全等三角形教学案

合集下载

全等三角形教案(教学设计)

全等三角形教案(教学设计)

全等三角形【教学目标】1.知识技能:(1)了解全等形及全等三角形的概念。

(2)理解掌握全等三角形的性质。

(3)能够准确辩认全等三角形的对应元素。

2.过程与方法:(1)在图形变换以用操作的过程中发展空间观念,培养几何直觉。

(2)在观察发现生活中的全等形和实际操作中获得全等三角形的体验。

3.情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。

【教学重难点】1.全等三角形的性质。

2.找全等三角形的对应边、对应角。

【教学过程】引入新课:师:同学们好。

十一单元的学习我们认识了三角形,掌握三角形的边,角的关系,角平分线等。

这节课我们开始学习全等三角形。

出示学习目标。

新知介绍。

一、提出问题,创设情境。

师:下列的图形有什么特点。

(1)(2)(3)生:这几个图形是两两完全重合的。

师:那同学们能举出现实生活中能够完全重合的图形的例子吗?生:同一张底片洗出的同大小照片是能够完全重合的。

移动或折叠后可以得到完全重合的图形。

板书:形状与大小都完全相同的两个图形就是全等形。

师:请观察下面两组图形,它们是不是全等图形有?为什么,与同伴进行交流。

(1)形状相同,但大小不同。

(2)大小相同,但形状不同。

生:全等图形的特征:全等图形的形状和大小都相同。

师:全等形包括规则图形和不规则图形全等。

二、获取概念。

学生自己动手(同桌两名同学配合):取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。

让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。

能够完全重合的两个三角形,叫全等三角形。

(1)“全等”用符号“≌”来表示,读作“全等于”。

(2)记作:△ABC≌△DEF,读作:△ABC全等于△DEF。

(3)互相重合的顶点叫做对应顶点。

A D;B E;C F。

(4)互相重合的边叫做对应边。

AB与DE;BC与EF;AC与DF。

(5)互相重合的角叫做对应角。

三角形全等判定的教案

三角形全等判定的教案
2
画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?

《全等三角形》说课稿(通用4篇)

《全等三角形》说课稿(通用4篇)

《全等三角形》说课稿(通用4篇)《全等三角形》篇1教师在吃透教材、简析教材内容、教学目的、教学重点、难点的基础上,遵循整体构思、融为一体、综合论述的原则,分块写清,分步阐述教学内容,以进一步提高教学效果。

下面是由小编为大家带来的关于《全等三角形》说课稿,希望能够帮到您!尊敬的各位评委老师:大家好!今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》。

下面,我将从教材分析、教学方法、教学过程等几个方面对本课的设计进行说明。

一、说教材全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。

本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。

本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。

通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

二、说学情学生在小学阶段已经学习了三角形的性质和类型,已经知道三角形可以分为锐角三角形、钝角三角形和直角三角形,但是对于全等三角形这一特殊的三角形却还是一个新的知识点。

三角形是最基本的几何图形之一,它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。

学生对于研究它的全等的判定有着足够的感知经验,但是也存在着以下困难:全等三角形的判定对于学生的识图能力和逻辑思维能力是一个挑战,特别是学生的逻辑思维能力,在此之前,学生所接触的逻辑判断中直观多余抽象,用自己的语言表述多于用数学语言表述。

所以,怎样引导学生发挥认知和操作方面的经验,为掌握规范和有效的数学思维方式服务将是学习本节内容的关键。

三、说教学目标本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。

根据课程标准,确定本节课的教学目标如下:1.知识目标:(1)理解全等三角形的概念。

全等三角形数学教案优秀5篇

全等三角形数学教案优秀5篇

全等三角形数学教案优秀5篇更多全等三角形数学教案资料,在搜索框搜索全等三角形数学教案篇1教学目标一、学问与技能1、了解全等形和全等三角形的概念,把握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并把握全等三角形的对应边相等,对应角相等。

教学难点正确查找全等三角形的对应元素。

教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以查找全等三角形的对应点、对应边、对应角。

课前预备:老师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:老师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义象这样的图片,样子和大小都相同。

你还能说一说自己身边还有哪些样子和大小都相同的图形吗?[学生举例,集体评析] 动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]命名:给这样的图形起个名称————全等形。

[板书:全等形] 刚才大家所举的各种各样的样子大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

(三)全等三角形的定义动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。

初二数学全等三角形教案(五篇)

初二数学全等三角形教案(五篇)

