高三联考文科数学试题及答案
2023年高三5月大联考(全国乙卷)文科数学试题及参考答案
2023届高三5月大联考(全国乙卷)文理科数学试题及参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,设复数21,z z 对应的点分别为()()1,12021-Z Z ,,,则=21z z ()A .2B .3C .2D .12.已知集合()(){}012<+-=x x x M ,{}30≤≤=x x N ,则=N M ()A .[)20,B .[]30,C .(]31,-D .(]32,3.《“健康中国2030”规划纲要》提出,将康时促进人的全面发展的必然要求,是经济社会发展的基础条件.实现国民健康长寿,是国家富强、民族振兴的重要标志.也是全国各族人民的共同愿望.为普及健康知识,某公益组织为某社区居民组织了一场健康知识公益讲座,讲座后居民要填写健康知识问卷(百分制),为了解讲座效果,随机抽取了10为居民的问卷,并统计得分情况如下表所示:则下列说法错误的是()A .该10位居民的问卷得分的极差为30B .该10位居民的问卷得分的中位数为94C .该10位居民的问卷得分的中位数小于平均数D .该社区居民的问卷得分不低于90分的概率估计值大于0.24.已知2.0log 1.0=a ,a b lg =,ac 2=,则c b a ,,的大小关系为()A .c b a <<B .b c a <<C .a c b <<D .ca b <<5.从装有若干个红球和白球(除颜色外其余均相同)的黑色布袋中,随机不放回地摸球两次,每次摸出一个球.若事件“两个球都是红球”的概率为152,“两个球都是白球”的概率为31,则“两个球颜色不同”的概率为()A .154B .157C .158D .1511答题居民序号12345678910得分728365768890659095766.若执行如图所示的程序框图,则输出S 的值为()A.94B .98C .115D .11107.若函数()()⎩⎨⎧≥++<++=0,1ln 0,122x a x x ax ax x f 恰有2个零点,则实数a 的取值范围是()A .()()∞+∞-,,10 B .()1,0C .()1,∞-D .()∞+,08.若平面向量b a ,满足b a 2=,且b a22+与b 垂直,则b a ,的夹角为()A .43πB .32πC .3πD .4π9.已知椭圆E :()012222>>=+b a b y a x 的左顶点为A ,上顶点为B ,左、右焦点分别为21,F F ,延长2BF 交椭圆E 于点P .若点A 到直线2BF 的距离为3216,21F PF ∆的周长为16,则椭圆E 的标准方程为()A .1162522=+y xB .1323622=+y xC .1484922=+y x D .16410022=+y x 10.已知数列{}n a 的前n 项和为n S ,且n n n n a S S S -=+++1232,7264=-a a ,344=S ,则2023是数列{}n a 的()A .第566项B .第574项C .第666项D .第674项11.已知函数()()ϕω+=x x f cos 2()00<<->ϕπω,,()30=f ,且()x f 在[]π,0上有且只有三个极值点,则下列说法错误的个数是()①存在ω值,使得函数()x f 在[]π,0上有两个极小值点;②ω的取值范围为⎥⎦⎤⎝⎛619613,;③函数()x f 在⎪⎭⎫ ⎝⎛50π,上单调递增;④若Z ∈ω,则函数()x f 图象的一个对称中心为⎪⎭⎫⎝⎛092π.A .4B .3C .2D .112.在正三棱锥ABC P -中,E D ,分别为侧棱PC PB ,的中点,若BE AD ⊥,且7=AD ,则正三棱锥ABC P -外接球的表面积为()A .π435B .π572C .π7108D .π9152二、填空题:本题共4小题,每小题5分,共20分.13.曲线xxy ln =在1=x 处的切线方程为.14.已知公比小于0的等比数列{}n a 的前n 项和为n S ,12232+==S a a ,,=1a .15.在直四棱柱1111D C B A ABCD -中,底面四边形ABCD 是菱形,︒=∠120ADC ,121AA AD =,E 是棱1AA 的中点,O 为底面菱形ABCD 的中心,则异面直线EO 和AD 所成角的余弦值为.16.已知双曲线C :()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,M 是双曲线C右支上一点,记21F MF ∆的垂心为G ,内心为I .若GI F F 1221=,则双曲线C 的离心率为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)2023年,某地为了帮助中小微企业渡过难关,给予企业一定的专项贷款资金支持.如图是该地120家中小微企业的专项贷款金额(万元)的频率分布直方图:(1)确定a 的值,并估计这120家中小微企业的专项贷款金额的中位数(结果保留整数);(2)按专项贷款金额进行分层抽样,从这120家中小微企业中随机抽取20甲.记专项贷款金额在[200,300]内应抽取的中小微企业数为m .①求m 的值.②从这m 家中小微企业中随机抽取3家,这3家中小微企业的专项贷款金额都在[200,250)内的概率.18.(12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且ABC ∆的面积为3,12222=-+c b a .(1)求C ;(2)若33cos cos -=B A ,求c .19.(12分)如图,在直三棱柱111C B A ABC -中,︒=∠90BAC ,2211===AA AC AB ,141AA AE =,D 为棱1CC 的中点,F 为棱BC 的中点.(1)求证:⊥BE 平面C AB 1;(2)求三棱锥DEF B -的体积.20.(12分)已知函数()()01ln >+=a ax xx f .(1)当21e a =时,求()x f 的单调区间;(2)若函数()axx f y 1+=有两个不同的零点,求a 的取值范围.21.(12分)已知抛物线C :()022>=p px y ,M 是其准线与x 轴的交点,过点M 的直线l 与抛物线C 交于B A ,两点,当点A 的坐标为()0,4y 时,有BA MB =.(1)求抛物线C 的方程;(2)设点A 关于x 轴的对称点为点P ,证明:直线BP 过定点,并求出该定点坐标.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,直线l 的参数方程为⎪⎩⎪⎨⎧+==ααsin 21cos t y t x (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为⎪⎭⎫ ⎝⎛+=4sin 22πθρ.(1)写出曲线C 的直角坐标方程;(2)已知点P 的直角坐标为⎪⎭⎫ ⎝⎛210,,若直线l 与曲线C 交于N M ,两点,求PN PM -的最大值.23.(10分)【选修4-5:不等式选讲】已知c b a ,,都是正实数..(1)若1=ac ,求证:()()b c b b a 4≥++;(2)若1112121=++++cb a ,求c b a ++的最小值.参考答案一、选择题1.C解析:由题意,知i z 21=,i z -=12,∴i i i z z +-=-=11221,∴221=z z .2.A 解析:∵集合{}21<<-=x x M ,{}30≤≤=x x N ,∴[)20,=N M .3.B解析:将这10为居民的问卷得分按照从小到大的顺序排列为65,65,72,76,76,83,88,90,90,95,∴极差为95-65=30,故A 正确;中位数为5.7928376=+,故B 错误;平均数为()5.798095909088837676726565101>=+++++++++⨯,故C 正确;由题表及样本估计总体,知该社区居民问卷得分不低于90分的概率估计值为2.03.0103>=,故D 正确.4.D解析:∵x y 1.0log =在()∞+,0上单调递减,∴1.0log 2.0log 1log 1.01.01.0<<,即10<<a .∵x y lg =在()∞+,0上单调递增,∴1lg lg <a ,即0<b .∵xy 2=在R 上单调递增,∴022>a,即1>c .综上,得c a b <<.5.C解析:设“两个球都是红球”为事件A,“两个球都是白球”为事件B,“两个球颜色不同”为事件C,则()()31152==B P A P ,且B A C =.∵C B A ,,两两互斥,∴()()()()()[]158311521111=--=+-=-=-=B P A P B A P C P C P .6.A解析:初始值20==n S ,.第一次执行循环体:43113111212=⨯=⨯=-=n S a ,,,否;第二次执行循环体:6531311531=⨯+⨯=⨯=n S a ,,,否;第三次执行循环体:8751531311751=⨯+⨯+⨯=⨯=n S a ,,,否;第四次执行循环体:10971751531311971=⨯+⨯+⨯+⨯=⨯=n S a ,,,是,输出S .∵9491717151513131121971751531311=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⨯+⨯+⨯+⨯=S ,∴输出S 的值为94.7.A 解析:①当0=a 时,()()⎩⎨⎧≥+<=0,1ln 0,1x x x x f ,则()x f 只有一个零点0,不符合题意;②当0<a 时,作出函数()x f 的大致图象,如图1,()x f 在()0,∞-和[)∞+,0上各有一个零点,符合题意;③当0>a 时,作出函数()x f 的大致图象,如图2,()x f 在[)∞+,0上没有零点.若()x f 在()0,∞-上有两个零点,则符合题意,此时必须满足()011<-=-a f ,解得1>a .综上,得0<a 或1>a ,故选A.8.B 解析:∵b a 22+与b 垂直,∴()022=⋅+b b a ,化简得222b b a -=⋅.设b a ,的夹角为θ,则21cos -=⋅⋅=ba b a θ.∵[]πθ,0∈,∴32πθ=.9.B解析:由题意,得()()()0,,00,2c F b B a A ,,-,则直线2BF 的方程为0=-+bc cy bx ,∴点A 到直线2BF 的距离()321622=+=+--=c a a bc b bc abd ①.由21F PF ∆的周长为16,得16222121=+=++c a F F PF PF ,即8=+c a ②联立①②解得a b 322=③∵222c a b -=,∴a c 31=④.联立②④,解得26==c a ,,∴24=b ,故椭圆E 额标准方程为1323622=+y x .10.D 解析:由n n n n a S S S -=+++1232,得()n n n n n a S S S S --=-+++1122,即122++=+n n n a a a ,∴数列{}n a 是等差数列,设公差为d ,则由7264=-a a 和344=S 得⎩⎨⎧=+=+1732711d a d a ,解得⎩⎨⎧==341d a ,∴()13314+=⨯-+=n n a n .由202313=+n ,得674=n .11.B 解析:∵()30=f ,∴23cos =ϕ.∵0<<-ϕπ,∴6πϕ-=.