点的纵坐标不一定小于4.故③错误;1(A x ,1)y ,2(B x ,2)y 关于2y =对称点为1(x ,14)y -,2(B x ,24)y -在函数3y x=上,1134y x ∴-=,2234y x -=,若120x x >>,则12y y >;若120x x >>或120x x >>,则12y y <;∴④不正确;故选A .【点拨】本题考查反比例函数图象及性质及轴对称的性质;熟练掌握函数关于直线的对称时,对应点关于直线对称是解题的关键.5.A【分析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-4t,t),于是利用PB=PB′得t-2=|-4t|=4t,然后解方程可得到满足条件的t的值.解:如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-4 x,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-4t,t),∵PB=PB′,∴t-2=|-4t |=4t,整理得t 2-2t-4=0,解得t1=1,(不符合题意,舍去),∴t的值为1.故选A .【点拨】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.6.A【分析】先确定对称点坐标为(-1,-3),将其代入反比例函数ky x=中求得k=3,得到函数解析式,根据函数的性质解答.解:点()1,3-关于y 轴的对称点坐标为(-1,-3),将(-1,-3)代入ky x=,得k=(1)(3)3-⨯-=,∴反比例函数解析式为3y x=,∵k=3>0,∴在每个象限内y 随着x 的增大而减小,故A 错误;当x=1时,y=3,故B 正确;当1x ≥时,03y <≤,故C 正确;解方程组3y x y x =⎧⎪⎨=⎪⎩,得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩故函数3y x=图像与直线y x =故D 正确,故选:A.【点拨】此题考查待定系数法求反比例函数解析式,轴对称的性质,反比例函数的性质,函数图象交点问题.7.D【分析】①若4k =,则计算163OEF S ∆=,故命题①正确;②如答图所示,若218=k ,可证明直线EF 是线段CN 的垂直平分线,故命题②正确;③因为点F 不经过点(4,3)C ,所以12k ≠,即可得出k 的范围;④求出直线EF 的解析式,得到点D 、G 的坐标,然后求出线段DE 、EG 的长度;利用算式2512DE EG =,求出1k =,故命题④正确.解:命题①正确.理由如下:4k = ,4(3E ∴,3),(4,1)F ,48433CE ∴=-=,312CF =-=.1111411843341222223223OEF AOE BOF CEF AOBC AOBC S S S S S S OA AE OB BF CE CF ∆∆∆∆∴=---=-⋅-⋅-⋅=⨯-⨯⨯-⨯⨯-⨯⨯=矩形矩形,故①正确;命题②正确.理由如下:218k =,7(8E ∴,3),21(4,)32F ,725488CE ∴=-=,217533232CF =-=.如答图,过点E 作EM x ⊥轴于点M ,则3EM =,78OM =;在线段BM 上取一点N ,使得258EN CE ==,连接NF .在Rt EMN ∆中,由勾股定理得:78MN =,7794884BN OB OM MN ∴=--=--=.在Rt BFN ∆中,由勾股定理得:7532NF ==.NF CF ∴=,又EN CE = ,∴直线EF 为线段CN 的垂直平分线,即点N 与点C 关于直线EF 对称,故②正确;命题③正确.理由如下:由题意,点F 与点(4,3)C 不重合,所以4312k ≠⨯=,012k ∴<<,故③正确;命题④正确.理由如下:设12k m =,则(4,3)E m ,(4,3)F m .设直线EF 的解析式为y ax b =+,则有4343ma b a b m +=⎧⎨+=⎩,解得3433a b m ⎧=-⎪⎨⎪=+⎩,3334y x m ∴=-++.令0x =,得33y m =+,(0,33)D m ∴+;令0y =,得44x m =+,(44,0)G m ∴+.如答图,过点E 作EM x ⊥轴于点M ,则4OM AE m ==,3EM =.在Rt ADE ∆中,3AD OD OA m =-=,4AE m =,由勾股定理得:5DE m =;在Rt MEG ∆中,(44)44MG OG OM m m =-=+-=,3EM =,由勾股定理得:5EG =.25552512DE EG m m ∴=⨯==,解得112m =,121k m ∴==,故命题④正确.综上所述,正确的命题是:①②③④,共4个,故选:D.【点拨】此题是反比例函数综合题,主要考查了函数的图象与性质、反比例函数图象上点的坐标特征、比例系数k 的几何意义、待定系数法、矩形及勾股定理等多个知识点,有一定的难度.本题计算量较大,解题过程中注意认真计算.8.A【分析】根据题意画出图形,①将32x =代入3y x =得2y =,从而可判断①正确;②令12x =时,16y =,即162⎛⎫ ⎪⎝⎭,关于2y =时的对称点为122⎛⎫- ⎪⎝⎭,从而可判断②正确;③根据图形分析可得C 右侧图与x 轴间距离小于4,但y 轴左侧与x 轴距离大于4,从而可判断③错误;④由图像即可判断④错误.解:由图像C与反比例函数3yx=关于2y=对称可得如下图,①当32x=时,2y=,故①正确;②当12x=时,16y=,即162⎛⎫⎪⎝⎭,关于2y=时的对称点为122⎛⎫-⎪⎝⎭,,故②正确;③如图:3yx=与2y=之间距离小于2,即C与x轴间距离小于4(C右侧图),但y 轴左侧与x轴距离大于4,故③错误;④当0x>时,12x x>,则124y y>>;当0x<时,12x x>,则124y y>>;∴当x1>0>x2时,y2>y1故④错误.故答案为:A.【点拨】本题考查了反比例函数图象及性质;熟练掌握函数关于直线对称时,对应点关于直线对称是解题的关键.9.D【分析】根据题意,由反比例函数的性质和一次函数的性质分别求出点A、B、C的坐标,然后通过计算,分别进行判断,即可得到答案.解:根据题意,由22yxy x⎧=⎪⎨⎪=⎩,解得:12xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,∴点A为(1,2),点B为(1-,2-),∴点A与点B关于原点对称;故①③正确;由21y x y x ⎧=⎪⎨⎪=+⎩,解得:12x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩,∴点C 为(2-,1-);∴OA ==OC ==∴OA OC =,故②正确;∵AC ==,AB ==,BC =∵222=+,∴222AB AC BC =+,∴ABC ∆是直角三角形,故④正确;故选:D .【点拨】本题考查了反比例函数的性质,一次函数的性质,勾股定理求两点间的长度,以及两直线的交点问题,解题的关键是熟练掌握所学的性质进行解题.10.B【分析】①若6k =,则计算92OEF S = ,故命题①正确;②如答图所示,若218=k ,可证明直线EF 是线段CN 的垂直平分线,故命题②正确;③因为点F 不经过点()4,3C ,所以12k ≠,即可得出k 的范围;④求出直线EF 的解析式,得到点D 、G 的坐标,然后求出线段DE 、EG 的长度;利用算式256DE EG ⋅=,求出1k =,故命题④错误.解:命题①正确.理由如下:6k =Q ,()2,3E ∴,34,2F ⎛⎫⎪⎝⎭,422CE ∴=-=,33322CF =-=,111222OEF AOE BOF CEF AOBC AOBC S S S S S S OA AE OB BF CE CF∴=---=-⋅-⋅-⋅矩形矩形 113139433242222222=⨯-⨯⨯-⨯⨯-⨯⨯=,故①正确;命题②正确.理由如下:218k =,7,38E ⎛⎫∴ ⎪⎝⎭,214,32F ⎛⎫ ⎪⎝⎭,725488CE ∴=-=,217533232CF =-=.如答图,过点E 作EM x ⊥轴于点M ,则3EM =,78OM =;在线段BM 上取一点N ,使得258EN CE ==,连接NF .在Rt EMN △中,由勾股定理得:78MN ==,7794884BN OB OM MN ∴=--=--=.在Rt BFN △中,由勾股定理得:7532NF =.NF CF ∴=,又EN CE = ,∴直线EF 为线段CN 的垂直平分线,即点N 与点C 关于直线EF 对称,故②正确;命题③错误.理由如下:由题意,点F 与点()4,3C 不重合,所以4312k ≠⨯=,012k ∴<<,故③错误;命题④错误.理由如下:设12k m =,则()4,3E m ,()4,3F m .设直线EF 的解析式为y ax b =+,则有4343ma b a b m +=⎧⎨+=⎩,解得3433a b m ⎧=-⎪⎨⎪=+⎩,3334y x m ∴=-++.令0x =,得33y m =+,()0,33D m ∴+;令0y =,得44x m =+,()44,0G m ∴+.如答图,过点E 作EM x ⊥轴于点M ,则4OM AE m ==,3EM =.在Rt ADE △中,3AD OD OA m =-=,4AE m =,由勾股定理得:5DE m =;在Rt MEG 中,()4444MG OG OM m m =-=+-=,3EM =,由勾股定理得:5EG =.25552512DE EG m m ∴⋅=⨯==,解得112m =,121k m ∴==,故命题④错误.综上所述,正确的命题是:①②,共2个,故选:B.【点拨】本题属于反比例函数综合题,考查勾股定理,待定系数法求一次函数解析式,反比例函数图象上点的坐标特征等,综合性比较强,难度较大.11.1【分析】设点11k A x x ⎛⎫⎪⎝⎭,,关于y 轴得对称点11'(,)k A x x -,设点22(,)k B x x ,关于y 轴得对称点22’,k B x x ⎛⎫- ⎪⎝⎭,代入21y x m =++,求出k ,再求1212y y x x ++即可.解:A 、B 两点为反比例函数()0ky k x=<的图像上,点A 、B 的坐标分别为1122(,),(,)x y x y ,则点11k A x x ⎛⎫⎪⎝⎭,,关于y 轴得对称点11'(,)k A x x -,设点22(,)k B x x ,关于y 轴得对称点22,k B x x '⎛⎫- ⎪⎝⎭,把A ′、B ′坐标分别代入21y x m =++得,1121k x m x =-++和2221kx m x =-++,两式相减得,1212k kx x x x -=-+,解得12k x x =,则12y x =,21y x =122112121y y x x x x x x ++==++,故答案为1.【点拨】本题考查了一次函数和反比例函数的综合,解题关键是熟练运用一次函数和反比例函数知识,通过设坐标建立等量关系,表示出比例系数.12.2y x=-【分析】根据题意,设点A 为(x ,y ),则AB=2y ,由点C 在y 轴上,则△ABC 的AB 边上的高为x ,结合面积公式,即可求出k 的值.解:∵反比例函数ky x=的图像经过点A ,∴设点A 为(x ,y ),且点A 在第二象限,∵点B 与点A 关于x 轴对称,∴AB=2y ,∵点C 在y 轴上,∴△ABC 的AB 边上的高为x ,∴1222S y x =⨯⨯=,∴2x y =g ,∵点A 在第二象限,则0x <,∴2x y xy =-=g ,∴2xy =-,即2k =-,∴反比例函数的解析式为:2y x =-.故答案为:2y x=-.【点拨】本题考查了反比例函数图象上点的坐标特征和反比例函数的几何意义,能根据三角形的面积求出xy 的值是解此题的关键.13.(1)(4,0);(2)4≤t ≤-t ≤-4【分析】(1)当点O′与点A 重合时,即点O 与点A 重合,进一步解直角三角形AOB ,利用轴对称的现在解答即可;(2)分别求出O′和B′在双曲线上时,P 的坐标即可.解:(1)当点O´与点A 重合时,∵∠AOB=60°,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O´B´.AP′=OP′,∴△AOP′是等边三角形,∵B (2,0),∴BO=BP′=2,∴点P 的坐标是(4,0),(2)∵∠AOB=60°,∠P′MO=90°,∴∠MP′O=30°,∴OM=12t ,OO′=t ,过O′作O′N ⊥X 轴于N ,∠OO′N=30°,∴ON=12t ,,∴O′(12tt ),根据对称性可知点P 在直线O′B′上,设直线O′B′的解析式是y=kx+b,代入得1220tk b tk b ⎧+=⎪⎨⎪+=⎩,解得:k b ⎧=⎪⎨=⎪⎩∴y=①,∵∠ABO=90°,∠AOB=60°,OB=2,∴OA=4,∴A (2,∴2,即x 2﹣tx+4=0③,b 2﹣4ac=t 2﹣4×1×4≥0,解得:t≥4,t≤﹣4.又O′B′=2,根据对称性得B′点横坐标是1+12 t,当点B′为直线与双曲线的交点时,由③得,(x﹣12t)2﹣24t+4=0,代入,得(1+12t﹣12t)2﹣24t+4=0,解得而当线段O′B′与双曲线有交点时,t≥﹣综上所述,t的取值范围是﹣4.【点拨】本题主要考查对用待定系数法求一次函数、反比例函数的解析式,勾股定理,解二元一次方程组,解不等式,含30度角的直角三角形的性质,三角形的内角和定理,根的判别式等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.14【分析】过点P作x轴垂线PG,连接BP,可得BP=2,G是CD的中点,所以P(2,D(3,0),E,待定系数法求出DE的解析式为y-,联立反比例函数与一次函数即可求点Q的坐标.解:过点P作x轴垂线PG,连接BP,∵P是正六边形ABCDEF的对称中心,CD=2,∴BP=2,G是CD的中点,∴CG=1,CP=2,∴PG∴P (2∵P 在反比例函数ky x=上,∴k =∴y =∵OD=OC+CD=3,BE=2BP=4,∴D (3,0),E (4设DE 的解析式为y =mx +b ,∴304m b m b +=⎧⎪⎨+=⎪⎩∴m b ⎧=⎪⎨=-⎪⎩,∴y -,联立方程y y x ⎧=-⎪⎨=⎪⎩解得x =∵Q 点在第一象限,∴Q【点拨】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标将结合是解题的关系.15.4或163【分析】(1)设矩形OAPB 的两边为m 、n ,利用反比例函数k 的几何意义得到6mn =,再根据勾股定理得到22210m n +=,根据完全平分公式变形得到2()2100m n mn +-=,则可计算出m n +=OAPB 的周长;(2)当E 关于直线AB 的对称点F 恰好落在x 轴上,如图2,AB 与EF 相交于点Q ,利用三角形面积公式得到4ABE S ∆=,再根据对称轴的性质得AB 垂直平分EF ,EQ FQ =,接着证明FQ 垂直平分AB 得到BQ AQ =,所以122AQE ABE S S ∆∆==,则24AEF AQE S S ∆∆==;当E 关于直线AB 的对称点F 恰好落在y 轴上,如图3,证明四边形OAPB 为正方形得到P ,则可计算出83BEF S ∆=,而2AOE APE S S ∆∆==,于是得到163AEF S ∆=.解:(1)设矩形OAPB 的两边为m 、n ,则12mn =,矩形的对角线10AB =,22210m n ∴+=,2()2100m n mn ∴+-=,2()100212m n ∴+=+⨯,m n ∴+=,∴矩形OAPB 的周长为,故答案为;(2)当E 关于直线AB 的对称点F 恰好落在x 轴上,如图2,AB 与EF 相交于点Q ,矩形OAPB 的面积12=,而2BE PE =,4ABE S ∆∴=,点E 与点F 关于AB 对称,AB ∴垂直平分EF ,EQ FQ =,AE AF ∴=,AEF AFE ∴∠=∠,//PB OA ,AFE BEF ∴∠=∠,BEF AEF ∴∠=∠,FQ ∴垂直平分AB ,BQ AQ ∴=,122AQE ABE S S ∆∆∴==,24AEF AQE S S ∆∆∴==;当E 关于直线AB 的对称点F 恰好落在y 轴上,如图3,点E 与点F 关于AB 对称,BE BF ∴=,AB EF ⊥,BEF ∴∆为等腰直角三角形,AB ∴平分OBP ∠,∴四边形OAPB 为正方形,P ∴,BE BF ∴=1823BEF S ∆∴==,而2AOF APE S S ∆∆==,816122233AEF S ∆∴=---=,综上所述,AEF ∆的面积为4或163,故答案为4或163.【点拨】本题考查了反比例函数的综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k 的几何意义和轴对称的性质;灵活运用矩形的性质进行几何计算;理解坐标与图形性质.16.72【分析】先根据反比例函数的性质可得直线AO 的解析式为y x =,从而可得45AOB ∠=︒,再根据等腰直角三角形的判定可得Rt AEF △是等腰直角三角形,从而可得AG EG FG ==,然后设点A 的坐标为(,)(0)A a a a >,点E 的坐标为7(,)(0)E b b b>,由此可得AG FG EG b a ===-,AH OH a ==,7AG AH GH a b =-=-,从而可得72a b b-=,最后利用Rt AOH 面积减去Rt AFG 面积即可得.解: 反比例函数7y x=的图象关于AO 所在的直线对称,∴直线AO 的解析式为y x =,45AOB ∴∠=︒,AH OB ⊥ ,//EF OB ,,45AH EF AFE AOB ∴⊥∠=∠=︒,Rt AEF ∴ 是等腰直角三角形,AG EG FG ∴==(等腰三角形的三线合一),设点A 的坐标为(,)(0)A a a a >,点E 的坐标为7(,0)E b b b>,AG FG EG b a ∴===-,AH OH a ==,7AG AH GH a b=-=-,7b a a b ∴-=-,即72a b b-=,则四边形OHGF 的面积为1122Rt AOH Rt AFG S S AH OH FG AG -=⋅-⋅ ,2211()22a b a =--,1(2)2b a b =-,72=,故答案为:72.【点拨】本题考查了反比例函数与几何综合、等腰直角三角形的三线合一等知识点,熟练掌握反比例函数的性质是解题关键.17.①②【分析】①若k =4,则计算S △OEF =163,故命题①正确;②若218=k ,可证明直线EF 是线段CN 的垂直平分线,故命题②正确;③因为点F 不经过点C (4,3),所以k ≠12,故命题③错误;④求出直线EF 的解析式,得到点D 、G 的坐标,然后求出线段DE 、EG 的长度;利用算式2512DE EG ⋅=,求出k =1,故命题④错误.解:命题①正确.理由如下:∵k =4,∴E (43,3),F (4,1),∴CE =4−43=83,CF =3−1=2.∴S △OEF =S 矩形AOBC −S △AOE −S △BOF −S △CEF=S 矩形AOBC −12OA •AE −12OB •BF −12CE •CF =4×3−12×3×43−12×4×1−12×83×2=12−2−2−83=163,故命题①正确;命题②正确.理由如下:∵218=k ,∴E (78,3),F (4,2132),∴CE =4−78=258,CF =3−2132=7532.如图,过点E 作EM ⊥x 轴于点M ,则EM =3,OM =78;在线段BM 上取一点N ,使得EN =CE =258,连接NF .在Rt △EMN 中,由勾股定理得:MN 2=EN 2−EM 2=2225()38-,∴MN =78,∴BN =OB −OM −MN =4−78−78=94.在Rt △BFN 中,由勾股定理得:NF 2=BN 2+BF 2=22921432⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,∴NF =7532.∴NF =CF ,又EN =CE ,∴直线EF 为线段CN 的垂直平分线,即点N 与点C 关于直线EF对称,故命题②正确;命题③错误.理由如下:由题意,得点F 与点C (4,3)不重合,所以k ≠4×3=12,故命题③错误;命题④正确.理由如下:设k =12m ,则E (4m ,3),F (4,3m ).设直线EF 的解析式为y =ax +b ,则4343ma b a b m ⎧⎨⎩+=+=,解得3433a b m ⎧-⎪⎨⎪+⎩==,∴y =34-x +3m +3.令x =0,得y =3m +3,令y =0,得x =4m +4,∴D (0,3m +3),G (4m +4,0).如图,过点E 作EM ⊥x 轴于点M ,则OM =AE =4m ,EM =3.在Rt △ADE 中,AD =OD −OA =3m ,AE =4m ,由勾股定理得:DE =5m ;在Rt △MEG 中,MG =OG −OM =(4m +4)−4m =4,EM =3,由勾股定理得:EG =5.∴DE •EG =5m ×5=25m =2512,解得m =112,∴k =12m =1,故命题④错误.综上所述,正确的命题是:①②,故答案为:①②.【点拨】本题综合考查函数的图象与性质,反比例函数图象上点的坐标特征、比例系数k 的几何意义、待定系数法求解析式、矩形的性质及勾股定理等知识点,本题计算量较大,正确的计算能力是解决问题的关键.18.【分析】连接AB 、BD 交于点N ,作BM x ⊥轴于点M ,设线段PM a =,得BM ,由菱形ABCD 和菱形GFED 关于点D 成中心对称结合120APO ∠=︒可得点A 和点F 的坐标,再结合反比例函数图象上点的坐标特征列出方程,求a ,最后求得k .解:连接AB 、BD 交于点N ,作BM x ⊥轴于点M ,设PM a =,120APO ∠=︒ ,BM ∴,2PB a =,菱形ABCD 和菱形GFED 关于点D 成中心对称,点C ,G 在x 轴的正半轴上,AC x ∴⊥轴,AB BC =,30PAC ∴∠=︒,60BAD =∴∠︒,60BCP ∴∠=︒,CM BN ND PM a ∴====,2AC BM ==,∴点(12A a +,),(15)F a +,点A 和点F 在反比例函数图象上,(12)(15)a a ∴+=+,解得:0a =(舍)或1a =,(3A ∴,,3k ∴=⨯=故答案为:【点拨】本题考查了菱形的性质、含30︒角的直角三角形三边关系、反比例函数图象上点的坐标特征,解题的关键是利用菱形的性质表达出点A 和点F 的坐标.19.(1)点B 在反比例函数8y x=-的图象上,理由见分析;(2)见分析;(3)()4,0,()和()5,0【分析】(1)求出点B 的坐标,判断即可;(2)证明OA =OB ,OC =OD ,推出四边形ADBC 是平行四边形,再证明AB =CD ,可得结论;(3)当四边形OBPQ 是菱形时,对图形进行分类讨论,设点P 的坐标为(,0)m ,然后根据邻边相,用两点间距离公式表示线段长度列方程即可.解:(1)结论:点B 在反比例函数8y x=-的图象上,理由如下:∵反比例函数8y x=-的图象经过点A ,点A 的横坐标是-2,∴把2x =-代入8y x=-中,得842y =-=-,∴点A 的坐标是()2,4-,∵点A 关于坐标原点O 的对称点为点B ,∴点B 的坐标是()2,4-,把2x =代入8y x=-中,得842y =-=-,∴点B 在反比例函数8y x=-的图象上;(2)证明:在反比例函数8y x=-中令x =4则y =-2,∵过坐标原点O 作直线交反比例函数8y x=-的图象于点C 和点D ,∴C ,D 关于原点对称,∴C (4,-2),D (-4,2),OC =OD ,∵A ,B 关于原点对称,∴OA =OB ,∴四边形ACBD 是平行四边形,∵∴AB =CD ,∴四边形ACBD 是矩形;(3)设点P 的坐标为(,0)m ,如图,当四边形OBP 1Q 1是菱形时,可得1OB OP =,∴22m +=,解得4m =,∴P 1()4,0;当四边形OBQ 2P 2是菱形时,可得2OB OP =,∴2OB OP =∴P 2();当四边形OP 3BQ 3是菱形时,可得33OP BP =,∴m =,解得5m =,∴P 3()5,0,综上所述,满足条件的点P 的坐标分别为()4,0,()和()5,0.【点拨】本题属于反比例函数综合题,考查了反比例函数的性质,一次函数的性质,矩形的判定和性质,菱形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.20.(1)点E 在这个反比例函数的图像上,理由见分析;(2)①1k =,2b =;②点P 的坐标为(0,2)-【分析】(1)设点A 的坐标为8(,)m m,根据轴对称的性质得到AD CE ⊥,AD 平分CE ,如图,连接CE 交AD 于H ,得到CH EH =,再结合等腰三角形三线合一得到CH 为ACD ∆边AD 上的中线,即AH HD =,求出4,H m m ⎛⎫⎪⎝⎭,进而求得4(2,E m m ,于是得到点E 在这个反比例函数的图像上;(2)①根据正方形的性质得到AD CE =,AD 垂直平分CE ,求得12CH AD =,设点A 的坐标为8(,m m,得到2m =(负值舍去),求得(2,4)A ,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得PE PD PE PB -=-,则点P 即为符合条件的点,求得直线DE 的解析式为2y x =-,于是得到结论.(1)解:点E 在这个反比例函数的图像上.理由如下:一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,∴设点A 的坐标为8(,m m, 点C 关于直线AD 的对称点为点E ,AD CE ∴⊥,AD 平分CE ,连接CE 交AD 于H ,如图所示:CH EH ∴=,AD x ⊥ 轴于D ,CE x ∴∥轴,90ADB ∠=︒,90CDO ADC ∴∠+∠=︒,CB CD = ,CBO CDO ∴∠=∠,在Rt ABD ∆中,90ABD BAD ∠+∠=︒,CAD CDA ∴∠=∠,CH ∴为ACD ∆边AD 上的中线,即AH HD =,4,H m m ⎛⎫∴ ⎪⎝⎭,4(2,)E m m∴,428m m⨯= ,∴点E 在这个反比例函数的图像上;(2)解:① 四边形ACDE 为正方形,AD CE ∴=,AD 垂直平分CE ,12CH AD ∴=,设点A 的坐标为8(,)m m,CH m ∴=,8AD m=,182m m∴=⨯,2m ∴=(负值舍去),(2,4)A ∴,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得242k b b +==⎧⎨⎩,∴12k b =⎧⎨=⎩;②延长ED 交y 轴于P ,如图所示:CB CD = ,OC BD ⊥,∴点B 与点D 关于y 轴对称,PE PD PE PB ∴-=-,则点P 即为符合条件的点,由①知,(2,4)A ,(0,2)C ,(2,0)D ∴,(4,2)E ,设直线DE 的解析式为y ax n =+,∴2042a n a n +=+=⎧⎨⎩,解得12a n ==-⎧⎨⎩,∴直线DE 的解析式为2y x =-,当0x =时,=2y -,即()0,2-,故当PE PB -最大时,点P 的坐标为(0,2)-.【点拨】本题考查了反比例函数的综合题,正方形的性质,轴对称的性质,待定系数法求一次函数的解析式,正确地作出辅助线是解题的关键.21.(1)2k =;(2)①ABC 为直角三角形,理由见分析;②点P 的坐标为(2-++或(2---或()24+-或()24---.【分析】(1)设点B 的坐标为(2)m m ,,则点(2)A m m --,,则22AB =,即可求解;(2)①点A 、C 的横坐标相同,AC y 轴,点B 关于y 轴的对称点为C ,故BC y ⊥轴,即可求解;②过点C 作直线m AB ,交反比例函数于点P ,则点P 符合题设要求,同样在AB。