初二数学全等三角形教案〔五篇〕初二数学全等三角形教案篇一1.定义:能够的两个三角形叫全等三角形。

2.全等三角形的性质,全等三角形的判定方法见下表。

一。

挖掘“隐含条件〞判全等如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)1.如图AB=CD,AC=BD,那么△ABC≌△DCB吗?说说理由。

变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD2.如图点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.假设∠B=20°,CD=5cm,那么∠CD的度数与BE的长。

3.如图假设OB=OD,∠A=∠C,假设AB=3cm,求CD的长。

变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD 二。

添条件判全等1.如图,AD平分∠BAC,要使△ABD≌△ACD,根据“SAS〞需要添加条件;根据“ASA〞需要添加条件;根据“AAS〞需要添加条件。

2.AB//DE,且AB=DE,(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是。

三。

熟练转化“间接条件〞判全等1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?3.“三月三,放风筝〞,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。

稳固练习:如图,在中,,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,那么∠A的度数。

4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D1.(2022攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。

所添条件为全等三角形是△≌△2.如图,AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE3.如图,AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L 的垂线,垂足分别为M、N(1)你能找到一对三角形的全等吗?并说明。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

《全等三角形》说课稿(通用4篇)

《全等三角形》说课稿(通用4篇)

《全等三角形》说课稿(通用4篇)《全等三角形》篇1教师在吃透教材、简析教材内容、教学目的、教学重点、难点的基础上,遵循整体构思、融为一体、综合论述的原则,分块写清,分步阐述教学内容,以进一步提高教学效果。

下面是由小编为大家带来的关于《全等三角形》说课稿,希望能够帮到您!尊敬的各位评委老师:大家好!今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》。

下面,我将从教材分析、教学方法、教学过程等几个方面对本课的设计进行说明。

一、说教材全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。

本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。

本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。

通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

二、说学情学生在小学阶段已经学习了三角形的性质和类型,已经知道三角形可以分为锐角三角形、钝角三角形和直角三角形,但是对于全等三角形这一特殊的三角形却还是一个新的知识点。

三角形是最基本的几何图形之一,它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。

学生对于研究它的全等的判定有着足够的感知经验,但是也存在着以下困难:全等三角形的判定对于学生的识图能力和逻辑思维能力是一个挑战,特别是学生的逻辑思维能力,在此之前,学生所接触的逻辑判断中直观多余抽象,用自己的语言表述多于用数学语言表述。

所以,怎样引导学生发挥认知和操作方面的经验,为掌握规范和有效的数学思维方式服务将是学习本节内容的关键。

三、说教学目标本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。

根据课程标准,确定本节课的教学目标如下:1.知识目标:(1)理解全等三角形的概念。

全等三角形教案(精选3篇)

全等三角形教案(精选3篇)

全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。

应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。

(3)、此公理与前面学过的公理区别与联系。

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。

重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。

难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。

用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。

应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

全等三角形教案(5篇)

全等三角形教案(5篇)

全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。

3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。

(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。

至于D,由于AD 和BC是对应边,因此AD=BC。

C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

《全等三角形》教案

《全等三角形》教案

《全等三角形》教案全等三角形教案教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程Ⅰ.提出问题,创设情境1、问题:你能发现这两个三角形有什么美妙的关系吗?这两个三角形是完全重合的.2.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.3.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.形状与大小都完全相同的两个图形就是全等形.要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求.Ⅱ.导入新课将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.议一议:各图中的两个三角形全等吗?不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.(注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D 是对应顶点,•所以C和B重合,A和D重合.∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.解:对应角为∠BAE和∠CAD.对应边为AB与AC、AE与AD、BE与CD.[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC 与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.Ⅲ.课堂练习课本练习1.Ⅳ.课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是大家要重点掌握的.找对应元素的常用方法有两种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.Ⅴ.作业课本习题11.11、2、3板书设计§11.1全等三角形一、概念二、全等三角形的性质三、性质应用例1:(运动角度看问题)例2:(根据位置来推理)例3:(根据位置和运动角度两种办法来推理)四、小结:找对应元素的方法运动法:翻折、旋转、平移.位置法:对应角→对应边,对应边→对应角.。

全等三角形教案【7篇】

全等三角形教案【7篇】

全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。

那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。

数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点正确寻找全等三角形的对应元素。

教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义象这样的图片,形状和大小都相同。

你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。

[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

全等三角形教学设计教案

全等三角形教学设计教案

全等三角形教学设计教案这是全等三角形教学设计教案,是优秀的数学教案文章,供老师家长们参考学习。

全等三角形教学设计教案第1篇一、教学目标【知识与技能】了解全等形和全等三角形的概念,掌握全等三角形的性质,能用符号正确表示两个三角形全等,能找出全等三角形的对应元素。