当[]π,0∈x 时,⎥⎦⎤⎢⎣⎡--∈-6,66πωπππωx ,∵()x f 在[]π,0上有且只有三个极值点,∴ππωππ362<-≤得619613<≤ω,∴根据图象可以判断,()x f 在[]π,0上有两个极大值点,一个极小值点,∴①错误,②错误;当⎪⎭⎫⎝⎛∈5,0πx 时,6566ππωπωππ-<-≤-,显然065>-ππω,不符合题意∴③错误;由Z ∈ω得3=ω,∴()⎪⎭⎫ ⎝⎛-=63cos 2πx x f ,令Z k k x ∈+=-,263πππ,得Z k k x ∈+=,923ππ,当0=k 时,92π=x ,∴④正确.故选B.12.C 解析:如图,∵ABC P -为正三棱锥,P AC PBC P AB ∆≅∆≅∆,7==BE AD .取线段PE 的中点F ,连接AF DF ,,∵D 为PB 的中点,∴BE DF ∥,BE DF 21=.∵BE AD ⊥,∴DF AD ⊥.在ADF Rt ∆中,72==DF AD ,由勾股定理,得235=AF .设x P A APB ==∠,θ.在P AD ∆中,由余弦定理的推论,得222745212741cos x xx x x -=⋅-+=θ①同理,在P AF ∆中,由余弦定理的推论,得222235817412435161cos x xx x x -=⋅-+=θ②.联立①②,解得32=x ,32cos =θ.在P AB ∆中,由余弦定理,得()()832323223232cos 222222=⨯⨯⨯-+=∠⋅⋅-+=APB PB P A PB P A AB ,∴22=AB .取ABC ∆的中心1O ,连接11AO PO ,,则⊥1PO 平面ABC ,三棱锥ABC P -的外接球球心O 在1PO 上,连接OA ,设外接球半径为R .在1P AO Rt ∆中,R OA =,36232231=⨯=AB AO ,∴()321236232222121=⎪⎪⎭⎫ ⎝⎛-=-=AO P A PO ,∴R R PO OO -=-=321211,∴21212AO OO AO +=,即2223623212⎪⎪⎭⎫ ⎝⎛+-=R R ,解得7213=R ,∴所求外接球的表面积为ππ710842=R .二、填空题13.01=--y x 解析:2ln 1xxy -=',当1=x 时,1='y .又当1=x 时,0=y ,∴曲线xxy ln =在1=x 处的切线方程为1-=x y ,即01=--y x .14.4-解析:设等比数列{}n a 的公比为()0<q q ,将22=a 代入123+=S a ,得1222++=qq ,∴02322=--q q ,解得21-=q 或2=q (舍去),∴41-=a .15.1473解析:如图,连接C D C A AC 11,,,∵O 为AC 的中点,E 是棱1AA 的中点,∴C A OE 1∥.∵11D A AD ∥,∴C A D 11∠或其补角为异面直线EO 与AD 所成的角.不妨设1=AD ,则211111=====DD AA CD AD D A ,.在ADC ∆中,由余弦定理得:32111211120cos 22222=⎪⎭⎫⎝⎛-⨯⨯⨯-+=︒⋅-+=DC AD DC AD AC .∵1111D C B A ABCD -为直四棱柱,∴⊥1AA 平面ABCD .又⊂DC AC ,平面ABCD ,∴DC AA AC AA ⊥⊥11,.∵11AA DD ∥,∴DC DD ⊥1,∴()732222211=+=+=AC AA C A ,512222211=+=+=DC DD C D 在C D A 11∆中,由余弦定理的推论得:14737125712cos 111212121111=⨯⨯-+=⋅-+=∠C A D A C D C A D A C A D .16.2解析:如图,连接MI GM ,并延长,与21F F 分别交于点D O ,.设双曲线C 的焦距为c 2.由题意得c GI 61=.∵21F F GI ∥,且G 为重心,则32=ODGI ,∴4c OD =.∵I 为21F MF ∆的内心,∴MD 为21MF F ∠的平分线,∴35212121===∆∆DF D F S S MF MF MDF D MF ,∴2135MF MF =.又a MF MF 221=-,∴a MF a MF 3521==,.设21F MF ∆的内切圆半径为r ,则M 到x 轴的距离为r 3,∵r F F S F MF 3212121⋅⋅=∆,()r F F MF MF S F MF ⋅++⋅=∆21212121,∴2121213F F MF MF F F ++=,∴a c 2=,∴双曲线C 的离心率2==ace .三、解答题(一)必考题17.解:(1)由频率分布直方图,得()150001.0006.02003.0002.0=⨯++++a ,解得004.0=a .设中位数为t ,专项贷款金额在[0,150)内的频率为0.45,在[150,200)内的频率为0.3,∴中位数t 在[150,200)内,∴()05.0006.0150=⨯-t ,解得158≈t ,∴估计这120家中小微企业的专项贷款金额的中位数为158万元.(2)①由题意,得抽取比例为6112020=,专项贷款金额在[200,300]内的中小微企业有()30001.0004.050120=+⨯⨯家,∴应抽取56130=⨯家,∴5=m .②在抽取5家中小微企业中,专项贷款金额在[200,250)内的有4545=⨯家,记为D C B A ,,,,专项贷款金额在[250,300]内的有1515=⨯家,记为E .从这5家中小微企业中随机抽取3家的可能情况为CDE BDE BCE BCD ADE ACE ACD ABE ABD ABC ,,,,,,,,,,共10种,其中这3家中小微企业的专项贷款金额都在[200,250)内的情况为BCD ACD ABD ABC ,,,,共4种,∴所求概率52104==P .18.解:(1)∵ABC ∆的面积为3,∴3sin 21=C ab ,即32sin =C ab ①由余弦定理的推论,得abc b a C 2cos 222-+=.∵12222=-+c b a ,∴6cos =C ab ②.易知2π≠C ,①÷②,得33tan =C .∵()π,0∈C ,∴6π=C .(2)∵6π=C ,∴23cos =C ,即()23cos =+-B A ,∴23sin sin cos cos -=-B A B A .又33cos cos -=B A ,∴63sin sin =B A .由正弦定理得c CcB b A a 2sin sin sin ===,∴B c b A c a sin 2sin 2==,.由(1),知32sin =C ab ,∴34=ab ,∴34sin sin 42=B A c ,即23sin sin cB A =,∴6332=c ,解得6=c .19.解:(1)∵11112141BB AA AA AC AB AA AE ====,,,∴12121BB AB AB AE ==,,∴1BB ABAB AE =.∵111C B A ABC -为直三棱柱,∴侧面11A ABB 为矩形,∴︒=∠=∠9011ABB AB A ,∴1~BAB AEB ∆∆,∴AEB BAB ∠=∠1.又︒=∠+∠90AEB EBA ,∴︒=+∠901BAB EBA ,∴1AB BE ⊥.∵⊥1AA 平面ABC ,⊂AC 平面ABC ,∴AC AA ⊥1.又⊂=⊥11AA A AB AA AB AC ,, 平面11A ABB ,∴⊥AC 平面11A ABB ,∵⊂BE 平面11A ABB ,∴BE AC ⊥.∵⊂=11AB A AC AB , 平面C AB 1,⊂AC 平面C AB 1,∴⊥BE 平面C AB 1.(2)连接AF ,∵⊄111AA BB AA ,∥平面11B BCC ,⊂1BB 平面11B BCC ,∴∥1AA 平面11B BCC ,∴三棱锥DEF B -的体积CD S V V V V ABF ABF D BDF A BDF E DEF B ⋅====∆----31.∵︒=∠==902BAC AC AB ,,F 为BC 的中点,∴BC AF BC ⊥=,22,∴2==BF AF ,∴1222121=⨯⨯=⋅⋅=∆AF BF S ABF ,∴三棱锥DEF B -的体积32213131=⨯⨯=⋅=∆-CD S V ABF DEF B .20.解:(1)由题意,知()x f 的定义域为()∞+,0,当21e a =时,()()()222222ln 1ln e x x e x e x f e x x e x f +⎪⎪⎭⎫⎝⎛+-='+=,.令()x e x x g 2ln 1+-=,则()0122<--='xe x x g ,∴()x g 在()∞+,0上单调递减.∵()02=eg ,∴当()2,0e x ∈时,()0>x g ,从而()0>'x f ;当()+∞∈,2e x 时,()0<x g ,从而()0<'xf ,∴()x f 的单调递增区间为()2,0e ,单调递减区间为()+∞,2e.(2)函数()ax x f y 1+=有两个不同的零点等价于()01=+axx f 有两个不同的解,等价于()011ln =++x ax 有两个不同的解.令()()11ln ++=x ax x h ,()+∞∈,0x ,则()()2ln +='x a x h .由()0='x h ,得21ex =.又0>a ,∴当⎪⎭⎫ ⎝⎛∈21,0e x 时,()0<'x h ;当⎪⎭⎫⎝⎛+∞∈,12e x 时,()0>'x h ,∴()x h 在⎪⎭⎫ ⎝⎛21,0e 上单调递减,在⎪⎭⎫⎝⎛+∞,12e 上单调递增,∴()22min 11e a e h x h -=⎪⎭⎫⎝⎛=.①当012≥-ea 即20e a ≤<时,()x h 至多有一个零点,不符合题意;②当012<-e a 即2e a >时,012<⎪⎭⎫ ⎝⎛e h ,()011>+=a h .由单调性和函数零点存在定理,知()x h 在⎪⎭⎫⎝⎛+∞,12e 上有且只有一个零点.∵2e a >,∴22111e a a <<,且a aa a h ln 2112-+=⎪⎭⎫ ⎝⎛.令()x x x ln 21-+=ϕ,则()xx x 2-='ϕ,∴当()+∞∈,2x 时,()0>'x ϕ,∴()x ϕ在()∞+,2上单调递增.∵22>>e a ,∴()()04ln 32>-=>ϕϕa ,∴012>⎪⎭⎫⎝⎛a h .由单调性和函数零点存在定理,知()x h 在⎪⎭⎫⎝⎛21,0e 上有且只有一个零点.∴当2e a >时,()x h 有两个不同的零点,即()axx f y 1+=有两个不同的零点,符合题意.综上,a 的取值范围是()+∞,2e .21.解:(1)设()B B y x B ,,由BA MB =得B 诶线段MA 的中点.∵⎪⎭⎫ ⎝⎛-0,2p M ,∴⎪⎩⎪⎨⎧=-=02242y y p x B B ,∴⎪⎪⎩⎪⎪⎨⎧=-=2420y y p x B B ,即⎪⎭⎫ ⎝⎛-2,420y p B ,把⎪⎭⎫ ⎝⎛-2,420y p B 代入px y 22=中,得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛422220p p y ,把()0,4y A 代入px y 22=中,得p y 820=,∴p p p 2422=⎪⎭⎫⎝⎛-.又0>p ,∴4=p ,∴抛物线C 的方程为x y 82=.(2)由题意,知直线l 的斜率存在且不为0,∵()02,-M ,∴可设直线l 的方程为2-=my x .设()()2211,,y x B y x A ,,则点()11,y x P -.由⎩⎨⎧=-=xy my x 822消去x 得01682=+-my y ,∴0>∆,根据根与系数的关系得1682121==+y y m y y ,.