浙教版初中数学八年级下册第六单元《反比例函数》(标准困难)(含答案解析)(含答案解析)

浙教版初中数学八年级下册第六单元《反比例函数》(标准困难)(含答案解析)考试范围:第六单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列说法正确的是( )A. 圆面积公式S=πr2⋅中,S与r成正比例关系B. 三角形面积公式S=1aℎ中,当S是常量时,a与ℎ成反比例关系2C. y=2+2中,y与x成反比例关系xD. y=x+1中,y与x成正比例关系32. 若函数y=x2m+1为反比例函数,则m的值是( )A. 1B. 0C. 0.5D. −13. 下列说法中,正确的是( )A. 矩形的面积公式S=ab中,当S是常量时,a与b成反比例关系B. 圆的面积公式S=πr2,S与r成正比例关系C. 函数y=1中,y与x成反比例关系x−1D. 函数y=1−1中,y与x成正比例关系x4. 如图,长方体的体积是100m3,底面一边长为2m.记底面另一边长为x m,底面的周长为l m,长方体的高为ℎm.当x在一定范围内变化时,l和ℎ都随x的变化而变化,则l与x,ℎ与x满足的函数关系分别是( )A. 一次函数关系,二次函数关系B. 反比例函数关系,二次函数关系C. 反比例函数关系,一次函数关系D. 一次函数关系,反比例函数关系5. 反比例函数y=k的图象分别位于第二、四象限,则直线y=kx+k不经过的象限是( )xA. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 已知双曲线y=kx(k<0)过点(3,y1)、(1,y2)、(−2,y3),则下列结论正确的是( )A. y3>y1>y2B. y3>y2>y1C. y2>y1>y3D. y2>y3>y17. 如图是三个反比例函数y1=k1x ,y2=k2x,y3=k3x在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为( )A. k1>k2>k3B. k3>k1>k2C. k2>k3>k1D. k3>k2>k18. 在同一平面直角坐标系中,一次函数y1=k1x+b与反比例函数y2=k2x(x>0)的图象如图所示,则当y1>y2时,自变量x的取值范围为( )A. x<1B. x>3C. 0<x<1D. 1<x<39. 如图,过y轴上任意一点P作x轴的平行线,分别与反比例函数y=−2x 和y=6x的图象交于A点和B点,若C为x轴上任意一点,连接AC、BC,则△ABC的面积为( )A. 3B. 4C. 5D. 810. 如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间的函数关系的大致图象是( )A.B.C.D.11. 如图,点B 在反比例函数y =8x (x >0)的图象上,点C 在反比例函数y =−2x (x >0)的图象上,且BC//y 轴,AC ⊥BC ,垂足为点C ,交y 轴于点A.则△ABC 的面积为( )A. 4B. 5C. 8D. 1012. 如图,平行于x 轴的直线与函数y =k 1x(k 1>0,x >0),y =k 2x(k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为4,则k 1−k 2的值为( )A. 8B. −8C. 4D. −4第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知函数y =20x,当y =14时,x = .14. 已知一菱形的面积为12cm2,对角线长分别为xcm和ycm,则y关于x的函数表达式为____________.15. 如图,点P为双曲线y=8x(x>0)上一点,PA⊥x轴于点A,PB⊥y轴于点B,PA,PB分别交双曲线y=kx(x>0)于C,D两点,若S△PCD=1,则k=.16. 如图,平行于x轴的直线与函数y=k1x (k1>0,x>0)和y=k2x(k2>0,x>0)的图象分别相交于A,B两点.点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1−k2的值为______.三、解答题(本大题共9小题,共72.0分。
浙教版2019--2020年八年级数学下册第六章:反比例函数 培优检测(含解析)

2020年初中数学浙教版八年级下册第六章培优检测学校:___________姓名:___________班级:___________考号:___________一、单选题1.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 2.已知压强的计算公式是p =FS,我们知道,刀具在使用一段时间后,就会变钝.如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是( )A .当受力面积一定时,压强随压力的增大而增大B .当受力面积一定时,压强随压力的增大而减小C .当压力一定时,压强随受力面积的减小而减小D .当压力一定时,压强随受力面积的减小而增大3.如图,平面直角坐标系中,矩形ABCD 的边AB :BC =3:2,点A (3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y =kx的图象经过点D ,则k 值为( )A .﹣14B .14C .7D .﹣74.如图,已知直线12y x =与双曲线(0)ky k x =>交于A 、B 两点,点B 坐标为(-4,-2),C 为双曲线(0)ky k x=>上一点,且在第一象限内,若△AOC 面积为6,则点C 坐标为( )A.(4,2)B.(2,3)C.(3,4)D.(2,4)5.在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.6.如图,四边形OABC和四边形BDEF都是正方形,反比例函数kyx=在第一象限的图象经过点E,若两正方形的面积差为8,则k的值为()A.6B.8C.12D.167.函数kyx=和1yx=在第一象限内的图像如图,P是kyx=的图象上一动点,PC⊥x轴于点C,交的图象于点A,PD ⊥y 轴于点D,交kyx=的图像于点B,当点P在kyx=的图像上运动时,下列结论错误的是()A .△ODB 与△OCA 的面积相等 B .当点 A 是 PC 的中点时,点 B 一定是 PD 的中点 C .CA DBPA PB=D .当四边形 OCPD 为正方形时,四边形PAOB 的面积最大8.如图,在平面直角坐标系中,矩形OABC 的顶点A ,B 在反比例函数ky x=()00k x >>,的图像上,纵坐标分别为1和3,则k 的值为( )A .23B .3C .2D .39.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为12,则k 的值为( )A .1B .2C .3D .410.如图,在平面直角坐标系中,梯形OACB 的顶点O 是坐标原点,OA 边在y 轴正半轴上,OB 边在x 轴正半轴上,且OA ∥BC ,双曲线y=k x(x >0)经过AC 边的中点,若S 梯形OACB =4,则双曲线y=kx的k 值为( )A .5B .4C .3D .2二、填空题11.如图,点A 在双曲线y =kx的第一象限的那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为_____.12.如图,含30°的直角三角板ABC(其中∠ABC=90 )的三个顶点均在反比例函数1y x=的图象上,且斜边AC 经过原点O ,则直角三角板ABC 的面积为_____________.13.已知反比例函数的图象经过点(m ,4)和点(8,-2),则m 的值为________. 14.如图,四边形ABCD 的项点都在坐标轴上,若//,AB CD AOB V 与COD △面积分别为8和18,若双曲线ky x=恰好经过BC 的中点E ,则k 的值为__________.15.如图,已知点A 1、A 2、A 3、…、A n 在x 轴上,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n =1,分别过点A 1、A 2、A 3、……、A n 作x 轴的垂线,交反比例函数y =2x(x >0)的图象于点B 1、B 2、B 3、…、B n ,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2,…,若记△B 1P 1B 2的面积为S 1,△B 2P 2B 3的面积为S 2,…,△B n P n B n +1的面积为S n ,则S 1+S 2+…+S 2019=_____.三、解答题16.如图,一次函数1y k x b =+的图像与反比例函数2k y x=的图像交于(4,)C m -,F 两点,与,x y 轴分别交于,(0,3)B A -两点,且32OA OB =.(1)求一次函数和反比例函数的解析式;(2)若点E 与点B 关于y 轴对称,连接,FE EC ,求EFC ∆的面积. 17.如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线12y x b=-+过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.18.如图,在平面直角坐标系xOy中,△OA1B1是等边三角形,点B1的坐标是(2,0),反比例函数y=kx的图象经过点A1.(1)求反比例函数的解析式.(2)如图,以B1为顶点作等边三角形B1A2B2,使点B2在x轴上,点A2在反比例函数y=kx的图象上.若要使点B2在反比例函数y=kx的图象上,需将△B1A2B2向上平移多少个单位长度?19.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点,点A的坐标是(﹣2,1),点B的坐标是(1,n);(1)分别求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)直接写出不等式kx+b≥mx的解集.20.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于()2,1A -,()1,B n 两点.()1求一次函数与反比例函数的表达式; ()2求AOB V 的面积;()3根据所给条件,请直接写出不等式m kx b x+<的解集.答案与解析1.C【解析】直接利用反比例函数的性质分别分析得出答案. 【详解】A 、关于反比例函数y=-4x ,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x ,函数图象位于第二、四象限,故此选项错误;C 、关于反比例函数y=-4x ,当x >0时,函数值y 随着x 的增大而增大,故此选项正确;D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误;故选C . 【名师点评】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键. 2.D 【解析】如果刀刃磨薄,指的是受力面积减小;刀具就会变得锋利指的是压强增大.故选D. 3.B 【解析】过点D 作DF ⊥x 轴于点F ,则∠AOB =∠DF A =90°,∴∠OAB +∠ABO =90°, ∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC ,∴∠OAB +∠DAF =90°,∴∠ABO =∠DAF , ∴△AOB ∽△DF A ,∴OA :DF =OB :AF =AB :AD , ∵AB :BC =3:2,点A (3,0),B (0,6),∴AB :AD =3:2,OA =3,OB=6,∴DF =2,AF =4,∴OF =OA +AF =7,∴点D 的坐标为:(7,2),∴k 14=,故选B. 4.D【解析】解:因为B 点坐标为(-4,-2),所以A 点坐标为(4,2), 那么双曲线的解析式为8y x= , 设C 点坐标为()m n , ,那么8114622mn n m =⎧⎪⎨⎛⎫-⋅⋅= ⎪⎪⎝⎭⎩ ,解得24m n =⎧⎨=⎩, 所以C 点的坐标为(2,4). 故选:D. 5.C【解析】分k >0,k <0时两种情况分别判断选项的正确与否即可解答. 【详解】∵函数y =﹣x +k 与y =kx(k 为常数,且k ≠0), ∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =kx经过第一、三象限,故选项D 错误; 当k <0时,y =﹣x +k 经过第二、三、四象限,y =kx经过第二、四象限,故选项C 正确,选项A 、B 错误,故选C . 【名师点评】此题考查反比例函数的图象,熟记反比例函数图象的性质即可正确解答. 6.B【解析】设正方形OABC 、BDEF 的边长分别为a 和b ,则D (a ,a-b ),F (a+b ,a ),由反比例函数图像上点的坐标特征得到E (a+b ,a+bk),由于点E 与点D 的纵坐标相同,所以a+bk=a-b ,则a 2-b 2=k ,最后利用正方形的面积公式即可解答. 【详解】解: 设正方形OABC 、BDEF 的边长分别为a 和b ,则D (a ,a-b ),F (a+b ,a ), 由反比例函数图像上点的坐标特征得到E (a+b ,a+bk), ∵点E 与点D 的纵坐标相同 ∴a+bk=a-b,即a 2-b 2=k 又∵a 2-b 2=8 ∴k=8 故答案为B . 【名师点评】本题考查了反比例函数比例系数k 的几何意义以及正方形的性质,学会设未知数和正确的使用数形结合思想是解答本题的关键. 7.D【解析】根据反比例函数的图象和性质,特别是反比例函数k 的几何意义,对四个选项逐一进行分析,即可得出正确答案 【详解】解:A 、由于点A 和点D 均在同一个反比例函数1y x=的图象上, 所以12ODB S =V ,12OCA S =V , 故ODB △和OCA V 的面积相等, 故本选项正确; B 、如图,连接OP ,则2ODP OCP kS S ==V V ,Q A 是PC 的中点,OAP S ∴=V 1224OAC kkS =⨯=V , ODB S =V Q 4OCA kS =V ,4OBP ODP ODB kS S S ∴=-=V V V ,即4OBP ODB kS S ==V V ,∴B 一定是PD 的中点,故本选项正确; C 、设,k P m m ⎛⎫ ⎪⎝⎭, 则1,A m m ⎛⎫ ⎪⎝⎭,,m kB k m ⎛⎫ ⎪⎝⎭, 11,,,k m m CA PA DB PB m mm m k k∴==-==-, 故1111CA mk PA k m m ==--,11mDB km PBk m k ==--,∴=CA DB PA PB, 故本选项正确;D 、由于矩形OCPD 、三角形ODB 、三角形OCA 的面积为定值, 所以四边形PAOB 的面积不会发生变化, 故本选项错误; 故选:D . 【名师点评】本题考查了反比例函数综合题,关键是设P 点坐标,利用点与点的坐标关系以及反比例函数的性质表现相关线段的长,要对每一个结论进行判断. 8.B【解析】过A 作AD ⊥x 轴于D ,过B 作BE ⊥AD 于E ,依据△ABE ∽△OAD ,即可得到,设A (k ,1),B (3k ,3),即可得到1223kk =,进而得出k 的值.【详解】如图,过A 作AD ⊥x 轴于D ,过B 作BE ⊥AD 于E ,则∠E=∠ADO=90°,又∵∠BAO=90°,∴∠OAD+∠AOD=∠OAD+∠BAE=90°, ∴∠AOD=∠BAE , ∴△ABE ∽△OAD , ∴AD ODBE AE=, 设A (k ,1),B (3k ,3),则OD=k ,AD=1,AE=2,BE=23k , ∴1223kk =,解得k=±3 ∵k >0, ∴3 故选B . 【名师点评】本题考查了矩形的性质、相似三角形的判定与性质以及反比例函数图象上点的坐标与k 之间的关系.解决问题的关键是作辅助线构造相似三角形. 9.D【解析】可设出点D 、E 的坐标,易知点B 坐标,根据中点的性质表示出点M 坐标,代入ky x=可得n 、m 间关系,由=OABC OCE OAD OACE S S S S --X V V 四边形可求出k 值. 【详解】解:设点D 的坐标为(,)k m m ,点E 的坐标为(,)k n n ,则点B 的坐标为(,)k n m, M Q 为OB 的中点(,)22n k M m∴又Q 反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M 22k k n m ∴=4n m ∴=(4,)k B m m ∴ 11,,442222OCE OAD OABC k k k k kS m S n S m k m n m∴=⋅==⋅==⋅=V V W=41222OABC OCE OAD OACE k kS S S S k ∴--=--=X V V 四边形4k ∴=故选:D. 【名师点评】本题考查了反比例函数的图象与坐标轴围成的图形的面积,灵活的应用反比例函数图象上的点坐标表示三角形的面积是解题的关键. 10.D【解析】过AC 的中点P 作//DE x 轴交y 轴于D ,交BC 于E ,作PF x ⊥轴于F ,如图,先根据“AAS ”证明PAD PCE ≅V V ,则PAD PCE S S =V V ,得到BODE AOBC S S =矩形梯形,再利用12DOFP BODE S S =矩形矩形得到114222DOFP AOBC S S ==⨯=矩形梯形,然后根据反比例函数()0ky k x=≠系数k 的几何意义得2k =,再去绝对值即可得到满足条件的k 的值. 【详解】过AC 的中点P 作//DE x 轴交y 轴于D ,交BC 于E ,作PF x ⊥轴于F ,如图,在PAD △和PCE V 中,APD CPE ADP PEC PA PC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴PAD PCE ≅V V (AAS ), ∴PAD PCE S S =V V , ∴BODE AOBC S S =矩形梯形, Q 12DOFP BODE S S =矩形矩形, ∴114222DOFPAOBC S S ==⨯=矩形梯形, ∴2k =,而0k >,∴2k =.故选:D . 【名师点评】本题考查了反比例函数()0k y k x =≠系数k 的几何意义:从反比例函数()0ky k x=≠图象上任意一点向x 轴于y 轴作垂线,垂线与坐标轴所围成的矩形面积为k .11.163. 【解析】由AE =3EC ,△ADE 的面积为3,可知△ADC 的面积为4,再根据点D 为OB 的中点,得到△ADC 的面积为梯形BOCA 面积的一半,即梯形BOCA 的面积为8,设A (x,kx),从而表示出梯形BOCA 的面积关于k 的等式,求解即可. 【详解】 如图,连接DC ,∵AE=3EC ,△ADE 的面积为3,∴△CDE 的面积为1. ∴△ADC 的面积为4.∵点A 在双曲线y =kx 的第一象限的那一支上, ∴设A 点坐标为 (x,kx).∵OC =2AB ,∴OC=2x.∵点D 为OB 的中点,∴△ADC 的面积为梯形BOCA 面积的一半,∴梯形BOCA 的面积为8.∴梯形BOCA 的面积=11(2)3822k k x x x x x +⋅=⋅⋅=,解得16k 3=. 【名师点评】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质. 12.23【解析】设点A 坐标为(n ,1n ),则B 点坐标为(1n,n ), 由△ABO 是等边三角形,可得OA=AB ,根据两点间距离公式可求出2221OA 4n n=+=,则OA=AB=2,BC=3然后即可求出面积. 【详解】解:设点A 坐标为(n ,1n ),则B 点坐标为(1n,n ), ∵O 是AC 中点, ∴OA=OB ,∠A=60°,∴△ABO 是等边三角形,∴OA=AB ,∴2222111n n n n n n ⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭, 整理得:2222112()4n n n n+=+-, ∴2214n n +=, 即OA=AB=2, ∴BC=23,1223232ABC S =⨯⨯=V【名师点评】本题考查了反比例函数的图像和性质,求出OB 的值是解题关键. 13.-4. 【解析】试题解析:设反比例函数的解析式为:y=,把(8,-2)代入y=得,中k=-16∴y=-把(m ,4)代入y=-得,m=-4. 考点:反比例函数图象上点的坐标特征. 14.6【解析】根据AB//CD ,得出△AOB 与△OCD 相似,利用△AOB 与△OCD 的面积分别为8和18,得:AO :OC=BO :OD=2:3,然后再利用同高三角形求得S △COB =12,设B 、 C 的坐标分别为(a ,0)、(0,b ),E 点坐标为(12a ,12b )进行解答即可. 【详解】 解:∵AB//CD , ∴△AOB ∽△OCD ,又∵△ABD 与△ACD 的面积分别为8和18,∴△ABD与△ACD的面积比为4:9,∴AO:OC=BO:OD=2:3∵S△AOB=8∴S△COB=12设B、C的坐标分别为(a,0)、(0,b),E点坐标为(12a,12b)则OB=| a | 、OC=| b |∴12|a|×|b|=12即|a|×|b|=24∴|12a|×|12b|=6又∵kyx=,点E在第三象限∴k=xy=12a×12b=6故答案为6.【名师点评】本题考查了反比例函数综合题应用,根据已知求出S△COB=12是解答本题的关键.15.2019 2020.【解析】由反比例函数图像上点的坐标特征可得:B1、B2、B3、…、B n的坐标,从而可得出B1P1、B2P2、B3P3、…、B n P n的长度,根据三角形的面积公式即可得出S n=12A n A n+1•B n P n=1n(n1)+,将其代入S1+S₂+…+S2019中即可解答.【详解】解:根据题意可知:点B1(1,2)、B2(2,1)、B3(3,23)、…、B n(n,2n),∴B1P1=2﹣1=1,B2P2=1﹣2133=,B3P3=211326-=,…,B n P n=2221(1)n n n n-=++,∴S n=12A n A n+1•B n P n=1n(n1)+,∴S1+S2+…+S2019=1111 122334(1)n n++++⨯⨯⨯+K=1﹣1111111 2233420192020 +-+-++-L=1﹣12020 =20192020. 故答案为:20192020.【名师点评】本题考查了反比例函数图像上点的坐标特征以及三角形的面积,根据反比例函数图象上点的坐标特征结合三角形的面积得到S n =12A n A n +1•B n P n =1n(n 1)+,是解题的关键.16.(1)12y x=-;(2)18. 【解析】(1)先求出B 点坐标,再用待定系数法求一次函数的解析式,再求出C 点坐标,用待定系数法求反比例函数解析式;(2)先由对称性质求E 点坐标,再联立方程组求得F 点坐标,最后根据三角形面积公式求面积. 【详解】解:(1)∵A (0,-3) ∴OA=3, ∵OA=32OB , ∴OB=2, ∴B (-2,0).