初一数学期末复习上3

合集下载

2022-2023学年京改版七年级上期末复习数学试卷含答案解析

2022-2023学年京改版七年级上期末复习数学试卷含答案解析

2022-2023学年北京课改新版七年级上册数学期末复习试卷一.选择题(共7小题,满分14分,每小题2分)1.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.2.通过严格实施低碳管理等措施,2022年北京冬奥会和冬残奥会全面实现了碳中和.根据测算,北京冬奥会三个赛区的场馆使用绿电4亿千瓦时,可以减少燃烧12.8万吨标准煤,减少排放二氧化碳32万吨,实现了“山林场馆、生态冬奥”的目标:其中的32万用科学记数法表示为()A.32×104B.3.2×104C.3.2×105D.3.2×1063.下列各组中的两个图形为全等形的是()A.两块三角尺B.两枚硬币C.两张A4纸D.两片枫树叶4.下面几何体中,由一个平面和一个曲面围成的是()A.圆锥B.正方体C.圆柱D.球5.下列运算中,正确的是()A.B.2a+3b=5abC.(﹣6)÷(﹣2)=﹣3D.﹣|﹣2|=﹣26.有理数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b<0B.|b|>2C.ab>0D.a﹣b>07.如图,点P是直线a外一点,过点P作PA⊥a于点A,在直线a上取一点B,连接PB,使PB=PA,C在线段AB上,连接PC.若PA=4,则线段PC的长不可能是()A.3.8B.4.9C.5.6D.5.9二.填空题(共8小题,满分24分,每小题3分)8.如果向东行走10m,记作10m,那么向西行走15m,应记作.9.已知x=2是关于x的方程3a=2(x+1)的解,则代数式﹣a2的值为.10.当时,﹣2x的值为正数;不等式3(x+1)≥5x﹣3的正整数解是.11.如图,直线AB、CD交于点O,CO⊥OE,OF是∠AOD的平分线,OG是∠EOB的平分线,∠AOC=44°,则∠FOG=.12.小明的存款是a元,小华的存款比小明存款的一半多2元,则小华的存款为元.13.小王同学在解方程4x﹣2=□x﹣5时,发现“□“处的数字模糊不清,但察看答案可知该方程的解为x =3,则□处的数字为.14.对任意有理数a,b,c,d,规定一种新运算:,已知,则x=.15.按一定规律排列的多项式:2x2﹣2y,4x3﹣3y,6x4﹣4y,8x5﹣5y,…,根据上述规律,则第n个多项式是.三.解答题(共11小题,满分60分)16.(5分)阅读下列材料:|x|=,即当x<0时,.用这个结论可以解决下面问题:(1)已知a、b是有理数,当ab≠0时,求的值;(2)已知a、b是有理数当abc≠0时,求+的值;(3)已知a、b、c是有理数,a+b+c=0,abc<0,求的值.17.(5分)计算(1)﹣17+(﹣6)+23﹣(﹣20);(2);(3);(4).18.(5分)解下列方程:(1)3x﹣2=4+5x;(2).19.(5分)解下列方程.(1)x+2(x+1)=8+x;(2)=﹣1.20.(5分)化简与求值:(1)化简;a2﹣2ab﹣3a2+6ab;(2)先化简,再求值:2(3x2y﹣xy2)﹣3(﹣xy2+3x2y),其中x=﹣2,y=3.21.(5分)按要求画图:(1)如图1,平面上有四个点A,B,C,D,按下列要求画出图形.①连接BD;②画直线AC交BD于点M;③画出线段CD的反向延长线;(2)有5个大小一样的正方形制成如图2所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注意:添加所有符合要求的正方形,添加的正方形用阴影和序号表示).22.(6分)按要求画图,并回答问题:如图,平面内有三个点A,B,C.根据下列语句画图:(1)画直线AB;(2)射线BC;(3)延长线段AC到点D,使得CD=AC;(4)通过画图、测量,点B 到点D 的距离约为 cm (精确到0.1);(5)通过画图、测量,点D 到直线AB 的最短距离约为 cm (精确到0.1).23.(6分)中国银行的个人所得税自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表:纳税级数个人每月应纳税所得额 纳税税率 1不超过1500元的部分 3% 2 超过1500元但不超过4500元的部分10%3 超过4500元但不超过9000元部分20% … … … (1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额为多少?24.(6分)如图,O 为AB 上一点,∠BOC =40°,OD 平分∠AOC ,∠DOE =90°,求∠AOE 的度数.25.(6分)已知线段AB 上有若干个不重合的点,求出该线段上任意两点所决定的线段长度(包括线段AB ),并记所有这些线段的长度总和为αAB .例如:图1中,AB =12,C 为AB 的中点,则αAB =AB +AC +CB =12+6+6=24.(1)如图2,线段AB 上有C 、D 两点,其中AB =12,AC :CD :DB =1:2:3,求αAB ;(2)如图3,线段AB 上有C 、D 、E 三点,其中C 为AB 的中点,E 为DB 的中点,且CE =4,αAB =64,求AB 的长度;(3)线段AB 上有C 、D 两点,线段上任意两点所决定的线段长度是整数,若αAB =38,且CD 的长度为奇数,直接写出AB 的长度.26.(6分)如图1,点A、B分别在数轴原点O的左右两侧,且OA=OB,点B对应的数是10.(1)求A点对应的数.(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为4个单位长度/秒、2个单位长度/秒,点P向左运动,速度为5个单位长度/秒.设它们运动时间为t秒,当点P是MN的中点时,求t的值.参考答案解析一.选择题(共7小题,满分14分,每小题2分)1.解:﹣﹣(﹣)==﹣.故选:A.2.解:32万=320000=3.2×105.故选:C.3.解:A、两块三角尺不一定是全等形,故此选项不合题意;B、两枚硬币不一定是全等形,故此选项不合题意;C、两张A4纸是全等形,故此选项符合题意;D、两片枫树叶不一定是全等形,故此选项不合题意;故选:C.4.解:A.因为圆锥是由1个平面和1个曲面围成,故A选项符合题意;B.因为正方体是由6个平面围成,故B选项不符合题意;C.因为圆柱是由2个平面和1个曲面围成,故C选项不符合题意;D.因为球体是1个曲面围成,故D选项不符合题意.故选:A.5.解:A.()3=,故A不符合题意;B.2a与3b不能合并,故B不符合题意;C.(﹣6)÷(﹣2)=3,故C不符合题意;D.﹣|﹣2|=﹣2,故D符合题意;故选:D.6.解:由题意:a=﹣1<0,b=2.5>0,|b|>|a|,∴ab<0,a+b>0,a﹣b<0,|b|>2•,故选:B.7.解:∵过点P作PA⊥a于点A,在直线a上取一点B,连接PB,使PB=PA,C在线段AB上,连接PC.若PA=4,∴PB=6,∴4≤PC≤6,故PC不可能是3.8,故选:A.二.填空题(共8小题,满分24分,每小题3分)8.解:如果向东行走10m,记作10m,那么向西行走15m,应记作﹣15m.故答案为:﹣15m.9.解:将x=2代入3a=2(x+1),∴3a=2×3,∴a=2,∴原式=﹣4=,故答案为:10.解:﹣2x>0,x<0;3(x+1)≥5x﹣3,3x+3≥5x﹣3,3x﹣5x≥﹣3﹣3,﹣2x≥﹣6,x≤3;∴不等式3(x+1)≥5x﹣3的正整数解是1,2,3.故答案为:x<0;1,2,3.11.解:∵CO⊥OE,∴∠COE=90°.∴∠EOB=180°﹣∠AOC﹣∠COE=46°.又∵OG是∠EOB的平分线,∴∠BOG==23°.∵∠AOC=44°,∴∠AOD=180°﹣∠AOC=136°.又∵OF是∠AOD的平分线,∴∠AOF==68°.∴∠BOF=180°﹣∠AOF=112°.∴∠FOG=∠FOB+∠BOG=112°+23°=135°.12.解:依题意得,小华存款:a+2.故答案为:a+2.13.解:设“□”处的数字为a,把x=3代入方程,得4×3﹣2=3a﹣5,解得:a=5,则“□”处的数字为5.故答案为:5.14.解:∵,∴x•(﹣1)﹣2×3=2,∴﹣x﹣6=2,∴﹣x=2+6,∴﹣x=8,∴x=﹣8,故答案为:﹣8.15.解:∵2x2﹣2y,4x3﹣3y,6x4﹣4y,8x5﹣5y,…,∴第n个多项式为2n•x n+1﹣(n+1)y,故答案为:2n•x n+1﹣(n+1)y.三.解答题(共11小题,满分60分)16.解:(1)①当a>0,b>0时,==1+1=2;②当a<0,b<0时,==﹣1﹣1=﹣2;当a>,b<0时,==1﹣1=0;当a<0,b>0时,==﹣1+1=0;综上,当ab≠0时,的值为2或﹣2或0;(2)当a>0,b>0,c>0时,+==1+1+1=3;当a<0,b<0,c<0时,+==﹣1﹣1﹣1=﹣3;当a,b,c中两正一负时,+=1,当a,b,c中两负一正时,+=﹣1,综上,当abc≠0时,+的值为3或﹣3或1或﹣1;(3)∵a+b+c=0,∴b+c=﹣a,a+c=﹣b,a+b=﹣c,∴==﹣().∵abc<0,∴a,b,c中两正一负,当a,b,c中两正一负时,∵+=1,∴原式=﹣()=﹣1.∴的值为﹣1.17.解:(1)﹣17+(﹣6)+23﹣(﹣20)=﹣17﹣6+23+20=20;(2)=﹣60×﹣60×+60×+60×=﹣45﹣50+44+35=﹣16;(3)=(﹣50+)×(﹣8)=﹣50×(﹣8)+×(﹣8)=400﹣=399;(4)=(1.75﹣1.75)+(3+2)﹣6=0+6﹣6=﹣.18.解:(1)移项得:3x﹣5x=4+2,合并得:﹣2x=6,解得:x=﹣3;(2)去分母得:2(2x﹣1)﹣(10x+1)=12,去括号得:4x﹣2﹣10x﹣1=12,移项得:4x﹣10x=12+2+1,合并得:﹣6x=15,解得:x=﹣2.5.19.解:(1)x+2(x+1)=8+x,去括号,得,移项,得,合并同类项,得2x=6,系数化成1,得x=3;(2)=﹣1,去分母,得3(1﹣x)=2(4x﹣1)﹣6,去括号,得3﹣3x=8x﹣2﹣6,移项,得﹣3x﹣8x=﹣2﹣6﹣3,合并同类项,得﹣11x=﹣11,系数化成1,得x=1.20.解:(1)a2﹣2ab﹣3a2+6ab=(a2﹣3a2)+(﹣2ab+6ab)=﹣2a2+4ab;(2)2(3x2y﹣xy2)﹣3(﹣xy2+3x2y)=6x2y﹣2xy2+3xy2﹣9x2y=﹣3x2y+xy2,当x=﹣2,y=3时,原式=﹣3×(﹣2)2×3+(﹣2)×9=﹣36﹣18=﹣54.21.解:(1)如图1中,线段BD,直线AC,射线DC即为所求作.(2)如图2中,有四种情形.22.解:(1)如图,直线AB即为所求;(2)如图,射线BC即为所求;(3)如图,线段CD即为所求;(4)通过画图、测量,点B到点D的距离约为3.1cm;(5)通过画图、测量,点D到直线AB的最短距离约为3.1cm.23.解:(1)(4000﹣3500)×3%=500×3%=15(元),1500×3%+(6000﹣3500﹣1500)×10%=45+1000×10%=45+100=145(元).答:甲每月应缴纳的个人所得税为15元;乙每月应缴纳的个人所得税为145元.(2)若丙每月工资收入额为1500+3500=5000(元),则每月应缴税:1500×3%=45(元).45<95<145,则丙的纳税级数为2.设丙每月的工资收入额应为y元,则45+(y﹣3500﹣1500)×10%=95,解得y=5500.答:丙每月的工资收入额应为5500元.24.解:∵O为AB上一点,∠BOC=40°,∴∠AOC=180°﹣40°=140°∵OD平分∠AOC∴∠AOD=∠AOC=70°又∵∠DOE=90°∴∠AOE=20°25.解:(1)∵AB=12,AC:CD:DB=1:2:3,∴AC=2,CD=4,DB=6,∴AD=AC+CD=2+4=6,BC=CD+BD=4+6=10,∴αAB=AC+CD+DB+AD+CB+AB=2+4+6+6+10+12=40;(2)设BE=x,∵E是DB的中点,∴DE=EB=x,∴DB=2x,CD=CE﹣DE=4﹣x,∵C为AB的中点,∴AC=BC=CD+DE+EB=(4﹣x)+x+x=4+x,∴AB=2AC=8+2x,AD=AC+CD=(4+x)+(4﹣x)=8,∴AE=AD+DE=8+x,∵αAB=64,∴AC+CD+DE+EB+AD+AE+AB+CE+CB+DB=64,即(4+x)+(4﹣x)+x+x+8+(8+x)+(8+2x)+4+(4+x)+2x=64,解得x=3,∴AB=8+2x=14;(3)∵αAB=38,∴AC+CD+DB+AD+AB+CB=38,即3AB+CD=38,∴,∵CD是奇数,AB为正整数,∴CD=5,11,17,23,29,35,而CD<AB,∴满足条件的有CD=5,∴AB=11.26.解:(1)∵点B对应的数是10,∴OB=10,∵OA=OB,∴OA=12.又∵点A在原点的左侧,∴点A对应的数为﹣12.(2)当运动时间为t秒时,点M对应的数为4t,点N对应的数为2t﹣12,点P对应的数为﹣5t+10,依题意,得:4t+2t﹣12=2(﹣5t+10),解得:t=2.答:当点P是MN的中点时,t的值为2.。