直线BP 的斜率12212212121288y y y y y y x x y y k -=-+=-+=,直线BP 的方程为()21228x x y y y y --=-,∴()()()221222122122128181********y y y y y y y x y y y y y y x ++--=+---=()28112+-=y y y ,即直线BP 的方程可表示为()28112+-=y y y x .∴直线BP 过定点,且定点坐标为()02,.(二)选考题22.解:(1)∵⎪⎭⎫ ⎝⎛+=4sin 22πθρ,∴θθρcos 2sin 2+=,即θρθρρcos 2sin 22+=.又θρcos =x ,θρsin =y ,222ρ=+y x ,∴曲线C 的直角坐标方程为02222=--+y x y x .(2)依题意,将直线l 的参数方程代入曲线C 的直角坐标方程得:()043cos 2sin 2=-+-t t αα.设点N M ,所对应的参数分别为21,t t ,则43cos 2sin 2121-=+=+t t t t ,αα.∵点P 的直角坐标为⎪⎭⎫ ⎝⎛210,,∴1t PM =,2t PN =.∵021<t t ,∴2121t t t t PN PM +=-=-()ϕααα+=+=sin 5cos 2sin ,其中552sin 55cos ==ϕϕ,.由()03cos 2sin 2>++=∆αα,得R ∈α,∴当()1sin ±=+ϕα时,PN PM -最大,且最大值为5.23.解:(1)∵c b a ,,都是正实数,∴02>≥+ab b a ,02>≥+bc c b ,∴()()bc ab c b b a 22⋅≥++,当且仅当1===c b a 时,等号成立,即()()ac b c b b a 4≥++.又∵1=ac ,∴()()b c b b a 4≥++.(2)∵1112121=++++c b a ,∴12212422=++++cb a .由柯西不等式,得()()[]()22122212142221242++≥⎪⎭⎫⎝⎛++++++++c b a c b a ,即()22215222+≥+++c b a ,即222+≥++c b a ,当且仅当()c b a 21222=+=+,即222222+===c b a ,,时等号成立,∴c b a ++的最小值为222+.。
九师联盟2024届高三教学质量监测10月联考(全国卷)文科数学试题及参考答案
九师联盟2024届高三教学质量监测10月联考(全国卷)文科数学试题及参考答案一、选择题:本题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()0sin ,0<∈∃θπθ,:p ,则p ⌝为()A .()0sin ,0≥∈∃θπθ,B .()0sin ,0<∉∃θπθ,C .()0sin ,0<∉∀θπθ,D .()0sin ,0≥∈∀θπθ,2.设集合(){}3ln -==x y x A ,{}1-≤=x x B ,则()=B A C R ()A .{}31≤≤-x xB .{}31≤<-x xC .{}31<≤-x x D .{}31<<-x x 3.已知()m P ,1是角θ的终边上一点,2tan -=θ,则=θsin ()A .552-B .55-C .55D .5524.已知平面向量b a ,和实数λ,则“b aλ=”是“b a 与共线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件5.扇子是引风用品,夏令营必备之物.我国传统扇文化源远流长,是中华文化的一个组成部分.历史上最早的扇子是一种礼仪工具,后来慢慢演变为纳凉、娱乐、观赏的生活用品和工艺品.扇子的种类较多,受大众喜爱的有团扇和折扇.如图1是一把折扇,是用竹木做扇骨,用特殊纸或凌娟做扇面而制成的.完全打开后的折扇为扇形(如图2),若图2中θ=∠AOB ,D C ,分别在OB OA ,上,m BD AC ==,弧AB 的长为l ,则该折扇的扇面ABDC 的面积为()A .()2θ-l m B .()2m l m θ-C .()22θ-l m D .()22m l m θ-6.已知6.023-⎪⎭⎫⎝⎛=a ,41log 31=b ,9.032⎪⎭⎫⎝⎛=c ,则()A .ac b >>B .ba c >>C .ca b >>D .bc a >>7.已知316sin =⎪⎭⎫ ⎝⎛-πα,则=⎪⎭⎫ ⎝⎛+62sin πα()A .322B .32C .922D .978.已知函数()12++-=ax x x f 在[]2,1上的最大值也是其在[]2,1上的极大值,则a 的取值范围是()A .[)∞+,2B .[)∞+,4C .[]4,2D .()4,29.已知函数()21sin cos sin 32-+=x x x x f ,若将其图象向左平移()0>ϕϕ个单位长度得到的图象关于原点对称,则ϕ的最小值为()A .12πB .6πC .3πD .2π10.如图,已知两个单位向量OB OA ,和向量OC ,2=OC .OA 与OC 的夹角为θ,且102cos =θ,OB 与OC 的夹角为4π,若()R y x OB y OA x OC ∈+=,,则=-y x ()A .1-B .21-C .21D .111.在ABC ∆中,D 为BC 上一点,CAD BAD ∠=∠,若221===AB AD AC ,则=BC ()A .22B .32C .23D .5212.已知函数()x f 的定义域为R ,若R x ∈∀,()()04=-++x f x f ,且()1+x f 为偶函数,()11-=f ,则()=2023f ()A .1B .1-C .2D .2-二、填空题:本题共4小题,每小题5分,共20分.13.函数()()xa x x f 21log ++=(0>a ,且1≠a )的图象过定点.14.已知向量b a ,满足4,5==b a,b a 与的夹角为120°,若()()b a b a k +⊥-2,则=k .15.已知函数()xe x xf 1-=,则曲线()x f y =在点()()0,0f 处的切线方程为.16.函数xx xx y cos sin 2cos sin --=的值域为.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知()x x a sin ,cos 22= ,⎪⎭⎫ ⎝⎛=x b cos 3,21 ,()b a x f ⋅=.(1)求函数()x f 的最小正周期和单调递减区间;(2)在ABC ∆中,π127=+B A ,()1=A f ,32=BC ,求边AC 的长.18.(12分)已知函数()()x m x f x-+=1log 3(0>m ,且1≠m )是偶函数.(1)求m 的值;(2)若关于x 的不等式()()()0333321≤+⎥⎦⎤⎢⎣⎡+-⋅-a xx x f 在R 上有解,求实数a 的最大整数值.19.(12分)已知αsin 是方程06752=--x x 的根.(1)求()()⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛--⋅-⋅⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛--απαπαπαπαππα2cos 2cos tan 2cos 23cos 23sin 的值;(2)若α是第四象限角,⎪⎭⎫ ⎝⎛<<=⎪⎭⎫ ⎝⎛-201356sin πβπβ,求⎪⎭⎫ ⎝⎛+-6sin πβα的值.20.(12分)已知函数()()R a x x a x f ∈-=ln .(1)讨论()x f 的单调性;(2)若()x f 在⎥⎦⎤⎢⎣⎡2,1e e上有2个零点,求a 的取值范围.21.(12分)南京玄武湖称“金陵明珠”,是我国仅存的皇家园林湖泊.在玄武湖的一角有大片的荷花,每到夏季,荷花飘香,令人陶醉.夏天的一个傍晚,小胡和朋友游玄武湖,发现观赏荷花只能在岸边,无法深入其中,影响观赏荷花的乐趣,于是他便有了一个愿景:若在玄武湖一个盛开荷花的一角(该处岸边近似半圆形,如图所示)设计一些栈道和一个观景台,观景台P 在半圆形的中轴线OC 上(图中OC 与直径AB 垂直,P 与C O ,不重合),通过栈道把AB PC PB P A ,,,连接起来,使人行在其中,犹如置身花海之感.已知m AB 200=,θ=∠P AB ,栈道总长度为函数()θf .(1)求()θf ;(2)若栈道的造价为每米5万元,试确定观景台P 的位置,使实现该愿景的建造费用最小(观景台的建造费用忽略不计),并求出实现该愿景的建造费用的最小值.22.(12分)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,,S 为ABC ∆的面积,且()222c b S a -+=.(1)求A tan 的值;(2)若8=a ,证明:5816≤+<c b .参考答案一、选择题1.D 解析:由含有量词的命题的否定的特点知p ⌝为()0sin ,0≥∈∀θπθ,.2.B解析:由题意得{}3>=x x A ,{}31>-≤=x x x B A 或 ,则()=B A C R {}31≤<-x x .3.A解析:由三角函数的定义知2tan -==m θ,∴55252sin -=-=θ.4.A 解析:若b a λ=,由共线向量定理知b a 与共线,知“b aλ=”是“b a 与共线”的充分条件;若b a 与共线,如()()0,02,1==b a ,,则b a λ=不成立,故“b aλ=”不是“b a 与共线”的必要条件.综上,“b aλ=”是“b a 与共线”的充分不必要条件.5.D解析:由弧长公式可知,OA l ⋅=θ,∴θlOA =,则m lOC -=θ,∴该折扇的扇面的面积为:=⎪⎭⎫ ⎝⎛-⋅-⋅22121m l l l θθθ()22m l m θ-.6.C 解析:9.06.06.00323223231⎪⎭⎫⎝⎛>⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛=-,即c a >>1,又14log 41log 331>=,∴c a b >>.7.D解析:976sin 2162cos 262sin 62sin 2=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+παπαππαπα.8.D解析:()x a x f 2-=',令()0='x f ,得2a x =,由题意得()2,12∈a,∴()4,2∈a .9.A解析:∵()⎪⎭⎫ ⎝⎛-=-=-+=62sin 2cos 212sin 2321sin cos sin 32πx x x x x x x f ,将其图象向左平移()0>ϕϕ个单位长度得到函数⎪⎭⎫⎝⎛-+=622sin πϕx y 的图象,∵⎪⎭⎫ ⎝⎛-+=622sin πϕx y 的图象关于原点对称,∴()Z k k ∈=-ππϕ62,即()Z k k ∈+=212ππϕ,由于0>ϕ,当0=k 时,ϕ取得最小值12π.10.B 解析:由[]πθθ,,0102cos ∈=,得10271021sin 2=⎪⎪⎭⎫ ⎝⎛-=θ,∴534cos -=⎪⎭⎫ ⎝⎛+πθ,由题意得14cos21=⨯=⋅πOC OB ,51cos 21=⨯=⋅θOC OA ,53-=⋅OB OA ,在OB y OA x OC +=两边分别点乘OB OA ,,得5153=-=⋅y x OC OA ,153=+-=⋅y x OC OB ,两式联立并解得⎪⎪⎩⎪⎪⎨⎧==4745y x ,∴21-=-y x .11.C 解析:设θ=∠BAC ,由CAD BAD ABC S S S +=∆∆,得2sin 212sin 21sin 21θθθAD AC AD AB AC AB ⋅+⋅=⋅,即2sin 2sin 2sin 2θθθ+=,∴2sin 32cos 2sin 4θθθ=,∵()πθ,0∈,∴02sin ≠θ,∴432cos =θ.