将(0,3),(2,0)A B --代入一次函数1y k x b =+,得1320b k b =-⎧⎨-+=⎩,解得13,23.k b ⎧=-⎪⎨⎪=-⎩∴一次函数的解析式为332y x =--. Q 点(4,)C m -在一次函数332y x =--的图像上,3(4)33,(4,3)2m C ∴=-⨯--=∴-.Q 点(4,3)C -在反比例函数2ky x =的图像上,24312k ∴=-⨯=-, ∴反比例函数的解析式为12y x=-.(2)Q 点E 与点B 关于y 轴对称,(2,0)B -,(2,0)E ∴,2(2)4BE ∴=--=.联立33,212,y x y x ⎧=--⎪⎪⎨⎪=-⎪⎩解得114,3x y =-⎧⎨=⎩或222,6.x y =⎧⎨=-⎩ (2,6)F ∴-,1146431822EFC EFB EBC S S S ∆∆∆∴=+=⨯⨯+⨯⨯=.【名师点评】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,三角形的面积等,熟练掌握待定系数法是解题的关键. 17.(1)y =12x ;(2)点F 的坐标为(2,4);(3)∠AOF =12∠EOC ,理由见解析;(4)P 的坐标是(197,0)或(-5,00)或(5,0) 【解析】(1)设反比例函数的解析式为y =kx,把点E (3,4)代入即可求出k 的值,进而得出结论;(2)由正方形AOCB 的边长为4,故可知点D 的横坐标为4,点F 的纵坐标为4,由于点D 在反比例函数的图象上,所以点D 的纵坐标为3,即D (4,3),由点D 在直线12y x b =-+上可得出b 的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F 的坐标;(3)在CD 上取CG=AF=2,连接OG ,连接EG 并延长交x 轴于点H ,由全等三角形的判定定理可知△OAF ≌△OCG ,△EGB ≌△HGC (ASA ),故可得出EG=HG ,设直线EG 的解析式为y=mx+n ,把E (3,4),G (4,2)代入即可求出直线EG 的解析式,故可得出H 点的坐标,在Rt △AOF 中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE ,即OG 是等腰三角形底边EF 上的中线,所以OG 是等腰三角形顶角的平分线,由此即可得出结论; (4)分△PDQ 的三个角分别是直角,三种情况进行讨论,作DK ⊥x 轴,作QR ⊥x 轴,作DL ⊥QR ,于点L ,即可构造全等的直角三角形,设出P 的坐标,根据点在图象上,则一定满足函数的解析式即可求解, 【详解】 解:(1)设反比例函数的解析式y =k x, ∵反比例函数的图象过点E (3,4), ∴4=3k,即k =12, ∴反比例函数的解析式y =12x; (2)∵正方形AOCB 的边长为4, ∴点D 的横坐标为4,点F 的纵坐标为4, ∵点D 在反比例函数的图象上, ∴点D 的纵坐标为3,即D (4,3), ∵点D 在直线y =﹣12x +b 上, ∴3=﹣12×4+b , 解得:b =5,∴直线DF 为y =﹣12x +5, 将y =4代入y =﹣12x +5,得4=﹣12x +5,解得:x =2,∴点F 的坐标为(2,4), (3)∠AOF =12∠EOC ,理由为: 证明:在CD 上取CG =AF =2,连接OG ,连接EG 并延长交x 轴于点H ,OAF OCG V V 在和中,4902AO CO OAF OCG AF CG ==⎧⎪∠=∠=︒⎨⎪==⎩,∴△OAF ≌△OCG (SAS ),∴∠AOF =∠COG ,EGB HGC V V 在和,290EGB HGC BG CG GBC GCH ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩, ∴△EGB ≌△HGC (ASA ),∴EG =HG ,设直线EG :y =mx +n ,∵E (3,4),G (4,2),∴3442m n m n +=⎧⎨+=⎩,解得210m n =-⎧⎨=⎩, ∴直线EG :y =﹣2x +10,令y =﹣2x +10=0,得x =5,∴H (5,0),OH =5,在Rt △AOE 中,AO =4,AE =3,根据勾股定理得OE =5,∴OH =OE ,∴OG 是等腰三角形底边EH 上的中线,∴OG 是等腰三角形顶角的平分线,∴∠EOG =∠GOH ,∴∠EOG =∠GOC =∠AOF ,即∠AOF =12∠EOC ; (4)当Q 在D 的右侧(如图1),且∠PDQ =90°时,作DK ⊥x 轴,作QL ⊥DK ,于点L ,则△DPK≌△QDK,设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),把(7,-1+a)代入y=12x得:7(-1+a)=12,解得:a=197,则P的坐标是(197,0);当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PDK,则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,则Q的坐标是(1,7-b),代入y=12x得:b=-5,则P的坐标是(-5,0);当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PQK,则DK=DL=3,设Q的横坐标是c,则纵坐标是12c,则QK=QL=12c,又∵QL=c-4,∴c-4=12c,解得:c=-2(舍去)或6,则PK=DL=DR-LR=DR-QK=3-126=1,∴OP=OK-PK=6-1=5,则P的坐标是(5,0);当Q在D的左侧(如图3),且∠DQP=90°时,不成立;当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,则△DPR≌△PQK,∴DR=PK=3,RP=QK,设P的坐标是(d,0),则RK=QK=d-4,则OK=OP+PK=d+3,则Q 的坐标是(d +3,d -4),代入y =12x 得: (d +3)(d -4)=12,解得:d =197+或197-(舍去), 则P 的坐标是(197+,0), 综上所述,P 的坐标是(197,0)或(-5,0)或(1972+,0)或(5,0), 【名师点评】 本题是反比例函数综合题,掌握待定系数法求解析式,反比例函数的性质是解题的关键. 18.(1)y =3x;(2)需将△B 1A 2B 2向上平移6个单位长度. 【解析】(1)根据等边三角形的性质求点A 1的坐标,利用待定系数法可得反比例函数的解析式;(2)如图2,过点A 2作A 2G ⊥x 轴于点G ,设B 1G =a ,则A 2G =3a ,表示点A 2的坐标,通过代入计算可得a 的值,根据等边三角形的性质确定点B 2的坐标,可得结论.【详解】解:(1)如图1,过点A 1作A 1H ⊥x 轴于点H .∵△OA 1B 1是等边三角形,点B 1的坐标是(2,0),∴OA 1=OB 1=2,OH =1,∴A 1H 22100A H -2221-3,∴A 1(13).∵点A1在反比例函数y=kx的图象上,∴k=3.∴反比例函数的解析式为y=3x;(2)如图2,过点A2作A2G⊥x轴于点G,设B1G=a,则A2G=3a,∴A2(2+a3).∵点A2在反比例函数y=3x的图象上,33,解得a12﹣1,a22﹣1(不合题意,舍去),经检验a2﹣1是方程的根∴a2﹣1,∴△B1A2B2的边长是22﹣1),∴B2(2,0),∴把x=2代入y 3,得y3226∴(2,64y3∴若要使点B2在反比例函数y=kx的图象上,需将△B1A2B2向上平移64个单位长度.【名师点评】本题考查了反比例函数的几何问题,掌握反比例函数的性质、勾股定理、等边三角形的性质是解题的关键.19.(1)y=﹣x﹣1;(2)32;(3)x≤﹣2或0<x≤1.【解析】(1)运用待定系数法先求出反比例函数的解析式,再求得B点的坐标,然后把点A、B代入y=kx+b即可得到一次函数的表达式;(2)先确定点C的坐标,再根据S△AOB=S△AOC+S△COB进行计算即可;(3)根据A(-2.1),B(1,-2),结合图像可得不等式kx+b>mx的解集.【详解】解:(1)把点A的坐标(﹣2,1)代入一反比例函数y=mx,可得:m=﹣2×1=﹣2,∴反比例函数为y=﹣2x,∵反比例函数y=mx的图象经过B点,∴n=﹣21=﹣2,∴B(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b得212k bk b-+=⎧⎨+=-⎩解得k=﹣1,b=﹣1∴一次函数为y=﹣x﹣1;(2)在直线y=﹣x﹣1中,令x=0,则y=﹣1,∴C(0,﹣1),即OC=1,∴S△AOB=S△AOC+S△BOC=12OC×2+12OC×1=12×1×(2+1)=32;(3)不等式kx+b≥mx的解集是x≤﹣2或0<x≤1.【名师点评】本题主要考查了一次函数与反比例函数交点问题,解题关键在于运用待定系数法求函数解解析式.20.()1 2y x =-,1y x =--;()2 32AOB S =V ;()320x -<<,1x >. 【解析】(1)把A (-2,1)代入反比例函数y=m x,求出m 的值即可;把B (1,n )代入反比例函数的解析式可求出n ,从而确定B 点坐标为(1,-2),然后利用待定系数法即可求出一次函数的解析式;(2)设直线y=-x-1与x 轴的交点为C ,根据解析式求得C 的坐标,然后根据S △ABC=S △OAC+S △OBC 即可求得;(3)观察函数图象得到当-2<x <0或x >1时,一次函数的图象都在反比例函数的图象的下方,即一次函数的值小于反比例函数的值.【详解】()1把点()2,1A -代入反比例函数m y x=得: 12m =-, 解得:2m =-, 即反比例函数的解析式为:2y x=-, 把点()1,B n 代入反比例函数2y x =-得: 2n =-,即点A 的坐标为:()2,1-,点B 的坐标为:()1,2-,把点()2,1A -和点()1,2B -代入一次函数y kx b =+得:{212k b k b -+=+=-, 解得:{11k b =-=-,即一次函数的表达式为:1y x =--, ()2把0y =代入一次函数1y x =--得:10x --=,解得:1x =-,即点C 的坐标为:()1,0-,OC 的长为1,点A 到OC 的距离为1,点B 到OC 的距离为2,AOB OAC OBC S S S =+V V V ,11111222=⨯⨯+⨯⨯, 32=, ()3如图可知:m kx b x+<的解集为:20x -<<,1x >. 【名师点评】 本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数解析式;利用待定系数法求函数的解析式.也考查了观察函数图象的能力.。
八年级数学反比例函数练习

八年级数学反比例函数练习1、2、若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.3、如图,点P(-3,2)是反比例函数y的图象上一点,则反比例函数的解析式()4、5、A.(3,-2)B.(3,2)C.(2,3)的另A.(-3,4)B.(-4,-3)C.(-3,-4)D.(4,3)7、为了更好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h 的函数图象大致是()A.B.C.D.8、如图,直线y=x+a-2与双曲线y=交于A、B 两点,则当线段AB 的长度取最小值时,a 的值为( ) A .0B .1C .2D .59、如图,正比例函数y 1与反比例函数y 2相交于点E (-1,2),若y 1>y 2>0,则x的取值范围在数轴上表示正确的是( )10、已知A (-1,y 1),B (2,y 2)两点在双曲线y=上,且 y 1>y 2,则m 的取值范围是( )11、已知,在平面直角坐标系xOy 中,点A 在x 轴负半轴上,点B 在y 轴正半轴上,OA=OB ,函数y=的图象与线段AB 交于M 点,且AM=BM .(1)求点M 的坐标; (2)求直线AB 的解析式.A .B .C .D .12、如图在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx-k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.13、已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(Ⅲ)当-3<x<-1时,求y的取值范围.答案1.C2.A3.D4.B5.A6.C7.C8.C9.A 10.D 11.13、12. (1)A(m,2)在y=4/x上 A (2,2)带入y=kx-k得 k=2y=2x-2(2) y=2x-2令x=0 y=-2故点B 坐标为B(0,-2);p点在x轴上,三角形高为2(A点到x轴距离)故BP=4即P(0,2)。
八年级上学期数学期末专题:反比例函数综合(原题和解析)

【期末压轴题】专题03:反比例函数综合(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.定义:[]x 表示不超过实数x 的最大整数例如:[]1.71=,305⎡⎤=⎢⎥⎣⎦,1234⎡⎤-=-⎢⎥⎣⎦根据你学习函数的经验,下列关于函数[]y x =的判断中,正确的是( ) A .函数[]y x =的定义域是一切整数 B .函数[]y x =的图像是经过原点的一条直线 C .点2(2,2)5在函数[]y x =图像上D .函数[]y x =的函数值y 随x 的增大而增大2.如图,正比例函数y =kx 与反比例函数y =﹣8x相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于B 点,连接BC ,则△ABC 的面积等于( )A .4B .8C .12D .163.如图,在平面直角坐标系中,△ABO 的顶点O 在坐标原点,另外两个顶点A 、B 均在反比例函数(0)ky k x=≠的图像上,分别过点A 、点B 作y 轴、x 轴的平行线交于点C ,连接OC 并延长OC 交AB 于点D ,已知C (1,2),△BDC 的面积为3,则k 的值为( )A .B .C .+2D .84.反比例函数y=kx的图像如图所示,下列说法正确的是( )A .k>0B .y 随x 的增大而增大C .若矩形 OABC 的面积为2,则2k =-D .若图像上点B 的坐标是(-2,1),则当x<-2时,y 的取值范围是y<1 5.关于反比例函数4y x=-,下列说法正确的是( )A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.6.如图,在四边形ABCD 中,动点P 从点A 开始沿A B C D →→→的路径匀速前进到D 为止,在这个过程中,APD ∆的面积S 随时间t 的变化关系用图象表示正确的是( )A .B .C .D .7.若函数y=(2m+6)x 2+(1﹣m )x 是正比例函数,则m 的值是( ) A .m=﹣3B .m=1C .m=3D .m >﹣38.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:△甲步行的速度为60米/分;△乙走完全程用了30分钟;△乙用12分钟追上甲;△乙到达终点时,甲离终点还有300米.其中正确的结论有( )A .1个B .2个C .3个D .4个9.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t (分钟),所走路程为s (米),s 与t 之间的函数关系如图所示,则下列说法中,错误的是( )A .小明中途休息用了20分钟B .小明在上述过程中所走路程为7200米C .小明休息前爬山的速度为每分钟60米D .小明休息前后爬山的平均速度相等10.已知(1x ,1y ),(2x ,2y ),(3x ,3y )是反比例函数4y x=-的图像上的三个点,且120x x <<,30x >,则1y ,2y ,3y 的大小关系是( ) A .312y y y <<; B .213y y y <<; C .123y y y <<; D .321y y y <<.二、填空题11.已知反比例函数1k y x-=的图象经过一、三象限,则实数k 的取值范围是_____. 12.两位同学在描述同一反比例函数的图像时,甲同学说:“从这个反比例函数图像上任意一点向x 轴、y 轴作垂线,与两坐标轴所围成的矩形面积为2014.”乙同学说:“这个反比例函数图像与直线y x =-有两个交点.”你认为这两位同学所描述的反比例函数的解析式是________________.13.如图,已知在平面直角坐标系中,点A 在x 轴正半轴上,点B 在第一象限内,反比例函数y =kx的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.14.函数y _____. 15.已知点A (2,-1)在反比例函数(0)ky k x=≠的图像上,那么k =__________.16.函数2y x 1=-的定义域是______. 17.点A 在双曲线y=1x 上,点B 在双曲线y=3x上,且AB△x 轴,过点A,B 分别向x 轴作垂线,垂足分别为D 、C ,那么四边形ABCD 的面积是__________________. 18.在直角坐标系中,O 是坐标原点,点P (m ,n )在反比例函数ky x=的图象上. (1)若m =k ,n =k ﹣2,则k =_____; (2)若m +n =k ,OP =2,且此反比例函数ky x=,满足:当x >0时,y 随x 的增大而减小,则k =_____.三、解答题 19.阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12b x x a +=-,12c x x a⋅=. 问题解决:(1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”; (3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值.20.已知y =y 1﹣y 2,y 1与x 成正比例,y 2与x ﹣1成反比例,当x =2时,y =4;当x =3时,y =8.求y 关于x 的函数解析式.21.如图,平面直角坐标系中,直线l 经过原点O 和点A (6,4),经过点A 的另一条直线交x 轴于点B (12,0). (1)求直线l 的表达式; (2)求△AOB 的面积;(3)在直线l 上求点P ,使S △ABP =13S △AOB .22.(1)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意1x ,2x , (1)若1x <2x ,都有f (1x )<f (2x ),则称f (x )是增函数; (2)若1x <2x ,都有f (1x )>f (2x ),则称f (x )是减函数. 例题:证明函数f (x )=5x(x >0)是减函数.证明:设0<1x <2x , f (1x )﹣f (2x )=1255x x -=211255x x x x -=21125x x x x -().△0<1x <2x ,△2x ﹣1x >0,1x 2x >0. △21125x x x x -()>0.即f (1x )﹣f (2x )>0. △f (1x )>f (2x ).△函数f (x )=5x(x >0)是减函数.(2)根据以上材料,解答下面的问题:已知:函数f (x )=21321x x ++(x <0),△计算:f (﹣1)= ,f (﹣2)= ; △猜想:函数f (x )=21321x x ++(x <0)是 函数(填“增”或“减”);△验证:请仿照例题证明你对△的猜想.23.问题:我们已经知道反比例函数的图象是双曲线,那么函数y =6||3x -的图象是怎样的呢?(经验)(1)我们在研究反比例函数的图象和性质的时候是从以下两个方面来探究的: △由数想形:先根据表达式中x 、y 的数量关系,初步估计图象的基本概貌.如:形状(直线或曲线);位置(所在区域、与直线或坐标轴的交点情况);趋势(上升、下降);对称性等.△描点画图:根据已有的函数画图的经验,利用描点画图. (2)我们知道,函数y =21x +的图象是如图1所示的两条曲线,一支在过点(﹣1,0)且平行于y 轴的直线的右侧且在x 轴的上方,另一支在过点(﹣1,0)且平行于y 轴的直线的左侧且在x 轴的下方.(探索)请你根据以上经验,研究函数y =6||3x -的图象和性质并解决相关问题. (1)由数想形: ; (请你写出两条). (2)描点画图:△列表:如表是x 与y 的几组对应值,其中a = ;b = ;△描点:根据表中各组对应值(x ,y ),在平直角坐标系中描出各点. △连线:用平滑的曲线顺次连接备点,请你把图象(如图2)补充完整. (应用)观察你所画的函数图象,解答下列问题:(3)若点A (a ,c ),B (b ,c )为该函数图象上不同的两点,则a +b = ; (4)直接写出当6||3x -≥﹣2时,x 的取值范围为 .24.已知点(),P m n 是反比例函数6y x=(0x >)的图象上的一动点,//PA x 轴,//PB y 轴,分别交反比例函数3y x=(0x >)的图象于点A ,B ,点C 是直线2y x =上的一点. (1)点A 的坐标为(______,______),点B 的坐标为(______,______);(用含m 的代数式表示)(2)在点P 运动的过程中,连接AB ,PAB △的面积是一个定值,则这个定值为______; (3)在点P 运动的过程中,以点P ,A ,B ,C 为顶点的四边形能否为平行四边形?若能,求出此时m 的值:若不能,请说明理由.25.让我们一起用描点法探究函数y =6||x 的图象性质,下面是探究过程,请将其补充完整: (1)函数y =6||x 的自变量x 的取值范围是 ; 根据取值范围写出y 与x 的几组对应值,补全下面列表:(2)如图,在平面直角坐标系中,描出了上表中各组对应值为坐标的点.请你根据描出的点,画出该函数的图象; (3)观察画出的函数图象,写出: △y =5时,对应的自变量x 值约为 ;△函数y =6||x 的一条性质: .26.如图1,在平面直角坐标系中,O 为坐标原点,点A 在x 轴的正半轴上,在第一象限内以OA 为边作OABC ,点()2,C y 和边AB 的中点D 都在反比例函数()0ky x x=>的图象上,已知OCD 的面积为92(1)求反比例函数解析式;(2)点(),0P a 是x 轴上一个动点,求PC PD -最大时a 的值;(3)过点D 作x 轴的平行线(如图2),在直线l 上是否存在点Q ,使COQ ∆为直角三角形?若存在,请直接写出所有的点Q 的坐标;若不存在,请说明理由.【期末压轴题】专题03:反比例函数综合(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.定义:[]x 表示不超过实数x 的最大整数例如:[]1.71=,305⎡⎤=⎢⎥⎣⎦,1234⎡⎤-=-⎢⎥⎣⎦根据你学习函数的经验,下列关于函数[]y x =的判断中,正确的是( ) A .函数[]y x =的定义域是一切整数 B .函数[]y x =的图像是经过原点的一条直线 C .点2(2,2)5在函数[]y x =图像上D .函数[]y x =的函数值y 随x 的增大而增大 【标准答案】C 【思路点拨】根据题意描述的概念逐项分析即可. 【精准解析】A 、对于原函数,自变量显然可取一切实数,则其定义域为一切实数,故错误;B 、因为原函数的函数值是一些整数,则图象不会是一条过原点的直线,故错误;C 、由题意可知2225⎡⎤=⎢⎥⎣⎦,则点2(2,2)5在函数[]y x =图像上,故正确;D 、例如113⎡⎤=⎢⎥⎣⎦,112⎡⎤=⎢⎥⎣⎦,即当13x =,12x =时,函数值均为1y =,不是y 随x 的增大而增大,故错误; 故选:C . 【名师指导】本题考查函数的概念以及新定义问题,仔细审题,理解材料介绍的的概念是解题关键. 2.如图,正比例函数y =kx 与反比例函数y =﹣8x相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于B 点,连接BC ,则△ABC 的面积等于( )A .4B .8C .12D .16【标准答案】B 【思路点拨】 设A 点坐标为(8,a a -),则C 点坐标为(8,a a-),利用坐标求面积即可. 【精准解析】解:△正比例函数y =kx 与反比例函数y =﹣8x相交于A ,C 两点,△A ,C 两点关于原点对称,设A 点坐标为(8,a a -),则C 点坐标为(8,a a-), S △ABC =18()82a a a-⨯--⨯=, 故选:B . 【名师指导】本题考查了反比例函数k 的几何意义和对称性,解题关键是通过设坐标求三角形面积. 3.如图,在平面直角坐标系中,△ABO 的顶点O 在坐标原点,另外两个顶点A 、B 均在反比例函数(0)ky k x=≠的图像上,分别过点A 、点B 作y 轴、x 轴的平行线交于点C ,连接OC 并延长OC 交AB 于点D ,已知C (1,2),△BDC 的面积为3,则k 的值为( )A .B .C .+2D .8【标准答案】C 【思路点拨】过B 、C 分别做BE△x 轴,CF△x 轴,过D 作DG△BC ,DH△AB ,设BC=a ,由点C 的坐标即可表示点B 、C 的坐标,即可得出AC 与BC 的比值,由相似三角形的判定易证得△COF△△DCG ,得出DG 与DH 的比值,得出22ABCBCDACDSSS==,由三角形面积公式列出关于a 的等式,求得a 的值得出B 点坐标,即可求得k 值. 【精准解析】解:过B 、C 分别做BE△x 轴垂足为E ,延长AC 交x 轴于F ,过D 作DG△BC ,DH△AB ,垂足为G 、H .