【过程与方法】在图形变换以及实际操作的过程中发展学生的空间观念,提高几何直觉和识图能力。

【情感态度与价值观】通过自主学习的发展体验获取数学知识的感受,提高勇于创新,多方位审视问题的创造技巧。

二、教学重难点【重点】全等三角形的概念、性质及对应元素的确定。

【难点】全等三角形对应元素的识别。

三、教学过程(一)导入新课欣赏一组图片,提出问题提问1:你能从图中找出形状和大小都相同的图形吗?其中一个图形是另一个图形如何变化而来?他们能完全重合吗?你能列举出一些类似的例子吗?(二)生成新知由上图形成全等的概念:形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等三角形。

多媒体演示三中全等变换(全等、翻折、旋转)并提出问题:平移、翻折、旋转前后得到的三角形全等吗?接下来学生小组活动:多媒体投影要求:请你用事前准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;在练习本上画出这些图形,标上字母,并在小组内交流;指出这些图形中的对应顶点、对应边、对应角。

多媒体展示学生可能得到的图形,寻找对应元素有什么方法和规律吗?学生思考交流后师生共同总结归纳、板书。

提问:全等三角形的对应边、对应角有什么数量关系?(三)应用新知(1)写出其他对应边及对应角;(2)求线段NM及线段HG 的长度。

(四)小结作业小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?作业:想一想,生活中还有哪些事物是全等的?四、板书设计《全等三角形》教案五、教学反思全等三角形教学设计教案第2篇教学任务分析教学目标1、知道什么是全等形,全等三角形以及全等三角形对应的元素;2、能用符号正确地表示两个三角形全等;3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。

《全等三角形》教学设计

《全等三角形》教学设计

《全等三角形》教学设计教学设计:全等三角形一、教学目标1. 知识目标:学生能够了解全等三角形的定义、性质以及判定全等三角形的方法;2. 能力目标:培养学生的逻辑思维能力和问题解决能力;3. 情感目标:激发学生对几何知识的兴趣,培养学生的数学学习兴趣和学习动力。

二、教学重点难点1. 教学重点:全等三角形的定义、性质以及判定方法;2. 教学难点:全等三角形的判定方法及其应用。

四、教学过程1. 导入:通过一个具体的生活例子引入全等三角形的概念,引发学生对全等三角形的兴趣。

2. 提出问题:通过提出问题的方式,引导学生思考全等三角形的性质和判定方法。

3. 学习新知识:介绍全等三角形的定义和性质,让学生理解全等三角形的概念。

4. 深化理解:通过实例演示,让学生了解全等三角形的判定方法。

5. 拓展应用:通过实际问题,引导学生应用全等三角形的知识解决问题。

6. 练习巩固:布置一些练习题,巩固学生对全等三角形的理解和运用能力。

7. 总结提高:总结全等三角形的知识点,强调全等三角形在实际生活中的应用,并提出下节课的预习内容。

五、教学手段1. 教师讲解2. 多媒体教学3. 实例演示4. 学生讨论5. 课堂练习六、教学评价1. 课堂表现评价:观察学生在课堂上的积极参与情况和答题情况。

2. 作业评价:批改学生的作业,了解学生对全等三角形知识的掌握情况。

3. 能力评价:通过课堂练习和课后练习,评估学生运用全等三角形知识解决问题的能力。

七、教学反思通过本次教学设计,希望能够让学生对全等三角形的概念和性质有所了解,并能够掌握全等三角形的判定方法和应用。

在教学过程中,需要注重引导学生思考和讨论,培养学生的逻辑思维能力和问题解决能力。

也要关注学生的学习情况,及时调整教学策略,确保教学效果。

第12章《全等三角形》全章教案(11页,含反思)

第12章《全等三角形》全章教案(11页,含反思)

第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。

数学全等三角形教学设计教案

数学全等三角形教学设计教案

数学全等三角形教学设计教案经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。

全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。

全等三角形是几何中全等之一。

下面是整理的数学全等三角形教学设计教案【最新3篇】,倘若对您有一些参考与帮忙,请共享给最好的伙伴。

数学全等三角形教案篇一一、教学目标【学问与技能】把握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。

能运用全等三角形的条件,解决简单的推理证明问题。

【过程与方法】经过探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

【情感、态度与价值观】在探究归纳论证的过程中,体会数学的严谨性,体验成功的欢乐。

二、教学重难点【教学重点】“角角边”三角形全等的探究。

【教学难点】将三角形“角边角”全等条件转化成“角角边”全等条件。

三、教学过程(一)引入新课利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)(四)小结作业提问:今日有什么收获?还有什么疑问?课后作业:书后相关练习题。