∴811cos 2cos 2=-=θθ,∴1881242416cos 2222=⨯⨯⨯-+=⋅-+=θAC AB AC AB BC ,∴23=BC .12.A ∵()1+x f 为偶函数,即()()11+=+-x f x f ,∴()()x f x f -=2,又由()()04=-++x f x f ,∴()()()x f x f x f -=--=+22,∴()()x f x f =+4,故()x f 为周期函数且4是一个周期,∴()()()1132023=-==f f f .二、填空题13.()1,0解析:当0=x 时,a 在()()∞+,11,0 上无论取何值,()x f 的值总为1,故函数()x f 的图象过定点()1,0.14.54解析:由题意可得102145120cos -=⎪⎭⎫⎝⎛-⨯⨯=︒=⋅b a b a .由()()b a b a k+⊥-2,得()()()()02101622522222=--⨯-=⋅-+-=+⋅-k k b a k b ak b a b a k,解得54=k .15.012=--y x 解析:()()()x x xx exe e x e xf -=--='212,∴()20='f ,又()10-=f ,故所求切线方程为()()021-=--x y ,即012=--y x .16.⎥⎦⎤⎢⎣⎡-522522,解析:令x x t cos sin -=,则()2221cos sin 2≤≤--=t t x x ,∴232tty +=()22≤≤-t ,当0=t 时,0=y ,当22≤≤-t ,且0≠t 时,tt y 32+=,令tt u 3+=,已知u 的值域为⎪⎪⎭⎫⎢⎣⎡∞+⎥⎦⎤ ⎝⎛-∞-,,522522 ,∴tt y 32+=的取值范围为⎦⎤⎝⎛⎪⎪⎭⎫⎢⎣⎡-52200522,, .综上所述,所求函数的值域为⎦⎤⎢⎣⎡-522522,.三、解答题17.解:(1)由题意得()2162sin 2sin 232cos 2121cos sin 3cos 2+⎪⎭⎫ ⎝⎛+=++=+=πx x x x x x x f ,∴()x f 的最小正周期ππ==22T ,令()Z k k x k ∈+≤+≤+πππππ2236222,解得()Z k k x k ∈+≤≤+ππππ326,∴()x f 的单调递减区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ326,.(2)由(1)知()12162sin =+⎪⎭⎫ ⎝⎛+=πA A f ,∴2162sin =⎪⎭⎫ ⎝⎛+πA ,又()π,0∈A ,∴⎪⎭⎫ ⎝⎛∈+613662πππ,A ,∴6562ππ=+A ,∴3π=A .∵π127=+B A ,∴4π=B ,由正弦定理得ABCB AC sin sin =,∴22232232sin sin =⨯==A B BC AC .18.解:(1)∵()x f 为偶函数,∴()()x f x f -=对任意的R x ∈恒成立,即()()x m x m x x-+=++-1log 1log 33对任意的R x ∈恒成立,又()()()m x m m m mm mxx x xx x333333log 1log log 1log 1log 1log -+=-+=+=+-,∴()()x m x m x m xx-+=+-+1log log 1log 333对任意的R x ∈恒成立,即()02log 3=-m x 对任意的R x ∈恒成立,必须02log 3=-m ,即9=m ,故9=m .(2)由(1)知,()()x x f x-+=19log 3,故()()x x x x f x 3133319log 3+==-+.设()()()233≥+=-t t x x ,则23132++=x x t ,即23132-=+t x x ,∴圆原问题等价于关于t 的不等式013212≤-+-a t t 在[)∞+,2上有解,∴max21321⎪⎭⎫⎝⎛--≤t t a ,又()[)+∞∈+--=--=,2,211321132122t t t t y ,∴当3=t 时,211max =y ,∴211≤a ,故实数a 的最大整数值为5.19.解:(1)由αsin 是方程06752=--x x 的根,得53sin -=α或2sin =α(舍),原式()()αααααππαsin sin tan cos 23cos 23sin -⋅-⋅⋅⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛+-=()()αααααααααααcos sin cos sin cos cos sin tan cos sin cos 2-=⎪⎭⎫⎝⎛-⨯=---=.由53sin -=α,∴α是第三象限或第四象限角,若α是第三象限角,则54cos -=α,此时54cos =-α;若α是第四象限角,则54cos =α,此时54cos -=-α.故所求式子的值为54或54-.(2)由(1)知,当α是第四象限角时,53sin -=α,54cos =α,由⎪⎭⎫ ⎝⎛<<=⎪⎭⎫ ⎝⎛-201356sin πβπβ,得13126cos =⎪⎭⎫ ⎝⎛-πβ,∴⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+-6sin cos 6cos sin 6sin 6sin πβαπβαπβαπβα655613554131253-=⨯-⨯-=.20.解:(1)函数()x f 的的定义域为()+∞,0,且()()01>-=-='x xxa x a x f .当0≤a 时,()0<'x f 在()+∞,0上恒成立,故()x f 在()+∞,0上单调递减;当0>a 时,令()()00>>'x x f ,得a x <<0,令()0<'x f ,得a x >,∴()x f 在()a ,0上单调递增,在()+∞,a 上单调递减.综上所述,当0≤a 时,()x f 在()+∞,0上单调递减;当0>a 时,()x f 在()a ,0上单调递增,在()+∞,a 上单调递减.(2)若0=a ,()x x f -=,在⎥⎦⎤⎢⎣⎡2,1e e上无零点,不合题意;若0≠a ,由()0=x f ,得xxa ln 1=,令()x x x g ln =,则直线a y 1=与函数()x g 在⎥⎦⎤⎢⎣⎡2,1e e 上的图象有两个交点,()2ln 1x x x g -=',当e x e <<1时,()0>'x g ,当2e x e <<时,()0<'x g ,∴()x g 在⎥⎦⎤⎢⎣⎡e e ,1上单调递增,在[]2,e e 上单调递减.∴()()ee g x g 1max==,又()2221e eg e e g =-=⎪⎭⎫ ⎝⎛,,∴要使直线a y 1=与函数()x g 在⎥⎦⎤⎢⎣⎡2,1e e 上的图象有两个交点,则e a e 1122<≤,∴22e a e ≤<,即实数a 的取值范围为⎥⎦⎤ ⎝⎛22e e ,.21.解:(1)由题意知θ=∠P AB ,40πθ<<,AB OC ⊥,100==OB OA ,则θcos 100==PB P A ,θtan 100=PO ,∴θtan 100100-=PC ,∴()200tan 100100cos 200+-+=+++=θθθAB PC PB P A f ⎪⎭⎫ ⎝⎛<<⎪⎭⎫ ⎝⎛+-=403cos sin 2100πθθθ.(2)建造栈道的费用()()⎪⎭⎫⎝⎛+-==3cos sin 25005θθθθf F ,()θθθ2cos 1sin 2500-⨯='F ,令()0='θF ,得21sin =θ,又40πθ<<,∴6πθ=.当60πθ<<时,()0<'θF ,当46πθπ<<时,()0>'θF ,∴()θF 在⎪⎭⎫ ⎝⎛60π,上单调递减,在⎪⎭⎫⎝⎛46ππ,上单调递增,∴()()335006min +=⎪⎭⎫⎝⎛=πθF F ,此时331001006tan 100100-=-=πPC ,故观景台位于离岸边半圆弧中点距离⎪⎪⎭⎫⎝⎛-33100100米时,建造费用()33500+万元.22.解:(1)∵ABC ∆的面积为A bc S sin 21=,()222c b a S --=,∴bc c b a A bc 2sin 222+--=,由余弦定理得A bc c b a cos 2222-=--,∴A bc bc A bc cos 22sin --,∵0≠bc ,∴2cos 2sin =+A A ,11又⎪⎭⎫ ⎝⎛∈20π,A ,1cos sin 22=+A A ,∴2sin 12sin 2=-+A A ,化简得0sin 4sin 52=-A A ,解得54sin =A 或0sin =A (不合题意,舍去).∵⎪⎭⎫⎝⎛∈20π,A ,∴53sin 1cos 2=-=A A ,34cos sin tan ==A A A .(2)证明:由正弦定理,得10548sin sin sin ====A a C c B b ,∴()B A C c B b +===sin 10sin 10sin 10,,∴()()ϕ+=+=++=+B B B B A B c b sin 58cos 8sin 16sin 10sin 10,其中ϕ为锐角,且552cos 55sin ==ϕϕ,.∵⎪⎭⎫⎝⎛∈20π,A ,⎪⎭⎫ ⎝⎛∈20πϕ,,∴22πϕπ<-<-A ,又ϕsin sin >A ,∴ϕ>A ,∴20πϕ<-<A ,∴220πϕπ<+-<A ,又⎪⎪⎩⎪⎪⎨⎧<<<<2020ππB C ,即⎪⎪⎩⎪⎪⎨⎧<<<--<2020πππB B A ,∴⎪⎪⎩⎪⎪⎨⎧<<-<<-202πππB A B A ,∴22ππ<<-B A .∴ϕπϕϕπ+<+<+-22B A ,∵函数x y sin =在⎪⎭⎫⎝⎛20π,上单调递增,在⎪⎭⎫⎝⎛ππ,2上单调递减,且()A A A A sin sin cos cos cos 2sin ϕϕϕϕπ+=-=⎪⎭⎫ ⎝⎛+-552545553552=⨯+⨯=552cos 2sin ==⎪⎭⎫ ⎝⎛+ϕϕπ,∴()58sin 585258≤+<⨯ϕB ,即5816≤+<c b .。
2022年12月高三全国大联考(全国乙卷)文科数学试卷及答案
参考数据: , , , .
参考公式:相关系数 ,回归直线方程 中斜率和截距的最小二乘估计公式分别为
, .
19.如图,正三棱柱 的底面边长为2,高为3, 在棱 上, , 为 的中点.
(1)求证: 平面 ;
(2)求三棱锥 的体积.
20.已知函数 , , 为常数, 的图象在点 处的切线方程为 .
故选:D
8.C
【分析】先判断函数 的奇偶性与单调性,再解不等式,求不等式成立的一个充分不必要条件是求其一个真子集.
【详解】函数 定义域为R,
因为 ,所以 是一个奇函数.
因为 ,所以 在R上单调递增.
因为 ,又 是一个奇函数,
所以 ,
又 在R上单调递增,
所以 ,解得 .
不等式 成立的一个充分不必要条件是集合 的真子集,所以选项C正确.
【详解】由抛物线 : ,可知 ,焦点 ,
因为 过焦点 ,所以 ,
设 ,
联立 ,消元得 ,
则 ,
由抛物线定义知 .
故选:A
7.D
【分析】根据图像变换求得 的解析式,再求得 的对称中心.
【详解】函数 的图像向右平移 个单位长度,得到函数 ,所以 ,
令 ,即 的对称中心为 ,
令 ,求得 的一个对称中心为 .