初中七年级数学上册期末专项复习4套含答案

初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020

② 1 1 1
1

13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)1.数轴是学习初中数学的一个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点A、点B表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为;AB=a﹣b线段AB的中点M表示的数为.如图,已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位长度的速度沿数轴向右匀速运动,点B以每秒2个单位长度向左匀速运动,设运动时间为t 秒(t>0).(1)运动开始前,A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A、B按上述方式运动,A、B两点经过多少秒,线段AB的中点M与原点重合?2.已知两点A、B在数轴上,AB=9,点A表示的数是a,且a与(﹣1)3互为相反数.(1)写出点B表示的数;(2)如图1,当点A、B位于原点O的同侧时,动点P、Q分别从点A、B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P、Q所表示的数;(3)如图2,当点A、B位于原点O的异侧时,动点P、Q分别从点A、B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当|OM﹣ON|=2时,求动点P、Q运动的速度.3.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).4.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.5.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:(1)动点Q从点C运动至点A需要秒;(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍(即P点运动的路程=Q点运动的路程).6.【阅读理解】点A、B在数轴上对应的数分别是a,b,且|a+2|+(b﹣8)2=0.A、B两点的中点表示的数为;当b>a时,A、B两点间的距离为AB=b﹣a.(1)求AB的长.(2)点C在数轴上对应的数为x,且x是方程2x+8=x﹣2的解,在数轴上是否存在点P,使PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.(3)点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒8个单位的速度向左运动,点N从点B出发,以每秒5个单位的速度向右运动,P、Q 分别为ME、ON的中点,求证:在运动过程中,的值不变,并求出这个值.7.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?8.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②x为何值时OM=2BN.9.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.10.已知,数轴上两点A,B表示的数分别是9和﹣6,动点P从点A出发,以每秒3个单位的速度沿数轴向点B运动,运动到点B停止;(1)在数轴上表示出A,B两点,并直接回答:线段AB的长度是;(2)若满足BP=2AP,求点P的运动时间;(3)在点P运动过程中,若点M为线段AP的中点,点N为线段BP的中点,请计算线段MN的长度,并说出线段MN与线段AB的数量关系;(4)若另一动点Q同时从B点出发,运动的速度是每秒2个单位,几秒钟后,线段PQ 长度等于5?参考答案1.解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示数为.故答案是:18;﹣1(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t.故答案是:﹣10+3t;8﹣2t(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度.根据题意得3x+2x=18﹣4,解得x=2.8;3x+2x=18+4,解得x=4.4.答:A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)由题意得解得t=2.答:经过2秒A、B两点的中点M会与原点重合.2.解:(1)∵a与(﹣1)3互为相反数∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示,②当点A、点B在原点的异侧时,点B所表示的数为1﹣9=﹣8,如图2所示,故点B所表示的数为10或﹣8;(2)当点A、B位于原点O的同侧时,点B表示的数是10设点Q的运动速度为x,则点P的速度为2x∵3秒后两动点相遇∴3(x+2x)=9解得:x=1∴点Q的运动速度为1,则点P的速度为2运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9解得:t=;∴点P表示的数为:1+2×=,点Q表示的数为:10﹣=;②相遇后,再运动y秒,P、Q两点相距2,由题意有:y+2y=2解得:y=∴点P表示的数为:1+3×2+×2=,点Q表示的数为:10﹣3×1﹣×1=;(3)根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度∴点Q的运动速度为:9÷5=1.8设点P的速度为v,∵|OM﹣ON|=2∴|9+1﹣(5v+1)|=2解得:v=或∴点P的速度为或.3.解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时,依题意列式,得3t+2t=18﹣4,解得t=2.8;当点A在点B右侧时,3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合,根据题意列方程,可得=0,解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点,由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.4.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.5.解:(1)点Q运动至点A时,所需时间t=(20﹣12)÷1+12÷2+12÷1=26(秒).答:动点Q从点C运动至点A需要26秒;(2)由题可知,P、Q两点相遇在线段OB上M处,设OM=x.则12÷2+x÷1=(20﹣12)÷1+(12﹣x)÷2,解得x=,12÷2+÷1=6+5=11.答:t的值是11,相遇点M所对应的数是.(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍有2种可能:①动点Q在OB上,动点P在BO上,相遇前,则:12+(t﹣12÷2)=[20﹣12+2(t﹣8÷1)],解得:t=.②动点Q在OA上,动点P在BC上,相遇后,则:12+12+2(t﹣18)=[8+12+(t﹣8÷1﹣12÷2)],解得:t=26.综上所述:当t为或26时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍.故答案为:26.6.(1)解:∵|a+2|+(b﹣8)2=0,∴a=﹣2,b=8,∴AB=8﹣(﹣2)=10;(2)解:2x+8=x﹣2,∴x=﹣10,∴C在数轴上对应的数为﹣10,设点P对应的数为y,由题意可知,点P不可能位于点A的左侧,所以存在以下两种情况:①点P在点B的右侧,∴(y﹣8)+[y﹣(﹣2)]=y﹣(﹣10),∴y=16,②当点P在A、B之间,∴(8﹣y)+[y﹣(﹣2)]=y﹣(﹣10),∴y=0,综上所述,点P对应的数是16或0;(3)证明:设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣8t,点N对应的数是8+5t,∵P是ME的中点,∴P点对应的数是=﹣1﹣t,又∵Q是ON的中点,∴Q点对应的数是=4+t,∴MN=(8+5t)﹣(﹣2﹣8t)=10+13t,OE=t,PQ=(4+t)﹣(﹣1﹣t)=5+6t,∴===2(定值).∴在运动过程中,的值不变,这个值是2.7.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.8.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.9.解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.10.解:(1)如图所示:线段AB的长度是9﹣(﹣6)=9+6=15,故答案为:15;(2)设AP=3t,则BP=6t,可得3t+6t=15,∴t=;(3)∵AP=3t,∴BP=15﹣3t,∵点M为线段AP的中点,点N为线段BP的中点,∴MP=AP=t,PN=(15﹣3t),则MN=MP+PN=t+(15﹣3t)=,∴MN=AB;(4)设BQ=2t,当Q在AB上时,①15﹣2t﹣3t=5,解得t=2;②2t+3t﹣15=5,解得t=4;当Q在AB外时,2t+(15﹣3t)=5,解得t=4;此时,点P不在线段AB外(舍去)综上所述,当2秒或4秒时,线段PQ的长度等于5.。

七年级(上)数学期末总复习

七年级(上)数学期末总复习
(1)单程花 20 分钟这一数据的频数最大 (2)小于20分钟的人数占总人数的40%
等于20分钟的人数占总人数的40% 大于20分钟的人数占总人数的20% (3)老师随机地问一个同学,最可能得到 的答案是20分钟.
课后练习 一、填空题 1.数一数,在图中,共有_2_2_条线段.
2.如图 ( 1 ) 如 果 AD//BC , 那 么 根 据两__直__线__平__行__同__位__角__相__等__ ,
例6.下面是某班30学生每天上学单程所到时间(分钟)
(1)在这个统计表中,单程花_______分钟这一数 据的频数最大.
(2)若把这些数据分成小于20分钟,等于20分钟, 和大于20分钟这三档,则各档人数各占总人数的多少.
(3)Байду номын сангаас如老师随机地问一个同学,你认为老师最可 能得到的答案是几分钟
答:
(2)线段、射线、直线等简单平面图形的有关概念,特 征和表示法,三者的区别和联系,及线段中点概念,和进 行有关的简单计算.
(3)角的有关概念.表示法,度、分、秒、间的 换算及简单的计算.会比较角的大小及分类.
(4)平行线,相交线,了解了有关平行线垂线 的特征及识别.
4.数据的收集 通过解决简单的实际问题,体会大千世界的 不确定性,熟悉收集,整理数据,学会根据 不同问题选择适当统计图描述数据得到较明 显的结论,理解频数、频率,不可能发生, 可能发生和必然发生的概念.
二、典型例题分析 例1.把下面各数填入表示它所在数集里.
-3,11, 2 ,0,2003,0.414,-0.618,-7% 5
解:
例2.有理数a、b、c在数轴上的位置如图所示: 化简|a+b|-|c-b|
解:由a、b、c在数轴上所处的 位置可知:a<0、b>0、c<0, 且|a|<|b|<|c|.a+b>0,c-b<0 所以|a+b|=a+b,|c-b|=b-c. |a+b|-|c-b|=a+b-(b-c)=a+c.

七年级数学期末总复习——第一章至第三章湘教版

七年级数学期末总复习——第一章至第三章湘教版

湘教版初一数学期末总复习——第一章至第三章一. 教学内容:期末总复习——第一章至第三章二. 重点、难点:重点:《有理数》一章的概念的理解,有理数大小的比较,有理数运算《代数式》一章的概念的理解与运用代数式的表示方法、列代数式、求代数式的值、去括号法则、一类代数式的加减、《图形欣赏与操作》这一章的概念及运用、简单几何体的对称性、三视图的画法、七巧板的拼摆。

难点:科学记数法,两负数的大小的比较、有理数的乘方与混合运算、用字母表示规律列代数式、去括号法则的运用、画三视图或通过立体图的三视图再去画立体图、拼七巧板、光源与投影的相关知识。

三. 教学知识要点:1. 第一章《有理数》知识网络的回忆①正数和负数可表示具有相反意义的量,假如向东走5米记为+5米,则向西走4米记作-4米,其中“+5米”与“-4米”是一对具有相反意义的量。

正数比0大,如4,6,19,π,……负数比0小,前面有一个“-”号,如-3,-7,-π,……0在此表示正数与负数的分界点,既不是正数,也不是负数。

②有理数分类⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧------⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧--- 08.523.15.0117542152.90.015.0001184531791980700131.a ,,,,,负分数,,,,,,正分数分数),,,负整数(如),,,,正整数(如整数有理数注意:分数中包含可以化成分数的小数。

无限不循环小数不可化成分数,它不包含在分数内,如π就是无限不循环小数,它不是分数,当然也不是整数,所以π不是有理数。

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧------⎪⎩⎪⎨⎧),,,负分数(),,,负整数(负有理数),,,正分数(),,,,正整数(正有理数有理数 08.277.04110152007.71.0215421.b③数轴是规定了原点、正方向、单位长度的直线。

所有有理数可用数轴上的点表示,但数轴上的点表示的数不一定是有理数。

课件期末复习学案[3]-整式及其加减北师大版七年级数学上册

课件期末复习学案[3]-整式及其加减北师大版七年级数学上册

31. 已知A=2a2+3ab-2a-1 ,B=-a2+ab-1. (1)求 3A+6B;
解: 因为A= 2a2+3ab-2a-1, B=-a2+ab-1, 所以3A+6B =3(2a2+3ab-2a-1)+6(-a2+ab-1)
=6a2+9ab-6a-3-6a2+6ab-6 =15ab-6a-9.
A. -ab2c的系数是-1,次数是4
B.
是整式
C. 6x2-3x+1的项是6x2,-3x,1
D. 2πR+πR2是三次二项式
16. 下列说法正确的是( D )
A.
是同类项
B. 与2x是同类项
C. -0.5x3y2与2x2y3是同类项
D. 5m2n与-2nm2是同类项
17. 下列计算正确的是(
8x-3 D.
.
(2)如果 3A+6B的值与a的值无关,求b的值.
(2)如果 3A+6B的值与a的值无关,求b的值.
考点1 用字母表示数(列代数式)
下列说法正确的是( )
为了贯彻“房住不炒”的要求,加快回笼资金,某市甲、乙、丙三家原售价相同的楼盘在年终前搞促销活动,甲楼盘售楼处打出在原
价基础上先降价15%,再降价15%;
原式=(-1)2+2×32=1+2×9=1+18=19.
2. 若一个正方形的边长为a,则这个正方形的周长 3(2x2-5x)-2(-3x-2+3x2),其中x=-3.
乙楼盘打出一次性降价30%; 已知代数式2x2+ax-y+6-2bx2+3x-5y-1的值与字母x的取值无关,求ab的值.