△ C (1,2)△ OF=1,CF=2=BE ,则点A 的横坐标为1,点B 的纵坐标为2,设BC=a ,则B (a+1,2)△B 在反比例函数k y x=的图像上, △()21k a =+,△A 在反比例函数k y x =的图像上,且点A 的横坐标为1, △A 点的纵坐标为:22y a =+,即点A (1,2a+2),△ AC=AF -CF=2a+2-2=2a , △ 12AC BC =, △ BC//x 轴,CF△x 轴,DG△BC ,△COF=△DCG ,△CFO=△DGC=90°,△ △COF△△DCG , △ 21CF D CG OF G ==,即21DG DH =, △ 3BCD ACD SS ==, △6ABC S =, △162AC BC ⋅⋅=,即1262a a ⨯⨯=,△ a =△ B (2),△ k=2+故选:C【名师指导】本题考查了反比函数图像上点的坐标特征,相似三角形的性质和判定,注意准确作出辅助线,求得点B 的坐标是关键.4.反比例函数y=k x的图像如图所示,下列说法正确的是( )A .k>0B .y 随x 的增大而增大C .若矩形 OABC 的面积为2,则2k =-D .若图像上点B 的坐标是(-2,1),则当x<-2时,y 的取值范围是y<1【标准答案】C【思路点拨】根据反比例函数的性质以及系数k 的几何意义进行判断.【精准解析】解:A 、反比例函数图象分布在第二、四象限,则k <0,所以A 选项错误;B 、在每一象限,y 随x 的增大而增大,所以B 选项错误;C 、矩形OABC 面积为2,则|k |=2,而k <0,所以k =﹣2,所以C 选项正确;D 、若图象上点B 的坐标是(﹣2,1),则当x <﹣2时,y 的取值范围是0<y <1,所以D 选项错误.故选C【名师指导】本题考查了反比例函数系数k 的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.5.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2); B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.【标准答案】C【思路点拨】直接利用反比例函数的性质分别分析得出答案.【精准解析】A、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-4x,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-4x,当x>1时,y>-4,故此选项错误;故选C.【名师指导】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.6.如图,在四边形ABCD中,动点P从点A开始沿A B C D→→→的路径匀速前进到D为止,在这个过程中,APD∆的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.【标准答案】C【思路点拨】根据点P的运动过程可知:APD∆的底边为AD,而且AD始终不变,点P到直线AD的距离为APD∆的高,根据高的变化即可判断S与t的函数图象.【精准解析】解:设点P到直线AD的距离为h,APD∴∆的面积为:1·2S AD h =,当P在线段AB运动时,此时h不断增大,S也不端增大当P在线段BC上运动时,此时h不变,S也不变,当P在线段CD上运动时,此时h不断减小,S不断减少,又因为匀速行驶且CD AB>,所以在线段CD上运动的时间大于在线段AB上运动的时间故选C.【名师指导】本题考查函数图象,解题的关键是根据点P到直线AD的距离来判断s与t的关系,本题属于基础题型.7.若函数y=(2m+6)x2+(1﹣m)x是正比例函数,则m的值是()A.m=﹣3B.m=1C.m=3D.m>﹣3【标准答案】A【精准解析】由题意可知:260m+=△m=-3故选:A8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:△甲步行的速度为60米/分;△乙走完全程用了30分钟;△乙用12分钟追上甲;△乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个【标准答案】C【思路点拨】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【精准解析】由题意可得:甲步行速度=2404=60(米/分);故△结论正确;设乙的速度为:x米/分,由题意可得:16×60=(16﹣4)x,解得x=80,△乙的速度为80米/分;△乙走完全程的时间=24008030(分);故△结论正确;由图可得,乙追上甲的时间为:16﹣4=12(分);故△结论正确;乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360(米),故△结论错误;故正确的结论有△△△共3个.故选:C.【名师指导】本题考查了函数图象的应用,解题的关键是正确分析函数图象并求出甲乙两人的速度,利用数形结合的思想解答.9.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是()A.小明中途休息用了20分钟B.小明在上述过程中所走路程为7200米C.小明休息前爬山的速度为每分钟60米D.小明休息前后爬山的平均速度相等【标准答案】B【思路点拨】根据函数图象可知,小明40分钟爬山2400米,40~60分钟休息,60~100分钟爬山(4800-2400)米,爬山的总路程为4800米,根据路程、速度、时间之间的关系进行解答即可.【精准解析】A 、小明中途休息的时间是:60-40=20分钟,故本选项正确;B 、小明在上述过程中所走路程为4800米,故本选项错误;C 、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确; D 、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选B .【名师指导】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.已知(1x ,1y ),(2x ,2y ),(3x ,3y )是反比例函数4y x=-的图像上的三个点,且120x x <<,30x >,则1y ,2y ,3y 的大小关系是( )A .312y y y <<;B .213y y y <<;C .123y y y <<;D .321y y y <<.【标准答案】A【思路点拨】 先根据反比例函数的解析式判断出函数图象所在的象限,再根据x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系即可.【精准解析】解:△反比例函数4y x=-中k=-4<0, △函数图象在二、四象限,△在每一象限内y 随x 的增大而增大,△x 1<x 2<0,△0<y 1<y 2,△x 3>0,△y 3<0,△y 3<y 1<y 2.故选:A .【名师指导】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象在二、四象限是解答此题的关键.二、填空题11.已知反比例函数1k y x-=的图象经过一、三象限,则实数k 的取值范围是_____.【标准答案】k >1.【思路点拨】 根据反比例函数1k y x-=的图象经过一、三象限得出关于k 的不等式,求出k 的取值范围即可.【精准解析】△反比例函数1k y x -=的图象经过一、三象限, △k ﹣1>0,即k >1.故答案为k >1.【名师指导】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.12.两位同学在描述同一反比例函数的图像时,甲同学说:“从这个反比例函数图像上任意一点向x 轴、y 轴作垂线,与两坐标轴所围成的矩形面积为2014.”乙同学说:“这个反比例函数图像与直线y x =-有两个交点.”你认为这两位同学所描述的反比例函数的解析式是________________. 【标准答案】2014y x=-【思路点拨】根据反比例函数中k 的几何意义=k xy ,再根据图像与直线y x =-有两个交点,可知反比例函数图像在二、四象限,即可判断k 的值【精准解析】 解:根据题意得=2014=k xy ,△2014=k 或2014=-k ,又△图像与直线y x =-有两个交点,△2014=-k , 故反比例函数的解析式是2014y x =-. 【名师指导】本题考查反比例函数k 的几何意义,判断反比例函数的象限是关键.13.如图,已知在平面直角坐标系中,点A 在x 轴正半轴上,点B 在第一象限内,反比例函数y =k x 的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.【标准答案】4【思路点拨】过B作BD△OA于点D,设点B(m,n),根据△OAB的面积为6,可以求得A点坐标,而点C是AB的中点,即可表示出C点坐标,再将点B、C坐标同时代入反比例函数解析式,即可求解.【精准解析】解:过B作BD△OA于D,△点B在反比例函数kyx=的图象上,△设B(m,n),△△OAB的面积为6,△12 OAn=,△A(12n,0),△点C是AB的中点,△C(122mnn+,2n),△点C在反比例函数kyx=的图象上,△12=22mn nmnn+⋅,△4 mn=,△4k=.故答案为4.【名师指导】本题目考查反比例函数,难度一般,正确作出辅助线,设出点B 的坐标,是顺利解题的关键.14.函数y 的定义域为_____. 【标准答案】x≥﹣1且x≠0【思路点拨】根据二次根式被开方数是非负数、分式的分母不为0列出不等式,解不等式得到答案.【精准解析】解:由题意得,x+1≥0,x≠0,解得,x≥﹣1且x≠0,故答案为:x≥﹣1且x≠0.【名师指导】本题考查了代数式有意义的x 的取值范围,一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数为非负数.15.已知点A (2,-1)在反比例函数(0)k y k x=≠的图像上,那么k =__________. 【标准答案】-2.【思路点拨】把(2,-1)代入函数(0)k y k x=≠中即可求出k 的值. 【精准解析】解:由题意知,已知点A (2,-1)在反比例函数(0)k y k x=≠的图象上, 可把(2,-1)代入函数(0)k y k x=≠中,得k=-2, 故答案为:-2.【名师指导】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.16.函数2y x 1=-的定义域是______. 【标准答案】x≠1.【思路点拨】根据分式有意义的条件是分母不为0,分析原函数式可得关系式x -1≠0,解可得自变量x 的取值范围.【精准解析】解:根据题意,有x-1≠0,解可得x≠1.故答案为:x≠1.【名师指导】考查了分式有意义的条件是分母不等于0.17.点A在双曲线y=1x上,点B在双曲线y=3x上,且AB△x轴,过点A,B分别向x轴作垂线,垂足分别为D、C,那么四边形ABCD的面积是__________________.【标准答案】2【思路点拨】根据反比例函数系数k的几何意义得出矩形EODA的面积为1,矩形BCOE的面积是3,则矩形ABCD的面积为:3-1=2.【精准解析】过点A作AE△y轴于点E,△点A在双曲线y=1x上,点B在双曲线y=3x上,△矩形EODA的面积为1,矩形EOCB的面积是3,△矩形ABCD的面积为:3-1=2,故答案为:2.【名师指导】此题考查反比例函数关系k的几何意义,得出矩形EODA和矩形BCOE的面积是解题关键.18.在直角坐标系中,O是坐标原点,点P(m,n)在反比例函数kyx=的图象上.(1)若m=k,n=k﹣2,则k=_____;(2)若m+n=k,OP=2,且此反比例函数kyx=,满足:当x>0时,y随x的增大而减小,则k=_____.【标准答案】3【思路点拨】(1)函数经过一定点,将此点坐标代入函数解析式ky x=(k ≠0),即可求得k 的值;(2)根据点(x ,y )到原点的距离公式d m ,n 的方程; 再结合完全平方公式的变形,得到关于k 的方程,进一步求得k 值. 【精准解析】 解:(1)根据题意,得 k ﹣2=kk=1,△k =3.(2)△点P (m ,n )在反比例函数y =xk的图象上.△mn =k 又△OP =2,2,△(m +n )2﹣2mn ﹣4=0, 又m +n =k ,mn =k , 得k 2﹣2k =4, (k ﹣1)2=5,△x >0时,y 随x 的增大而减小,则k >0.△k ﹣1k = 【名师指导】本题考查求反比例函数解析式.能够熟练运用待定系数法进行求解.注意:(1)明确两点间的距离公式;(2)在ky x=中,当k >0时,在每一个象限内,y 随x 的增大而减小;当k <0时,在每一个象限内,y 随x 的增大而增大.三、解答题19.阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12bx x a+=-,12c x x a⋅=.问题解决:(1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”; (3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值.【标准答案】(1)65,2,3(答案不唯一);(2)见解析;(3)m =﹣4或﹣2或2.【思路点拨】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出1211+x x ,然后再求出31x ,只要满足1211+x x =31x 即可;(3)先求出三点的纵坐标y 1,y 2,y 3,然后由“和谐三数组”可得y 1,y 2,y 3之间的关系,进而可得关于m 的方程,解方程即得结果. 【精准解析】 解:(1)△115236+=,△65,2,3是“和谐三数组”; 故答案为:65,2,3(答案不唯一);(2)证明:△1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根, △12b x x a +=-,12cx x a⋅=,△12121211bx x b a c x x x x c a-++===-⋅,△3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解, △3cx b=-,△31b x c =-,△1211+x x =31x , △x 1 ,x 2,x 3可以构成“和谐三数组”;(3)△A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上, △14y m =,241y m =+,343y m =+, △三点的纵坐标y 1,y 2,y 3恰好构成“和谐三数组”, △123111y y y =+或213111y y y =+或312111y y y =+, 即13444m m m ++=+或13444m m m ++=+或31444m m m ++=+, 解得:m =﹣4或﹣2或2. 【名师指导】本题是新定义试题,主要考查了一元二次方程根与系数的关系、反比例函数图象上点的坐标特征和对新知“和谐三数组”的理解与运用,正确理解题意、熟练掌握一元二次方程根与系数的关系与反比例函数的图象与性质是解题的关键.20.已知y =y 1﹣y 2,y 1与x 成正比例,y 2与x ﹣1成反比例,当x =2时,y =4;当x =3时,y =8.求y 关于x 的函数解析式. 【标准答案】y =3x ﹣21x -. 【思路点拨】利用成正比例和成反比例的定义设出y 1和y 2,进而得出21211k y y y k x x =-=--,再把两组对应值分别代入,然后解方程组即可. 【精准解析】 解:设11y k x =,221k y x =-,则21211ky y y k x x =-=--, 把x =2,y =4;x =3,y =8代入得212124213831k k k k ⎧-=⎪⎪-⎨⎪-=⎪-⎩,解得1232k k =⎧⎨=⎩,所以y 关于x 的函数解析式为y =3x ﹣21x -. 【名师指导】本题考查了待定系数法求函数解析式,熟练掌握成正比例和成反比例的定义是解题关键. 21.如图,平面直角坐标系中,直线l 经过原点O 和点A (6,4),经过点A 的另一条直线交x 轴于点B (12,0). (1)求直线l 的表达式; (2)求△AOB 的面积;(3)在直线l上求点P,使S△ABP=13S△AOB.【标准答案】(1)23y x=;(2)24;(3)84,3⎛⎫⎪⎝⎭或168,3⎛⎫⎪⎝⎭【思路点拨】(1)直线l是正比例函数的图象,用待定系数法即可求得;(2)过点A作AC△OB于点C,则可得AC的长度,从而可求得△AOB的面积;(3)设点P的坐标为2,3a a⎛⎫⎪⎝⎭,分点P在线段OA上和点P在线段OA的延长线上两种情况考虑即可.【精准解析】(1)设直线l的解析式为:y=kx,其中k≠0△点A(6,4)在直线y=kx上△6k=4△23 k=△直线l的解析式为23 y x =(2)过点A作AC△OB于点C,如图△A(6,4),B(12,0)△AC=4,OB=12△111242422AOB S OB AC =⨯=⨯⨯=△(3))设点P 的坐标为2,3a a ⎛⎫⎪⎝⎭△ S △ABP =13S △AOB△S △ABP =8当点P 在线段OA 上时,如图所示 △POB AOB PAB S S S =-△△△ △△POB 的面积为24-8=16 即12121623a ⨯⨯= 解得:a =4此时点P 的坐标为84,3⎛⎫ ⎪⎝⎭当点P 在线段OA 的延长线上时,如图所示 △POB AOB PAB S S S =+△△△ △△POB 的面积为24+8=32 即12123223a ⨯⨯= 解得:a =8此时点P 的坐标为168,3⎛⎫ ⎪⎝⎭综上所述,点P 的坐标为84,3⎛⎫ ⎪⎝⎭或168,3⎛⎫⎪⎝⎭【名师指导】本题考查了待定系数法求正比例函数的解析式,图形面积,正比例函数的图象等知识,涉及分类讨论思想.22.(1)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意1x ,2x , (1)若1x <2x ,都有f (1x )<f (2x ),则称f (x )是增函数; (2)若1x <2x ,都有f (1x )>f (2x ),则称f (x )是减函数. 例题:证明函数f (x )=5x(x >0)是减函数. 证明:设0<1x <2x , f (1x )﹣f (2x )=1255x x -=211255x x x x -=21125x x x x -().△0<1x <2x ,△2x ﹣1x >0,1x 2x >0.△21125x x x x -()>0.即f (1x )﹣f (2x )>0.△f (1x )>f (2x ).△函数f (x )=5x(x >0)是减函数.(2)根据以上材料,解答下面的问题: 已知:函数f (x )=21321x x ++(x <0),△计算:f (﹣1)= ,f (﹣2)= ; △猜想:函数f (x )=21321x x ++(x <0)是 函数(填“增”或“减”);△验证:请仿照例题证明你对△的猜想.【标准答案】△2-23,8-59;△增;△见解析【思路点拨】(1)根据题目中的函数解析式可以解答本题; (2)由(1)答案可得结论;(3)根据题目中例子的证明方法可以证明(2)中的猜想成立. 【精准解析】 解:△△()21321f x x x =++,△()12132213f -=-=-+,()18265819f -=-=-+; △由(1)可知,-1<-2时,有()()12f f -<-, △函数f (x )=21321x x ++(x <0)是增函数;△证明:设x 1<x 2<0,△f (x 1)﹣f (x 2)=1211321x x ++﹣2221-321x x +=3(x 1﹣x 2)+212122212()()2121x x x x x x +-++()(), △x 1<x 2<0,△x 2﹣x 1>0,x 1+x 2<0, △f (x 1)﹣f (x 2)<0, △f (x 1)<f (x 2), △函数f (x )=21321x x ++(x <0)是增函数.【名师指导】本题考查函数的概念、反比例函数,解答本题的关键是明确题意,找出所求问题的条件,利用函数的性质解答.23.问题:我们已经知道反比例函数的图象是双曲线,那么函数y =6||3x -的图象是怎样的呢?(经验)(1)我们在研究反比例函数的图象和性质的时候是从以下两个方面来探究的: △由数想形:先根据表达式中x 、y 的数量关系,初步估计图象的基本概貌.如:形状(直线或曲线);位置(所在区域、与直线或坐标轴的交点情况);趋势(上升、下降);对称性等.△描点画图:根据已有的函数画图的经验,利用描点画图. (2)我们知道,函数y =21x +的图象是如图1所示的两条曲线,一支在过点(﹣1,0)且平行于y 轴的直线的右侧且在x 轴的上方,另一支在过点(﹣1,0)且平行于y 轴的直线的左侧。
苏教版八年级数学下册第11章《反比例函数》常考题(含解析)

八年级数学下册第11章《反比例函数》常考题一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列函数中,图象是双曲线且经过点(2,-4)的是( ) A .2y x =-B .4y x=-C .8y x=-D .6y x =-2.下列关系中,成反比例函数关系的是( )A .在直角三角形中,30度角所对的直角边y 与斜边x 之间的关系B .在等腰三角形中,顶角y 与底角x 之间的关系C .圆的面积S 与它的半径r 之间的关系D .面积为2019的菱形,其中一条对角线y 与另一条对角线x 之间的关系 3.在双曲线3m y x-=每一分支上,y 都随x 的增大而增大,则m 的取值范围是( ) A .m >-3 B .m <-3C .m >3D .m <34.反比例函数y =3x图象上三个点的坐标为(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是 ( ) A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 2<y 3<y 1D .y 1<y 3<y 25.关于x 的函数y kx k =-和()0ky k x=-≠在同一坐标系中的图像大致是( ). A . B .C .D .6.如图,双曲线y 1=kx与直线y 2=ax 相交于A ,B 两点,点A 的坐标为(2,m ),若y 1<y 2,则x 的取值范围是( )A .x >2或﹣1<x <0B .﹣2<x <0或0<x <2C .x >2或﹣2<x <0D .x <﹣2或0<x <27.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=( )A .4B .3C .2D .18.如图,在平面直角坐标系中,正方形OABC 的顶点О在原点,A ,C 分别在x 轴和y 轴的正半轴上,反比例函数()0ky k x=>图象交AB 边于点D ,交BC 边于点E ,连接EO 并延长,交()0ky k x=>的图象于点F ,连接DE ,DO ,DF ,若:1:2CE BE =,8DOF S =△,则k 的值等于( )A .3B .4.6C .6D .89.在压力一定的情况下,压强()P pa 与接触面积S (2m )成反比例,某木块竖直放置与地面的接触面积20.3S m =时,20000P pa =,若把木块横放,其与地面的接触面积为22m ,则它能承受的压强为( ) A .1000paB .2000paC .3000paD .4000pa10.如图,已知动点P 在函数1(0)2y x x=>的图象上运动,PM x ⊥轴于点M ,PN y ⊥轴于点N ,线段PM 、PN 分别与直线AB :1y x =-+交于点E ,F ,则AF BE⋅的值为( )A .4B .2C .1D .12二、填空题(本大题共7小题,每小题3分,共21分)11.点(3,)a 在反比例函数6y x=-的图象上,则a 的值为_________.12.在平面直角坐标系中,反比例函数ky x=-的图象经过点(,4)A m ,(B .则m 的值是____.13.对于函数2y x=,当2x ≤时,y 的取值范围是_______________ 14.如图,在平面直角坐标系中,一次函数y =kx +b 和函数y =4x (x >0)的图象交于A 、B 两点.利用函数图象直接写出不等式4x <kx +b(x >0)的解集是____________.15.已知1(A x ,1)y ,2(B x ,2)y 都在反比例函数6y x=的图象上.若124x x =-,则12y y 的值为___.16.如图,设点P 在函数y =m x的图象上,PC ⊥x 轴于点C ,交函数y =nx 的图象于点A ,PD ⊥y 轴于点D ,交函数y =nx的图象于点B ,若四边形PAOB 的面积为8,则m ﹣n =_____.17.如图,过原点的直线与反比例函数()0ky k x=>的图象交于A ,B 两点,点A 在第一象限,点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE ,若AC =3DC ,△ADE 的面积为6,则k 的值为_____.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.已知一次函数y kx b =+的图象经过点(1,5)A --,且与正比例函数12y x =的图象相交于点(2, )B a (1)求a 的值;(2)求出一次函数的解析式; (3)求AOB ∆的面积.19.