A. B. C. D.3
12.已知各项不等于0的数列 满足 , , .设函数 , 为函数 的导函数.令 ,则 ()
A. B.36C. D.54
二、填空题
13.已知平面向量 , ,则平面向量 与 的夹角为______.
14.已知圆 : ,且圆外有一点 ,过点 作圆 的两条切线,且切点分别为 , ,则 ______.
高三三校联考文科数学试题(附答案)
高三三校联考文科数学试题三校联考数学(文)试题本试卷共8页,21小题,满分150分,考试时间为120分钟.注意事项:1、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.2、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.一、选择题:(本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合要求的。
)1.已知全集U=R ,集合}{|A x y ==,集合{|0B x =<x <2},则()U C A B ⋃=( ) A .[1,)+∞ B .()1+∞, C .[0)∞,+ D .()0∞,+2.设复数121212z i z bi z =+=+⋅,,若z 为实数,则b= ( ) A .2 B .1 C .-1 D .-23.在等比数列{}n a 中,如果12344060a a a a +=+=,,那么78a a += ( ) A .135 B .100 C .95 D .804.在边长为1的等边△ABC 中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则 ( ) A .32-B .0C .32D .35.在△ABC 中,a ,b ,c 分别是A ∠,B ∠,C ∠的对边,且222b c a ++=,则A ∠等于 ( )A .6π B .3πC .23πD .56π6.已知直线l m n ,,及平面α,下列命题中是假命题的是 ( )A .若l ∥m ,m ∥n ,则l ∥n ;B .若l ∥α,n ∥α,则l ∥n .C .若l m ⊥,m ∥n ,则l n ⊥;D .若,l n α⊥∥α,则l n ⊥;7.已知函数2()f x x x c =++,若(0)f >0,()f p <0,则必有 ( )A .(1)f p +>0B .(1)f p +<0C .(1)f p +=0D .(1)f p +的符号不能确定8.曲线32y x x =-在横坐标为-1的点处的切线为l ,则点(3,2)P 到直线l 的距离为( )A.2 B.2 C.2 D.109.已知{}(,)|6,0,0x y x y x y Ω=+≤≥≥,{}(,)|4,0,20A x y x y x y =≤≥-≥,若向区域Ω上随机投一点P ,则点P 落在区域A 的概率为 ( ) A .13 B .23 C .19 D .2910.对于函数①()|2|f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在(,2)-∞上是减函数,在(2,)+∞上是增函数;能使命题甲、乙均为真的所有函数的序号是 ( ) A .①② B .①③ C .② D .③二、填空题:(本大题共5小题,每小题5分,满分20分,其中14,15题是选做题,考生只能做一题,两题全答的,只计算14题的得分.)11、已知椭圆C 的焦点与双曲线2213y x -=的焦点相同,且离心率为12,则椭圆C 的标准方程为 . 12、函数2()lg(21)f x x ax a =-++在区间(]1-∞,上单调递减,则实数a 的取值范围是 . 13、如图所示,这是计算111124620++++的值的一个程序框图,其中判断框内应填入的条件是 .14、(坐标系与参数方程选做题)已知直线的极坐标方程为sin()4πρθ+=,则极点到这条直线的距离是 .13题图15、(平面几何选讲选做题)如图,⊙O 的割线PBA 过圆心O ,弦CD 交PA 于点F ,且△COF ∽△PDF ,2PB OA ==,则PF = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16、(本题满分12分)已知向量(cos sin ,sin )a x x x =+,(cos sin ,2cos )b x x x =-, 设()f x a b =⋅.(1)求函数()f x 的最小正周期.(2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值及最小值.17.(本题满分12分)已知函数2()(0).af x x x a R x=+≠∈,常数 (1)当2a =时,解不等式()(1)f x f x -->21x -; (2)讨论函数()f x 的奇偶性,并说明理由.18.(本题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD,且2PA PD AD ==,若E(1)求证:EF ∥平面PAD ;(2)求证:平面PDC ⊥平面PAD .19、(本题满分14分)已知椭圆C 的中心在坐标原点,焦点在X 轴上,它的一个顶点恰好是抛物线214y x =. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交Y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.20、(本题满分14分)设函数2113()424f x x x =+-,对于正数数列{}n a ,其前n 项和为n S ,且()n n S f a =,()n N *∈.(1)求数列{}n a 的通项公式;(2)是否存在等比数列{}n b ,使得111222(21)2n n n a b a b a b n ++++=-+对一切正整数n 都成立?若存在,请求出数列{}n b 的通项公式;若不存在,请说明理由.21.(本题满分14分)设函数()2ln q f x px x x =--,且()2pf e qe e=--,其中e 是自然对数的底数.(1)求p 与q 的关系;(2)若()f x 在其定义域内为单调函数,求p 的取值范围; (3)设2()eg x x=,若在[]1,e 上至少存在一点0x ,使得0()f x >0()g x 成立,求实数p 的取值范围.答题卷二、填空题:(本大题共须作4小题,每小题5分,共20分,把答案填写在题横线上)11、 12、 13、★选作题 14、 15、三、解答题(本大题共6小题,共80分)16.解:17.解:18.证明:19.解:20.解:◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆21.解:参考答案一、选择题DDAAD,BAADC二、填空题 11.2211612x y += ;12.[)1,2 ; 13. 20n ≤; 14. 2 ;15.3三、解答题16.解:(1)()(cos sin )(cos sin )2sin cos f x a b x x x x x x =⋅=+-+ ………2分 22cos sin 2sin cos cos 2sin 2x x x x x x =-+=+ ………3分)4x π=+ ………5分所以函数()f x 的最小正周期22T ππ== ………6分(2)当44x ππ-≤≤, ∴32444x πππ-≤+≤,1)4x π-≤+≤∴当2,428x x πππ+==即时,()f x ; ………10分当244x ππ+=-,即4x π=-时,()f x 有最小值1-. ………12分17.解:(1)当2a =时,22()f x x x =+,22(1)(1)1f x x x -=-+-, 由 2222(1)1x x x x +---->21x -, ………3分 得221x x -->0,(1)x x -<0 ,0<x <1∴原不等式的解为 0<x <1; ………………6分(2)()f x 的定义域为(0)(0-∞⋃∞,,+), ………………7分 当0a =时,2()f x x =,22()()()f x x x f x -=-==,所以()f x 是偶函数.………………9分 当0a ≠时,2()()20(0)f x f x x x +-=≠≠, 2()()0af x f x x--=≠ 所以()f x 既不是奇函数,也不是偶函数. ………………12分18.(1)证明:连结AC ,则F 是AC 的中点,在△CPA 中,EF ∥PA , …………2分 且PA ⊂平面PAD ,EF ⊄平面PAD ,∴EF ∥平面PAD …………5分(2)证明:因为平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD=AD ,又CD ⊥AD ,所以,CD ⊥平面PAD ,∴CD ⊥PA …………8分又AD ,所以△PAD 是等腰直角三角形, 且2PAD π∠=,即PA ⊥PD ……………………10分又CD ∩PD=D , ∴ PA ⊥平面PDC , 又PA ⊂平面PAD ,所以 平面PAD ⊥平面PDC ……………………12分19.(1)解:设椭圆C 的方程为22221x y a b+= (a >b >0),……1分抛物线方程化为24x y =,其焦点为(0,1), ………………2分 则椭圆C 的一个顶点为(0,1),即 1b = ………………3分由c e a ===,∴25a =, 所以椭圆C 的标准方程为 2215x y += ………………6分 (2)证明:易求出椭圆C 的右焦点(2,0)F , ………………7分 设11220(,),(,),(0,)A x y B x y M y ,显然直线l 的斜率存在,设直线l 的方程为 (2)y k x =-,代入方程2215x y += 并整理, 得 2222(15)202050k x k x k +-+-= ………………9分∴21222015k x x k +=+,212220515k x x k-=+ ………………10分 又,110(,)MA x y y =-,220(,)MB x y y =-,11(2,)AF x y =--,22(2,)BF x y =--,而 1MA AF λ=, 2MB BF λ=,即110111(0,)(2,)x y y x y λ--=--,220222(0,)(2,)x y y x y λ--=-- ∴1112x x λ=-,2222x x λ=-, ……………………12分所以 121212121212122()2102242()x x x x x x x x x x x x λλ+-+=+==----++ ………14分 20.解:(1)由2113()424f x x x =+-,()n n S f a = ,()n N *∈ 得2113424n n n S a a =+- ()n N *∈ ① ………2分 2111113424n n n S a a +++=+- , ② 即 221111111()422n n n n n n n a S S a a a a ++++=-=-+-, ………4分 即 221111()()042n n n n a a a a ++--+= , 即 11()(2)0n n n n a a a a +++--=∵n a >0,∴12n n a a +-= ,即数列{}n a 是公差为2的等差数列,……7分 由①得,21111113424S a a a ==+-,解得13a =, 因此 ,数列{}n a 的通项公式为21n a n =+. ………9分(2)假设存在等比数列{}n b ,使得对一切正整数n 都有111222(21)2n n n a b a b a b n ++++=-+ ③当2n ≥时,有1122112(23)2n n n a b a b a b n --+++=-+ ④ ③-④,得 2(21)n n n a b n =+,由21n a n =+得,2n n b = ………………13分又11162(211)a b ==⨯+满足条件,因此,存在等比数列{}2n,使得111222(21)2n n n a b a b a b n ++++=-+对一切正整数n 都成立. …………………14分21.