初一上册期末数学复习提纲-第三章一次方程与方程组

初一上册期末数学复习提纲-第三章一次方程与方程组

-----------3.1一元一次方程及其解法①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

方程的解代入满足,方程成立。

⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。

a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)--------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。

七年级上期数学期末总复习题

七年级上期数学期末总复习题

七年级数学上期期末总复习题一、选一选。

1、下列四个图中的线段(或直线、射线)能相交的是( )1()CDBA2()CD BA3()C D BA4()CDBAA.(1)B.(2)C.(3)D.(4) 2、下列图中角的表示方法正确的个数有( )A .1个B .2个C .3个 D .4个3、如图所示,要把角钢(1)弯成120°的钢架(2),则在直钢(1)截取的缺口是( )A .45°B .60°C .90°D .120°4、如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是( )5、一个几何体是由一些大小相同的小正方块摆成的,其俯视图、主视图如图所示,则组成这个几何体的小正方块最多..有( ) A. 4个 B. 5个 C. 6个 D. 7个图① 图② A B C D俯视图主视图6、已知线段AB=6厘米,在直线AB 上画线段AC=2厘米,则BC 的长是( ) A .8厘米 B .4厘米 C .8厘米或4厘米 D .不能确定7、如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )8、下列说法中正确的是( )A.若AP=21AB ,则P 是AB 的中点 B.若AB =2PB ,则P 是AB 的中点 C .若AP =PB ,则P 为AB 的中点 D.若AP =PB=21AB ,则P 是AB 的中点9、甲看乙的方向为北偏东30°,那么乙看甲的方向是( )A .南偏东60°B .南偏西60°C .南偏东30°D .南偏西30° 10、如右图,AB 、CD 交于点O ,∠AOE=90°,若∠AOC :∠COE=5:4,则∠AOD 等于 ( ) A .120° B .130°C .140°D .150°11、下列各组数中,不相等...的一组是 ( ) A .()23-与23- B .-23-与23- C . -33-与 33- D .()33- 与33-12、《广东省重点建设项目计划(草案)》显示,港珠澳大桥工程估算总726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元 D .117.2610⨯元 13、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米14、如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0 15、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A .0ab > B .0a b +< C .ba<0 D .0a b -< 16、下列运算正确的是( )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--17、已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )ab 0A B C DA .51x --B .51x +C .131x --D .131x +18、下列变形中,正确的是( )A 、若ac=bc ,那么a=b 。

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯苏科版七年级数学第一学期期末复习三一元一次方程一、选择题1. 在①2x+1;②1+7=15-8+1;③1- x=x-1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2. 下列方程是一元一次方程的是()A.-2=0B.2x=1C.x+2y=5D.-1=2x3.某制衣店现购买蓝色、黑色两种布料共138m,共花费540元.其中蓝色布料每米3元,黑色布料每米5元,两种布料各买多少米?设买蓝色布料x米,则依题意可列方程()A.3x+5(138-x)=540B.5x+3(138-x)=540C.3x+5(138+x)=540D.5x+3(138+x)=5404. 若关于x的一元一次方程m(x+4)-3m-x=5的解为x=3,则m的值是()A.-2B.2C.D.-5. 如果与互为倒数,那么x的值为()A.x=B.x=10C.x=-6D.x=6.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A. B.4 C.12 D.27. 方程|2x+1|=7的解是()A.x=3B.x=3或x=-3C.x=3或x=-4D.x=-48. 下列解方程过程正确的是()A.2x=1系数化为1,得x=2B.x-2=0解得x=2C.3x-2=2x-3移项得3x-2x=-3-2D.x-(3-2x)=2(x+1)去括号得x-3-2x=2x+19.解一元一次方程-2= - ,去分母正确的是()A.5(3x+1)-2=(3x-2)-2(2x+3)B.5(3x+1)-20=(3x-2)-2(2x+3)C.5(3x+1)-20=(3x-2)-(2x+3)D.5(3x+1)-20=3x-2-4x+610.某组织去乡村慰问留守儿童,为他们送去一些图书,每人分8本图书,还少5本,每人分7本图书,还多6本,则该村留守儿童有()A.10名B.11名C.12名D.13名11.一艘轮船在A、B两港口之间匀速行驶,顺水航行需要6h,逆水航行需要8h,水流速度为5km/h,则A、B两地之间的路程是()A.200kmB.240kmC.300kmD.320km12.一项工作,甲单独做要20天完成,乙独做要12天完成.若先由甲做若干天,然后由乙继续做完,从开始到完成共用14天,则这项工作由甲先做()天.A. B.5 C.4 D.613. 某市出租车收费标准是:起步价8元(即行驶距离不超过3km,付8元车费),超过3km,每增加1km收1.6元(不足1km按1km计),小梅从家到图书馆的路程为xkm,出租车车费为24元,那么x的值可能是()A.10B.13C.16D.18二、填空题14. 已知5+3=1是关于x的一元一次方程,则m=_____.15.x的3倍与4的和等于x的5倍与2的差,方程可列为_____.16. 某件商品,以原价的出售,现售价是300元,则原价是_____元.17. 有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是_____.18. 由3x=2x-1得3x-2x=-1,在此变形中,方程两边同时_____.19. 当x=_____时,代数式2x+1与5x-6的值互为相反数.20.已知关于x的方程2x+a=x-1的解和方程2x+4=x+1的解相同,则a=_____.21.若x=2是方程3x-4=-a的解,则+的值是_____.22.已知方程|2x-1|=2-x,那么方程的解是_____.23.某项工程,甲单独完成要12天,乙单独完成要18天,甲先做了7天后乙来支援,由甲乙合作完成剩下的工程,则甲共做了_____天.24.小张有三种邮票共18枚,它们的数量之比为1:2:3,则最多的一种邮票有_____枚.三、解答题25. 解方程:(1)2x+3=11-6x;(2)(3x-6)=x-3.26. 已知代数式M=3(a-2b)-(b+2a).(1)化简M;(2)如果(a+1)+4-3=0是关于x的一元一次方程,求M的值.27.列方程解应用题:某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为200元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?28. 列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服.下面是某服装厂给出的运动服价格表:购买服装数量(套)1~3536~6061及61以上每套服装价格(元)605040已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元.问七年级一班和七年级二班各有学生多少人?29. (2分)已知点A在数轴上对应的数为a,点B对应的数为b,且(a+4+|b-11|=0,G为线段AB上一点,M,N两点分别从G,B点沿BA方向同时运动,设M点的运动速度为1cm/s,N点的运动速度为2cm/s,运动时间为ts.(1)A点对应的数为_____,B点对应的数为_____;(2)若AB=2AG,试求t为多少s时,M,N两点的距离为2.5cm;(3)若AB=mAG,点H为数轴上任意一点,且AH-BH=GH,请直接写出的值.期末复习三答案1、B2、B3、A4、B5、B6、B7、C8、 B9、B10、B11、B12、B13、B14、-115、3x+4=5x-216、37517、设这三个数中的第⼀个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-8118、减2X519、720、2x+4=x+1, 2x-x=1-4, x=-3,把x=-3代入解得:a=1021、-222、解:由|2x-1|=2-x,可得:2-x=±(2x-1),当2-x=2x-1,解得:x=1,当2-x=-2x+1,解得:x=-1,所以方程的解为x=±123、1024、解:设数量最少的邮票有x枚,则另两种分别有2x枚和3x枚,依题意,得:x+2x+3x=18,解得:x=3,∴3x=9故答案为:925、(1)2x+3=11-6x,移项,得2x+6x=11-3,合并同类项,得8x=8,系数化1,得x=127、(1)设第⼀季度甲种冰箱销量为x台,根据题意得:(1+10%)x+(1+20%)(x+40)=554解之得:x=220答:第⼀季度甲种冰箱的销量为220台.(2)第⼀季度甲种冰箱的利润为:220×(1+10%)×200=48400(元)第⼀季度⼀种冰箱的利润为:(220+40)×(1+20%)×300=93600(元)所以第⼀季度的总利润为48400+93600=142000(元)28、解:∵67×60=4020(元),4020>3650,∴⼀定有⼀个班的人数大于35人.设大于35人的班有学生x人,则另⼀班有学生(67-x)⼀,依题意,得:50x+60(67-x)=3650,解得:x=37,∴67-x=3029、解:(1)∵(a+4)2+|b-11|=0,∴a+4=0,b-11=0,∴a=-4,b=11,故答案为:-4;11;∴M点对应的数为:3.5-t,N点对应的数为11-2t,∴MN=|(3.5-t)-(11-2t)|=|t-7.5|=2.5,∴t=5或10,答:t为5或10s时,M,N两点的距离为2.5cm(3)①当H在A与B之间时,若H点不在G点左边,如图,∵AH-BH=GH,∴AG+GH-BG+GH=GH,∴AG-BG+GH=0,∴AG-AB+AG+GH=0,∵AB=mAG,∴GH=(m-2)AG若H点在G点左边,如图,∵AH-BH=GH,∴AG-GH-BG-GH=GH,∴AG-BG-3GH=0,∴AG-AB+AG-3GH=0,∵AB=mAG,②当H与B重合时,则BH=0,∵AH-BH=GH,∴AH=GH,即A与G重合,∵AB=mAG=0,与已知AB=15相⼀盾,不合题意,应舍去;③当H在AB的延长线上时,∵AH-BH=GH,∴AB=GH,此时G与B重合一天,毕达哥拉斯应邀到朋友家做客。

初一上册数学期末必备复习资料大全

初一上册数学期末必备复习资料大全

初一上册数学期末必备复习资料大全复习的好处很多,不仅可以关怀我们把学问把握的牢固,还可以弥补课堂上理解不好的问题。

下面是我为大家整理的关于初一上册数学期末必备复习资料,希望对您有所关怀!初一数学上册学问的复习一、代数初步学问。

1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个留意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成的形式;(6)a与b的差写作a-b,要留意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.二、几个重要的代数式(m、n表示整数)。

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.三、有理数。

1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不愿定是负数,+a也不愿定是正数;π不是有理数;(2)有理数的分类:①②(3)留意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;4.确定值:(1)正数的确定值是其本身,0的确定值是0,负数的确定值是它的相反数;留意:确定值的意义是数轴上表示某数的点离开原点的距离;(2)确定值可表示为:初一上册学问点确定值的问题经常分类商议;(3)|a|是重要的非负数,即|a|≥0;留意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的确定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,确定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.四、有理数法则及运算规律。

七年级数学上学期期末复习计划(通用15篇)

七年级数学上学期期末复习计划(通用15篇)

七年级数学上学期期末复习计划七年级数学上学期期末复习计划(通用15篇)为了确保工作或事情能有条不紊地开展,通常需要预先制定一份完整的计划,计划是阐明具体行动的时间,地点,目的,预期效果,预算及方法等的企划案。

优秀的计划都具备一些什么特点呢?下面是小编精心整理的七年级数学上学期期末复习计划,欢迎大家分享。

七年级数学上学期期末复习计划篇1复习是巩固已学知识,拓展新知识的必要手段,做好期末复习工作能使学生全面系统掌握基础知识,提高基本技能,开展学生的智力。

复习阶段做到有条不紊复习,按部就班地推进,知识在学生头脑中更系统化、完整化,从而更好地应用知识,提高学习质量。

做好全面复习工作要有周密的计划,这样才能在最短时间内,更好更多地掌握知识,提高能力。

为此,在复习之前做出本学期的期末复习计划。

一、指导思想1、把握新课标“以人为本”的基本思想,培养全面发展的人,提高学生的全面素质,掌握初中数学基础知识,切实提高学生的分析和解决问题的能力,运用教材编写的基本思路,系统地复习基础知识,同时不断整合知识体系,查缺补漏,不断完善,不断补充,使学生全面系统地掌握基本知识,提高知识运用能力。

2、“依人把本”的原则:复习要根据学生的现状,紧紧把握教材,把握新课标。

复习不能离开教材,要完整整合教材内容,形成系统的知识体系,由浅入深,由易到难,循序渐进,让学生不断积累与深化。

要认真分析学生心理和学生的学习现状,利用心理激励效应,让学生主动积极地投入到复习中,同时,要采用适当有效的复习方法,真正提高学生的学习成绩和智力。

3、“分层对待,梯次递进“的原则,考虑学生的现状,对不同程度的学生确立不同程度的目标,让每位学生都有复习的层次性目标,逐步实现一级一级的目标,这样所有的学生都能提高。

4、“重基础,提能力”的原则,抓住数学基础知识,注重能力的提高。

复习不仅是一个整合知识、储备的过程,也是提高知识量,实现知识与能力的转化过程,在复习过程中,一定要注重基础,基础是“万木之根”,一切复习都要围绕基础进行。

人教版七年级上册数学期末综合复习解答题专题训练(含答案)

人教版七年级上册数学期末综合复习解答题专题训练(含答案)