如图,在平面直角坐标系中,一次函数y=-2x-4的图象与反比例函数ky x=的图象交于A(1,n),B(m ,2).(1)求反比例函数关系式及m 的值(2)若x 轴正半轴上有一点M ,满足ΔMAB 的面积为16,求点M 的坐标; (3)根据函数图象直接写出关于x 的不等式24k x x--<的解集20.函数y=(m ﹣1)21m m x --是反比例函数(1)求m 的值 (2)判断点(12,2)是否在这个函数的图象上.21.李叔叔驾驶小汽车从A 地匀速行驶到B 地,行驶里程为480km ,设小汽车的行驶时间为()t h ,行驶速度为()v km h ,且全程速度限定不超过120km h . (1)求v 与t 之间的关系式;(2)李叔叔上午8点驾驶小汽车从A 地出发,需要在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.22.在平面直角坐标系平面中,直线12y x =经过点(),2A m ,反比例函数()0ky k x=≠的图像经过点A 和点()8,B n . (1)求反比例函数的解析式;(2)在x 轴上找一点C ,当AC BC =时,求点C 的坐标; (3)在(2)的条件下,求ACB ∆的面积.23.如图,一次函数1y =ax+b 与反比例函数2y =kx的图象相交于A (2,8),B (8,2)两点,连接AO ,BO ,延长AO 交反比例函数图象于点C .(1)求一次函数1y 的表达式与反比例函数2y 的表达式; (2)当1y <2y 时,直接写出自变量x 的取值范围为 ; (3)求AOBS的值(4)点P 是x 轴上一点,当PACS =45AOBS 时,请求出点P 的坐标.一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列函数中,图象是双曲线且经过点(2,-4)的是( ) A .2y x =- B .4y x=-C .8y x=-D .6y x =-【答案】C 【分析】设双曲线的解析式为:,ky x=再把()2,4-代入函数解析式,可得答案. 【详解】解:设双曲线的解析式为:,k y x=4,2k ∴-=8,k ∴=-∴双曲线的解析式为:8, yx =-故选:.C【点睛】本题考查的是利用待定系数法求解反比例函数的解析式,反比例函数的性质,掌握以上知识是解题的关键.2.下列关系中,成反比例函数关系的是()A.在直角三角形中,30度角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的半径r之间的关系D.面积为2019的菱形,其中一条对角线y与另一条对角线x之间的关系【答案】D【分析】根据题意分别写出各个选项中的函数关系式,根据反比例函数的定义判断.【详解】A、在直角三角形中,30度角所对的直角边y与斜边x之间的关系:y=12x,不是反比例函数关系;B、在等腰三角形中,顶角y与底角x之间的关系:y=180°﹣2x,不是反比例函数关系;C、圆的面积S与它的半径r之间的关系:S=πr2,不是反比例函数关系;D、面积为2019的菱形,其中一条对角线y与另一条对角线x之间的关系:y=4038x,是反比例函数关系;故选:D.【点睛】本题考查的是反比例函数的定义、直角三角形的性质、三角形内角和定理、菱形的面积计算,掌握反比例函数的定义是解题的关键.3.在双曲线3myx-=每一分支上,y都随x的增大而增大,则m的取值范围是()A.m>-3 B.m<-3 C.m>3 D.m<3【答案】D【分析】根据反比例函数的图象与性质即可求出k的范围.【详解】解:由题意可知:m-3<0, ∴m <3 故选:D . 【点睛】本题考查反比例函数的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.4.反比例函数y =3x图象上三个点的坐标为(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是 ( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3C .y 2<y 3<y 1D .y 1<y 3<y 2【答案】B 【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据x 1<x 2<0<x 3即可得出结论. 【详解】解:∵反比例函数y =3x中,k =3>0, ∴此函数图象的两个分支分别位于第一三象限,且在每一象限内y 随x 的增大而减小. ∵x 1<x 2<0<x 3,∴(x 1,y 1)、(x 2,y 2)在第三象限,(x 3,y 3)在第一象限, ∴y 2<y 1<0<y 3. 故选:B . 【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是掌握反比例函数图象上点的坐标特征:当k >0时,图象分别位于第一、三象限,横纵坐标同号;当k <0时,图象分别位于第二、四象限,横纵坐标异号. 5.关于x 的函数y kx k =-和()0ky k x=-≠在同一坐标系中的图像大致是( ). A . B .C .D .【答案】D 【分析】首先根据反比例函数图象所经过的象限判断出k 的符号;然后由k 的符号判定一次函数图象所经过的象限,图象一致的选项即为正确选项. 【详解】解:A 、反比例函数()0ky k x=-≠的图象经过第一、三象限,则-k >0,即k <0,所以一次函数y =kx−k 的图象经过第一、二、四象限,故本选项错误; B 、反比例函数()0ky k x=-≠的图象经过第一、三象限,则-k >0,即k <0,所以一次函数y =kx−k 的图象经过第一、二、四象限,故本选项错误; C 、反比例函数()0ky k x=-≠的图象经过第二、四象限,则-k <0,即k >0,所以一次函数y =kx−k 的图象经过第一、三、四象限,故本选项错误; D 、反比例函数()0ky k x=-≠的图象经过第一、三象限,则-k >0,即k <0.所以一次函数y =kx−k 的图象经过第一、二、四象限,故本选项正确. 故选:D . 【点睛】本题考查反比例函数与一次函数的图象特点:①反比例函数()0ky k x=≠的图象是双曲线;②当k >0时,它的两个分支分别位于第一、三象限;③当k <0时,它的两个分支分别位于第二、四象限. 6.如图,双曲线y 1=kx与直线y 2=ax 相交于A ,B 两点,点A 的坐标为(2,m ),若y 1<y 2,则x 的取值范围是( )A .x >2或﹣1<x <0B .﹣2<x <0或0<x <2C .x >2或﹣2<x <0D .x <﹣2或0<x <2【答案】C 【分析】根据点A 和点B 关于原点对称,即得到点B 的横坐标,结合函数图象,即可得到答案. 【详解】∵点A 的坐标为:(2,m ),由题意知:点A 和点B 关于原点中心对称, ∴点B 的坐标为:(-2,-m ), 根据图象可知:x 的取值范围为:-2<x <0或x >2. 故选:C . 【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握数形结合的思想. 7.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=( )A .4B .3C .2D .1【答案】A 【分析】先根据反比例函数系数k 的几何意义得S 1+S 阴影及S 2+S 阴影的值,进而可得出S 1+S 2的值. 【详解】解:∵点A 、B 是双曲线3y x=上的点, ∴S 1+S 阴影=S 2+S 阴影=3,∵S 阴影=1∴S 1=S 2=3-S 阴影=3-1=2,∴12224S S +=+=.故选A .【点睛】 本题考查反比例函数系数k 的几何意义,是常考点,需要学生熟练掌握.8.如图,在平面直角坐标系中,正方形OABC 的顶点О在原点,A ,C 分别在x 轴和y 轴的正半轴上,反比例函数()0k y k x =>图象交AB 边于点D ,交BC 边于点E ,连接EO 并延长,交()0k y k x=>的图象于点F ,连接DE ,DO ,DF ,若:1:2CE BE =,8DOF S =△,则k 的值等于( )A .3B .4.6C .6D .8 【答案】C【分析】 由反比例函数()0k y k x=>图象的中心对称性质,则OE=OF ,由四边形OABC 为正方形,可得OA=OC ,∠OCA=∠OAB=90°由点E ,D 在反比例函数图像上,可证CE=AD ,可证△OCE ≌△OAD (SAS )可得OE=OD=OF ,由中线性质S △ODE =S △ODF =8,由:1:2CE BE =,可知CE 13BC =,BE=23BC 设正方形的边长为m ,利用正方形面积构造方程,求出2=18m 进而求 211=633k m m m ⋅==即可. 【详解】解:由反比例函数()0k y k x=>图象的中心对称性质, 则OE=OF , ∵四边形OABC 为正方形,∴OA=OC ,∠OCA=∠OAB=90°,由点E ,D 在反比例函数图像上,∴CE=AD==k k OA OC, 在△OCE 和△OAD 中,OC OA OCE OAD CE AD =⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△OAD (SAS ),∴OE=OD=OF ,∴S △ODE =S △ODF =8,∵:1:2CE BE =,∴CE=()11+33CE BE BC =,BE=23BC , 设正方形的边长为m ,S 正方形OABC =2S △OCE +S △BED +S △OED ,即m 2=2×21112·82323m m m ⎛⎫⨯++⨯ ⎪⎝⎭, ∴2=18m ,∵点E 在反比例函数图像上E (1,3m m ), ∴211633k xy m m m ==⋅==. 故选择:C .【点睛】本题考查反比例函数性质,正方形性质,三角形中线性质,掌握反比例函数性质,正方形性质,三角形中线性质,掌握关键是抓住正方形面积构造方程.9.在压力一定的情况下,压强()P pa 与接触面积S (2m )成反比例,某木块竖直放置与地面的接触面积20.3S m =时,20000P pa =,若把木块横放,其与地面的接触面积为22m ,则它能承受的压强为( )A .1000paB .2000paC .3000paD .4000pa 【答案】C【分析】利用压强与接触面积和物体重量的关系进而得出答案.【详解】解:设p=F S, 把(0.3,20000)代入得:F=20000×0.3=6000,故P=6000S, 当S=2m 2时, P=60002=3000pa . 故选C .【点睛】本题主要考查了反比例函数的应用,正确记忆压强与接触面积和物体重量的关系是解题关键.10.如图,已知动点P 在函数1(0)2y x x=>的图象上运动,PM x ⊥轴于点M ,的值为( )A .4B .2C .1D .12 【答案】C【分析】由于P 的坐标为1,2a a ⎛⎫ ⎪⎝⎭,且PN OB ⊥,PM OA ⊥,那么N 的坐标和M 点的坐标都可以a 表示,那么BN 、NF 的长度也可以用a 表示,接着F 点、E 点的也可以a 表示,然后利用勾股定理可以分别用a 表示AF ,BE ,最后即可求出AF BE ⋅.【详解】解:作FG x ⊥轴, P 的坐标为1,2a a ⎛⎫ ⎪⎝⎭,且PN OB ⊥,PM OA ⊥, N ∴的坐标为10,2a ⎛⎫ ⎪⎝⎭,M 点的坐标为(),0a , 112BN a∴=-, 在直角三角形BNF 中,45(1NBF OB OA ∠=︒==,三角形OAB 是等腰直角三角形),112NF BN a∴==-, F ∴点的坐标为111,22a a ⎛⎫- ⎪⎝⎭, 同理可得出E 点的坐标为(),1a a -,2222111(11)()222AF a a a∴=-++=,2222()()2BE a a a =+-=, 22221212AF BE a a∴⋅=⋅=,即1AF BE ⋅=. 故选C .【点睛】本题考查了反比例函数的性质、勾股定理,解题的关键是通过反比例函数上的点P 坐标,来确定E 、F 两点的坐标,进而通过勾股定理求出线段乘积的值.二、填空题(本大题共7小题,每小题3分,共21分)11.点(3,)a 在反比例函数6y x =-的图象上,则a 的值为_________. 【答案】2-.【分析】直接把点(3,)a 代入反比例函数6y x =-,求出a 的值即可. 【详解】 解:点(3,)a 在反比例函数6y x=-图象上, 623a ∴=-=-. 故答案为:2-.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.在平面直角坐标系中,反比例函数k y x =-的图象经过点(,4)A m ,(B .则m 的值是____. 【答案】32-【分析】将点B 的坐标代入反比例函数解析式,得出k 的值,再将点A 的纵坐标代入即可得出m 的值.【详解】解:将点B 的坐标代入反比例函数解析式,得出:=,将点A的纵坐标代入可得,64m=-,解得,32m=-.故答案为:32 -.【点睛】本题考查的知识点是反比例函数图象上点的坐标,属于基础题目,易于掌握.13.对于函数2yx=,当2x≤时,y的取值范围是_______________【答案】y≥1或y<0【分析】分为x<0和0<x≤2两部分来求解.【详解】解:对于函数2yx=,当x<0时,y<0;当0<x≤2时,y≥1;故当x≤2时,y的取值范围是y≥1或y<0,故答案为:y≥1或y<0.【点睛】本题考查了反比例函数的性质,重点是注意kyx=(k≠0)中k的取值.14.如图,在平面直角坐标系中,一次函数y=kx+b和函数y=4x(x>0)的图象交于A、B两点.利用函数图象直接写出不等式4x<kx+b(x>0)的解集是____________.【答案】1<x<4【解析】【分析】不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象可以直接得出答案.解:不等式4x <kx +b(x >0)的解集实际上是反比例函数值小于一次函数值的自变量x 的取值范围,根据图象得:1<x <4.故答案为:1<x <4.【点睛】本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.15.已知1(A x ,1)y ,2(B x ,2)y 都在反比例函数6y x =的图象上.若124x x =-,则12y y 的值为___.【答案】-9.【分析】根据反比例函数上点的特征得到1y 、2y 分别与1x 、2x 的关系,再把它们相乘,最后把12=4x x -代入即可.【详解】将点A 和B 代入反比例函数得:116y x =,226y x =, 所以12121266363694y y x x x x ====--. 故答案为-9【点睛】 本题考查反比例函数图像上点的坐标特征,图像为双曲线,图像上点的横、纵坐标的积是定值. 16.如图,设点P 在函数y =m x的图象上,PC ⊥x 轴于点C ,交函数y =n x 的图象于点A ,PD ⊥y 轴于点D ,交函数y =n x 的图象于点B ,若四边形PAOB 的面积为8,则m ﹣n =_____.【分析】根据反比例函数系数k 的几何意义求出四边形PCOD 的面积为m ,△OBD 和△OAC 的面积为12n ,根据四边形PAOB 的面积=S 四边形PCOD ﹣S △OBD ﹣S △OAC =8求解即可. 【详解】解:根据题意,S 四边形PCOD =m ,S △BOD =12n ,S △AOC =12n , ∴四边形PAOB 的面积=S 四边形PCOD ﹣S △OBD ﹣S △OAC =m ﹣12n ﹣12n =8, ∴m ﹣n =8.故答案为:8.【点睛】本题考查反比例函数系数k 的几何意义,熟知过双曲线上任意一点分别向两条坐标轴作垂线,围成的矩形面积为∣k ∣是解答的关键.17.如图,过原点的直线与反比例函数()0k y k x=>的图象交于A ,B 两点,点A 在第一象限,点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE ,若AC =3DC ,△ADE 的面积为6,则k 的值为_____.【答案】92【分析】 连接OE ,在Rt △ABE 中,点O 是AB 的中点,得到OE=12AB=OA ,根据角平分线的定义得到∠OAE=∠DAE ,得到∠OEA=∠DAE ,过A 作AM ⊥x 轴于M ,过D 作DN ⊥x 轴于N ,易得S 梯形AMND =S △AOD ,△CAM ∽△CDN ,得到S 梯形AMND =S △AOD =S △ADE =6,求得S △AOC =9,延长CA 交y 轴于P ,易得△CAM ∽△CPO ,设DN=a ,则AM=3a ,推出S △CAM :S △AOM =3:1,于是得到结论.解:连接OE,在Rt△ABE中,点O是AB的中点,∴OE=12AB=OA,∴∠OAE=∠OEA,∵AE是∠BAC的角平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴AD∥OE,∴S△ADE=S△AOD,过A作AM⊥x轴于M,过D作DN⊥x轴于N,易得S梯形AMND=S△AOD,△CAM∽△CDN,∵CD:CA=1:3,S梯形AMND=S△AOD=S△ADE=6,∴S△AOC=9,延长CA交y轴于P,易得△CAM∽△CPO,设DN=a,则AM=3a,∴ON=ka,OM=3ka,∴MN=23ka,CN=3ka,∴CM:OM=3:1,∴S△CAM:S△AOM=3:1,∴S△AOM=94,∴k=92.故答案为92.本题考查反比例函数k 的意义;借助直角三角形和角平分线,将△ACE 的面积转化为△AOC 的面积是解题的关键.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.已知一次函数y kx b =+的图象经过点(1,5)A --,且与正比例函数12y x =的图象相交于点(2, )B a(1)求a 的值;(2)求出一次函数的解析式;(3)求AOB ∆的面积.【答案】(1)1(2)23y x =-(3)92 【解析】【分析】(1)将点B 代入正比例函数12y x =即可求出a 的值; (2)将点A 、B 代入一次函数y kx b =+,用待定系数法确定k ,b 的值即可; (3)可将AOB ∆分割成两个三角形求其面积和即可.【详解】(1)依题意,点(2,)B a 在正比例函数12y x =的图象上, 所以,1212a =⨯= (2)依题意,点A 、B 在一次函数图象上,所以,521k b k b -+=-⎧⎨+=⎩,解得:23k b =⎧⎨=-⎩,. 一次函数的解析式为:23y x =-,(3)直线AB 与y 轴交点为(0,3)-,AOB ∆的面积为:1193132222⨯⨯+⨯⨯=【点睛】本题考查了一次函数与反比例函数的综合,待定系数法求一次函数解析式是解题的关键,对于一般的三角形不易直接求面积时,可将其分割成多个易求面积的三角形.19.如图,在平面直角坐标系中,一次函数y=-2x-4的图象与反比例函数k y x=的图象交于A(1,n),B(m ,2).(1)求反比例函数关系式及m 的值(2)若x 轴正半轴上有一点M ,满足ΔMAB 的面积为16,求点M 的坐标;(3)根据函数图象直接写出关于x 的不等式24k x x --<的解集【答案】(1) 反比例关系式为:6y x =-,m=-3; (2)点M(2,0) ;(3)x<-3或0<x<1 【分析】(1)把A (1,n ),B (m ,2)代入y=-2x-4即可求得m 、n 的值,从而得到A (1,-6),然后利用待定系数法即可即可求得反比例函数的表达式;(2)设M (m ,0),因为△MAB 的面积为16,直线AB 交x 轴于(-2,0),可得12|m+2|×8=16,解方程即可;(3)根据图象,结合A 、B 的坐标即可求得.【详解】解:(1) ∵一次函数y=-2x-4的图象过点A (1,n ),B (m ,2)∴n=-2-4,2=-2m-4∴n=-6,m=-3,∴点A(1,-6).把A (1,-6)代入k y x=得,k=-6, ∴反比例关系式为:6y x =-; (2)设直线AB 交x 轴于点N ,则N(-2,0),设M (m ,0),m >0,当M 在x 轴正半轴时ABM BMN AMN S S S ∆∆∆=+112622MN MN =⨯+⨯ =12|m+2|×8=16 ∴m=2或-6(不合题意舍去),∴点M(2,0) ;(3) 由图象可知:不等式在k x<-2x-4的解集是x <-3或0<x <1. 故答案为:(1) 反比例关系式为:6y x =-, m=-3; (2)点M(2,0) ;(3)x<-3或0<x<1 【点睛】本题考查反比例函数与一次函数的交点问题,三角形的面积等知识,解题的关键是熟练掌握待定系数法解决问题,学会构建方程解决问题.20.函数y=(m ﹣1)21mm x --是反比例函数(1)求m 的值 (2)判断点(12,2)是否在这个函数的图象上. 【答案】(1) m=0;(2)点(12,2)不在这个函数图象上. 【解析】试题分析:()1根据反比例函数的定义得到2101 1.m m m -≠⎧⎨--=-⎩即可求出m 得值. ()2把12x =代入反比例函数1y x=-,求得y 的值,即可判断. 试题解析:()1由题意得:2101 1.m m m -≠⎧⎨--=-⎩解得0m =.(2)∵反比例函数1y x =-,当122x y ==-,, ∴点122⎛⎫⎪⎝⎭,不在这个函数图象上. 21.李叔叔驾驶小汽车从A 地匀速行驶到B 地,行驶里程为480km ,设小汽车的行驶时间为()t h ,行驶速度为()v km h ,且全程速度限定不超过120km h .(1)求v 与t 之间的关系式;(2)李叔叔上午8点驾驶小汽车从A 地出发,需要在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.【答案】(1)()4804v t t =≥;(2)小汽车行驶速度v 的范围为80100v ≤≤ 【分析】(1)根据速度乘以时间等于路程,得到v 与t 之间的关系式;(2)根据题意得出时间的范围,代入(1)中的关系式得到速度的范围.【详解】解:(1)∵480vt =,且全程速度限定不超过120km h ,∴v 与t 之间的关系式为()4804v t t=≥. (2)∵8点至12点48分的时间长为4.8h ,8点至14点的时间长为6h ,∴将6t =代入480v t=中,得80v =, 将 4.8t =代入480v t=中,得100v =. ∴小汽车行驶速度v 的范围为80100v ≤≤. 【点睛】本题考查反比例函数的应用,解题的关键是列出反比例函数解析式进行求解. 22.在平面直角坐标系平面中,直线12y x =经过点(),2A m ,反比例函数()0k y k x=≠的图像经过点A 和点()8,B n .(1)求反比例函数的解析式;(2)在x 轴上找一点C ,当AC BC =时,求点C 的坐标;(3)在(2)的条件下,求ACB ∆的面积.【答案】(1)8y x =;(2)C (458,0);(3)5116 【分析】 (1)先把(),2A m 代入12y x =求出m ,再把(),2A m 代入k y x=求出k 即可; (2)先求出点B 的坐标,设C (x ,0),根据两点间的距离公式求出x 即可;(3)连接AC ,BC ,作AE ⊥x 轴于E ,作BF ⊥x 轴于F ,根据S △ABC =S 梯形ABFE -S △ACE -S △BCF求解即可;【详解】解:(1)把(),2A m 代入12y x =,得 122m =, ∴m =4,把()4,2A 代入k y x=,得 24k =, ∴k =8, ∴8y x=; (2)把()8,B n 代入8y x =,得 818n ==, ∴()8,1B ,设C (x ,0),∵AC BC =,=∴458x =, 经检验45x 8=是原方程的根, ∴C (458,0); (3)连接AC ,BC ,作AE ⊥x 轴于E ,作BF ⊥x 轴于F ,∵()4,2A ,()8,1B ,C (458,0), ∴AE =2,BF =1,EF =8-4=4,CE =458-4=138,CF =8-458=198, ∴S △ABC =S 梯形ABFE -S △ACE -S △BCF =()11131191242122828⨯+⨯-⨯⨯-⨯⨯ =5116.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图像上点的坐标特征,坐标与图形的性质,两点间的距离公式,以及割补法求图形的面积等知识,求出反比例函数解析式是解答本题的关键.23.如图,一次函数1y =ax+b 与反比例函数2y =k x的图象相交于A (2,8),B (8,2)两点,连接AO ,BO ,延长AO 交反比例函数图象于点C .(1)求一次函数1y 的表达式与反比例函数2y 的表达式;(2)当1y <2y 时,直接写出自变量x 的取值范围为 ;(3)求AOB S 的值(4)点P 是x 轴上一点,当PAC S =45AOB S 时,请求出点P 的坐标.【答案】(1)y =﹣x+10,y =16x ;(2)x >8或0<x <2;(3)30;(4)P (3,0)或P (﹣3,0).【分析】(1)利用待定系数法确定解析式即可;(2)利用数形结合思想,根据交点的横坐标确定解集即可;(3)利用图形分割法表示所求图形的面积即可;(4)用点P 的横坐标表示三角形的面积求解即可.【详解】解:(1)将A (2,8),B (8,2)代入y =ax+b得2882a b a b +=⎧⎨+=⎩, 解得110a b =-⎧⎨=⎩,∴一次函数为1y =﹣x+10,将A (2,8)代入2y =kx ,得8=2k,解得k =16,∴反比例函数的解析式为y =16x; (2)由图象可知,当1y <2y 时,x >8或0<x <2,故答案为x >8或0<x <2;(3)设直线AB 与x 轴的交点为D ,把y =0代入1y =﹣x+10得,0=﹣x+10,解得x =10,∴D (10,0),∴AOB S =AOD S ﹣DOB S =11082⨯⨯-11022⨯⨯ =30,(4)由题意可知点A 与点C 对称,所以C (-2,-8),∵PAC S =45AOB S =45×30=24, ∴2×12A PO y ⨯⨯=24,即2×182PO ⨯⨯=24, ∴OP =3, ∴P (3,0)或P (﹣3,0).【点睛】本题考查了一次函数与反比例函数的解析式确定,函数值确定的不等式解集,图形的面积,动点问题,熟记待定系数法,图形面积的分割法,动点表示面积是解题的关键.。