数学全等三角形教案篇二全等三角形课题:全等三角形教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、本领目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析本领;(2)通过找出全等三角形的对应元素,培育同学的识图本领。

3、情感目标:(1)通过感受全等三角形的对应美激发同学酷爱科学勇于探究的精神;(2)通过自主学习的进展体验取得数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么巧妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

全等三角形教案六篇

全等三角形教案六篇

全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。

同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。

二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。

因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。

《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。

为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。

2.方法与过程:争论、引导教学法。

3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。

三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。

第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。

全等三角形的定义:两个能够重合的三角形称为全等三角形。

全等三角形的性质:全等三角形的对应边、对应角相等。

活动目的:回忆前面学习过的学问,为探究新学问作预备。

全等三角形教案【优秀7篇】

全等三角形教案【优秀7篇】

全等三角形教案【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!全等三角形教案【优秀7篇】在教学工作者开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形全等的判定(SAS)
一,学习目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等;
(3)通过观察几何图形,培养学生的识图能力。

教学重点:学会运用边角边公理证明两个三角形全等。

教学难点:SAS公理的灵活运用。

二,知识回顾与梳理
(1)通过P69作图你得到的结论是
判定1:()(边角边判定)应用格式:()
强调:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)
三,典型例题:
1、如图,OA=OC,OD=OB.求证:∠A=∠C.
2、如图所示,在△ABC中,已知AB=AC,延长AB到D,使BD=AB,延长AC到E,使CE=AC,连结CD、BE,求证:CD=BE.
3、如图,已知AB =AC ,AD =AE ,∠1=∠2,BE 与CD 相等吗?为什么?
4、如图,已知点A 、B 、C 、D 在同一条直线上,AB=CD ,∠D=∠ECA ,EC=FD ,求证:AE=BF .
四,巩固练习:
1. 如图,AB =DB ,BC =BE ,∠1=∠2,证明:△ABE ≌△DBC
2.如图,已知点E 、F 在BC 上,且BE =CF ,AB =CD ,∠B =∠C ,证明:AF =DE
E
C D A B
1 2
三角形全等的判定(AAS 和ASA )
一,学习目标:
(1)熟记角角边公理和角边角公理的内容;
(2)能应用角角边公理和角边角公理证明两个三角形全等; (3)通过观察几何图形,培养学生的识图能力。

教学重点:学会运用边角边公理证明两个三角形全等。

教学难点:AAS 和ASA 公理的灵活运用。

二,知识回顾与梳理
1, 有________和其夹边对应相等的两个三角形全等.简写成“______”或“ASA ” 有______和_______对应相等的两个三角形全等.简写成“角角边”或“AAS ”
2,通常写成下面的格式: 在△ABC 与△DEF 中,
∵B E BC EF C F ∠=∠⎧⎪
=⎨⎪∠=∠⎩
∴△ABC ≌△DEF (ASA ) 三,典型例题:
1,找出图中的全等三角形,写出表示他们全等的式子,并说明理由.
2. 如右图,O 是AB 的中点,∠A =∠B
问题1:△ABC 和△ADC 全等吗? 问题2:它们已经有了哪些元素对应相等?
问题3:若将题中的∠A =∠B 改为∠C =∠D ,其他条件不变,你
还能得到△AOC ≌△BOD 吗?
3. 如图 ,AB =AC ,∠B =∠C ,
问题1:试说明△ABE ≌△ACD 全等.
问题2:如果将上题中的AB =AC 改为AD =AE ,其他条件不变,你能说明AB =AC 吗?
4.如图,AE AC =,E C ∠=∠,21∠=∠. 求证:ABC ∆≌ADE ∆.
四,巩固练习
1. 如图,已知∠1=∠2,∠3=∠4,证明:AB=CD
2. 如图,点CF 在BE 上,∠A=∠D ,AC ∥DF ,BF=EC ;求证:AB=DE
.34
21D C
B A
3. 如图,已知21∠=∠,43∠=∠ 求证:BE BD =
三角形全等的判定(SSS )
一,学习目标:
1、掌握用SSS 的方法证明两个三角形全等,利用全等证明线段相等与平行;
2、掌握尺规作图:已知三边作三角形;
3、熟练掌握证明三角形全等时的书写格式; 重点:通过尺规作图使学生得到技能的训练; 难点:通过公理的初步应用,初步培养学生的逻辑 二,知识回顾与梳理
1, 三边对应相等的两个三角形 ,简写为“ ”或“ ”. 2,通常写成下面的格式: 在△ABC 和'''A B C ∆中,
∵''AB A B AC BC =⎧⎪
=⎨⎪=⎩
∴△ABC ≌ 三,典型例题:
1、如图,AB=CD ,AC=BD ,△ABC 和△DCB 是否全等?试说明理由。