人教版七年级上册数学期末综合复习解答题专题训练一、有理数的计算:1.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9).(2).(3).(4)﹣24+3×(﹣1)6﹣(﹣2)3.2.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)3.计算(1);(2);(3);(4).4.为庆祝端午节,和平加油站开展了加油每满10L返现金5元(不足10L不返现金)的活动.出租车司机王师傅只在东西走向的路上开车接送乘客,他7:00从甲地出发(向东行驶的里程数记作正数),到8:00为止,他所行驶的里程记录如下(单位:公里)+4,﹣3,﹣6,+13,﹣10,﹣4,+5.(1)计算到8:00时,王司机在甲地的哪个方向,距甲地多远?(2)若王师傅当日工作10小时,每小时行驶的里程相同,该车每百公里耗油6L,每升油5元,则王师傅当日在该加油站加油共花费多少元?5.已知13=1=×12×22,13+23=9=×22×32,13+23+33=36=×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53==×2×2.(2)猜想:13+23+33+…+n3=.(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.6.定义新运算“@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.二、解一元一次方程:7.解方程:(1)4x﹣3=7﹣x;(2)4x﹣2(3x﹣2)=2(x﹣1);(3);(4).8.解方程:(1)5x﹣4=2(2x﹣3);(2)﹣=1;(3)﹣=1+;(4)﹣=0.75.9.解方程(1)3x﹣5=8;(2)﹣2x+3=4x﹣9;(3)3(x+2)﹣2(x+2)=2x+4;(4).10.解下列方程.(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)﹣=﹣2;(3)﹣=1+(4)=0.75三、整式的加减11.若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.12.先化简,再求值:(1)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.(2),其中13.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.14.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.15.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.16.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣)],其中x=﹣1,y=2.17.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.18.有理数a、b、c在数轴上的位置如图.(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,﹣a+c0(2)化简:|c﹣b|+|a|.19.化简已知a,b,c在数轴上的位置如图所示:(1)化简:|a+b|﹣|c﹣b|+|b﹣a|(2)若a的绝对值的相反数是﹣2,﹣b的倒数是它本身,c2=4,求﹣a+2b+c﹣(a+b﹣c)的值.20.已知有理数a、b、c在数轴上的位置,(1)a+b0;a+c0;b﹣c0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.四、几何图形初步:21.如图,C是线段AB上一点,M,N分别是AC,BC的中点.(1)若AC=6cm,BC=4cm,求线段MN的长;(2)若线段CM与线段CN的长度之比为2:1,且线段CN=2cm,求线段AB的长.22.如图,C、D是线段AB上的点,AD=7cm,CB=7cm.(1)线段AC与BD相等吗?请说明理由.(2)如果M是CD的中点,MD=2cm,求线段AB的长.23.如图,延长线段AB到点F,延长线段BA到点E,若点M、N分别是线段AE、BF的中点,若AE:AB:BF=1:2:3,且EF=24cm,求线段MN的长.24.如图,点C在线段AB上,点M、N分别是线段AC,BC的中点.线段AB=14cm.(1)求线段MN的长;(2)若点C在线段AB的延长线上,求线段MN的长;(3)若点C在直线AB上,求线段MN的长.25.如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3cm,则线段BC的长度.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,若∠BOC比∠DOE大75o.求∠AOD和∠EOF的度数.27.如图,直线AB,CD相交于点O,EO⊥CD于点O,FO⊥AB于点O.若∠AOE=50°,求∠BOC和∠COF.28.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35°,求∠AOD的度数;(2)若∠BOC=2∠AOC,求∠DOE的度数.参考答案1.解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=﹣5﹣4﹣101+9=﹣101.(2)=﹣18﹣1÷(﹣16)=﹣18﹣(﹣)=﹣17.(3)=(5﹣5×)×(﹣4)=(5﹣)×(﹣4)=×(﹣4)=﹣15.(4)﹣24+3×(﹣1)6﹣(﹣2)3=﹣16+3×1﹣(﹣8)=﹣16+3+8=﹣5.2.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.3.解:(1)=++﹣=﹣+=﹣=﹣;(2)=(﹣)×÷(﹣6)2﹣1=(﹣)×÷36﹣1=(﹣)××﹣1=﹣1=﹣;(3)=﹣1×(﹣9×﹣2)×(﹣)=﹣1×(﹣4﹣2)×(﹣)=﹣1×(﹣6)×(﹣)=﹣9;(4)=×(﹣25)﹣49×(﹣+)=(﹣1)﹣49×+49×﹣49×=(﹣1)﹣42+﹣1=﹣33.4.解:(1)4﹣3﹣6+13﹣10﹣4+5=﹣1(公里),∴王师傅在甲地的西1公里位置;(2)10×(4+3+6+13+10+4+5)=450(公里),450÷100×6=27(L),27×5﹣2×5=125(元).∴王师傅当日在该加油站加油共花费125元.5.解:(1)13+23+33+43+53=225=×52×62(2)猜想:13+23+33+…+n3=×n2×(n+1)2(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+...+393+403﹣(13+23+33+ (103)=×402×412﹣×102×112=672400﹣3025=6693756.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.7.解:(1)∵4x﹣3=7﹣x,∴4x+x=7+3.∴5x=10.∴x=2.(2)∵4x﹣2(3x﹣2)=2(x﹣1),∴4x﹣6x+4=2x﹣2.∴4x﹣6x﹣2x=﹣2﹣4.∴﹣4x=﹣6.∴x=.(3)∵,∴6x﹣3(3x+2)=18﹣2(5x﹣2).∴6x﹣9x﹣6=18﹣10x+4.∴6x﹣9x+10x=18+4+6.∴7x=28.∴x=4.(4)∵,∴30(0.6x+0.5)﹣100(0.03x+0.2)=2(x﹣9).∴18x+15﹣3x﹣20=2x﹣18.∴18x﹣3x﹣2x=﹣18+20﹣15.∴13x=﹣13.∴x=﹣1.8.解:(1)5x﹣4=2(2x﹣3),5x﹣4=4x﹣6,x=﹣2.(2)﹣=1,5(x﹣3)﹣2(4x+1)=10,5x﹣15﹣8x﹣2=10,﹣3x=10+15+2,x=﹣9;(3)﹣=1+,6x﹣2(5x+11)=12+4(2x﹣4),6x﹣10x﹣22=12+8x﹣16,6x﹣10x﹣8x=12﹣16+22,﹣12x=18,x=﹣;(4)﹣=0.75,﹣=0.75,2(30+2x)﹣4(20+3x)=3,60+4x﹣80﹣12x=3,4x﹣12x=3﹣60+80,﹣8x=23,x=﹣.9.解:(1)3x﹣5=8移项,3x=8+5.合并同类项,3x=13.x的系数化为1,x=.∴这个方程的解为x=.(2)﹣2x+3=4x﹣9移项,﹣2x﹣4x=﹣9﹣3.合并同类项,﹣6x=﹣12.x的系数化为1,x=2.∴这个方程的解为x=2.(3)3(x+2)﹣2(x+2)=2x+4去括号,3x+6﹣2x﹣4=2x+4.移项,3x﹣2x﹣2x=4+4﹣6.合并同类项,﹣x=2.x的系数化为1,x=﹣2.∴这个方程的解为x=﹣2.(4)去分母,3(3y﹣1)﹣12=2(5y﹣7).去括号,9y﹣3﹣12=10y﹣14.移项,9y﹣10y=﹣14+12+3.合并同类项,﹣y=1.y的系数化为1,y=﹣1.∴这个方程的解为y=﹣1.10.解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;(2)去分母得:4x﹣2﹣5x﹣2=3﹣6x﹣12,移项合并得:5x=﹣5,解得:x=﹣1;(3)去分母得:3x﹣5x﹣11=6+4x﹣8,移项合并得:﹣6x=9,解得:x=﹣1.5;(4)方程整理得:﹣=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=﹣.11.解:原式=2mx2﹣x2+5x+8﹣7x2+3y﹣5x=(2m﹣8)x2+3y+8,因为此多项式的值与x无关,所以2m﹣8=0,解得:m=4.m2﹣[2m2﹣(5m﹣4)+m]=m2﹣(2m2﹣5m+4+m)=﹣m2+4m﹣4,当=4时,原式=﹣42+4×4﹣4=﹣4.12.解:(1)∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;(2)∵=2x2﹣2x2﹣2+5x2﹣3=5x2﹣5,∴x=﹣时,原式=5x2﹣5=5×(﹣)2﹣5=﹣.13.解:原式=3x2﹣6xy﹣[3x2﹣2y+2xy+2y]=3x2﹣6xy﹣(3x2+2xy)=3x2﹣6xy﹣3x2﹣2xy=﹣8xy当时原式=﹣8×(﹣)×(﹣3)=﹣12.14.解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.15.解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.16.解:原式=4xy﹣(x2+5xy﹣y2﹣2x2﹣6xy+y2)=4xy﹣(﹣x2﹣xy)=5xy+x2,因为x=﹣1,y=2,所以原式=5×(﹣1)×2+(﹣1)2=﹣9.17.解:(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=﹣b,|c|=﹣c;(2)∵从数轴可知:c<b<0<a,|c|>|a|,∴﹣a<a<﹣c;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,则|a+b|+|a﹣b|+|a+c|+|b﹣c|=0+a﹣b﹣a﹣c+b﹣c=﹣2c.18.解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)c﹣b>0,a+b<0,﹣a+c>0;(2)原式=c﹣b﹣a.故答案为:>,<,>.19.解:(1)∵a+b>0,c﹣b<0,b﹣a<0,∴原式=a+b+c﹣b﹣b+a=2a﹣b+c;(2)由题意,得a=2,b=﹣1,c=﹣2,∴﹣a+2b+c﹣(a+b﹣c)=﹣a+2b+c﹣a﹣b+c=﹣2a+b+2c=﹣4﹣1﹣4=﹣9.20.解:(1)由数轴可得:c<a<0<b,∴a+b<0,a+c<0,b﹣c>0,(2)∵a+b<0,a+c<0,b﹣c>0,∴|a+b|﹣|a+c|+|b﹣c|=﹣a﹣b+a+c+b﹣c=0.故答案为:(1)<;<;>;(2)原式=0.21.解:(1)因为M,N分别是AC,BC的中点,所以,,所以MN=CM+CN=3+2=5(cm).(2)因为线段CM与线段CN的长度之比为2:1,CN=2cm,所以线段CM=4cm.因为M,N分别是AC,BC的中点,所以AC=2CM=8cm,BC=2CN=4cm,所以AB=AC+BC=8+4=12(cm).22.解:(1)相等,因为AD=7cm,CB=7cm.所以AD=CB,因为AC=AD﹣CD,BD=CB﹣CD,所以AC=BD;(2)因为M是CD的中点,所以CM=MD,由(1)得,AC=BD,所以AC+CM=BD+MD,所以AM=MB,因为AD=7cm,MD=2 cm,所以AM=7﹣2=5(cm),所以AB=2AM=10(cm).23.解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=24cm,∴6x=24,解得:x=4,∴MN=4x=16cm.24.解:(1)∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC+CN=AC+BC=AB=7cm.(2)当点C在线段AB的延长线上时,如下图:∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC﹣NC==AC﹣BC=AB=7cm.(3)由(1)、(2)小题知,当点C在线段AB上或点C在线段AB的延长线上时,MN=AB=7cm.当点C在线段AB的反向延长线上时,如下图:点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=NC﹣MC=BC﹣AC=AB=7cm.综上:当点C在直线AB上时MN=7cm.25.解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.26.解:设∠BOD=2x,∵OE平分∠BOD,∴∠DOE=∠EOB==x,∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x=180°,解得:x=35°,∴∠BOD=2×35°=70°,∴∠AOD=180°﹣∠BOD=180°﹣70°=110°,∵FO⊥CD,∴∠BOF=90°﹣∠BOD=90°﹣70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.所以∠AOD和∠EOF的度数分别为:110°、55°.27.解:∵EO⊥CD于点O,∴∠DOE=90°,∴∠AOD=∠DOE﹣∠AOE=90°﹣50°=40°,∵∠BOC和∠AOD为对顶角,∴∠BOC=∠AOD=40°,∵FO⊥AB于点O,∴∠BOF=90°,∴∠COF=∠BOF+∠BOC=90°+40°=130°.28.解:(1)∵EO⊥AB,∴∠BOE=90°,∵∠EOC=35°,∴∠BOC=∠BOE+∠EOC=125°.∴∠AOD=∠BOC=125°,答:∠AOD的度数为125°;(2)∵∠AOC+∠BOC=180°,∠BOC=2∠AOC,∴∠AOC+2∠AOC=180°∴∠AOC=60°,∴∠BOD=∠AOC=60°,∴∠EOD=∠BOE+∠BOD=90°+60°=150°,答:∠DOE的度数为150°.。

人教版-学年度上学期七年级数学期末复习试卷三 一元一次方程(含答案)

人教版-学年度上学期七年级数学期末复习试卷三 一元一次方程(含答案)

2018-2019七上期末复习试题三学生版第三章一元一次方程检测卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.如果方程(m-1)x+3=0是关于x 的一元一次方程,那么m 的取值范围( ) A.m ≠0 B.m ≠1 C.m = - 1 D. m>1 2.以下等式变形不正确的是( )A.由x+2=y+2,得到x=yB.由2a-3=6-3,得到2a=bC.由am=an,得到m=nD.由m=n ,得到2am=2an 3.下列判断错误的是( )A.若a=b ,则a-3=b-3B.若a=b,则20192019ba -=- C.若ax=bx ,则a=b D.若x=2018,则x x 20182=4.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A .x =-5 B .x =-3 C .x =-1 D .x =5 5.在3×3方格上做填数字游戏,要求第行、每列及每条对角线上的三个格子中的数字之和都等于s ,且填在三个格子中的数字如图所示,若要能填成,则( )A .s =24B .s =30C .s =31D .s =396.解方程3x +312-x =3-21+x ,去分母正确的是( ) A .18x +2(2x -1)=18-3(x +1) B .3x +(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1)7.用一根长为(单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加( ).A.4cmB.8cmC.( +4) cmD. (+8) cm8.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且EF =3,CD =12.则图中阴影部分的面积为( )A .108B .72C .60D .489.某市举行歌手大奖赛,今年共有a 人参加,比赛的人数比去年增加20%还多3人,则去年参赛的有( )人.A. B. (1+20%)a+3 C. D.(1+20%)a-310.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x) =87B.1.2×0.8x+2×0.9(60-x) =87C.2×0. 9x+l.2×0.8(60+x) =87D.2×0.9x+l.2×0.8(60-x) =87二、填空题(每小题3分,共15分)11.若方程(a-3)x|a|-2-7=0是一个一元一次方程,则a= .12.已知关于x的方程2x+a-5=0的解是x=2,则a的值为.13.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是.14.关于x的方程=1-的解是整数,则整数m= .15. 一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.三、解答题(共75分)16.(6分)解下列方程;(1))20-y=6y-4(y-11);(2)=1+;17.(6分)当k为何整数时,关于x的方程2kx-4=x+5的解是整数?18.(7分)关于x的方程-2=a与方程8x-2(3x+2)=-5的解互为倒数,求a的值.19.(7分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?20.(8分攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了24.8元.求该同学的家到学校的距离在什么范围?思路分析:先列一元一次方程求出付费24.8元时可行驶的最大距离,再根据题意和所得结果求出付费24.8元时的距离范围.21.(8分)为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个。

2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案

2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案

2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案【年12月4日】初一( )班 学号: 姓名: 成绩: 一、选择题(每小题3分,共30分,请将唯一正确答案的序号填在下面相应的表格中) 1. 我国以年11月1日零时为标准时点,进行了第六次全国人口普查. 查得常住人口约为12700000人,将12700000用科学记数法可表示为( * )A. 127510⨯B. 12.7610⨯C. 1.27710⨯D. 1.27810⨯2. 9442y x π的系数与次数分别为( * )A. 94,7B. π94,6C. π4,6D. π94,43. 对方程13122=--x x 去分母正确的是( * )A. ()61223=--x xB. ()11223=--x xC. 6143=--x xD. ()112=--x x4. 有理数3.645精确到百分位的近似数为( * )A. 3.6B. 3.64C. 3.7D. 3.65 5. 已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( * )A. 15--xB. 15+xC. -x 13 1D.11362-+x x6. 若4=x 是关于x 的方程42=-a x的解,则a 的值为( * )A. -6B. 2C. 16D. -27. 一个长方形的周长是26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可以成为一个正方形,则长方形的长是( * )A. 5cmB. 7cmC.8cmD. 9cm 8.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是( * )A.10岁B.15岁C.20岁D.30岁9.关于x 的方程(2k -1)x 2-(2k +1)x +3=0是一元一次方程,则k 值为( * )A.12 B.21- C.0 D.110.正方形ABCD 在数轴上的位置如图所示,点A 、D 对应的数分别为0和-1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则连续翻转次后,数轴上数所对应的点是( * ) A.点A B.点B C.点C D.点D二、填空题(每小题3分,共18分) 11.代数式2245--x x 的值为6,则2522--x x 的值为 .12.x 的三倍减去7,等于它的两倍加上5,用方程表示为 .13.若b a x 325-与5453+-y b a 是同类项,则=x __________,=y __________.14. 一个两位数,十位上的数字是m ,个位上的数字比十位上的数字多1,则这个两位数是(用m 表示). 15. 若34+x 与53互为倒数,则x = . 16. 下列图形都是由同样大小的平行四边形按一定的规律组成。