解:(1)由题意得()2ln 2q p f e pe e qe e e=--=-- …………1分 1()()0p q e e ⇒-+= 而10e e+≠,所以p 、q 的关系为p q = …………3分(2)由(1)知()2ln 2ln q p f x px x px x x x =--=--, 2'2222()p px x p f x p x x x -+=+-= …………4分 令2()2h x px x p =-+,要使()f x 在其定义域(0,)+∞内是单调函数,只需()h x 在(0,)+∞内满足:()0()0h x h x ≥≤或恒成立. …………5分①当0p =时,()2h x x =-,因为x >0,所以()h x <0,'22()x f x x =-<0, ∴()f x 在(0,)+∞内是单调递减函数,即0p =适合题意;…………6分②当p >0时,2()2h x px x p =-+,其图像为开口向上的抛物线,对称轴为1(0,)x p=∈+∞,∴min 1()h x p p=-, 只需10p p-≥,即'1()0,()0p h x f x ≥≥≥时, ∴()f x 在(0,)+∞内为单调递增函数,故1p ≥适合题意. …………7分③当p <0时,2()2h x px x p =-+,其图像为开口向下的抛物线,对称轴为1(0,)x p=∉+∞,只要(0)0h ≤,即0p ≤时,()0h x ≤在(0,)+∞恒成立,故p <0适合题意. 综上所述,p 的取值范围为10p p ≥≤或. ……………………9分(3)∵2()e g x x=在[]1,e 上是减函数, ∴x e =时,min ()2g x =;1x =时,max ()2g x e =,即[]()2,2g x e ∈,…10分①当0p ≤时,由(2)知()f x 在[]1,e 上递减m a x ()(1)0f x f ⇒==<2,不合题意; ……………………11分②当0<p <1时,由[]11,0x e x x∈⇒-≥, 又由(2)知当1p =时,()f x 在[]1,e 上是增函数,∴1111()()2ln 2ln 2ln 2f x p x x x x e e e x x e e=--≤--≤--=--<2,不合题意; ……………………12分③当1p ≥时,由(2)知()f x 在[]1,e 上是增函数,(1)0f =<2,又()g x 在[]1,e 上是减函数, 故只需max ()f x >min ()g x ,[]1,x e ∈ ,而m a x 1()()()2ln f x f e p e e e ==--,min ()2g x =, 即 1()2ln p e e e -->2, 解得p >241e e - , 综上,p 的取值范围是24()1e e +∞-,. ……………………14分。
2023年江西省5市重点中学高考数学联考试卷(文科)+答案解析(附后)
2023年江西省5市重点中学高考数学联考试卷(文科)1. 已知集合,,则( )A. B. C. D.2. 若复数z满足,则( )A. B. C. 5 D. 173. 函数,则( )A. B. C. 1 D. 24. 已知双曲线C:的一条渐近线的斜率为2,焦距为,则( )A. 1B. 2C. 3D. 45. 已知向量,,且,则向量的夹角是( )A. B. C. D.6.在直三棱柱中,是等边三角形,,D,E,F分别是棱,,的中点,则异面直线BE与DF所成角的余弦值是( )A. B. C. D.7. 某校举行校园歌手大赛,5名参赛选手的得分分别是9,,,x,已知这5名参赛选手的得分的平均数为9,方差为,则( )A. B. C. D.8. 设函数的导函数为,若在其定义域内存在,使得,则称为“有源”函数.已知是“有源”函数,则a的取值范围是( )A. B. C. D.9. 如图,这是第24届国际数学家大会会标的大致图案,它是以我国古代数学家赵爽的弦图为基础设计的.现用红色和蓝色给这4个三角形区域涂色,每个区域只涂一种颜色,则相邻的区域所涂颜色不同的概率是( )A. B. C. D.10. 已知函数,则( )A. 的最小正周期是B. 在上单调递增C. 的图象关于点对称D. 在上的值域是11. 在锐角中,角A,B,C所对的边分别为a,b,已知,则的取值范围是( )A. B. C. D.12. 已知实数x,y满足约束条件,则的最大值为______ .13. 已知是第二象限角,且,则______ .14. 已知是定义在上的减函数,且的图象关于点对称,则关于x的不等式的解集为______ .15. 已知抛物线:的焦点为F,过点F作两条互相垂直的直线,,且直线,分别与抛物线C交于A,B和D,E,则四边形ADBE面积的最小值是______ .16. 国际足联世界杯,简称“世界杯”,是由全世界国家级别球队参与,象征足球界最高荣誉,并具有最大知名度和影响力的足球赛事年卡塔尔世界杯共有32支球参加比赛,共有64场比赛.某社区随机调查了街道内男、女球迷各200名,统计了他们观看世界杯球赛直播的场次,得到下面的列联表:求a的值,并完成列联表;少于32场比赛不少于32场比赛总计男球迷女球迷a总计若一名球迷观看世界杯球赛直播的场次不少于32场比赛,则称该球迷为“资深球迷”,请判断能否有的把握认为该社区的一名球迷是否为“资深球迷”与性别有关.参考公式:,其中参考数据:17. 已知正项数列的前n项和满足求的通项公式;设,数列的前n项和为,证明:18. 如图,在四棱锥中,四边形ABCD是直角梯形,,,,,,E是棱PB的中点.证明:平面ABCD;若F是棱AB的中点,,求点C到平面DEF的距离.19. 已知椭圆E:的左、右焦点分别为,,E的离心率为,斜率为k的直线l过E的左焦点,且直线l与椭圆E相交于A,B两点.若,,求椭圆E的标准方程;若,,,求k的值.20. 已知函数当时,求曲线在处的切线方程;若对任意的,恒成立,求a的取值范围.21. 在平面直角坐标系xOy中,曲线C的参数方程为为参数,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是求曲线C的普通方程和直线l的直角坐标方程;若直线l与曲线C交于A,B两点,点,求的值.22. 已知函数求的最小值;若,不等式恒成立,求a的取值范围.答案和解析1.【答案】A【解析】解:,,故选:解不等式求得集合B,由交集定义可求得结果.本题主要考查了集合的基本运算,属于基础题.2.【答案】C【解析】解:,,故选:利用复数的运算法则、模的计算公式即可得出.本题主要考查复数的四则运算,以及复数模公式,属于基础题.3.【答案】D【解析】解:由,得,则故选:根据函数解析式,先求出,进而可求.本题主要考查了函数值的求解,属于基础题.4.【答案】A【解析】解:双曲线C:的渐近线方程为,由题意可得,即有,又,,故选:求出双曲线的渐近线方程,可得,由a,b,c的关系和离心率公式计算即可得到所求值.本题考查双曲线的离心率的求法,注意运用渐近线方程,考查运算能力,属基础题.5.【答案】D【解析】解:,,,又,故选:由可求得,根据向量夹角公式可求得结果.本题主要考查平面向量的夹角公式,属于基础题.6.【答案】A【解析】解:取等边的AC边的中点O,连接OB,则,过O作的平行线,则以O为原点,分别以OB、OC、Oz为x轴、y轴、z轴,建立空间直角坐标系,如图所示,设等边的边长为2,则根据题意可得:,,,,,,,,异面直线BE与DF所成角的余弦值为,故选:取等边的AC边的中点O,以O为原点建立空间直角坐标系,运用异面直线所成角的计算公式即可得结果.本题考查向量法求解异面直线所成角问题,向量夹角公式的应用,属中档题.7.【答案】D【解析】解:因为平均数为,所以,因为方差为,所以,所以,又因为,所以,所以,所以故选:先由平均数和方差分别得到和的值,再整体代入计算的值即可.本题主要考查了数据的数字特征,属于基础题.8.【答案】A【解析】解:,,由“有源”函数定义知,存在,使得,即有解,记,所以a的取值范围是函数的值域,则,当时,,此时单调递增,当时,,此时单调递减,所以,所以,即a的取值范围是故选:根据“有源”函数概念,转化为函数有解问题,利用导函数求出函数值域即可得到参数a的范围.本题主要考查利用导数研究函数的单调性,考查运算求解能力,属于中档题.9.【答案】A【解析】解:将四块三角形区域编号如下,由题意可得总的涂色方法有种,若相邻的区域所涂颜色不同,即12同色,34同色,故符合条件的涂色方法有2种,故所求概率故选:根据古典概型概率的计算公式即可求解.本题主要考查了古典概型的概率公式,属于基础题.10.【答案】B【解析】解:,对于A,的最小正周期,A错误;对于B,当时,,此时单调递减,在上单调递增,B正确;对于C,令,解得,此时,的图象关于点对称,C错误;对于D,当时,,则,在上的值域为,D错误.故选:利用两角和与差的余弦公式、二倍角和辅助角公式化简,再根据正弦型函数的图象与性质判断各选项即可.本题主要考查了三角函数的恒等变换和三角函数的图象和性质,属于基础题.11.【答案】B【解析】解:,,由正弦定理得:,即,,或,解得或舍去,又为锐角三角形,则,,解得,,又,,,,即的取值范围故选:由正弦定理边化角可得,由为锐角三角形可得,运用降次公式及辅助角公式将问题转化为求三角函数在上的值域.本题主要考查解三角形,考查转化能力,属于中档题.12.【答案】9【解析】解:由约束条件可得可行域如下图阴影部分所示,当取得最大值时,在y轴截距最大,由图形可知:当过点A时,在y轴截距最大,由得,即,故答案为:由约束条件作出可行域,将问题转化为在y轴截距最大值的求解,采用数形结合的方式可求得结果.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.13.【答案】【解析】解:是第二象限角,,,,故答案为:利用同角三角函数关系和二倍角正弦公式可直接求得结果.本题主要考查了同角基本关系及二倍角公式的应用,属于基础题.14.【答案】【解析】解:设函数,因为的图象关于点对称,所以的图象关于原点对称,故是定义在上的奇函数.因为是定义在上的增函数,所以也是定义在上的增函数.由,得,即,即,则,解得,即不等式的解集为故答案为:构造函数,利用其单调性奇偶性解不等式即可.本题考查函数的性质,奇偶性,单调性,属于中档题.15.【答案】128【解析】解:不妨设直线的倾斜角为,,则直线的倾斜角为,对,设A到准线的距离为d,则根据抛物线的定义可得:,,同理可得,,同理可得,四边形ADBE面积为:,,当时,四边形ADBE面积取得最小值为,故答案为:根据抛物线的倾斜角的弦长公式,函数思想,即可求解.本题考查抛物线的倾斜角的弦长公式的应用,函数思想,属中档题.16.【答案】解:由题意可得,解得列联表如下:少于32场比赛不少于32场比赛总计男球迷100100200女球迷12080200总计220180400,因为,所以有的把握认为该社区的一名球迷是否为“资深球迷”与性别有关.【解析】根据男、女球迷各200名,把表格填完整;直接代入公式计算即可.本题考查独立性检验,属于基础题.17.【答案】解:因为①,所以②,由②-①得,,即,因为,所以又由解得,故数列为等差数列,公差故;证明:因为,所以所以【解析】由,两式相减得,再由得,然后求出,说明数列为等差数列,进而求得通项公式;由先求出,然后利用裂项求和求出即可证明.本题主要考查等差数列的定义、通项公式、裂项相消法在数列求和中的应用、不等式的放缩等基础知识,属于中档题.18.【答案】解:证明:连接BD,,,,又,,为棱PB中点,,又,,PC,平面PBC,平面PBC,又平面PBC,;在直角梯形ABCD中,取CD中点M,连接BM,,,又,,,四边形ABMD为正方形,,,,又,,,,BD,平面PBD,平面PBD,平面PBD,;,,,,又,BC,平面ABCD,平面,,,,由知:平面ABCD,,则点E到平面ABCD的距离,;,,,,F分别为棱PB,AB中点,,,,,,,,,由余弦定理得:,则,,设点C到平面DEF的距离为,,解得:,即点C到平面DEF的距离为【解析】由线面垂直判定可证得平面PBC,进而得到;利用勾股定理和线面垂直的判定得到平面PBD,从而得到;利用勾股定理可证得,由此可得结论;设点C到平面DEF的距离为,利用等体积转换的方式,由,结合棱锥体积公式可构造方程求得结果.本题考查线面垂直的判定以及点到平面的距离求解,考查逻辑推理能力和运算求解能力,属于中档题.19.