2022春八年级数学下册第11章反比例函数达标检测卷新版苏科版(含答案)

八年级数学下册新版苏科版:第11章达标检测卷一、选择题(每题3分,共24分)1.下列关系式中,y 是x 的反比例函数的是( )A .y =5xB .y x=3C .y =1xD .y =x 2-32.计划修建铁路l km ,铺轨天数为t ,每天铺轨量为s km ,则下列三个结论:①当l 一定时,t 是s 的反比例函数;②当t 一定时,l 是s 的反比例函数;③当s 一定时,l 是t 的反比例函数.其中正确的是( ) A .①B .②C .③D .①②③3.下列关于反比例函数y =3x的说法中,错误的是( )A .当x <0时,y 随x 的增大而减小B .双曲线在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x >0时,函数值y >04.若点A (-1,y 1),点B (1,y 2),点C (2,y 3)是y =2x图像上的三个点,则y 1,y 2,y 3之间的大小关系正确的是( ) A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 3>y 1>y 2D .y 1<y 3<y 25.某密闭容器内装有一定质量的某种气体,当改变容积V 时,气体的密度ρ是容积V 的反比例函数,当容积为5 m 3时,密度是1.4 kg/m 3,则ρ与V 之间的函数表达式为( ) A .ρ=V7B .ρ=7VC .ρ=7VD .ρ=17V6.当k >0时,函数y =k x与y =-kx 在同一平面直角坐标系内的大致图像是( )7.如图,直线y 1=kx +1与双曲线y 2=2x在第一象限内交于点P (1,t ),与x 轴、y 轴分别交于A ,B 两点,则下列结论错误的是( ) A .t =2B .△AOB 是等腰直角三角形C .k =1D .当x >1时,y 2>y 18.如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点D (3,2)在对角线OB 上,反比例函数y =k x (k >0,x >0)的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( ) A .(4,83)B .(92,3)C .(5,103)D .(245,165)二、填空题(每题2分,共20分)9.若反比例函数y =1-3kx的图像在第一、三象限,则 k 的取值范围是________.10.已知点(2,-2)在反比例函数y =kx的图像上,则这个反比例函数的表达式是____________.11.若正比例函数y =2x 的图像与某反比例函数的图像有一个交点的纵坐标是2,则该反比例函数的表达式为____________.12.在对物体做功一定的情况下,力F (N)与此物体在力的方向上移动的距离s (m)成反比例函数关系,其图像如图所示,点P (4,3)在图像上,则当力达到10N 时,物体在力的方向上移动的距离是________m.13.若点A (-3,y 1),B (-2,y 2),C (1,y 3)都在反比例函数y =-12x的图像上,则y 1,y 2,y 3的大小关系是______________.14.如图,函数y =kx +b (k ≠0)与y =m x(m ≠0)的图像相交于A (-2,3),B (1,-6)两点,则不等式kx +b >m x的解集为____________.15.一次函数y =ax +b (a ≠0)的图像与反比例函数y =k x(k ≠0)的图像的两个交点分别是A (-1,-4),B (2,m ),则a +2b =________.16.对于函数y =2x,当y <1时,x 的取值范围是________.17.在平面直角坐标系中,点A (-2,1),B (3,2),C (-6,m )分别在三个不同的象限.若反比例函数y =k x(k ≠0)的图像经过其中两点,则m 的值为________.18.点P ,Q ,R 在反比例函数y =k x(常数k >0,x >0)图像上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为________.三、解答题(19~21题每题6分,22、23题每题7分,24~26题每题8分,共56分) 19.已知反比例函数y =-32x. (1)写出这个函数的比例系数; (2)求当x =-10时函数y 的值; (3)求当y =6时自变量x 的值20.如图,在平面直角坐标系中,一次函数y =43x -2的图像与y 轴相交于点A ,与反比例函数y =k x在第一象限内的图像相交于点B (m ,2),过点B 作BC ⊥y 轴于点C . (1)求反比例函数的表达式; (2)求△ABC 的面积.21.在面积为定值的一组矩形中,当矩形的一边长为7.5 cm 时,相邻的另一边长为8 cm.(1)设矩形相邻的两边长分别为x cm ,y cm ,求y 关于x 的函数表达式.这个函数是反比例函数吗?如果是,指出比例系数.(2)若其中一个矩形的一边长为5 cm ,求相邻的另一边长.22.如图,平行于y 轴的直尺(部分)与反比例函数y =m x(x >0)的图像交于A 、C 两点,与x轴交于B 、D 两点,连接AC ,若点A 、B 对应直尺上的刻度分别为5、2,直尺的宽度BD =2,OB =2.设直线AC 的表达式为y =kx +b . (1)请结合图像填空:①点A 的坐标是__________;②不等式kx +b >m x的解集是__________. (2)求直线AC 的表达式.23.如图,▱OABC 的边OA 在x 轴的正半轴上,OA =5,反比例函数y =m x(x >0)的图像经过点C (1,4).(1)求反比例函数的表达式和点B 的坐标;(2)过AB 的中点D 作DP ∥x 轴交反比例函数图像于点P ,连接CP ,OP .求△COP 的面积.24.某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/时)与时间x (小时)成反比例函数关系缓慢减弱,其图像如图所示.(1)这场沙尘暴的最高风速是多少千米/时,最高风速维持了几小时? (2)当x ≥20时,求出风速y (千米/时)与时间x (小时)的函数表达式;(3)在这场沙尘暴形成的过程中,风速不超过10千米/时的时刻称为“安全时刻”,其余时刻为“危险时刻”,那么在这场沙尘暴中,“危险时刻”共有几小时?25.在函数的学习中,我们经历了“确定函数表达式——画函数图像——利用函数图像研究函数性质——利用图像解决问题”的学习过程.我们可以借鉴这种方法探究函数y =4x -1的性质. (1)补充下表,并在如图所示的坐标系中画出函数的图像.x … -3 -1 0 2 3 5 … y…-1-2-441…(2)观察图像,写出该函数图像的增减性特征:______________________. (3)函数y =4x -1的图像是由函数y =4x的图像如何平移得到的?并求其对称中心的坐标.(4)根据上述经验,想一想函数y =4x -1+2的图像的大致位置,结合图像直接写出y ≥3时,x 的取值范围.26.如图,四边形AOBC 是矩形,反比例函数y =k x(k >0)在第一象限内的图像与矩形AOBC的边AC 、BC 分别交于点M 、N (点M 、点N 不与点C 重合). (1)S △AOMS △BON=__________; (2)若BN =14BC ,且四边形MONC 的面积为9,求反比例函数的表达式;(3)判断AM AC 与BNBC的关系,并说明理由.答案一、1.C 2.A 3.C 4.D 5.C 6.B 7.D8.B 点拨:∵反比例函数y =k x (k >0,x >0)的图像经过点D (3,2),∴2=k3,∴k =6,∴y =6x.设直线OB 的表达式为y =mx , 则2=3m ,∴m =23,∴直线OB 的表达式为y =23x ,∵反比例函数y =6x的图像经过点C ,∴设C (a ,6a),其中a >0.∵四边形OABC 是平行四边形, ∴BC ∥OA ,S 平行四边形OABC =2S △OBC , ∴点B 的纵坐标为6a,∵直线OB 的表达式为y =23x ,∴B (9a ,6a ),∴BC =9a-a ,∴S △OBC =12×6a ×(9a -a ),∴2×12×6a ×(9a -a )=152,解得a =2或a =-2(舍去), ∴B (92,3),故选B.二、9.k <13 10.y =-4x 11.y =2x12.1.2 13.y 3<y 1<y 2 14.x <-2或0<x <1 15.-2 16.x >2或x <017.-1 点拨:∵点A (-2,1),B (3,2),C (-6,m )分别在三个不同的象限,∴点C (-6,m )一定在第三象限,∴反比例函数y =kx(k ≠0)的图像经过B ,C 两点, ∴3×2=-6m , ∴m =-1.18.275点拨:设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (ka ,a ),∴CP =k 3a ,DQ =k 2a ,ER =ka,∴OG =AG ,OF =2FG ,OF =23GA ,∴S 1=23S 3=2S 2,又∵S 1+S 3=27,∴S 3=815,S 1=545,∴S 2=275.三、19.解:(1)比例系数为-32.(2)当x =-10时,y =-32×(-10)=320.(3)当y =6时,-32x =6,解得x =-14.20.解:(1)∵B 点在一次函数图像上,∴43m -2=2, ∴m =3, ∴B (3,2), ∴k =3×2=6,∴反比例函数的表达式为y =6x.(2)∵BC ⊥y 轴,B (3,2), ∴C (0,2),BC =3.令x =0,则y =43x -2=-2,∴A (0,-2),∴AC =4, ∴S △ABC =12AC ·BC =6.21.解:(1)设y 关于x 的函数表达式为y =k x.不妨令x =7.5,则y =8. 将x =7.5,y =8代入y =k x, 得k =7.5×8=60,∴y 关于x 的函数表达式是y =60x(x ﹥0),这个函数是反比例函数,比例系数为60.(2)当x =5时,y =60x=12,∴相邻的另一边长为12cm.22.解:(1)①(2,3) ② 2<x <4(2)∵A 在反比例函数y =m x图像上, ∴m =2×3=6,∴反比例函数的表达式为y =6x.∵BD =2,OB =2,∴OD =4.∴C 点的横坐标为4.将x =4代入y =6x ,得y =32,∴C (4,32).将A 、C 的坐标分别代入y =kx +b ,得⎩⎪⎨⎪⎧3=2k +b ,32=4k +b ,解得⎩⎪⎨⎪⎧k =-34,b =92,∴直线AC 的表达式为y =-34x +92.23.解:(1)∵反比例函数y =m x(x >0)的图像经过点C (1,4).∴m =1×4=4,∴反比例函数的表达式为y =4x.∵四边形OABC 为平行四边形,∴BC =OA =5,BC ∥OA .∵C (1,4), ∴点B (6,4). (2)延长DP 交OC 于点E .∵点D 为线段BA 的中点,A (5,0),B (6,4), ∴点D (112,2).令y =4x 中的y =2,则x =2,∴点P (2,2), ∴PD =112-2=72,∴EP =ED -PD =5-72=32,∴S △COP =12EP ·y C =12×32×4=3.24.解:(1)这场沙尘暴的最高风速是2×4+4×(10-4)=32(千米/时),最高风速维持时间为20-10=10(小时).(2)设x ≥20时,y =k x ,将(20,32)代入,得32=k20,解得k =640.所以当x ≥20时,风速y (千米/时)与时间x (小时)之间的函数表达式为y =640x.(3)因为4小时时的风速为2×4=8(千米/时),4小时后,风速变为平均每小时增加4千米,所以4.5小时时的风速为10千米/时.将y =10代入y =640x ,得10=640x,解得x =64.因为64-4.5=59.5(小时),所以“危险时刻”共有59.5小时.25.解:(1)2 图像如图所示.(2)当x >1时,y 随x 的增大而减小;当x <1时,y 随x 的增大而减小 (3)函数y =4x -1的图像是由函数y =4x的图像向右平移1个单位得到的.对称中心的坐标为(1,0). (4)1<x ≤5. 26.解:(1)1(2)连接OC ,∵四边形AOBC 是矩形, ∴S △AOC =S △BOC ,又∵S △AOM =S △BON =12|k |=12k ,∴S △ONC =S △OMC =12S 四边形MONC =92,∵BN =14BC ,∴S △BON =13S △ONC ,∴12k =13×92, 解得k =3,∴反比例函数的表达式为y =3x.11 (3)AM AC =BN BC.理由:设AC =a ,BC =b , 则M (k b ,b ),N (a ,k a ),∴AM AC =k ab ,BN BC =k ab , ∴AM AC =BN BC.。
苏科版八年级下数学期末复习试卷(3)反比例函数

徐州十中八年级数学期末复习(3)反比例函数班级: 姓名: 评价: 一、填空题:(每空4分,共16分) 1、若反比例函数ky x=的图象经过点()1,3-,则,k =图像经过第 象限2、已知一个函数具有以下条件:⑴该图象经过第四象限;⑵当0x >时, y 随x 的增大而增大;⑶该函数图象不经过原点。
请写出一个符合上述条件的函数关系式: 。
3. 已知反比例函数xm y 23-=,当m 时,其图象的两个分支在第一、三象限内;当m 时,其图象在每个象限内y 随x 的增大而增大。
4. 如图,△P 1OA 1、△P 2A 1P 2是等腰直角三角形,点1P 、2P 在函数4(0)y x x=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是___________.二、选择题:(每题4分,共24分)1.在同一平面直角坐标系中,函数,(0)ky kx k y k x=+=>的图像大致是( )2、如图,点P 是x 轴上的一个动点,过点P 作x 轴的垂线PQ 交双曲线于 点Q,连结OQ, 当点P 沿x 轴正半方向运动时,Rt △QOP 面积( ) A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定 3. 已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则( ) (A )y 1<y 2<y 3 (B) y 3<y 2<y 1 (C) y 3<y 1<y 2 (D) y 2<y 1<y 34、如图,过双曲线y =kx (k 是常数,k >0,x >0)的图象上两点A 、8分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则△AOC 的面积S 1和△BOD 的面积S 2的大小关系为( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .S 1和S 2的大小无法确定 5. 若点M (2,2)和N (b ,-1-n 2)是反比例函数xky =的图象上的两个 点,则一次函数b kx y +=的图象经过 ( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四O P Qxy6、正比例函数y x =与反比例函数1y x=的图象相交于A,C B,CD ⊥X 轴于 于D,( 如图3)则四边形ABCD 的面积是A 、1 B 、32C 、2D 、52三、解答题:(共60分)1、:如图,已知一次函数y=kx+b 的图象与反比例函数y=8x-的图象交于A 、B 两点, 且点A 的横坐标和点B 的纵坐标都是-2, 求:(1)一次函数的解析式;(2)△AOB 的面积.2、若反比例函数xy 6=与一次函数4-=mx y 的图象都经过点A (a ,2)。
苏科版数学八年级下册《第11章反比例函数》章末测试卷【含答案】

苏科版数学八年级下册《第11章反比例函数》章末测试卷一.选择题(共10小题)1.下列函数中,y是x的反比例函数的是()A.=﹣1 B.xy=﹣C.y=x﹣p D.y=﹣52.下列函数中是反比例函数的是()A.y=﹣B.y=C.y=D.y=3.如果k<0,那么函数y=(1﹣k)x与y=在同一坐标系中的图象可能是()A.B.C.D.4.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一平面直角坐标系中的大致图象为()(第4题图)A.B.C.D.5.已知m≠0,函数y=﹣mx2+n与y=在同一直角坐标系中的大致图象可能()A.B.C.D.6.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=﹣与正比例函数y=bx在同一坐标系内的大致图象是()(第6题图)A.B.C.D.7.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)8.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()(第8题图)A.2 B.4 C.6 D.89.下列函数:①y=,②y=﹣2x+8,③y=5x,④y=x2,⑤y=﹣(x+3)2(x<﹣3时)中,y 的值随x的值增大而增大的函数共有()A.1个B.2个C.3个D.4个10.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3B.k<3 C.k≥3D.k>3二.填空题(共7小题)11.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k= .(第11题图)12.已知反比例函数y=(x>0)的图象上有两点A(x1,y1)、B(x2,y2),如果x1<x2时,那么y1y2.(填“>”或“<”)13.如图,A(4,0),C(﹣1,3),以AO,OC为边作平行四边形OABC,则经过B点的反比例函数的解析式为.(第13题图)14.如图,在平面直角坐标系中,▱ABCO的顶点A、C的坐标分别为A(2,0)、C(﹣1,2),反比例函数y=(k≠0)(k≠0)的图象经过点B,则求反比例函数的表达式为.(第14题图)15.如图,AB⊥x轴,反比例函数y=的图象经过线段AB的中点C,若△ABO的面积为2,则该反比例函数的解析式为.(第15题图)16.京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的函数关系式是t= .17.某农业大学计划修建一块面积为2×106㎡的长方形实验田,该试验田的长y米与宽x 米的函数解析式是.三.解答题(共5小题)18.已知y是x的反比例函数,且点A(3,5)在这个函数的图象上.(1)求y与x之间的函数关系式;(2)当点B(﹣5,m)也在这个反比例函数的图象上时,求△AOB的面积.19.已知y=y1+y2,y1与成正比例,y2与x2成反比.当x=1时,y=﹣12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值.20.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点B的坐标及△AOB的面积;(3)观察图象直接写出使反比例函数值小于一次函数值的自变量x取值范围.(第20题图)21.某三角形的面积为15cm2,它的一边长为xcm,且此边上高为ycm,请写出y与x之间的关系式,并求出x=5时,y的值.22.如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,BN 于C,设AD=x,BC=y,求y与x的函数关系式.(第22题图)参考答案一.1.B 2.C 3.C 4.D 5.B 6.D 7.A 8.D 9.B 10.D 二.11.12 12.> 13. y= 14.y= 15.y= 16. t=17. y=三.18.解:(1)设反比例函数解析式为y=,将点A(3,5)代入解析式得,k=3×5=15,y=.(2)将点B(﹣5,m)代入y=得,m==﹣3,则B点坐标为(﹣5,﹣3),设AB的解析式为y=kx+b,将A(3,5),B(﹣5,﹣3)代入y=kx+b得,,解得,,函数解析式为y=x+1,D点的坐标为(0,1),S△ABO=S△ADO+S△BDO=×1×3+=×1×5=4.(第18题答图)19.解:(1)设y1=k1,y2=,则y=k1+;∵当x=1时,y=﹣12;当x=4时,y=7.∴.解得.∴y与x的函数关系式为y=4﹣.∵x≥0,x2≠0,∴x的取范围为x>0;(2)当x=时,y=4×﹣=﹣254.∴y的值为﹣254.20.解:(1)∵一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,点A的坐标为(2,1).∴把A的坐标代入函数解析式得:1=2+m,k=2×1,解得m=﹣1,k=2;(2)两函数解析式为y=x﹣1,y=,解方程组得,.∵点A的坐标为(2,1),∴B点坐标为(﹣1,﹣2),y=x﹣1,当y=0时,0=x﹣1,解得x=1,即点C的坐标为(1,0),OC=1,所以△AOB的面积S=S△AOC+S△BOC==;(3)反比例函数值小于一次函数值的自变量x取值范围是x>2或﹣1<x<0.21.解:∵三角形的面积=边长×这边上高÷2,三角形的面积为15cm2,一边长为xcm,此边上高为ycm,∴;当x=5时,y=6(cm).22.解:作DF⊥BN交BC于点F.如答图.∵AM、BN与⊙O切于点定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=12,∵BC=y,∴FC=BC﹣BF=y﹣x;∵DE切⊙O于E,∴DE=DA=x CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,由勾股定理,得(x+y)2=(y﹣x)2+122,整理为,∴y与x的函数关系式是.(第22题答图)。
人教版八年级下数学反比例函数检测试题

六街中学八年级数学反比例函数检测(时间:120分钟 满分100分)姓名: 分数:一.选择题(每题3分,共计24分)1.面积为4的矩形一边为x ,另一边为y ,则y 与x 的变化规律用图象大致表示为 ( )2.下列各点中,在函数xy 2-=的图像上的是( )A 、(2,1)B 、(-2,1)C 、(2,-2)D 、(1,2) 3.反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、14.若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2)C 、(-2,-1)D 、(21,2)5.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )6.已知反比例函数y =xm21-的图象上有A(x 1,y 1)、B (x 2,y 2)两点,当x1<x 2<0时, y 1<y 2,则m 的取值范围是( ). A 、m <0B 、m >0C 、m <21D 、m >21k8.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2二.填空题(每题3分,共计18分)9.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 10.已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 11.若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标 为6,则b = .12.反比例函数22)12(-+=kxk y 在每个象限内y 随x 的增大而增大,则k= .13. 若m <-1,则下列函数:①()0 x xmy =;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。
专题. 反比例函数(中考真题专练)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)