期末检测卷03(解析版) -2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)

期末检测卷03(解析版) -2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)

2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)期末检测卷03一、选择题(本题共计6小题,每题3分,共计18分)1.(2020·义马市教学研究室七年级期中)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg【答案】B2.(2020·鹿邑县基础教育研究室七年级期末)下列调查中,适合采用全面调查的是( )A .对中学生目前睡眠质量的调查B .开学初,对进入我校人员体温的测量C .对我市中学生每天阅读时间的调查D .对我市中学生在家学习网课情况的调查【答案】B3.(2020·深圳市福田区石厦学校七年级期中)下列计算中,正确的是( ).A .6410a b ab +=B .2242734x y x y x y -=C .22770a b ba -= D .2248816x x x +=【答案】C 4.(2020·西安市·陕西师大附中七年级期中)病毒无情人有情,2020年初很多最美逆行者不顾自己安危奔赴疫情前线,我们内心因他们而充满希望.小茜同学在一个正方体每个面上分别写一个汉字,组成“全力抗击疫情”.如图是该正方体的一种展开图,那么在原正方体上,与汉字“击”相对的面上所写汉字为( )A .共B .同C .疫D .情5.(2020·兴化市板桥初级中学七年级月考)如图,∠AOB =180°,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,则下列各角中与∠COD 互补的是( )A .∠COEB .∠AOC C .∠AOD D .∠BOD【答案】C6.(2020·兴化市安丰初级中学七年级月考)已知a ,b ,c ,d 为有理数,现规定一种新的运算a b ad bc c d =-,那么当()241815x x=-时,则x 的值是( ) A .1x = B .711x = C .117x = D .1x =-【答案】C二、填空题(本题共计6小题,每题3分,共计18分)7.(2020·山西运城市·七年级期中)计算:()()37---=______【答案】48.(2020·山东省青岛第五十九中学七年级期中)截止到2020年10月25,全球新冠已经突破4400万人,用科学记数法表示为__________人.【答案】74.410⨯9.(2020·重庆潼南区·七年级月考)若单项式3m a b +与522n a b +-的和仍是单项式,则m n =______.10.(2020·天津市滨海新区大港第二中学七年级期中)已知C 是线段AB 的中点,AB =10,若E 是直线AB 上的一点,且BE =3,则CE =_____【答案】2或811.(2020·杭州市保俶塔实验学校七年级月考)方程()4310x -+=的解与关于x 的方程3222x k k x +--=的解相同,则k =__________. 【答案】-112.(2020·深圳市福田区石厦学校七年级期中)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为______.【答案】364三、(本题共计5小题,每小题6分,共计30分)13.(2020·重庆潼南区·七年级月考)计算(1)342.4( 3.1)55⎛⎫--+-+ ⎪⎝⎭(2)2020211(10.5)(4)2⎛⎫-+-⨯-÷- ⎪⎝⎭ 【答案】解:(1)原式=342.4 3.10.7 1.40.755+-+=-+=;(2)原式=()2111(4)214212124⎛⎫-+⨯-⨯-=-+⨯⨯=-+= ⎪⎝⎭. 【点睛】 本题考查了有理数的混合运算,属于基础题目,熟练掌握混合运算的法则是解题的关键.14.(2020·重庆潼南区·七年级月考)解方程(1)23(1)1x x --= (2)11125x x +--= 【答案】解:(1)去括号,得2331x x -+=,移项,得2313x x -=-,合并同类项,得2x -=-,系数化为1,得2x =;(2)去分母,得()()512110x x +--=,去括号,得552210x x +-+=,移项,得521052x x -=--,合并同类项,得33x =,系数化为1,得1x =.【点睛】本题考查了一元一次方程的解法,属于基础题目,熟练掌握解一元一次方程的方法和步骤是解题的关键.15.(2020·施秉县第三中学七年级月考)先化简,再求值:()22221623212ab a ab b a ab b ⎡⎤⎛⎫-+---+- ⎪⎢⎥⎝⎭⎣⎦,其中1a =-,12b =.【答案】解:原式()22226223631ab a ab b a ab b =-+--+--()226841ab a ab b =--+--226841ab a ab b =+-++22241a ab b =-++, 把1a =-,12b =,代入原式()()2211121*********⎛⎫=--⨯-⨯+⨯+=+++= ⎪⎝⎭. 【点睛】 本题考查整式的化简求值,解题的关键是掌握整式的加减运算法则.16.(2020·邢台市开元中学七年级月考)出租车司机李师傅某天下午从停车场出发一直沿东西方向的大街进行营运,规定向东为正,向西为负,他行驶里程(单位:km )记录如下:11+,5-,3+,10+,11-,5+,15-,8-. (1)当把最后一名乘客送达目的地时,李师傅在停车场的什么位置?(2)若每千米为盈利1.5元,则这天下午他盈利多少元?【答案】(1)()()()()()()()()531111518051+++++-++-+++-+-,115310115158=-++-+--,10=-(千米), 答:李师傅最后在停车场的西边10千米处;(2)115311515810++-++++-+++-+-+,115310115158=+++++++,68=(千米),⨯=(元),则68 1.5102答:这天下午他盈利102元.【点睛】本题考查了正负数在实际生活中的应用、绝对值的应用、有理数乘法与加减法的应用,依据题意,正确列出各运算式子是解题关键.17.(2020·福建三明市·七年级期中)用棋子按规律摆出下列一组图形:(1)填写下表:(2)照这样的方式摆下去,则第n个图形中棋子的枚数是______;(3)照这样的方式摆下去,则第100个图形中棋子的枚数是______.【答案】解:(1)第1个图形棋子数:5=3⨯1+2;第2图形棋子数:8=3⨯2+2;第3图形棋子数:11=3⨯3+2;第4图形棋子数:14=3⨯4+2;第5图形棋子数:17=3⨯5+2;∴表如下:(2)由(1)知,第n 个图形中棋子的枚数是32n +.(3)当100n =时,3231002302n +=⨯+=,∴第100个图形中棋子的枚数是302.【点睛】本题考查了图形的变化规律,关键是找到规律,列出式子.四、(本题共计3小题,每小题8分,共计24分)18.(2020·靖江市靖城中学七年级月考)有理数a ,b ,c 在数轴上的位置如图所示,(1)c 0; a +c 0;b ﹣a 0 (用<、>、=填空)(2)试化简:|b ﹣a |﹣|a +c |+|c |.【答案】(1)由题意,得c <a <0<b ,则c <0; a +c <0;b −a >0;故答案为<;<;>;(2)原式=(b -a )-(-a -c )+(-c )=b −a +a +c −c =b .【点睛】本题考查了绝对值:若a >0,则|a |=a ;若a =0,则|a |=0;若a <0,则|a |=−a .也考查了数轴与整式的加减. 19.(2020·成都市武侯区领川外国语学校七年级期中)若代数式22261x ax bx x ++-+-的值与字母x 的取值无关,又2222A a ab b =-+-,2233B a ab b =-+.(1)求,a b 的值;(2)求:()()32A B A B +-+的值;(3),,A B C 三点在同一直线上,M 是线段AC 的中点,N 是线段BC 的中点,若AC a b cm =-,BC a b cm =+,求MN 的长.【答案】(1)原式()()2215b x a x =-+++,∵该代数式的值与字母x 的取值无关,∵20,10b a -=+=,解得2,1b a ==-;(2)()()32322A B A B A B A B B A +-+=+--=-,∵原式B A =-,∵222222,33A a ab b B a ab b =-+-=-+,∵原式()()22223322a ab b a ab b =-+--+-22223322a ab b a ab b =-++-+22525a ab b =-+将1,2a b =-=代入得:原式()()225121252=⨯--⨯-⨯+⨯,5420=++29=(3)将1,2a b =-=代入得:123,121AC cm BC cm =--==-+=,如图1所示:∵M 是线段AC 的中点, ∵1133222MC AC cm ==⨯=,∵N 是线段BC 的中点, ∵1111222CN CB cm ==⨯=,∵MN MC CN =+, ∵31222MN cm =+=,如图2所示:∵M 是线段AC 的中点, ∵1133222MC AC cm ==⨯=,∵N 是线段BC 的中点,∵1111222CN CB cm ==⨯=,∵MN MC CN=-,∵31122MN cm=-=,综上,MN的值为2cm或1cm.【点睛】本题考查了整式的加减-化简求值、绝对值、线段之间的数量关系、有理数的混合运算,熟练掌握运算法则和运算顺序,灵活运用数形结合和分类讨论的思想方法是解答的关键.20.(2020·长沙市长郡外国语实验中学八年级月考)“中秋”是我国的传统佳节,历来有吃“月饼”的习俗.我市网红“巢娘驰”食品厂为了解长沙市民对销量较好的莲蓉馅、豆沙馅、五仁馅、蛋黄馅(以下分别用A、B、C、D表示)这四种不同口味月饼的喜爱情况,在节前对我市某小区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图(不完整).请根据以上信息回答:(1)将两幅不完整的图补充完整;(2)本次参加抽样调查的居民有多少人?(3)若居民区有20000人,请估计爱吃蛋黄馅月饼的人数.【答案】解:(1)本次参加抽样调查的居民人数是:60÷10%=600(人);A组所对应的百分比是(180÷600)×100%=30%,C组的人数是600﹣180﹣60﹣240=120(人),C组所占的百分比是(120÷600)×100%=20%,补全统计图如下:(2)本次参加抽样调查的居民有60÷10%=600(人),故答案为:600人;(3)根据题意得:爱吃蛋黄馅月饼的人数占总人数的40%,即:20000×40%=8000(人),答:爱吃蛋黄馅月饼的人数有8000人.【点睛】本题考查了条形统计图和扇形统计图等相关知识点,两个图结合一起看,扇形统计图中各部分表示占总体的百分比,本题考查了数形结合的思想.五、(本题共计2小题,每小题9分,共计18分)21.(2020·道真自治县隆兴中学七年级月考)某城市为增强人们节约用水的意识,规定每吨生活用水的基本价格为2元,每月每户限定用水6吨,超出部分在基本价格的基础上增加80%,已知某户居民这月用水量为a吨(该户居民用水量已超过规定).(1)这户居民该月应缴水费多少元(用含有a的代数式表示)?a 时,计算(1)的结论中代数式的值.(2)当8(3)若这户居民该月缴水费26.4元,则这户居民这月用水多少吨?【答案】解:(1)该户居民次月应交的水费为:()()()()26180%2612 3.66 3.69.6a a a ⨯++⨯⨯-=+-=-元.所以该户居民该月应交水费为()3.69.6a -元.(2)当8a =时,3.69.6 3.689.628.89.619.2a -=⨯-=-=元.(3)设这户居民次月用水x 吨,根据题意得:()()26180%2626.4x ⨯++⨯⨯-=整理得:3.69.626.4x -=解得10x =所以这户居民这月用水10吨.【点睛】本题考察一元一次方程的实际应用,正确判断属于哪种情况是解题的关键.22.(2020·宜兴外国语学校七年级月考)如图,数轴上有A 、B 、C 、D 、O 五个点,点O 为原点,点C 在数轴上表示的数是5,线段CD 的长度为6个单位,线段AB 的长度为2个单位,且B 、C 两点之间的距离为13个单位,请解答下列问题:(1)点D 在数轴上表示的数是___,点A 在数轴上表示的数是___;(2)若点B 以每秒2个单位的速度向右匀速运动t 秒运动到线段CD 上,且BC 的长度是3个单位,根据题意列出的方程是______________,解得t =___;(3)若线段AB 、CD 同时从原来的位置出发,线段AB 以每秒2个单位的速度向右匀速运动,线段CD 以每秒3个单位的速度向左匀速运动,把线段CD的中点记作P,求出点P与线段AB的一个端点的距离为2个单位时运动的时间.【答案】(1)∵点C在数轴上表示的数是5,CD=6,AB=2,BC=13,∴点D在数轴上表示的数是11,点B在数轴上表示的数是﹣8,点A在数轴上表示的数是﹣10;(2)B运动到CD上时,走过的路程为2t,减去BC的距离即为此时BC的长度,故:2t-13=3,解得:t=8;(3)由题意得,线段CD的中点P的位置为8,分三种情况讨论:①当点P在点B右侧2个单位时,16﹣2t﹣3t=2,解得:t=2.8;②当点P在点B左侧2个单位时,2t+3t﹣16=2,解得:t=3.6,此时P与A重合;③当点P在点A左侧2个单位时,2t+3t﹣18=2,解得:t=4;综上,当t=2.8或3.6或4时,点P与线段AB的一个端点的距离为2个单位.【点睛】本题考查了一元一次方程的应用和数轴.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.六、(本题共计1小题,每小题12分,共计12分)23.(2020·江苏南通市·南通田家炳中学七年级月考)(阅读理解)射线OC是∠AOB内部的一条射线,若∠COA=12∠BOC,则我们称射线OC是射线OA的伴随线.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC=12∠BOC,称射线OC是射线OA的伴随线;同时,由于∠BOD=12∠AOD,称射线OD是射线OB的伴随线.(知识运用)(1)如图2,∠AOB =120°,射线OM 是射线OA 的伴随线,则∠AOM = °,若∠AOB 的度数是α,射线ON 是射线OB 的伴随线,射线OC 是∠AOB 的平分线,则∠NOC 的度数是 .(用含α的代数式表示)(2)如图3,如∠AOB =180°,射线OC 与射线OA 重合,并绕点O 以每秒3°的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5°的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止.①是否存在某个时刻t (秒),使得∠COD 的度数是20°,若存在,求出t 的值,若不存在,请说明理由.②当t 为多少秒时,射线OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【答案】解:(1)如图, 射线是OA 的伴随射线,12AOC BOC ∴∠=∠, 111204033AOC AOB ∴∠=∠=⨯︒=︒ ,同理,若∠AOB 的度数是α,射线ON 是射线OB 的伴随线,1133BON AOB α∴∠=∠= , 射线OC 是∠AOB 的平分线,1122BOC AOB α∴∠=∠= , 1123NOC BOC BON αα∴∠=∠-∠=- =16α,故答案为:40,6α︒(2)射线OD 与OA 重合时,t =1805=36(秒) ①当∠COD 的度数是20°时,有两种可能:若在相遇之前,则180﹣5t ﹣3t =20,∴t =20;若在相遇之后,则5t +3t ﹣180=20,∴t =25;所以,综上所述,当t =20秒或25秒时,∠COD 的度数是20°.②相遇之前:(i )如图1,OC是OA的伴随线时,则∠AOC=12∠COD即3t=12(180﹣5t﹣3t)∴t=90 7(ii)如图2,OC是OD的伴随线时,则∠COD=12∠AOC即180﹣5t﹣3t=123t∴t=360 19相遇之后:(iii)如图3,OD是OC的伴随线时,则∠COD=12∠AOD即5t+3t﹣180=12(180﹣5t)∴t=180 7(iv)如图4,OD是OA的伴随线时,则∠AOD=12∠COD即180﹣5t=12(3t+5t﹣180)∴t=30所以,综上所述,当t=90360180,,7197,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.【点评】本题考查了角的计算,解决本题的关键是利用分类讨论思想.。