【答案】解:由,,可得,,椭圆E的方程化为:直线l的方程为,联立,化为,解得,;,,解得,椭圆E的标准方程为设,,直线l的方程为,,,,,,解得,,联立,化为,,,,又,解得,,,【解析】由,,可得,,椭圆E的方程化为:直线l的方程为,联立化为,解得点A,B坐标,利用两点之间的距离公式即可得出a,b,c,可得椭圆E的标准方程.设,,直线l的方程为,根据,,,及其椭圆的定义可得,,直线l的方程与椭圆方程联立化为,利用根与系数的关系即可得出m,本题考查了椭圆的标准方程及其性质、相似三角形的性质、一元二次方程的根与系数的关系、转化方法、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.20.【答案】解:当时,,所以,所以,,所以所求切线方程为,即对任意的,恒成立,等价于对任意的,恒成立.①当时,显然成立.②当时,不等式等价于设,所以设,则当时,,当时,,所以在上单调递减,在上单调递增.因为,所以,又因为在中,,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,所以,即a的取值范围为【解析】根据切点处导函数值等于切线斜率,运用点斜式求切线方程即可;分,,两种情况解决,当时,参数分离得,设,得,设,求导讨论单调性,得在上单调递减,在上单调递增,即可解决.本题考查导数的几何意义,考查利用导数研究函数的单调性,极值及最值,考查不等式的恒成立问题,考查分类讨论思想及运算求解能力,属于中档题.21.【答案】解:,①②得,根据极坐标方程与直角坐标方程关系可知直线l的直角坐标方程为:;由可知点过直线l,故直线l的参数方程可写为为参数,代入曲线C的普通方程得,由韦达定理可知:,,所以【解析】曲线C的参数方程通过平方消元得到普通方程;通过极坐标方程与直角坐标方程关系得到直线l的直角坐标方程;由题可知点P过直线l,利用直线的参数方程中参数与定点位置关系即可列式计算.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.22.【答案】解:当时,,当时,,当时,,综上,,由此可知由可知,解得,当时,欲使不等式恒成立,则,即,解得,即a的取值范围是值;本题主要考查不等式恒成立问题,函数最值的求法,绝对值不等式的解法,考查运算求解能力,属于中档题.。
陕西省安康市2023-2024学年高三上学期第一次质量联考数学(文科)试题含答案
2023~2024学年度安康市高三年级第一次质量联考数学试卷(文科)考生注意:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,1,1,23,12A a B a a =-=---,若A B ⊆,则a =()A.2B.23C.1D.02.命题“2,x x ∀∈∈R Q ”的否定是()A.2,x x ∀∈∉R QB.2,x x ∃∈∉R QC.2,x x ∃∈∈R QD.2,x x ∀∉∉R Q3.若复数()()i 1i 43i a a -+=-+,则实数a =()A.2B.±2C.-2D.14.已知等差数列{}n a 的前n 项和为n S ,若24612a a a ++=,则7S =()A.14B.21C.28D.425.已知0.30.3ln0.3,log 0.5,5a b c ===,则()A.b c a <<B.a b c <<C.c b a<< D.b a c<<6.在ABC 中,点D 在边AB 上,3BD DA =,记,CA a CD b ==,则CB =()A.43a b-+B.34a b-+C.34a b -D.34a b+ 7.若函数()1f x +的定义域为()2,2-,则函数()f x g x=的定义域为()A.()0,1 B.()0,3 C.()1,3- D.()0,∞+8.“11a b>”是“a b <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.在ABC 中,角,,A B C 的对边分别是,,a b c ,已知35,cos 5a b A ===,则c =()A.11B.6C.5D.910.函数()sin cos 55x xf x =-的最小正周期和最小值分别是()A.10π和-2B.5π和C.10π和D.5π和-211.若函数()2e xf x x a =-有三个零点,则a 的取值范围是()A.240,e ⎡⎫⎪⎢⎣⎭B.(],0∞- C.240,e ⎛⎫ ⎪⎝⎭D.420,e ⎛⎫ ⎪⎝⎭12.已知()f x 是定义在R 上的奇函数,且()f x 单调递增,若()32f =,则不等式()232f x --的解集为()A.[]0,6 B.[]3,3- C.[]6,0- D.[]6,6-第II 卷二、填空题:本大题共4小题,每小题5分,共20分.13.若()1i 2z ⋅+=,则z z ⋅=()14.数列{}n a 满足111,21n na a a +==-,则{}n a 的前985项和为__________.15.函数()21f x x x x =+-在1,22⎡⎤⎢⎥⎣⎦上的最小值为__________.16.已知向量()()1,2,3,4a b =-= ,若a∥(),c a b c ⊥+ ,则c = __________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知{}n a 是各项均为正数的等比数列,1328,332a a a ==+.(1)求{}n a 的通项公式;(2)设4log n n b a =,求{}n b 的前n 项和n T .18.(12分)已知函数()22sin cos 2sin cos (04)f x x x x x ωωωωω=-+<<图象的一条对称轴方程为316x π=.(1)求ω;(2)求()f x 在511,4848ππ⎡⎤⎢⎣⎦上的值域.19.(12分)在ABC 中,角,,A B C 所对的边分别为2,,,6,10,cos 3a b c b c C ===-.(1)求cos B ;(2)求AB 边上的高.20.(12分)已知函数()322f x x ax a x =--.(1)若()f x 的一个极值点为1,求()f x 的极小值;(2)若1a =,求过原点与曲线()y f x =相切的直线方程.21.(12分)杭州第19届亚运会,是亚洲最高规格的国际综合性体育赛事.本届亚运会于2023年9月23日至10月8日在浙江杭州举办.某款亚运会周边产品深受大家喜爱,供不应求,某工厂日夜加班生产该款产品.生产该款产品的固定成本为4万元,每生产x 万件,需另投入成本()p x 万元.当产量不足6万件时,()212p x x x =+;当产量不小于6万件时,()816372p x x x =+-.若该款产品的售价为6元/件,通过市场分析,该工厂生产的该款产品可以全部销售完.(1)求该款产品销售利润y (万元)关于产量x (万件)的函数关系式;(2)当产量为多少万件时,该工厂在生产中所获得利润最大?22.(12分)已知函数()()21ln 12f x a x a x x =-++.(1)求()f x 的单调区间;(2)当0a >时,对任意()1,x ∞∈+,不等式()21e 2axf x x x ax -+-恒成立,求实数a 的取值范围.2023~2024学年度安康市高三年级第一次质量联考数学试卷参考答案(文科)1.D因为A B ⊆,所以1B ∈.当231a -=时,2a =,此时11a -=,舍去;当121a -=时,0a =,此时{}{}1,1,1,3,1A B =-=--,符合题意.2.B 全称命题的否定是特称命题.3.C 因为()()()2i 1i 21i 43i a a a a -+=+-=-+,所以224,13,a a =-⎧⎨-=⎩故2a =-.4.C 因为{}n a 为等差数列,所以2464312a a a a ++==,所以44a =.因为()1774772a a S a +==,所以728S =.5.B 因为()0.30.3ln0.30,log 0.50,1,51a b c =<=∈=>,所以a b c <<.6.B 因为3BD DA =,所以4AB AD =.因为CB CA AB =+ ,所以()443434CB CA AD CA CD CA CA CD a b =+=+-=-+=-+.7.B 由题意得22x -<<,则113x -<+<,所以()f x 的定义域为()1,3-,因为13,0,x x -<<⎧⎨>⎩所以()g x 的定义域为()0,3.8.D当11a b >时,可能0,0,0a b a b b a <<<<<<;当a b <时,11,a b 大小无法确定.所以“11a b>”是“a b <”的既不充分也不必要条件.9.A因为2222cos a b c bc A =+-,且35,cos 5a b A ===,所以280256c c =+-,整理得()()26555110c c c c --=+-=,故11c =.10.C 因为()sin cos 5554x x x f x π⎛⎫=-=-⎪⎝⎭,所以()f x 的最小正周期是21015ππ=,最小值为.11.C()f x 有三个零点等价于直线y a =与曲线()2ex x g x =有三个交点.因为()()2exx x g x -=',所以()g x 在()(),0,2,∞∞-+上单调递减,在()0,2上单调递增.因为()()2400,2e g g ==,且()0,0x g x >>,所以240,e a ⎛⎫∈ ⎪⎝⎭.12.A因为()f x 为奇函数,且()32f =,所以()32f -=-.因为()f x 单调递增,所以不等式()232f x -- 等价于333x -- ,故[]0,6x ∈.13.2因为|(1i)||||1i ||2z z z ⋅+=⋅+==,所以z =.设()i ,z a b a b =+∈R,则=,所以()()222i i ||2z z a b a b a b z ⋅=+-=+==.14.494因为111,21n na a a +==-,所以23411111,,211211212a a a ==-====-+-,所以{}n a 是一个周期数列,且周期为3,故前985项和为()132********⎡⎤⨯+-++=⎢⎣⎦.15.1因为()()()()()32232222222112112121x x x x x x x f x x x x x x--'--++--=--===,所以()f x 在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,故()f x 的最小值为()11f =.因为()1,2,a a =-∥c,所以可设(),2c λλ=-.因为()a b c ⊥+ ,所以()0a b c a b a c ⋅+=⋅+⋅=.因为()3,4b = ,所以550λ+=,得1λ=-,所以()1,2c =-,故c =17.解:(1)设{}n a 的公比为q ,因为1328,332a a a ==+,所以282432q q =+,即()()234410q q q q --=-+=,解得1q =-或4q =.因为0n a >,所以4q =,故121842n n n a -+=⨯=.(2)由(1)知21441log log 22n n n b a n +===+,所以()2112222n n n n nT n ++=+=.18.解:(1)()22sin cos 2sin cos sin2cos2f x x x x x x xωωωωωω=-+=-24x πω⎛⎫=- ⎪⎝⎭.因为()f x 图象的一条对称轴方程为316x π=,所以32,1642k k πππωπ⋅-=+∈Z ,所以82,3k k ω=+∈Z .因为04ω<<,所以2ω=.(2)由(1)知()44f x x π⎛⎫=- ⎪⎝⎭.因为511,4848x ππ⎡⎤∈⎢⎥⎣⎦,所以24,463x πππ⎡⎤-∈⎢⎥⎣⎦,所以1sin 4,142x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,故()22f x ∈⎣⎦.19.解:(1)因为2cos 3C =-,所以5sin 3C ==.