专题11.35反比例函数(中考真题专练)(基础篇)(专项练习)一、单选题1.(2022·天津·统考中考真题)若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x=的图像上,则123,,x x x 的大小关系是()A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<2.(2022·四川德阳·统考中考真题)一次函数1y ax =+与反比例函数ay x=-在同一坐标系中的大致图象是()A .B .C .D .3.(2022·湖北武汉·统考中考真题)已知点()11,A x y ,()22,B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是()A .120y y +<B .120y y +>C .12y y <D .12y y >4.(2022·江苏无锡·统考中考真题)一次函数y =mx +n 的图像与反比例函数y =mx的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m,-2m )、B (m ,1),则△OAB 的面积()A .3B .134C .72D .1545.(2022·湖南怀化·统考中考真题)如图,直线AB 交x 轴于点C ,交反比例函数y =1a x-(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为()A .8B .9C .10D .116.(2022·广西贺州·统考中考真题)已知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为()A .B .C .D .7.(2022·四川内江·统考中考真题)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为()A .38B .22C .﹣7D .﹣228.(2022·吉林长春·统考中考真题)如图,在平面直角坐标系中,点P 在反比例函数ky x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为()A .32B 3C .23D .49.(2022·山东东营·统考中考真题)如图,一次函数11y k x b =+与反比例函数22k y x=的图象相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为1-,则不等式21k k x b x+<的解集是()A .10x -<<或2x >B .1x <-或02x <<C .1x <-或2x >D .12x -<<10.(2022·贵州贵阳·统考中考真题)如图,在平面直角坐标系中有P ,Q ,M ,N 四个点,其中恰有三点在反比例函数()0ky k x=>的图象上.根据图中四点的位置,判断这四个点中不在函数ky x=的图象上的点是()A .点PB .点QC .点MD .点N二、填空题11.(2022·福建·统考中考真题)已知反比例函数ky x=的图象分别位于第二、第四象限,则实数k 的值可以是______.(只需写出一个符合条件的实数)12.(2022·江苏淮安·统考中考真题)在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数ky x=的图像上,则k 的值是______.13.(2022·四川广元·统考中考真题)如图,已知在平面直角坐标系中,点A 在x 轴负半轴上,点B 在第二象限内,反比例函数ky x=的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.14.(2022·四川内江·统考中考真题)如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()2,3,P 且与函数()20=>y x x的图象交于点(,)Q m n .若一次函数y 随x 的增大而增大,则m 的取值范围是____.15.(2022·黑龙江齐齐哈尔·统考中考真题)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ⊥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且△ABC 的面积为4,则k =______________.16.(2022·辽宁锦州·统考中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.17.(2022·辽宁丹东·统考中考真题)如图,四边形OABC 是平行四边形,点O 是坐标原点,点C 在y 轴上,点B 在反比例函数y =3x (x >0)的图象上,点A 在反比例函数y =k x(x >0)的图象上,若平行四边形OABC 的面积是7,则k =______.18.(2022·山东东营·统考中考真题)如图,OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数1(0)y x x=>的图象上,则经过点A 的反比例函数表达式为____________.三、解答题19.(2021·广西玉林·统考中考真题)先化简再求值:()2112a a a a -⎛⎫-+÷ ⎪⎝⎭,其中a 使反比例函数ay x=的图象分别位于第二、四象限.20.(2021·吉林·统考中考真题)如图,在平面直角坐标系中,一次函数423y x=-的图象与y轴相交于点A,与反比例函数kyx=在第一象限内的图象相交于点(),2B m,过点B作BC y⊥轴于点C.(1)求反比例函数的解析式;(2)求ABC的面积.21.(2021·四川德阳·统考中考真题)如图,在平面直角坐标系中,反比例函数ykx=(x>0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数ykx=(x>0)的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.22.(2021·山东淄博·统考中考真题)如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP 的面积;(3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.23.(2022·河南·统考中考真题)如图,反比例函数()0k y x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.24.(2021·山东德州·中考真题)已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.参考答案1.B【分析】将三点坐标分别代入函数解析式求出213x x x 、、,然后进行比较即可.解:将三点坐标分别代入函数解析式8y x=,得:182x =,解得1=4x ;28-1x =,解得2=-8x ;384x =,解得3=2x ;∵-8<2<4,∴231x x x <<,故选:B .【点拨】本题考查反比例函数,关键在于能熟练通过已知函数值求自变量.2.B【分析】A 选项可以根据一次函数与y 轴交点判断,其他选项根据图象判断a 的符号,看一次函数和反比例函数判断出a 的符号是否一致;解:一次函数与y 轴交点为(0,1),A 选项中一次函数与y 轴交于负半轴,故错误;B 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过一、三象限,则-a >0,即a <0,两者一致,故B 选项正确;C 选项中,根据一次函数y 随x 增大而增大可判断a >0,反比例函数过一、三象限,则-a >0,即a <0,两者矛盾,故C 选项错误;D 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过二、四象限,则-a <0,即a >0,两者矛盾,故D 选项错误;故选:B .【点拨】本题考查了一次函数、反比例函数图象共存问题,解决此类题目要熟练掌握一次函数、反比例函数图象与系数的关系.3.C【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.解:∵点()11,A x y ,()22,B x y )是反比例函数6y x=的图象时的两点,∴11226x y x y ==.∵120x x <<,∴120y y <<.故选:C .【点拨】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.4.D【分析】将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可.解:∵A (-1m ,-2m )在反比例函数y =mx的图像上,∴m =(-1m)•(-2m )=2,∴反比例函数的解析式为y =2x,∴B (2,1),A (-12,-4),把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD =12×3×2+12×3×12=154.故选:D ..【点拨】本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.5.D 【分析】设1a B m m -⎛⎫ ⎪⎝⎭,,由S △BCD =112a m m -⋅即可求解.解:设1a B m m -⎛⎫ ⎪⎝⎭,,∵BD ⊥y 轴∴S △BCD =112a m m-⋅=5,解得:11a =故选:D .【点拨】本题主要考查反比例函数的应用,掌握反比例函数的相关知识是解题的关键.6.A【分析】根据题意可得0,0k b >>,从而得到一次函数y kx b =-+的图象经过第一、二、四象限,反比函数b y x=的图象位于第一、三象限内,即可求解.解:根据题意得:0,0k b >>,∴0k -<,∴一次函数y kx b =-+的图象经过第一、二、四象限,反比函数b y x=的图象位于第一、三象限内.故选:A【点拨】本题主要考查了一次函数和反比例函数的图象和性质,熟练掌握一次函数和反比例函数的图象和性质是解题的关键.7.D【分析】设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a-,则PQ =PM +MQ =k b a -,再根据ab =8,S △POQ =15,列出式子求解即可.解:设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a -,∴PQ =PM +MQ =k b a-.∵点P 在反比例函数y =8x 的图象上,∴ab =8.∵S △POQ =15,∴12PQ •OM =15,∴12a (b ﹣k a)=15.∴ab ﹣k =30.∴8﹣k =30,解得:k =﹣22.故选:D .【点拨】本题主要考查了反比例函数与几何综合,熟练掌握反比例函数的相关知识是解题的关键.8.C【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2,由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点拨】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.9.A【分析】根据不等式21k k x b x +<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围进行求解即可.解:由题意得不等式21k k x b x +<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围,∴不等式21k k x b x +<的解集为10x -<<或2x >,故选A .【点拨】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.10.C【分析】根据反比例函数的性质,在第一象限内y 随x 的增大而减小,用平滑的曲线连接发现M 点不在函数k y x =的图象上解:()0k y k x =>在第一象限内y 随x 的增大而减小,用平滑的曲线连接发现M 点不在函数k y x=的图象上故选C【点拨】本题考查了反比例函数的性质,掌握反比例数图象的性质是解题的关键.11.-5(答案不唯一)【分析】根据反比例函数的图象分别位于第二、四象限可知k <0,进而问题可求解.解:由反比例函数k y x=的图象分别位于第二、第四象限可知k <0,∴实数k 的值可以是-5;故答案为-5(答案不唯一).【点拨】本题主要考查反比例函数的图象,熟练掌握反比例函数的图象是解题的关键.12.4-【分析】将点()2,3A 向下平移5个单位长度得到点B ,再把点B 代入反比例函数k y x=,利用待定系数法进行求解即可.解:将点()2,3A 向下平移5个单位长度得到点B ,则()2,2B -,∵点B 恰好在反比例函数k y x =的图像上,∴()224k =⨯-=-,故答案为:4-.【点拨】本题考查了坐标与图形变化—平移,待定系数法求反比例函数的解析式,熟练掌握知识点是解题的关键.13.-4【分析】过B 作BD OA ⊥于D ,设B m n (,),根据三角形的面积公式求得12OA n=,进而得到点A 的坐标,再求得点C 的坐标,结合一次函数的解析式得到列出方程求解.解:过B 作BD OA ⊥于D ,如下图.∵点B 在反比例函数k y x=的图象上,∴设B m n (,).∵OAB 的面积为6,∴12OA n=,∴12,0A n ⎛⎫- ⎪⎝⎭.∵点C 是AB 的中点,∴12,22mn n C n -⎛⎫ ⎪⎝⎭.∵点C 在反比例函数k y x=的图象上,∴1222mn n mn n -⋅=,∴4mn =-,∴4k =-.故答案为:-4.【点拨】本题考查了反比例函数系数k 的几何意义,三角形的面积公式,中点坐标的求法,正确的理解题意是解题的关键.14.223m <<【分析】分别求出过点P ,且平行于x 轴和y 轴时对应的m 值,即可得到m 的取值范围.解:当PQ 平行于x 轴时,点Q 的坐标为(),3m ,代入2y x =中,可得23m =;当PQ 平行于y 轴时,点Q 的坐标为()2,n ,可得2m =;∵一次函数y 随x 的增大而增大,∴m 的取值范围是223m <<,故答案为:223m <<.【点拨】本题考查一次函数和反比例函数图象的交点问题,找到两个临界是解决本题的关键.15.4-【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,利用()1242=⨯-⨯=ABC k S a a △即可求出k 的值.解:设点,k A a a ⎛⎫ ⎪⎝⎭,∵点D 为线段AB 的中点.AB ⊥y 轴∴22AB AD a ==-,又∵()1242=⨯-⨯=ABC k S a a△,∴4k =-.故答案为:4-【点拨】本题考查利用面积求反比例函数的k 的值,解题的关键是找出()1242=⨯-⨯=ABC k S a a△.16.2【分析】作A 过x 轴的垂线与x 轴交于C ,证明△ADC ≌△BDO ,推出S △OAC =S △OAB =1,由此即可求得答案.解:设A (a ,b ),如图,作A 过x 轴的垂线与x 轴交于C ,则:AC =b ,OC =a ,AC ∥OB ,∴∠ACD =∠BOD =90°,∠ADC =∠BDO ,∴△ADC ≌△BDO ,∴S △ADC =S △BDO ,∴S △OAC =S △AOD +S △ADC =S △AOD +S △BDO =S △OAB =1,∴12×OC ×AC =12ab =1,∴ab =2,∵A (a ,b )在y =k x上,∴k =ab =2.故答案为:2.【点拨】本题考查了反比例函数的性质,三角形的面积公式,全等三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线进行解题.17.-4【分析】连接OB ,根据反比例函数系数k 的几何意义得到|k |+3=7,进而即可求得k 的值.解:连接OB ,∵四边形OABC 是平行四边形,∴AB ∥OC ,∴AB ⊥x 轴,∴S △AOD =12|k |,S △BOD =132=32,∴S △AOB =S △AOD +S △BOD =12|k |+32,∴S 平行四边形OABC =2S △AOB =|k |+3,∵平行四边形OABC 的面积是7,∴|k |=4,∵在第四象限,∴k =-4,故答案为:-4.【点拨】本题考查了反比例系数k 的几何意义、平行四边形的面积,熟知在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |是解答此题的关键.18.1y x=-【分析】如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,证明△ACO ≌△ODB 得到AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则点A 的坐标为(-b ,a ),再由点B 在反比例函数1y x =,推出1a b-=-,由此即可得到答案.解:如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,则∠ACO =∠ODB =90°,由题意得OA =OB ,∠AOB =90°,∴∠CAO +∠COA =∠AOC +∠BOD =90°,∴∠CAO =∠DOB ,∴△ACO ≌△ODB (AAS ),∴AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则AC =OD =a ,OC =BD =b ,∴点A 的坐标为(-b ,a ),∵点B 在反比例函数1y x =,∴1ab =,∴1ab -=-,∴1a b-=-,∴经过点A 的反比例函数表达式为1y x =-,故答案为:1y x=-.【点拨】本题主要考查了反比例函数与几何综合,全等三角形的性质与判定,熟知相关知识是解题的关键.19.1-【分析】由题意易得a<0,然后对分式进化简,然后再求解即可.解:∵a 使反比例函数a y x=的图象分别位于第二、四象限,∴a<0,∴()2112a a a a -⎛⎫-+÷ ⎪⎝⎭=()22211a a a a a -+-⨯-=1-.【点拨】本题主要考查反比例函数的图象与性质及分式的化简求值,熟练掌握反比例函数的图象与性质及分式的运算是解题的关键.20.(1)6y x=;(2)6【分析】(1)因为一次函数与反比例函数交于B 点,将B 代入到一次函数解析式中,可以求得B 点坐标,从而求得k ,得到反比例函数解析式;(2)因为BC y ⊥轴,所以()0,2C ,利用一次函数解析式可以求得它与y 轴交点A 的坐标()0,2-,由A ,B ,C 三点坐标,可以求得AC 和BC 的长度,并且//BC x 轴,所以12ABC S AC BC =⋅V ,即可求解.解:(1)∵B 点是直线与反比例函数交点,∴B 点坐标满足一次函数解析式,∴4223m -=,∴3m =,∴()3,2B ,∴6k =,∴反比例函数的解析式为6y x=;(2)∵BC y ⊥轴,∴()0,2C ,//BC x 轴,∴3BC =,令0x =,则4223y x =-=-,∴()0,2A -,∴4AC =,∴162ABC S AC BC =⋅=△,∴ABC 的面积为6【点拨】本题考查了反比例函数与一次函数交点问题,三角形的面积,同时要注意在平面直角坐标系中如何利用坐标表示水平线段和竖直线段.21.(1)k=12,C (0,9);(2)4【分析】(1)由点(2,6)A 求出反比例函数的解析式为12y x=,可得k 值,进而求得(4,3)B ,由待定系数法求出直线AB 的解析式为392y x =-+,即可求出C 点的坐标;(2)由(1)求出CD ,根据ABD ACD ACD S S S ∆∆∆=-可求得结论.解:(1)把点(2,6)A 代入k y x=,2612k =⨯=,∴反比例函数的解析式为12y x=, 将点A 向右平移2个单位,4x ∴=,当4x =时,1234y ==,(4,3)B ∴,设直线AB 的解析式为y mx n =+,由题意可得6234m n m n=+⎧⎨=+⎩,解得329m n ⎧=-⎪⎨⎪=⎩,392y x ∴=-+,当0x =时,9y =,(0,9)C ∴;(2)由(1)知954CD =-=,1111||||444242222ABD BCD ACD B A S S S CD x CD x ∆∆∆∴=-=⋅-⋅=⨯⨯-⨯⨯=.【点拨】本题考查了反比例函数系数k 的几何意义,待定系数法求函数的解析式,三角形的面积的计算,求得直线AB 的解析式是解题的关键.22.(1)11y x =-+,26y x=-;(2)152ABP S = ;(3)20x -<<或3x >【分析】(1)由题意先求出2y ,然后得到点B 的坐标,进而问题可求解;(2)由(1)可得ABP 以PB 为底,点A 到PB 的距离为高,即为点A 、B 之间的纵坐标之差的绝对值,进而问题可求解;(3)根据函数图象可直接进行求解.解:(1)把点()2,3A -代入反比例函数解析式得:6k =-,∴26y x=-,∵点B 在反比例函数图象上,∴26m -=-,解得:3m =,∴()3,2B -,把点A 、B 作代入直线解析式得:112332k b k b -+=⎧⎨+=-⎩,解得:111k b =-⎧⎨=⎩,∴11y x =-+;(2)由(1)可得:()2,3A -,()3,2B -,∵//BP x 轴,∴3BP =,∴点A 到PB 的距离为()325--=,∴1153522ABP S =⨯⨯= ;(3)由(1)及图象可得:当21k k x b x+<时,x 的取值范围为20x -<<或3x >.【点拨】本题主要考查反比例函数与一次函数的综合,熟练掌握反比例函数与一次函数的图象与性质是解题的关键.23.(1)8y x=;(2)图见分析部分;(3)证明见分析【分析】(1)把点A 的坐标代入反比例函数解析式,即可得出答案;(2)利用基本作图作线段AC 的垂直平分线即可;(3)根据垂直平分线的性质和角平分线的定义可得到BAC DCA ∠=∠,然后利用平行线的判定即可得证.(1)解:∵反比例函数()0k y x x=>的图像经过点()2,4A ,∴当2x =时,42k =,∴8k =,∴反比例函数的表达式为:8y x =;(2)如图,直线EF 即为所作;(3)证明:如图,∵直线EF 是线段AC 的垂直平分线,∴AD CD =,∴DAC DCA ∠=∠,∵AC 平分OAB ∠,∴DAC BAC∠=∠,∴BAC DCA∠=∠,∴CD AB∥.【点拨】本题考查了作图—基本作图,用待定系数法求反比例函数的解析式,垂直平分线的性质,等腰三角形的性质,平行线的判定,角平分线的定义等知识.解题的关键是熟练掌握五种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).24.(1)点C的坐标为(2,2);(2)4【分析】(1)先求出点A的坐标为(4,1),再由AB OA=,可得点B的坐标为(8,2),从而得到点C的纵坐标为2,即可求解;(2)设4(,)A mm,可得点B的坐标为8(2,)mm,从而得到点D的坐标为8(,)mm,(2mC,8m,分别求出△BOC和△ABD的面积,即可求解.(1)解:将点A坐标代入到反比例函数4yx=中得,44n=,1n∴=,∴点A的坐标为(4,1),AB OA=,(0,0)O,∴点B的坐标为(8,2),//BC x轴,∴点C的纵坐标为2,令2y =,则42x=,2x ∴=,∴点C 的坐标为(2,2);(2)设4(,A m m,AB OA = ,∴点B 的坐标为8(2,)m m,//BC x 轴,BC y ∴⊥轴,又AD BC ⊥,//AD y ∴轴,∴点D 的坐标为8(,)m m,//BC x 轴,且点C 在函数图象上,(2m C ∴,8)m ,Δ18434(2)6222OBC m m S BC m m m m =⋅⋅=-⋅=⋅= ,Δ114222ADB S BD AD m m=⋅=⋅=,∴四边形OCDA 的面积为:ΔΔ624OBC ADB S S -=-=.【点拨】本题主要考查了反比函数的图象和性质,熟练掌握反比函数的图象和性质是解题的关键.。
八年级数学下册第章反比例函数检测卷新版浙教版1.doc