人教版七年级数学上册高分突破单 课件 七年级上册数学期末复习综合题(三)

人教版七年级数学上册高分突破单 课件 七年级上册数学期末复习综合题(三)

③由-x-3=0,得-x=3;④由 m=n,得mn =1.
A.1 个
B.2 个
C.3 个
D.4 个
7.若关于 x 的方程 2x+a-4=0 的解是 x=2,则 a 的值等于
( B)
A.-8
B.0
C.2
D.8
8.如图,∠BAC 和∠DAE 都是直角,∠BAE=108°,则 ∠DAC 的度数为( B )
(2)由(1)知,∠AOE=180°-∠BOE=180°-2α°, ∵OF 是∠AOE 的平分线, ∴∠FOE=∠AOF=12∠AOE=90°-α°. ∴∠COF=∠COE-∠FOE=90°-(90°-α°)=α°. 故答案为:α°
25.已知单项式-2x2y 的系数和次数分别是 a,b. (1)求 ab-ab 的值; (2)若|m|+m=0,求|b-m|-|a+m|的值. 解:(1)由题意,得 a=-2,b=2+1=3, 故 ab-ab=(-2)3-(-2)×3=-8+6=-2. (2)由|m|+m=0,得 m≤0, 故|b-m|-|a+m|=b-m+(a+m)=b+a=3+(-2)=1.
解:由题意得 AP=5t,CQ=2t,如图,
因为 M 为 AP 中点,所以 AM=12AP=52t, 所以在数轴上点 M 表示的数是-13+52t.
因为点 N 在 CQ 上,CQ=3CN,所以 CN=23t, 所以在数轴上点 N 表示的数是 7-23t, 所以 MN=7-23t--13+52t=20-169t.
二、填空题(共 5 小题,每小题 2 分,共 10 分)
11.-(-6)的相反数是 -6 .
12.计算:(2x-3y)-(5x-4y)= -3x+y .
4 13.当 x= 3
时,代数式 3x-2 的值与12互为倒数.

初一数学 第一学期期末复习提纲(附答案)

初一数学  第一学期期末复习提纲(附答案)