2、如图,在四边形ABCD 中
AB=CD ,AD=BC ,求证:∠A= ∠C
3、如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC
四,巩固练习:
1.如图,,,,AF CD AB ED EF BC ABC CEF ===∆≅∆那么的理由是__________
2.如图,若OA=OB,AC=BC,∠ACO=30O ,则∠ACB=________.
3.如图,已知B 、D 为AE 上的两点,AD=BE,AC=DF,BC=EF,则下列说法中错误的是( )
A. AC ∥DF
B.∠C=∠F
C. BC ∥EF
D.∠A=∠E C F A
O C
B
(第6题图) A D B E (第7题图) 4.如图,在ΔABC 和ΔDCB 中,AC 与BD 相交于点O , AB = DC ,AC = BD . (1)求证: ΔABC ≌ΔDCB ;(2) ΔOBC 的形状是 .试说明理由.
F
E D
C
B
A
5.如图,已知AC 、BD 相交于O,且AB=DC,AC=BD,能得到∠A=∠D 吗?为什么? A D
B
三角形全等复习
一、学习目标:
1、掌握三角形全等的判定方法,利用三角形全等进行证明,掌握综合法证明的格式.
2、能用尺规进行一些基本作图.能用三角形全等和角平分线的性质进行证明。

3、极度热情、高度责任、自动自发、享受成功。

教学重点:用三角形全等和角平分线的性质进行证明有关问题 教学难点: 灵活应用所学知识解决问题,精炼准确表达推理过程
二,知识回顾与梳理: 1、、本章知识结构梳理
三角形⎪⎪

⎪⎪⎪⎩
⎪⎪⎪⎪⎪

⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪
⎪⎪
⎨⎧⎩⎨⎧判定:(性质:(角的平分线直角三角形一般三角形)判定方法()性质:
()定义:(全等三角形定义
)2)1321 2、、方法指引
证明两个三角形全等的基本思路:
(1)已知两边__________)(____________)(__________)⎧⎪⎨⎪⎩
找第三边
(找夹角看是否是直角三角形
M
F E C B
A
(2)已知一边一角(_____)(_____)
(_____)(_____)(_____)⎧⎧⎪⎪
⎨⎪⎪⎪⎪⎩

⎧⎪
⎪⎪⎨⎪⎪⎪⎩⎩
找这边的另一邻角已知一边与邻角找这个角的另一边找这边的对角找一角已知一边与对角已知是直角,找一边 (3)已知两角______________)(______________)⎧⎪⎨
⎪⎩
找夹边
(找夹边外任意一边 三角形全等是证明线段相等、角相等最基本、最常用的方法
三,典型例题:
例题1、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MC
例题2、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD
当题目中有角平分线时,可通过构造等腰三角形或全等三角形来寻找解题思路,或利用角平分线性质去证线段相等
例题3、已知∠B=∠E=90°,CE=CB ,AB ∥CD. 求证:△ADC 是等腰三角形
E D
C A
B
4
3 2 1
E D C B
A G
F
E D
C
B
A
例题4、已知:如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,DB=DC , 求证:EB=FC
证明线段的和、差、倍、分问题时,常采用“割长”、“补短”等方法
例题5、如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,求证AB=AC+BD
提示:要证明两条线段的和与一条线段相等时常用的两种方法: (1)、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。

(割) (2)、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。

(补))
四,巩固练习:
1、如图:在△ABC 中,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 交AB 于E ,BC=30,BD :CD=3:2,则DE= 。

2、如图,已知E 在AB 上,∠1=∠2, ∠3=∠4,那么AC 等于AD 吗?为什么?
3、如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。

(只写出一种情况)①AB=AC ②DE=DF ③BE=CF 已知:EG ∥AF ,________,__________ A C
E B D
求证:_________
4、如图,在R△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H 交BC于F,BE∥AC交AF的延长线于E,
求证:BC垂直且平分DE.。

相关文档
最新文档