第6章 反比例函数检测卷一、选择题(每题3分,共30分) 1. 已知反比例函数y=xk的图象经过点P (-1,2),则这个函数的图象位于( ) A . 第二,三象限 B . 第一,三象限 C . 第三,四象限 D . 第二,四象限 2. 已知矩形的面积为20cm2,设该矩形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的函数图象大致是( )3. 已知当x=2时,反比例函数y=xk 1与正比例函数y=k2x 的值相等,则k1∶k2的值是( ) A .41B . 1C . 2D . 4 4. 在反比例函数y=xm31 图象上有两点A (x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m 的取值范围是…( ) A . m >31 B . m <31 C . m ≥31 D . m ≤315. 在同一坐标系中,函数y=xk和y=kx+3的图象大致是( )6. 如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y=-x 6和y=x4的图象交于A 、B 两点. 若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( )A . 3B . 4C . 5D . 107. 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( ) A. 16时 B. 1587小时 C. 151615小时 D. 17小时8. 如图,A 、B 是双曲线y=xk上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C . 若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B . 38C . 3D . 49. 如图,正比例函数y1=k1x 的图象与反比例函数y2=xk 2的图象相交于A ,B 两点,其中点A 的横坐标为2,当y1>y2时,x 的取值范围是( )A . x <-2或x >2B . x <-2或0<x <2C . -2<x <0或0<x <2D . -2<x <0或x >210. 某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至30℃,饮水机关机. 饮水机关机后即刻自动开机,重复上述自动程序. 若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是( )A . 27分钟B . 20分钟C . 13分钟D . 7分钟 二、填空题(每题4分,共24分) 11. 反比例函数y=xk 1的图象在每一个象限内y 随x 的增大而减小,则k 的取值范围为 . 12. 老师给出一个函数,甲、乙、丙、丁四位同学分别指出了这个函数的一个性质: 甲:函数图象不经过第二象限;乙:函数图象上两个点A (x1,y1)、B (x2,y2)且x1<x2,y1>y2; 丙:函数图象经过第一象限;丁:在每个象限内,y 随x 的增大而减小.老师说这四位同学的叙述都是正确的,请你构造一个满足上述性质的一个函数: .13. 如图,过点A (1,0)的直线与y 轴平行,且分别与正比例函数y=k1x ,y=k2x 和反比例函数y=xk 3在第一象限相交,则k1、k2、k3的大小关系是 .14. 表1给出了正比例函数y1=kx 的图象上部分点的坐标,表2给出了反比例函数y2=xm的图象上部分点的坐标.表1 表2则当y1=y2时,x 的值为 .15. 如图,Rt △ABC 在第一象限,∠BAC=90°,AB=AC=2,点A 在直线y=x 上,其中点A 的横坐标为1,且AB ∥x 轴,AC ∥y 轴,若双曲线y =xk (k ≠0)与△ABC 有交点,则k 的取值范围是 .16. 如图,在函数y=x8(x >0)的图象上有点P1、P2、P3…、Pn 、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn 、Pn+1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn ,则S1= ,Sn= . (用含n 的代数式表示)三、解答题(共46分)17. (5分)已知正比例函数y=ax 与反比例函数y=xb的图象有一个公共点A (1,2). (1)求这两个函数的表达式;(2)画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.18. (5分)如图,已知一次函数y1=kx+b 与反比例函数y2=xm的图象交于A (2,4)、B (-4,n )两点.(1)分别求出y1和y2的解析式; (2)写出y1=y2时,x 的值; (3)写出y1>y2时,x 的取值范围.19. (6分)如图,在直角坐标系xOy 中,一次函数y=k1x+b 的图象与反比例函数y=xk 2的图象交于A (1,4),B (3,m )两点.(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.20. (6分)去学校食堂就餐,经常会在一个买菜窗口前等待. 经调查发现,同学的舒适度指数y 与等待时间x (分)之间存在如下的关系:y=x100,求: (1)若等待时间x=5分钟时,求舒适度y 的值;(2)舒适度指数不低于10时,同学才会感到舒适. 函数y=x100(x >0)的图象如图,请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?21. (6分)“至诚宾馆”客房有80个房间供游客居住,旅游旺季,当每个房间的定价增加时,就会有一些房间空闲,具体数据如下表:(1)请你认真分析表中数据,写出能表示其变化规律的函数表达式;(2)对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用,同时为促进当地旅游业的蓬勃发展,市旅游局将对每个实际入住的房间予以每间每天奖励50元,求每天入住的房间数为50时宾馆每天的纯利润.22. (6分)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD ,其中一边AB 靠墙,墙长为12m ,设AD 的长为xm ,DC 的长为ym. (1)求y 与x 之间的函数关系式;(2)若围成矩形科技园ABCD 的三边材料总长不超过26m ,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.23. (6分)如图,已知正比例函数y=2x 和反比例函数的图象交于点A (m ,-2). (1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移5个单位长度得到点B ,判断四边形OABC 的形状并证明你的结论.24. (6分)(北海中考)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0),B (0,1),C(d,2).(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式.参考答案第6章反比例函数检测卷一、选择题1—5. DBDBA 6—10. CCBDC二、填空题11. k>112. y=x1(x >0) 13. k2>k3>k1 14. 1或-1 15. 1≤k ≤4 16. 4)1(8n n三、解答题17. (1)把A (1,2)代入y=ax 得a=2,所以正比例函数解析式为y=2x ;把A (1,2)代入y=x2得b=1×2=2,所以反比例函数解析式为y=xb ; (2)如图,当-1<x <0或x >1时,正比例函数值大于反比例函数值.18. ((1)将A (2,4)代入反比例函数解析式得:m=8,∴反比例函数解析式为y2=x8,将B (-4,n )代入反比例函数解析式得:n=-2,即B (-4,-2),将A 与B 坐标代入一次函数解析式得:2k+b=4,-4k+b=-2,解得:k=1,b=2,则一次函数解析式为y1=x+2; (2)联立两函数解析式得:y=x+2,y=x8,解得:x=2,y=4或x=-4,y=-2,则y1=y2时,x 的值为2或-4;(3)利用图象得:y1>y2时,x 的取值范围为-4<x <0或x >2.19. (1)把A (1,4)代入y=x k 2得k2=1×4=4,所以反比例函数解析式为y=x4(x >0),把B (3,m )代入y=x4得3m=4,解得m=34,所以B 点坐标为(3,34),把A (1,4),B (3,34)代入y=k1x+b 得k1+b=4,3k1+b=34,解得k1=-34,b=316,所以一次函数解析式为y=-34x+316;(2)如图,把x=0代入y=-34x+316得y=316,则C 点坐标为(0,316);把y=0代入y=-34x+316得-34x+316=0,解得x=4,则D 点坐标为(0,4),所以S △AOB=S △OCD-S △OCA-S △OBD=21×4×316-21×316×1-21×4×34=316.20. (1)当x=5时,舒适度y=x 100=5100=20; (2)舒适度指数不低于10时,由图象y ≥10时,0<x ≤10,所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟. 21. (1)由题意得:y=x 12000 (2)y=50时,x=5012000=240,(240-20+50)×50=13500元.答:每天入住的房间数为50时宾馆每天的纯利润为13500元.22. ((1)AD 的长为xm ,DC 的长为ym ,根据题意,得x ·y=60,即y=x60,∴y 与x 之间的函数关系式为y=x 60; (2)由y=x60,且x ,y 都为正整数,∴x 可取1,2,3,4,5,6,10,12,15,20,30,60. 但∵2x+y ≤26,0<y ≤12. ∴符合条件的有:x=5时,y=12,x=6时,y=10,x=10时,y=6. 答:满足条件的所有围建方案:AD=5m ,DC=12m 或AD=6m ,DC=10m 或AD=10m ,DC=6m.23. (1)设反比例函数的解析式为y=xk(k >0),∵A (m ,-2)在y=2x 上,∴-2=2m ,∴m=-1,∴A (-1,-2),又∵点A 在y=x k 上,∴k=2,∴反比例函数的解析式为y=x2;(2)观察图象可知正比例函数值大于反比例函数值时自变量x 的取值范围为-1<x <0或x >1;(3)四边形OABC 是菱形. 证明:∵A (-1,-2),∴OA=2221+=5,由题意知:CB ∥OA 且CB=5,∴CB=OA ,∴四边形OABC 是平行四边形,∵C (2,n )在y=x2上,∴n=1,∴C (2,1),OC=2212+=5,∴OC=OA ,∴四边形OABC 是菱形. 24. (1)如图作CN ⊥x 轴于点N ,在Rt △CNA 和Rt △AOB 中,CN=AO=2,AC=AB ∴Rt △CNA ≌Rt △AOB (HL ),则AN=BO=1,∴NO=AN+AO=3,且点C 在第二象限,∴d=-3;(2)设反比例函数为y=xk,点C ′和B ′在该反比例函数图象上,设C ′(m-3,2),则B ′(m ,1),把点C ′和B ′的坐标分别代入y=xk,得k=2m-6;k=m ,∴k=2k-6,则k=6,m=6,反比例函数解析式为y=x6. 得点C ′(3,2),B ′(6,1). 设直线C ′B ′的解析式为y=ax+b ,把C ′、B ′两点坐标代入得3a+b=2,6a+b=1,∴解得a=-31,b=3,∴直线C ′B ′的解析式为y=-31x+3.。
浙教版八年级下册数学《第6章反比例函数》单元练习(A)含答案试卷

八年级下第6章反比例函数练习A卷姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1、下列函数中,不是反比例函数的是()A、y=﹣B、y=C、y=D、3xy=22、反比例函数y= 的图象是()。
A、线段B、直线C、抛物线D、双曲线3、下列问题中,两个变量成反比例的是()A、长方形的周长确定,它的长与宽;B、长方形的长确定,它的周长与宽;C、长方形的面积确定,它的长与宽;D、长方形的长确定,它的面积与宽.4、在同一平面直角坐标系中,反比例函数y=-与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为( )A、2B、6C、10D、85、反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是()A、1B、2C、4D、6、如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B (3,2).当ax+b<时,则x的取值范围是()A、1<x<3B、x<1或x>3C、0<x<1D、0<x<1或x>37、小兰画了一个函数的图象如图,那么关于x的分式方程的解是()A、x=1B、x=2C、x=3D、x=4A、如果y是x的反比例函数,那么x也是y的反比例函数.B、如果y是z的反比例函数,z是x的正比例函数,且x≠0,那么y是x的反比例函数C、如果y是z的正比例函数,z是x的反比例函数,且x≠0,那么y是x的反比例函数D、如果y是z的反比例函数,z是x的反比例函数,那么y是x的反比例函数9、如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是A、 B、 C、 D、10、如图,正比例函数y=mx与反比例函数y=(m、n是非零常数)的图象交于A、B两点.若点A的坐标为(1,2),则点B的坐标是()A、(﹣2,﹣4)B、(﹣2,﹣1)C、(﹣1,﹣2)D、(﹣4,﹣2)二、填空题(共7题;共21分)11、若函数y=(m﹣1)是反比例函数,则m的值等于________12、在反比例函数的图象上有两点,当时,与的大小关系是________ .13、如图,反比例函数y=图象上有一点P,PA⊥x轴于点A,点B在y轴的负半轴上,若△PAB 的面积为4,则k=________14、如图,点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=________ .去15、函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3);②当,x>3时,y2>y1;③当x=1时,BC=8,④当逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是________ .16、求方程x2+3x﹣1=0的解,除了用课本的方法外,也可以采用图象的方法:画出直线y=x+3和双曲线y=的图象,则两图象交点的横坐标即为该方程的图象,则两图象交点的横坐标即为该方程的解.类似地,可以判断方程x3+x﹣1=0的解的个数有________ 个.17、如图,两个反比例函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为________ .三、解答题(共8题;共48分)18、如果函数y=m是一个经过二、四象限的反比例函数,则求m的值和反比例函数的解析式.19、如果y是z的反比例函数,z是x的反比例函数,那么y与x具有怎样的函数关系?20、水池中蓄水90m2,现用放水管以x(m3/h)的速度排水,经过y(h)排空,求y与x之间的函数表达式,y是x的反比例函数吗?21、作出反比例函数y=的图象,并根据图象解答下列问题:(1)当x=4时,求y的值;(2)当y=﹣2时,求x的值.22、若反比例函数y=与一次函数y=2x﹣4的图象都经过点A(a,2)(1)求反比例函数的解析式;(2)当反比例函数y=的值大于一次函数y=2x﹣4的值时,求自变量x的取值范围.23、如图,已知直线y=﹣x+4与反比例函数y=的图象相交于点A(﹣2,a),并且与x轴相交于点B.(1)求a的值;(2)求反比例函数的表达式;(3)求△AOB的面积;(4)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.24、(1)如图,过反比例函数y=(x>0)图象上任意一点P(x,y),分别向x轴与y轴作垂线,垂线段分别为PA、PB,证明:S矩形OAPB=k,S△OAP=k,S△OPB=k.(2)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,求k的值.25、已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD (A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式.答案解析一、选择题1、分析:根据反比例函数的定义,反比例函数的一般式是y=(k≠0),即可判定各函数的类型是否符合题意.解:A、符合反比例函数的定义,y是x的反比例函数,错误;B、符合反比例函数的定义,y是x的反比例函数,错误;C、y与x﹣1成反比例,y不是x的反比例函数,正确;D、符合反比例函数的定义,y是x的反比例函数,错误.故选C.2、分析:根据反比例函数的性质可直接得到答案解:∵y= 是反比例函数,∴图象是双曲线选:D.3、分析:根据反比例函数的定义解答.例如:在本题中,长方形的面积=长×宽,即长和宽的乘积为定值,所以根据反比例的概念应该是长和宽成反比例;长方形的周长=2×(长+宽),即长和宽的和为定值,所以根据正比例的概念应该是长和宽成正比例.解:A、长方形的周长=2×(长+宽),即长和宽的和为定值,所以根据正比例的概念应该是长和宽成正比例.故本选项错误;B、长方形的周长=2×(长+宽),所以,长=-宽,即周长的一半长和宽的和为定值,所以根据正比例的概念应该是周长和宽成正比例.故本选项错误;C、长方形的面积=长×宽,即长和宽的乘积为定值,所以根据反比例的概念应该是长和宽成反比例;故本选项正确;D、长方形的面积=长×宽,即长和宽的乘积为定值,所以根据正比例的概念应该是长和宽成正比例;故本选项错误;故选C.4、分析:本题需先求出两个函数的交点坐标,联立两函数的解析式,所得方程组的解即为A、B点的坐标.由于△OAB的边不在坐标轴上,因此可用其他图形面积的和差来求出△AOB的面积.本题难度较大,考查利用反比例函数和一次函数的知识求三角形的面积,因为△AOB的边都不在坐标轴上,所以直接利用三角形的面积计算公式来求这个三角形的面积比较烦琐,也比较难,因此需要将这个三角形转化为两个有一边在坐标上的三角形来求面积.本题也可以求出一次函数y=-x+2与x轴的交点坐标 D(2,0),再利用上面的方法来求△AOB的面积.解:由题意:,解得,;∴A(-2,4)、B(4,-2).如图:由于一次函数y=-x+2与y轴的交点坐标C(0,2),所以OC=2;因此S△AOB=S△AOC+S△COB=×2×2+×2×4=6,故选B.5、分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系S=|k|即可求得k的值.解:由于点M是反比例函数y=(k>0)图象上一点,则S△MOP=|k|=1,又由于k>0,则k=2.故选B.6、分析:依题意可知,问题转化为:当一次函数值小于反比例函数值时,x的取值范围.解:由两函数图象交点可知,当x=1或3时,ax+b=,当0<x<1或x>3时,ax+b<.故选D.7、分析:关于x的分式方程−1=2的解就是函数y=−1中,纵坐标y=2时的横坐标x的值,据此即可求解.解:关于x的分式方程−1=2的解就是函数y=−1中,纵坐标y=2时的横坐标x的值.根据图象可以得到:当y=2时,x=1.故选A.8、分析:形如y= (k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数解: A.如果y是x的反比例函数,那么x也是y的反比例函数,说法正确,故本选项正确;B.如果y是z的反比例函数,z是x的正比例函数,且x≠0,那么y是x的反比例函数,说法正确,故本选项正确;C.如果y是z的正比例函数,z是x的反比例函数,且x≠0,那么y是x的反比例函数,说法正确,故本选项正确;D.如果y是z的反比例函数,z是x的反比例函数,那么y不一定是x的反比例函数,原说法错误,故本选项错误选D.9、解:∵点A在反比例函数的图象上,∴设点A的坐标为(x,)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 反比例函数 检测卷
(总分:100分 时间:60分钟) 得分:
_________
一、选择题(本大题共8小题,每小题2分,共1 6分) 1.下列函数是反比例函数的为 ( ) A .y=2x -3 B .y=23x -
C. y=23x
D .y=3x 2.在同一坐标系中,函数y=k x
和y=kx+3的图象大致是 ( )
3.已知点A(-2,y 1)、B(-1,y 2)、C(3,y 3)都在反比例函数y=3
2x
的图象上,则( )
A .y 1<y 2<y 3
B .y 3<y 2<y 1
C .y 3<y 1<y 2
D .y 2<y 1<y 3 4.过双曲线y=k x
(k 是常数,k >0,x>0)的图象上两点A 、
B 分别作A
C ⊥x 轴于C ,B
D ⊥x 轴于D ,△AOC 的面积S 1和△BOD 的面积S 2的大小关系为 ( ) A .S 1>S 2 B .S 1一S 2 C .S 1<S 2 D .S 1和S 2的大小无法确定
5.如果P(a ,b)在函数y=k x
的图象上,则在此图象上的点还有 ( )
A. (-a ,b) B .(a ,-b) C .(-a ,-b) D .(0,0)
6.已知力F所做的功10焦,则力F与物体在力的方向上通过的距离s的图象大致是 ( )
7.若点M(2,2)和N(b,-1-n2)是反比例函数y=k
的图象上的两个
x
点,则一次函数y=kx+b的图象经过 ( )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三、四象限 D.第二、三、四象限
的图象中,阴影部分的面积等于4的有8.在反比例函数y=4
x
( )
A.1个 B.2个 C.3个 D.4个二、填空题(本大题共10小题,每小题2分,共20分)
9.已知y与x成反比例,当x=3时,y=1,则y与x间的函数关系式为_________.
10.已知点P在反比例函数y=6
-的图象上,且点P
的纵坐标是-2,则点P的横坐标是_________.
11.若反比例函数y=k
的图象过点A(1,-2),则
x
k=_________.
12.反比例函数y=k
x
(x>0)图象如图所示,则y 随x 的增大_________ .
13.若反比例函数y=1x
的图象上有两点A(1,y 1),B(2,y 2),则y 1_________y 2(填“>”、“<”或“=”).
14.在△ABC 的三个顶点A(2,-3),B(-4,-5),C(-3,2)中,可能在反比例函数 y=k x
(k>0)的图象上的点是_________. 15.设有反比例函数y=
1
k x +,(x 1,y 1)、(x 2,y 2)为其图象上的两点,若x 1<0<x 2时, y 1>y 2,则k 的取值范围是_________.
l6.如图,反比例函数y=5
x
的图象与直线y=kx(k>o)相交于A 、B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于_________个面积单位.
17.若一次函数y=2x -k 的图象与反比例函数y=
5
k x
+的图象相交,其中一个交点纵坐标为4,则此交点坐标为_________.
18.如图所示,P 1(x 1,y 1)、P 2(x 2,y 2)、…、P n (x n ,y n )在函数y=9
x
(x>o)的图象上,△OP l A 1、△P 2A 1A 2、△P 3A 2A 3、…、△P n A n -1A n 都是等腰直角三角形,斜边 O 1A l 、A 1 A 2、…、A n -1A n 都在x 轴上,则y 1+y 2+…+y n =_________ .
三、解答题(本大题共10小题,共64分)
19.(本小题5分)已知正比例函数y=kx 与反比例函数y= 5x
-的图象都过A(m ,1)点,求此正比例函数解析式.
20.(本小题5分)已知点A(2,-k+2)在双曲线y=k x
上.求常数k 的值.
21.(本小题5分)已知y=y 1-y 2,y 1与x 成正比例,y 2与x+3成反比例,当x=0 时,y=-2;当x=3时,y=2;求y 与x 的函数关系式,并指出自变量的取值范围.
22.(本小题5分)一定质量的氧气,它的密度ρ(kg /m 3)是它的体积V(m 3)的反比例函数,当V=10 m 3时,ρ=1.43 kg /m 3. (1)求ρ与V 的函数关系式;
(2)求当V=2 m 3时,求氧气的密度ρ.
23.(本小题5分)已知一次函数y=kx+b(k ≠o)和反比例函数y=
2k x
的
图象交于点A(1,1).
(1)求两个函数的解析式’
(2)若点B是x轴上一点,且△AOB是直角三角形,求B点的坐标.
的图象与一次函数y=kx+m的24.(本小题7分)已知反比例函数y=k
x
图象相交于点(2,1).
(1)分别求出这两个函数的解析式’
(2)试判断点P(-1,5)关于x轴的对称点P’是否在一次函数y=kx+m的图象上.
与一次函数y2=mx-4的图象都25.(本小题7分)若反比例函数y1=6
x
经过点A (a,2)、B(-1,b).
(1)求一次函数y2=mx-4的解析式;
(2)在同一直角坐标系中,画出两个函数的图象,并求当x取何值时有y2<y1;
(3)求△AOB的面积.
的图象与一次函数y=kx+b的图象26.(本小题7分)反比例函数y=2
x
交于点A(m ,2)、点B(-2,n),一次函数的图象与y 轴的交点为C . (1)求一次函数解析式; (2)求C 点的坐标;
(3)求△AOC 的面积.
27.(本小题9分)如图,直线y=kx+b 与反比例函数y=k
x
(x<0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.
(1)试确定反比例函数的关系式; (2)求△AOC 的面积.
28.(本小题9分)若一次函数y=2x -1和反比例函数y=2k
x
的图象都经过点(1,1).
(1)求反比例函数的解析式;
(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标。
(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P)
为顶点的四边形是平行四边形,请你直接写出点P的坐标.
参考答案
一、1.C 2.A 3.D 4.B 5.C 6. B 7.C 8.C
二、9.y=3
x
10.3 11.-2 12.减小13.>
14.B 15.k<-1 16.10 17. (0.5, 4)
18.
三、19.y=-1
5x 20. k=4
3
21. y=x-6
3
x+
,
x≠-3
22.(1) ρ=143
10V
(2) ρ=7.15 kg/ m3
23.(1)y=1
x
,y= 2x-1 (2)(1, 0)或(2, 0)
24.(1)反比例函数为y =2
x
,一次函数为y=2x-3
(2)点P(-1,5)关于x轴的对称点P’(-1, -5)在一次函数y=2x-3的图像上.
25.(1)y=2x-4 (2)当-1<x<0或x>3时.y2<y1 (3)8
26.(1)y=x+1 (2)(0,1) (3)1
2
27.(1)y=-8
x
(2)12
28.(1)y=1
x
(2)点A的坐标(-0.5,-2)
(3)P1(1.5,-2), P2(-2.5,-2),P3(2.5,2).。