初一数学第一学期期末复习(七册上)北京四中2009.12.28一. 知识网络:第一部分: 有理数有理数概念运算科有学理数数相倒绝比非运记的轴反对较负加减乘除乘算数分数数值大数法法法法方律法小类第二部分: 整式的加减列代数式单项式概念多项式整式的加减整式同类项加减运算第三部分: 一元一次方程等式、等式的性质方程、方程的解、估算方程的解一元一次方程一元一次方程的定义、一般式一元一次方程的解法利用方程解应用问题(注意应用题的类型)1近似数和有效数字第四部分: 图形的认识初步画一条线段等于已知线段(七册上P129) 作图: (尺规)*画一个角等于已知角余角和补角余角和补角的性质方位角角平面图形角的度量及分类角的比较与运算角平分线立体图形点、线、面、体从不同的方向看物体——三视图展开立体图形直线的性质直线、射线、线段线段的有关性质两点之间线段最短线段的中点比较大小几何图形二. 复习建议:1. 认真学习《数学课程标准》, 研究课本;制定出符合学生实际的复习计划和要求(包括具体的落实方案);2. 夯实基础:认真落实基础知识和基本能力(计算能力,审题能力,识图能力,分析能力等);3. 数学思想方法的渗透和培养:方程思想、数形结合、分类讨论、转化思想、函数思想等;4. 对几何图形的认识,渗透图形变换思想(平移、轴对称、旋转);几何语言文、图、式的互译;5. 注意培养学生应用数学的意识(阅读、归纳、应用的能力等)三.练习题:(一)填空题. 1. 12的相反数是__________, 它在数轴上的对应点到原点的距离是________. 72. 将149 500 000 保留三位有效数字为___________________.3. 大于 3.2 且小于1.9的整数是______________________.2x2y4. 单项式的系数是__________, 次数是__________ . 75. 2a2y n 1 与223ay是同类项, 则n = ________ . 36. 若x2y1+ (y +1)2 = 0, 则y x = ____________.7. 已知2a与2 a互为相反数, 则a = _______________. 28. 已知2.4682 = 6.091024, 则24.682 = ____________________.9. 已知关于x的方程ax + 5 = 2 3a与方程x = 10的解相同, 则a = _________.10. 已知数a , b , c 在数轴上的对应点如图所示,化简b + | a+b | | c| | b c | = __________ .11. 57.32 = ______________’ ______ &quot;12. 2714’24&quot; = ____________13. 1740’ 3 =______________.14. 计算: 180 375’ 4 + 93.1 5 = _________________.15. 互余两角的差是18, 其中较大角的补角是16. 一个角的补角和这个角的余角互为补角, 则这个角的一半是__________. ab2417. a,b,c,d为有理数,现规定一种运算:=ad bc,那么当=18时cd(1x)5x的值是.18. 有一个两位数, 个位数字与十位数字的和是9, 如果将个位数字与十位数字对调后所得新数比原数大9, 则原来的两位数是_____________.19. 用“”定义新运算: 对于任意的有理数a、b, 都有a b = b2 +1.例如: 7 4 = 42 +1 = 17. 那么5 3 = ________;当m为有理数时, 则m(m2) = ________.20. 观察下列等式:13 = 12, 13 + 23 = 32, 13 + 23 + 33 = 62, 13 + 23 + 33 + 43 = 102, ……想一想等式左边各项幂的底数与右边幂的底数有什么关系? 猜一猜有什么规律, 并把第n ( n为正整数) 个等式写出来: ____________________________.21. 在什么条件下, 下列等式成立(1) a b a b ___________________.(3) a b a b ___________________.22. 有理数a, b, c在数轴上对应的点如图:(2) a b a b __________________. (4) aa______________________. bb则a ba b acb cc a___________. acc ba c23. 在右边的日历中, 带阴影的方框里有四个数, 随着方框的移动,请你探究这四个数的关系. 设最小的一个数为a, 则这四个数之和为_________ (用含a 的代数式表示).324. 按如图所示的程序计算,若开始输入的x值为14,则第一次得到的结果为7,第2次得到的结果为10,……,请你探索第2009次得到的结果为___________.25. 定义一种对正整数n的“ F ” 运算:①当n为奇数时,结果为3n5;②当n为偶数时,结果为nn(其中k是使为奇数的正整数),并且运算重复进行,例如,取n=26,则:kk2211……若n=449,则第449次“ F ” 运算的结果是________.26. 将正偶数按下表排成五列:第一列第二列第三列4122028 第四列 6 10 22 26 24 第五列8 第一行2 第二行16 14 18 30 第三行第四行32…………………………………………………………根据上面排列规律, 则2010应在第______行,第_________列.27. 在五环图案15米和10米, 那么最高的地方比最低的地方高( ) .(A) 10米(B) 25米(C) 35米(D) 5米2. 下列说法中, 正确的是( )(A) 零除以任何有理数都得零(B) 倒数等于它本身的有理数只有1(C) 绝对值等于它本身的有理数只有1 (D) 相反数等于它本身的有理数只有043. 下面结论中正确的是( )(A) 21比大73(B) 3112的倒数是(C)最小的负整数是 1(D) 0.5 &gt; 2274. 下列各数中, 最小的数是( )23(A) ( 2 3)2 (B) 2(C) 32 (3)2 (D) (1) 4 3 25. 若 1 &lt; x &lt; 0时, 则x, x2, x3 的大小关系是( )(A) x &lt; x2 &lt; x3 (B) x &lt; x3 &lt; x2 (C) x3 &lt; x &lt; x2 (D) x2 &lt; x3 &lt; x6. 下列计算正确的是( )11 (A) 283(B) 1 4 411(C) 28 224(D) 42167. 如果数 a , b, 满足ab&lt;0, a+b&gt;0, 那么下列不等式正确的是( )(A) | a | &gt; | b | (B) | a | &lt; | b | (C) 当a&gt;0, b&lt;0时, | a | &gt; | b |(D) 当a&lt;0, b&gt;0时, | a | &gt; | b |8. 一根1m长的绳子, 第一次剪去一半, 第二次剪去剩下的一半, 如此剪下去, 第六次以后剩下的绳子的长度为( )1(A) m 231(B) m 251(C) m 261(D) m 2129. 9点30分这一时刻, 分针与时针的夹角是( )(A) 75°(B) 105°(C) 90°(D) 125°10. 下列说法正确的是( )(A) 近似数3.5和3.50精确度相同(B) 近似数0.0120有3个有效数字(C) 近似数7.05×104精确到百分位(D) 近似数3千和3000的有效数字都是311. 对方程(A)(C) x3x4 1.6的下列变形中, 正确的是( ) 0.50.3 (B) x3x416 53x3x4 1.6 5310x310x416 5310x4 1.6 3 (D) 2x312. 甲能在11天).(A) 10天(B) 12.1天(C) 9.9天(D) 9天13. 一个长方形的周长为26 cm, 这个长方形的长减少1 cm, 宽增加2 cm, 就可成为一个正方形, 设长方形的长为x cm, 则可列方程( ).(A) x126x 2 (B) x113x 2(C) x126x 2 (D) x1(13x) 214. 已知:2若1022445533,…,22,332,442,552331515242488bb102符合前面式子的规律,则a b的值为()aa(A) 179 (B) 140 (C) 109 (D) 210515. 一件工作甲独做要a天完成, 乙独做要b天完成, 如果两人合作3天完成此工作的( )1111(A) 3 (a + b) (B) 3 (a b) (C) 3(D) 3ab ab16. 某个体商贩在一次买卖中同时卖出两件上衣, 每件售价均为135元, 若按成本计算, 其中一件盈利25%, 一件亏本25%, 则在这次买卖中他( )(A) 不赚不赔(B) 赚9元(C) 赔18元(D) 赚18元17. 若一个角个角;……若一个角个角18. 如图, 射线OC, OD 将平角∠AOB三等分, OE平分∠AOC, OF平分∠BOD, 则∠EOF为( )F(A) 120(B) 150(C) 90(D) 6019. 甲从O点出发, 沿北偏西30方向走了50米到达A点, 乙也从O点出发, 沿南偏东35方向走了80米到达B点, 则∠AOB = ( )(A) 65 (B) 115 (C) 175(D) 18520. 如图,它们是一个物体的三视图,该物体的形状是( ).主视图左视图(A) (B) (C) (D)俯视图21. 桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()(A) (B) (C) (22. 右图是画有一条对角线的平行四边形纸片ABCD,用A围成一个无上下底面的三棱柱纸筒, 则所围成的三棱柱纸( )A(D)A(D)A(D)A(D)B(C)B(CB(C(C)(A) (B) (C)(D)6 此纸片可以筒可能是23. 右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是()24. 如图所示的是由几个小立方块所搭成的几何体的俯视图,小正方形中的ABC...位置小立方块的个数,请画出相应几何体的主视图和左视图.(三)计算下列各题.①13.742586.3335②54214412 29③252775367 6376④133 12520.533484⑤32162584⑥123234111224 2⑦111 123214 3342(四)解下列方程.①2x3116x②5x8562x7③x x1x 222 5④3x1 13x14x172x1⑤0.2x0.50.030.02xx 50.50.03 2⑥. 32x1 2483x336x9⑦c (d + x) = ab (x c) d (c + d0)7 D3.42数字表示在该21(五)化简求值.1. 3a (a + 4b 1) + 3 (b 2).131 2. 先化简, 再求值a2b a2b3abc a2c4a2c3abc, 其中a = 1, b = 3, c = 1. 2323. 已知2x2 + x 5 = 0, 求代数式6x3 +7x2 13x +11的值.(六)列一元一次方程解下列应用题.1. 用化肥给田施肥, 每亩用3千克还差8.5千克, 每亩用2.5千克还剩1.5千克. 求有多少千克化肥?2. A, B两地的路程为360千米, 甲车从A地出发开往B地, 每小时行驶72千米, 甲车出发25分钟后, 乙车从B地出发开往A地, 每小时行驶48千米, 两车相遇后, 各车仍按原速度原方向继续行驶, 直到两车相距100千米停止. 问: 甲车从出发开始到现在共行驶了多少小时?3. 某商品的价格是商场按获利润25%计算出的, 后因库存积压和急需回收资金, 决定降价出售. 如果每件商品仍能获得10%的利润, 试问应按现售价的几折出售?4. 在社会实践活动中, 某校甲, 乙, 丙三位同学一同调查了高峰时段北京的二环路, 三环路, 四环路的车流量(每小时通过观察点的汽车辆数), 三位同学汇报高峰时段的车流量情况如下:甲同学说: “二环路车流量为每小时10 000辆”;乙同学说: “四环路比三环路车流量每小时多2 000辆”;丙同学说: “三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.请你根据它们所提供的信息, 求出高峰时段三环路, 四环路的车流量各是多少?5. 某车间加工A型和B型两种零件, 平均一个工人每小时能加工7个A型零件或3个B型零件. 而且3个A型与2个B型配套, 就可以包装进库房, 剩余不能配套的只能暂时存放起来. 如果B型零件单独存放, 对环境的要求远高于A型零件. 已知该车间原有工人69名.(1) 怎样分配工人工作才能保证生产出的产品及时包装运进库房?(2) 后来因为工作调动, 有4名工人调离了该车间. 那么你认为现在应该怎样分配工人工作最合适呢? 请通过计算说明你的依据.6. 一个两位数, 个位上的数字是十位上的数字的2倍, 先将这两位数的两个数字对调, 得到第二个两位数, 再将第二个两位数的十位数字加上1, 个位数字减去1, 得到的第三个两位数恰好是原两位数的2倍, 求原两位数.7. x表示一个2位数, y表示一个三位数, 若把x放在y的左边组成一个5位数记作M1, 把y放在x的左边组成一个5位数记作M2, 求证: M1 M2 是9的倍数88. (1) 据《北京日报》2000年5月16日报道: 北京市人均水资源占有量只有300立方米, 仅是全国人均占有量的, 世界人均占有量的方米? 世界人均水资源占有量是多少立方米?(2) 北京市一年漏掉的水, 相当于新建一个自来水厂. 据不完全统计, 全市至少有6105个水龙头, 2105个抽水马桶漏水. 如果一个关不紧的水龙头, 一个月能漏掉a立方米水; 一个漏水马桶, 一个月漏掉b立方米水. 那么一年造成的水流失量是多少立方米? (用含a, b的代数式表示);(3) 水源透支令人担忧, 节约用水迫在眉睫. 针对居民用水浪费现象, 北京市将制定居民用水标准, 规定三口之家楼房每月标准用水量, 超标部分加价收费.假设不超标部分每立方米水费1.3元, 超标部分每立方米水费2.9元. 某住楼房的三口之家每月用水12立方米, 交水费22元, 请你通过列方程求出北京市规定三口之家楼房每月标准用水量是多少立方米.9.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,20XX年10月11日至20XX年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1 696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?(七)解答题.1. 已知∠的2倍与∠β的3倍互补, 且∠比∠β小20, 求∠与∠β2. 作线段MN = 10 mm, 向延长MN至P, 使MP = 15 mm, 反向延长MN 至Q, 使MQ =中点, B为NP的中点, 求A, B之间的距离AMNBP 181. 问: 全国人均水资源占有量是多少立321MP. 若A为QM的2求BC的长AD = 11.7 cm. DF 3. 已知A, B, C 三点共线, 且线段AB = 17 cm. 点D为BC中点, 4. 已知: 如图, ∠ABC=∠ADC, DE是∠ADC的平分线, BF是∠ABC的平分线求证: ∠1 = ∠2证明: ∵DE是∠ADC的平分线( )∴∠1 = _________ ( )∵BF是∠ABC的平分线( )∴∠2 = _________ ( )又∵∠ABC = ∠ADC ( )∴∠1 = ∠2 ( )5. 如图所示, ∠AOC = ∠DOB = 90, ∠BOC与∠AOD 的度数之比为3 : 7, 求∠BOC, ∠AOD的度数9DA E B6. 若∠AOB = 170, ∠AOC = 70, ∠BOD = 60, 求∠COD的度数7. 如图, 已知O是直线AC上一点, OB是一条射线,BD1OD平分AOB, OE在BOC BOE=EOC,2 DOE=70°, 求EOC的度数.A O CEOC8. 请将下面的三阶幻方补全,使得处于同一横行、同一竖列、同一斜对角线上的3个数相加都相等.9. a为何值时,3是关于x的方程3|a|-2x=6x+3的解10. 方程x(八)通过阅读, 探索、研究问题的解法. 1. 阅读下列材料: ∵1111111, 1323352 33 a的解是自然数, 其中a 是非负整数. 试求代数式a2 2(a + 1) 的值. 3 111111111, …, . ,5572571719217191111133557171911111111111=12323525721719111111119= =1233557171919解答问题:在和式111中, 第五项为________ , 第n项为________ , 上述求和的想法是: 通过逆133557用________________ 法则, 将和式中各分数转化为两个实数之差, 使得除首末两项外的中间各项可以________________ , 从而达到求和的目的.2. (1) 阅读下面材料:点A、B在数轴上分别表示实数a、b, A、B两点之间的距离表示为AB. 当A、B两点中有一点在原点时, 不妨设点A在原点, 如图甲, AB=OB=∣b∣=∣a b∣; 当A、B两点都不在原点时,10图乙图甲O (A) AB B①如图乙, 点A、B都在原点的右边, AB = OB OA = | b | | a | = b a = |a b |; ②如图丙, 点A、B都在原点的左边,AB = OB OA = | b | | a | = b (a) = | a b | ; ③如图丁, 点A、B在原点的两边AB = OA + OB = | a | + | b | = a + (b) = | a b |. 综上, 数轴上A、B两点之间的距离AB=∣a b∣.(2) 回答下列问题:①数轴上表示2和5的两点之间的距离是______ , 数轴上表示2和5的两点之间的距离是______ , 数轴上表示1和3的两点之间的距离是______ ;②数轴上表示x和1的两点分别是点A和B,则A、B之间的距离是______ , 如果AB=2, 那么x=________ ;③当代数式∣x +2∣+∣x 5∣取最小值时, 相应的x的取值范围是____________. ④当代数式x x2x5取最小值时, 相应的x的值是_________. ⑤当代数式x5x2取最大值时, 相应的x的取值范围是_________________.11图丁图丙BAO参考答案(若有质疑请发校友录上,以便及时更正)三、练习题:(一)填空题:1.127, 1272.1.50×1083.-3, -2, -1, 0, 14. 27, 35.46.-17.-28.609.10249.3710.b-a11.57°19′12″12.27.2413.5°53′20″14.57°17′12″15.126°16.22.5°17.318.4519.10, 26220.13+23+33+…n3=n(n1)221.(1)a、b同号或一项为0;(2)a、b且a b;(3)a、b为任意实数;(4)b≠0;22.原式=+a b b ca b c b c aa c(1) 1=-1-1+1-1-1=-31223.这四个数分别为:a+(a+1)+(a+7)+(a+8)=4a+1624.8第一次:7;第二次:10;第三次:5;第四次:8;第五次:4;︳第六次:7;… 7,10,5,8,4,︳7,10,5,8,4,︳…2009÷5=401 (4)25.14491352169152181…449,1352,169,152,1,8,︳1,8 …(449-3)÷2=22326.252,427.(二)1.C6.A11.D16.C19.D24.主视图左视图13 F①F②F①F②F①F②F①2.D 7.C 12.A 3.A 8.C 4.C 9.B 5.B 10.B 15.C 18.A 23.D 13.B 14.C 17.3,6,10,20.C (n1)(n2) 221.C 22.D(三)1.x abc d(13.7)(4235)86.335=-13.7+4.4-86.3+3.6 =-(13.6+86.3)+(4.4+3.6) =-100+8=-922.54214(4122)9 =5494( 29) 29=63.25(277)5(3667)37(6) =25(277)5(277)277(6) =277(2556) =27726 =70274.125342310.533(4)8 =122342(532) =12(234645) =10(235644)20 =361205.321625(84) =81615125(32)=50146.12311(24) 23412=12311(24)(24)(24)(24) 23412=12161822 127.11232231411342 =1 123 491 148 =11123 2 =1 16 2 =76(四)1.2x+3=11-6x解:8x=8x=12.5(x+8)-5=6(2x-7)解:5x+40-5=12x-427x=77X=113.x x 122x 25解:10x5x5202x 45x5162x7x11x117154.3x1 13x14x172x1解:132x1133x10132x133x1313230136x5136x 55.0.2x0.50.50.030.02xx 50.03 2 解:2x532xx53 5212x303020x15x75 8x15x75 23x75x75236.382(x1) 243x33(6x9) 解:2x x 124x 64x x18x125x13x1357.c(d x)ab(x c)d (c+d) (c d0)解:cd cx ab dx cd (c d)x abx abc d(五)1.3a (a + 4b 1) + 3 (b 2).=3a a4b +1 + 3b 6=.2a b 5162. 12a2b 32a2b3abc13a2c4a2c3abc = 12a2b(32a2b3abc a2c4a2c)3abc =132a2b2a2b3abc a2c4a2c3abc=2a2b3a2c将a1,b3,c1代入,原式=212(3)3(1)2 1=6+3=9答:代数式的值为9。

人教版七年级上册数学期末复习专项——《数轴类综合问题》(三)

人教版七年级上册数学期末复习专项——《数轴类综合问题》(三)

