中世纪的东西方数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中世纪的东西方数学

从公元476年西罗马帝国灭亡到14世纪文艺复兴长达1000多年的欧洲历史称为欧洲中世纪。

中国传统数学的形成与兴盛:公元前1世纪至公元14世纪。

1、中算发展的第一次高峰:数学体系的形成

秦汉时期形成中国传统数学体系。

《算数书》:中国现存最早的数学专著。

《周髀算经》:编纂于西汉末年,天文学著作。两项重要数学成就:勾股定理的普遍形式,数学在天文测量中的应用。

《九章算术》:中国传统数学最重要的著作,全书246个问题,分成九章。它完整地叙述了当时已有的数学成就,在长达一千多年间,一直作为中国的数学教科书,并被公认为世界数学古典名著之一。

《九章算术》标志以筹算为基础的中国古代数学体系正式形成。

2、中算发展的第二次高峰:数学稳步发展

从公元220年东汉分裂,到公元581年隋朝建立,史称魏晋南北朝。数学上以注释《周髀算经》、《九章算术》的形式出现。这是中国数学史上一个独特而丰产的时期,是中国传统数学稳步发展的时期。

《九章算术》注释中最杰出的代表是刘徽和祖冲之父子。

2.1 刘徽(公元3世纪)

公元263年撰《九章算术注》,系统地阐述了中国传统数学的理论体系与数学原理,奠定了这位数学家在中国数学史上的不朽地位,成为中国传统数学最具代表性的人物。

刘徽数学成就中最突出的是“割圆术”,求出圆周率为3927/1250(=3.1416),主张利用圆内接正192边形的面积求出157/50(=3.14)作为圆周率,后人常把这个值称为“徽率”。这使刘徽成为中算史上第一位用可靠的理论来推算圆周率的数学家,享有国际声誉。

2.2 祖冲之(429-500年)

著作《缀术》取得了圆周率的计算和球体体积的推导两大数学成就。祖冲之算出圆周率在3.1415926与3.1415927之间,并以355/113(=3.1415929…)为密率,22/7(=3.1428…)为约率。

《缀术》的另一贡献是祖氏原理:幂势既同则积不容异,在西方文献中称为卡瓦列里原理,或不可分量原理。

唐代主要的数学成就在于建立中国数学教育制度。唐初李淳风(604-672年)等人注释并校订了《算经十书》(约656年),十部算经对继承古代数学经典有积极的意义,显示了汉唐千余年间中国数学发展的水平,是当时科举考试的必读书。

3、中算发展的第三次高峰:数学全盛时期

宋元时期(960—1368年)重新统一了的中国社会发生了一系列有利于数学发展的变化,以筹算为主要内容的中国传统数学达到了鼎盛时期。这一时期涌现许多杰出的数学家和先进的数学计算技术,其印刷出版、记载着中国传统数学最高成就的宋元算书,是世界文化的重要遗产。

3.1 贾宪三角

贾宪(约公元11世纪)约1050年完成《黄帝九章算术细草》,发明了“增乘开方法”,创造了“开方作法本源图”。

3.2 隙积术

沈括(1030-1094年)《梦溪笔谈》(1093年)影响极大,被李约瑟誉为“中国科学史的里程碑”。他对数学的主要成就有“会圆术”与“隙积术”。

3.3天元术

李冶(1192-1279年)1248年撰成代数名著《测圆海镜》,该书是首部系统论述“天元术”的著作,是符号代数的尝试,在数学史上具有里程碑意义。

3.4 大衍术

秦九韶(约1202-1261年)1247年完成数学名著《数书九章》,其中两项贡献使得宋代算书在中世纪世界数学史上占有突出的地位。一是创立了“大衍求一术”(中国剩余定理),二是提出了“正负开方术”(秦九韶法)。

3.5 垛积术

杨辉(公元13世纪)1261年完成《详解九章算法》,其中主要的数学贡献是“垛积术”,另一贡献是所谓的“杨辉三角”,其实是记载了贾宪的工作。

3.6 四元术

朱世杰(约1260-1320年)1303年在扬州刊刻了他的代表作《四元玉鉴》,它是中国宋元数学高峰的又一个标志,主要贡献有四元术。

美国著名科学史家萨顿(1884-1956年)说:朱世杰是汉民族,他所生存时代的,同时也是贯穿古今的一位最杰出的数学家。

3.7 内插法

郭守敬(1231-1316年)1280年完成了中国古代最精密的历法《授时历》。郭守敬建造的河南登封观星台(1276)留存至今。

古希腊数学以几何定理的演绎推理为特征、具有公理化模式,与中国传统数学以计算为中心、具有程序性和机械性的算法化模式相辉映,交替影响世界数学的发展。

4、中算的衰落

朱世杰可以被看作是中国宋元时期数学发展的总结性人物,是中国以筹算为主要计算工具的古代数学发展的顶峰,而《四元玉鉴》可以说是宋元(960-1368年)数学的绝唱。明清两朝(1368-1911年)共543年,不仅未能产生出与《数书九章》、《四元玉鉴》相媲美的数学杰作,而且在18世纪中叶“乾嘉学派”重新发掘研究以前,像“四元术”这样一些宋元数学的精粹长期失传、无人通晓。

1、印度数学(公元5-12世纪)

公元前10-前3世纪称为印度的吠陀时期。印度数学的繁荣鼎盛时期称为“悉檀多”时期(公元5-12世纪),是以计算为中心的实用数学的时代,数学贡献主要是算术与代数,出现了一些著名的数学家。

1.1阿耶波多(公元476-约550年)

在印度科学史上有重要影响的人物,最早的印度数学家,499年天文学著作《阿耶波多历数书》传世,最突出之处在于对希腊三角学的改进和一次不定方程的解法。

1.2婆罗摩笈多(598-约665年)

628年发表21章的天文学著作《婆罗摩修正体系》,其中第12、18章讲的是数学,分数成就十分可贵,比较完整地叙述了零的运算法则,丢番图方程nx^2+1=y^2求解的“瓦格布拉蒂”法。

1.3婆什迦罗Ⅱ(1114-1188年)

印度古代和中世纪最伟大的数学家、天文学家,1150年古印度数学最高成就《天文系统之冠》,其中有两部重要数学著作《算法本源》、《莉拉沃蒂》。

由于印度屡被其他民族征服,使印度古代天文学和数学受外来文化影响较深,但印度数学始终保持东方数学以计算为中心的实用化特点。

2、阿拉伯数学(公元8-15世纪)

背景:阿拉伯简况。

9-15世纪阿拉伯科学繁荣了600年,创立了文化中心巴格达。在世界文明史上,阿拉伯人在保存和传播希腊、印度甚至中国的文化,最终为近代欧洲的文艺复兴准备学术前提方

相关文档
最新文档