人教版七年级上册数学期末复习专项——《数轴类综合问题》(三)1.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q 点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.2.已知数轴上有A、B两个点对应的数分别是a、b,且满足|a+3|+(b﹣9)2=0;(1)求a、b的值;(2)点C是数轴上A、B之间的一个点,使得AC+OC=BC,求出点C所对应的数;(3)在(2)的条件下,点P、点Q为数轴上的两个动点,点P从A点以1个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动,点P运动到点C时,P,Q两点同时停止运动.设它们的运动时间为t秒,当OP+BQ=3PQ时,求t的值.3.已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.4.已知,数轴上有两点A、B对应的数分别为﹣1,5,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、B的距离相等,求点A、B的距离及x的值.(2)数轴上是否存在点P,使得点P到点A、B的距离之和最小?若存在,请求出最小值;并求出取得最小值时x可以取的整数值;若不存在,说明理由.(3)点A、B分别以3个单位长度/秒,2个单位长度/秒的速度向右运动,同时点P以4个单位长度/秒的速度从O点向左运动,当遇到A时,点P立即以不变的速度向右运动,当遇到B时,点P立即以不变的速度向左运动,并不停往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?5.已知多项式2x4y2﹣3x2y﹣x﹣4,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.设点C在数轴上对应的数为x,当|CA|+|CB|=12时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度/秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.6.数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问:(1)t=2秒时,点P在“折线数轴”上所对应的数是;点P到点Q的距离是个单位长度;(2)动点P从点A运动至C点需要秒;(3)P、Q两点相遇时,t=秒;此时相遇点M在“折线数轴”上所对应的数是;(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出t的值.7.已知多项式4x6y2﹣3x2y﹣x﹣7,次数是b,4a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)a=,b=;(2)若小蚂蚁甲从点A处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.若小蚂蚁甲和乙约好分别从A,B两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s时一起重新回到原出发点A和B,设小蚂蚁们出发t(s)时的速度为v(mm/s),v与t之间的关系如下图.(其中s表示时间单位秒,mm表示路程单位毫米)t(s)0<t≤22<t≤55<t≤16v(mm/s)10168①当2<t≤5时,你知道小蚂蚁甲与乙之间的距离吗?(用含有t的代数式表示);②当t为时,小蚂蚁甲乙之间的距离是42mm.(请直接写出答案)8.如图1,在一条可以折叠的数轴上,点A,B分别表示数﹣9和4.(1)A,B两点之间的距离为.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A.B两点相距4个单位长度?9.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?10.如图,点A、点B是数轴上原点O两侧的两点,其中点A在原点O的左侧,且满足AB =6,OB=2OA.(1)点A、B在数轴上对应的数分别为和.(2)点A、B同时分别以每秒1个单位长度和每秒2个单位长度的速度向左运动.①经过几秒后,OA=3OB;②点A、B在运动的同时,点P以每秒1个单位长度的速度从原点向右运动,经过几秒后,点A、B、P中的某一点成为其余两点所连线段的中点?参考答案1.解:(1)∵|a+24|+|b+10|+(c﹣10)2=0,∴a+24=0,b+10=0,c﹣10=0,解得:a=﹣24,b=﹣10,c=10;(2)﹣10﹣(﹣24)=14,①点P在AB之间,AP=14×=,﹣24+=﹣,点P的对应的数是﹣;②点P在AB的延长线上,AP=14×2=28,﹣24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t﹣8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t﹣34=34,t=<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t﹣8+2t﹣34=34,解得t=>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t﹣20)s后与点P的距离为8,此时2(t﹣20)+(2×20﹣34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.2.解:(1)∵|a+3|+(b﹣9)2=0,∴a+3=0,b﹣9=0,解得a=﹣3,b=9;(2)设点C表示是数是x,依题意得:x+3+x=9﹣x,解得x=2.答:点C表示的数是2;(3)①当0<t<3时,∵点P从A点以每秒1个单位的速度向右运动,点Q同时从B点出发以每秒2个单位的速度向左运动,∴OP=3﹣t,BQ=2t,PQ=12﹣3t.∵OP+BQ=3PQ,∴3﹣t+2t=3(12﹣3t),解得t=3.3,不合题意,舍去;②当3≤t≤4时,OP=t﹣3,BQ=2t,PQ=12﹣3t.∵OP+BQ=3PQ,∴t﹣3+2t=3(12﹣3t),解得t=,③当4<t<5时,OP=t﹣3,BQ=2t,PQ=3t﹣12,方程变为t﹣3+2t=3(3t﹣12),解得t=>5.不合题意,舍去.故时间t的值为.3.解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵P A=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为P A的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.4.解:(1)∵两点A、B对应的数分别为﹣1,5,∴点A、B的距离为:5﹣(﹣1)=6,∵点P到点A、点B的距离相等,∴x﹣(﹣1)=5﹣x,解得x=2;(2)当P点在A点左边时,P A+PB=P A+P A+AB=2P A+AB,当P点在A与B点之间(包括A点和B点)时,P A+PB=AB,当P点在B点右边时,P A+PB=AB+PB+PB=AB+2PB,∵2P A+AB>AB,2PB+AB>AB,∴数轴上存在点P,使点P到点A、点B的距离之和最小,其最小值为AB=6,此时点P在线段AB上,∴点P表示的数x的取值范围是﹣1≤x≤5,∴x可以取的整数值为﹣1,0,1,2,3,4,5;(3)设经过a秒钟点A与点B重合,根据题意得:3a=6+2a,解得a=6.6×4=24.答:点P所经过的总路程为24个单位长度.5.解:(1)由多项式的次数是6可知b=6,又3a和b互为相反数,故a=﹣2.①当C在A左侧时,∵|CA|+|CB|=12,∴﹣2﹣x+6﹣x=12,x=﹣4;②C在A和B之间时,∵|CA|+|CB|=|AB|=8≠12,∴点C不存在;③点C在B点右侧时,∵|CA|+|CB|=12,∴x+2+x﹣6=12,∴x=8;故答案为:﹣4或8.(2)依题意得:﹣2﹣1+2﹣3+4﹣5+6﹣7+……+2018﹣2019=﹣2+1009﹣2019=﹣1012.∴点P对应的有理数为﹣1012.(3)①甲、乙两小蚂蚁均向左运动,即0≤t≤3时,此时OA1=2+t,OB1=6﹣2t,∵OA1=OB1,∴2+t=6﹣2t解得,t=;②甲向左运动,乙向右运动时,即t>3时,此时OA1=2+t,OB1=2t﹣6,依题意得,2+t=2t﹣6,解得,t=8.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.6.解:如图所示:(1)设动点P从点A出发,运动2秒后的点对应数为x,∵点P以2单位/秒的速度沿着“折线数轴”的正方向运动,∴AP=2×2=4,又∵x﹣(﹣10)=4,解得:x=﹣6,又∵同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,∴QC=2×1=2,又∵AC=28,AC=AO+OB+BC,∴点P到点Q的距离=28﹣4﹣2=22;故答案为﹣6,22;(2)由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC,AO段时间为,OB段时间为=10,BC段时间为=4,∴动点P从点A运动至C点需要时间为5+10+4=19(秒),故答案为19秒;(3)设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇,依题意得:3+y+2y=10,解得:y=,∴P、Q两点相遇时经过的时间为8+=(秒),此时相遇点M在“折线数轴”上所对应的数是为3+=;故答案为,;(4)当点P在AO,点Q在BC上运动时,依题意得:10﹣2t=8﹣t,解得:t=2,当点P、Q两点都在OB上运动时,t﹣5=2(t﹣8)解得:t=11,当P在OB上,Q在BC上运动时,8﹣t=t﹣5,解得:t=;当P在BC上,Q在OA上运动时,t﹣8﹣5+10=2(t﹣5﹣10)+10,解得:t=17;即PO=QB时,运动的时间为2秒或秒或11秒或17秒.7.解:(1)∵多项式4x6y2﹣3x2y﹣x﹣7,次数是b,∴b=8;∵4a与b互为相反数,∴4a+8=0,∴a=﹣2.故答案为:﹣2,8;(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8﹣4t;∵OA=OB,∴2+3t=8﹣4t,解得:t=;②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t﹣8;∵OA=OB,∴2+3t=4t﹣8,解得:t=10;∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t为秒或10秒;(3)①∵小蚂蚁甲和乙同时出发以相同的速度爬行,∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于:10×2+16×3+8×11=156(mm),∵原路返回,刚好在16s时一起重新回到原出发点A和B,∴小蚂蚁甲和乙返程的路程都等于78mm,∴甲乙之间的距离为:8﹣(﹣2)+10×2×2+16×(t﹣2)×2=32t﹣14;②设a秒时小蚂蚁甲和乙开始返程,由(3)①可知:10×2+16×3+8(a﹣5)=78,解得:a=;以下分情况讨论:当8﹣(﹣2)+10t×2=42,解得:t=1.6;当32t﹣14=42时,解得:t=;当t=时,小蚂蚁甲和乙还没有开始返程,故舍去t=;当t>时,8﹣(﹣2)+78×2﹣8(t﹣)×2=42,解得:t=14;综上所述,当t=1.6秒或14秒时,小蚂蚁甲乙之间的距离是42mm.故答案为:1.6秒或14秒.8.解:(1)4﹣(﹣9)=13.故答案为:13.(2)设点C表示的数为x,则AC=x﹣(﹣9),BC=4﹣x,依题意,得:x﹣(﹣9)=4﹣x+1,解得:x=﹣2.故答案为:﹣2.(3)当运动时间为t秒时,点A表示的数为3t﹣9,点B表示的数为2t+4.∵AB=4,∴3t﹣9﹣(2t+4)=4或2t+4﹣(3t﹣9)=4,解得:t=9或t=17.答:经过9秒或17秒时,A.B两点相距4个单位长度.9.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.10.解:(1)设点A在数轴上对应的数为x,则点B在数轴上对应的数为﹣2x,∵AB=﹣2x﹣x=6,∴x=﹣2,﹣2x=4.故答案为:﹣2;4.(2)①设t秒后,OA=3OB.情况一:当点B在点O右侧时,则2+t=3(4﹣2t),解得:;情况二:当点B在点O左侧时,则2+t=3(2t﹣4),解得:.答:经过秒或秒,OA=3OB.②设经过t秒后,点A、B、P中的某一点成为其余两点所连线段的中点.当点P是AB的中点时,则P A=PB,∴t+2+t=4﹣t﹣2t,解得:;当点B是AP的中点时,则AB=BP,∴(t+2)﹣(2t﹣4)=(2t﹣4)+t,解得:;当点A是BP的中点时,则AB=AP,∴2t﹣4﹣(t+2)=(t+2)+t,解得:t=﹣8(不合题意,舍去).答:设经过秒或秒后,点A、B、P中的某一点成为其余两点所连线段的中点.。

【期末复习提升卷】浙教版2022-2023学年七上数学第3章 实数 测试卷2

【期末复习提升卷】浙教版2022-2023学年七上数学第3章 实数 测试卷2

【期末复习提升卷】浙教版2022-2023学年七上数学第3章 实数 测试卷2考试时间:120分钟 满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列说法正确的是( )A .-a 表示一个负数B .正整数和负整数统称整数C .π2是分数D .非负数包括零和正数2.下列结论正确的是 ( )A .-2的倒数是2B .64的平方根是8C .16的立方根为4D .算术平方根是本身的数为0和13.下列等式不一定成立的是( )A .3√−a =−3√aB .√a 2 =aC .3√a 3 =aD .( 3√a )3=a 4.下列运算正确的是( )A .√(−2)2=-2B .4√3-√27=1C .√24×√32=6 D .√18÷√2=9 5.若规定误差小于1, 那么√60的估算值为( )A .3B .7C .8D .7或86.一个正偶数的算术平方根是a ,那么与这个正偶数相邻的下一个正偶数的算术平方根是( ) A .a+2 B .a 2+2 C .√a 2+2 D .±√a +27.已知√a −2+√b +3=0,那么(a+b )2015的值为( )A .1B .-1C .0D .12 8.下列命题中,①9的平方根是3;②9的平方根是±3;③﹣0.027没有立方根;④﹣3是27的负的立方根;⑤一个数的平方根等于它的算术平方根,则这个数是0;⑥√16 的平方根是±4,其中正确的有( )A .1个B .2个C .3个D .4个9.如图, 面积为5的正方形 ABCD 的顶点 A 在数轴上, 且表示的数为1 , 若点 E 在数轴上, (点 E 在点 A 的右侧) 且 AB =AE , 则 E 点所表示的数为( )A .√5B .1+√5C .2+√52D .√5+2(第9题) (第11题)10.设√7的小数部分为b ,那么(4+b )b 的值是( )A .1B .是一个有理数C .3D .无法确定二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.大于 −√15 而小于 √3 的所有整数之和为 .12.有一个数值转换器,其流程如图所示: 当输入x 的值是64时,则输出的y 值是 .13.已知√1.513=1.147,√15.13=2.472,√0.1513=0.5325,则√15103的值是 .14.若﹣ √3 是m 的一个平方根,则m+13的算术平方根是 .15.如图,将一个半径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴向右滚动1周,点A 到达点A′的位置,则点A′表示的数是2π;若起点A 开始时是与﹣1重合,则向左滚动2周后点A′表示的数是 .16.将一个体积为64cm 3的立方体铝块改铸成8个完全相同的立方体小铝块,则每一个小铝块的表面积为 cm三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.计算:(1)√25−√643−(−1)2021 ; (2)|√3−2|−√(−3)2−√−273 .18.把下列各数的序号填在相应的横线上:①0,②−139,③√93,④√25,⑤﹣3.14,⑥+9,⑦π,⑧1.212212221…(两个1之间依次多1个2).整数: .负分数: .无理数: .19.已知正实数x 的平方根是a 和a+b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一(上)数学测试三 (满分:120分) 08.10.
班级________ 姓名________学号__________
一、 填空题:(每空2分,共50分)
1、 32)5(x -=____________
2、 计算:)2)(3(y x y x -+=____________
3、 同底数幂相乘的性质:________________________,幂的乘方的性质:________________________,积的乘方的性质:________________________
4、 计算:)21)(12(x y y x -+--+=____________
5、 填空:9
4)___)(___(22-=-+y x xy xy 6、 计算:200620042005)4(412)4(-+⨯--=____________
7、 填空:2222422)52() (410b a a b a --=--
8、 已知222))((y bxy x y x y ax -+=+-,求________32=b a
9、 计算:10022005)251()
5(-=____________ 10、 如果m x x ++1442
是一个完全平方式,那么m= ____________
如果3692++mx x 是一个完全平方式,那么m= ____________ 11、
已知5=-y x 、2=xy ,则____22=+y x ,=++)3)(3(22y x ____ 12、
计算:=+++++++)1)(1)(1)(1)(1)(1)(1(643216842x x x x x x x ___________ 13、
已知b a n m ==2,2,那n m +2与n m 3422+的积为____________(用a,b 表示) 14、
一个多项式除以22x x -+-得到12-x ,则这个多项式是_______________ 15、
=-+-244222222)()()(b a b a b a ____________ 16、 计算:=-⨯-32)3()3(____________ =-⨯4
3)4(4____________ =-
232)43(y x ____________ =⨯98502)41(____________ 17、 规定一种运算:22)()(b a b a b a --+=⊗,其中a,b 为有理数,则
=⊗-+⊗b a b b a )(____________
二、 选择题(每题2分,共10分)
1、 下列运算正确的是( )
A 、222)(b a b a +=+
B 、6)3)(3(2-=+-a a a
C 、22242)2(b ab a b a +-=-
D 、22))((y x x y y x -=--+-
2、 若)1)(2(-+x a x 的结果中不含x 的一次项,则a 等于( )
A 、a=2
B 、 a= -2
C 、a=1
D 、a= -1
3、 n 28233=⋅,则n=( )
A 、6
B 、 9
C 、12
D 、15
4、 与14a 不相等的是:( )
A 、77a a
B 、335)(a a
C 、104)(a
D 、85)())((a a a ---
5、 下列各式中错误的是 ( )
A 、2244)2)(2(y xy x y x y x ++=+--
B 、2222))((c b ab a c b a c b a -++=-+++
C 、4422))()((b a b a b a b a -=+-+
D 、2229291)331(y xy x y x +-=
- 三、
计算题(4分*4+6分*1,共22分) 1、222)32)(5343(xy xy y x ---
2、4)2)(23(3)3)(2(x y y z z x y x --+++
3、先化简,再求值:)135)(123(22+-++-x x x x ,当2
1=x 时,求值:
4、解不等式:2)4(163)43)(34(-->-+x x x x
5、简便运算:
(1)、—2
02.30 (2)、9901010⨯
四、 简答题(5分*3+7分*2+5分+4分,共38分) (1)先化简,后求值:22)3(9)3)(3(6)3(m n n m n m n m ++-+--,其中1,3-=-=n m 。

(2)已知24)2(,32)2(22=-=+y x y x ,求2
22065y xy x +-的值。

(3)在两个连续奇数中,大数的平方与小数的平方的差的绝对值是40,求这两个数分别是什么?
(4)(1)已知2)()1(2
-=---y x x x ,求xy y x -+22
2的值; (2)如果6,1522=+=+ab b ab a ,求22b a -与2
2b a +的值。

(5)是否有数能使222)(b a b a +=+成立?请比较2)(b a +与22b a +的大小。

(6)计算22313-×22414-×22515-×…×2
232132-的值。

(7)探索题: 1)1)(1(2-=+-x x x 1)1)(1(3
2-=++-x x x x 1)1)(1(423-=+++-x x x x x
1)1)(1(5234-=++++-x x x x x x ……
1)试求122222223456++++++的值
2)判断12222
200320042005+++++ 的值的末位数。

相关文档
最新文档