因为6,10b c ==,所以56sin 3sin 105b CB c⨯===.因为b c <,所以0,2B π⎛⎫∈ ⎪⎝⎭,故25cos 5B ==.(2)因为52525sin ,sin 3355C C B B ==-==,所以()52255sin sin sin cos cos sin 5353A B C B C B C ⎛⎫=+=+=⨯-+⨯ ⎪⎝⎭102515-=设AB 边上的高为h ,则10252045sin 6155h b A --==⨯=.20.解:(1)因为()322f x x ax a x =--,所以()2232f x x ax a =--'.因为1为()f x 的极值点,所以()21320f a a =--=',所以1a =或3a =-.当1a =时,()()()()322,321131f x x x x f x x x x x =-----'==+,所以()f x 在1,13⎛⎫- ⎪⎝⎭上单调递减,在()1,,1,3∞∞⎛⎫--+ ⎪⎝⎭上单调递增,所以()f x 的极小值为()11f =-.当3a =-时,()()()()32239,369313f x x x x f x x x x x =+-=+-=-+',所以()f x 在()3,1-上单调递减,在()(),3,1,∞∞--+上单调递增,所以()f x 的极小值为()15f =-.(2)当1a =时,()()322,321f x x x x f x x x '=--=--,设切点为()()00,x f x ,则()()3220000000,321f x x x x f x x x '=--=--,所以切线方程为()()()322000000321y x x x x x x x ---=---,将点()0,0代入得()()()322000000321x x x x x x ---=---,整理得()200210x x -=,所以00x =或012x =.当00x =时,切线方程为y x =-,当012x =时,切线方程为54y x =-.21.解:(1)当06x <<时,2211645422y x x x x x ⎛⎫=-+-=-+-⎪⎝⎭;当6x时,8163815567422y x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭.综上,2154,06,28155, 6.2x x x y x x x ⎧-+-<<⎪⎪=⎨⎪--+⎪⎩(2)当06x <<时,22111754(5)222y x x x =-+-=--+,所以当5x =时,y 取得最大值,最大值为8.5万元.当6x时,8155559.522y x x =--+-+= ,当且仅当81x x=,即9x =时,y 取得最大值,最大值为9.5万元.综上,当产量为9万件时,该工厂在生产中所获得利润最大,最大利润为9.5万元.22.解:(1)()()()211x a x a af x a x x x'-++=-++=()()1(0)x a x x x--=>.当0a时,()f x 在()0,1上单调递减,在()1,∞+上单调递增.当01a <<时,令()0f x '>,得0x a <<或1x >,令()0f x '<,得1a x <<,所以()f x 在()0,a 和()1,∞+上单调递增,在(),1a 上单调递减.当1a =时,()0f x '恒成立,则()f x 在()0,∞+上单调递增.当1a >时,令()0f x '>,得01x <<或x a >,令()0f x '<,得1x a <<,()f x 在()0,1和(),a ∞+上单调递增,在()1,a 上单调递减.综上所述,当0a时,()f x 的单调递减区间为()0,1,单调递增区间为()1,∞+;当01a <<时,()f x 的单调递增区间为()0,a 和()1,∞+,单调递减区间为(),1a ;当1a =时,()f x 的单调递增区间为()0,∞+,无单调递减区间;当1a >时,()f x 的单调递增区间为()0,1和(),a ∞+,单调递减区间为()1,a .(2)()21e 2axf x x x ax -+-,即ln e a x a x x x -- ,整理得ln lne e .a a x x x x -- 因为()1,,0x a ∞∈+>,所以1,e 1a x x >>.令()()ln ,1,g x x x x ∞=-∈+.因为()110g x x=-<',所以()g x 在()1,∞+上单调递减.因为()()ln e lne e aaa x x x g xxx g =-=- ,所以e a x x ,所以ln a x x.因为ln 0x >,所以ln x a x .令()(),1,ln xh x x x∞=∈+,则()2ln 1(ln )x h x x -='.令()0h x '>,得e x >,令()0h x '<,得1e x <<,所以()h x 在()1,e 上单调递减,在()e,∞+上单调递增,所以()min ()e e,h x h ==所以0e a <,即实数a 的取值范围是(]0,e .。
2024届高三10月大联考(全国乙卷)文科数学含答案解析
2024届高三10月大联考(全国乙卷)文科数学一、单选题(共36 分)1已知集合A={x∈Z∣x2+1<5},B={−1,1,3}则A∪B中元素的个数为()A3B4C5D6【答案】B【分析】化简集合A即可求出A∪B中元素的个数【详解】由题意因为A={x∈Z∣x2+1<5}={x∈Z∣x2<4}={−1,0,1},B={−1,1,3}所以A∪B={−1,0,1,3}有4个元素故选:B2已知命题p:∃x0≥0,√x0>x02则命题p的否定为()A∃x0<0,√x0≤x02B∀x≥0,√x<x2C∀x<0,√x>x2D∀x≥0,√x≤x2【答案】D【分析】利用含有一个量词的命题的否定的定义求解【详解】解:因为命题p:∃x0≥0,√x0>x02是特称命题所以其否定为全称命题即“∀x≥0,√x≤x2”故选:D3若不等式x2−5ax+1<0的解集为(1a,a)则a=()A−12B12C−14D14【答案】A 【分析】根据给定的解集结合一元二次方程根与系数的关系求解即得 【详解】由不等式x 2−5ax +1<0的解集为(1a ,a)得1a ,a 是方程x 2−5ax +1=0的两个根且1a <a 于是a +1a =5a 解得a =±12由a >1a 得−1<a <0或a >1因此a =−12且当a =−12时(−5a)2−4>0所以a =−12 故选:A4若函数f (x )={e x −x,x ≤3lnx −2,x >3则f(f (e 2))=( )A −1B −2 C1 D ln2−2【答案】C 【分析】先计算出f (e 2)=0进而求出f(f (e 2))=f (0)=1 【详解】因为e 2>3所以f (e 2)=lne 2−2=0所以f(f (e 2))=f (0)=e 0−0=1 故选:C5已知p:1<a <53,q:log a 43>2(a >0且a ≠1)则p 是q 的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件【答案】B 【分析】对于q :利用对数函数单调性解得1<a <2√33再根据包含关系结合充分、必要条件分析判断 【详解】对于q :因为log a 43>2=log a a 2(a >0且a ≠1)当0<a <1时y =log a x 在定义域内单调递减则a 2>43无解; 当a >1时y =log a x 在定义域内单调递增则a 2<43可得1<a <2√33;综上所述:不等式log a 43>2的解集为(1,2√33) 又因为(1,2√33)是(1,53)的真子集所以p 是q 的必要不充分条件 故选:B6函数f (x )=x 2log 42+x2−x 的大致图象是( )A B C D【答案】D 【分析】方法一:根据函数的奇偶性及函数值的符号排除即可判断;方法二:根据函数的奇偶性及某个函数值的符号排除即可判断 【详解】方法一:因为2+x2−x >0即(x +2)⋅(x −2)<0所以−2<x <2 所以函数f (x )=x 2log 42+x2−x 的定义域为(−2,2)关于原点对称又f (−x )=(−x)2log 42−x 2+x =−f (x )所以函数f (x )是奇函数其图象关于原点对称 故排除B,C ;当x ∈(0,2)时2+x2−x >1即log 42+x2−x >0因此f (x )>0故排除A 故选D方法二:由方法一知函数f (x )是奇函数其图象关于原点对称故排除B,C ; 又f (1)=12log 23>0所以排除A 故选:D7白色污染是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓经过长期研究一种全生物可降解塑料(简称PBAT )逐渐被应用于超市购物袋、外卖包装盒等产品研究表明在微生物的作用下PBAT 最终可被完全分解为二氧化碳和水进入大自然当其分解率(分解率=已分解质量总质量×100%)超过60%时就会成为对环境无害的物质为研究总质量为100g 的PBAT 的已分解质量y (单位:g )与时间x (单位:月)之间的关系某研究所人员每隔1个月测量1次PBAT 的已分解质量对通过实验获取的数据做计算处理研究得出已分解质量y 与时间x 的函数关系式为y =100−e 4.6−0.1x 据此研究结果可以推测总质量为100g 的PBAT 被分解为对环境无害的物质的时间至少为( )(参考数据:ln40≈3.7) A8个月 B9个月 C10个月 D11个月【答案】C 【分析】根据题意令y =100−e 4.6−0.1x >60求解即可 【详解】令y =100−e 4.6−0.1x >60得0.1x >4.6−ln40≈0.9解得x >9故至少需要10个月总质量为100g 的PBAT 才会被分解为对环境无害的物质 故选:C8已知α,β∈(0,π2),α>β且cosα(cosα−cosβ)+sinα(sinα−sinβ)=15,sinαcosβ=710则sin (α+β)=( ) A 45 B 35C 25D 310【答案】A 【分析】利用两角和与差的正弦公式和余弦公式化简即可 【详解】因为cosα(cosα−cosβ)+sinα(sinα−sinβ)=15cos 2α−cosαcosβ+sin 2α−sinαsinβ=15即1−cos (α−β)=15所以cos (α−β)=45因为α,β∈(0,π2),α>β所以0<α−β<π2所以sin (α−β)=35即sinαcosβ−cosαsinβ=35又sinαcosβ=710所以cosαsinβ=110所以sin (α+β)=sinαcosβ+cosαsinβ=710+110=45 故选:A9已知O 是△ABC 所在平面内一点若OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ,AM ⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =yAC ⃗⃗⃗⃗⃗ ,MO ⃗⃗⃗⃗⃗⃗ =λON ⃗⃗⃗⃗⃗⃗ ,x,y 均为正数则xy 的最小值为( ) A 12 B 49C1D 43【答案】B 【分析】由题设O 是△ABC 的重心应用向量加法、数乘几何意义可得AO ⃗⃗⃗⃗⃗ =13x AM ⃗⃗⃗⃗⃗⃗ +13y AN ⃗⃗⃗⃗⃗⃗ 根据MO ⃗⃗⃗⃗⃗⃗ =λON ⃗⃗⃗⃗⃗⃗ 得13x +13y =1最后应用基本不等式求xy 最小值注意等号成立条件 【详解】因为OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ 所以点O 是△ABC 的重心 所以AO ⃗⃗⃗⃗⃗ =23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ) 因为AM ⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =yAC ⃗⃗⃗⃗⃗ 所以AB ⃗⃗⃗⃗⃗ =1x AM ⃗⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ =1yAN⃗⃗⃗⃗⃗⃗ 综上AO ⃗⃗⃗⃗⃗ =13x AM ⃗⃗⃗⃗⃗⃗ +13y AN⃗⃗⃗⃗⃗⃗ 因为MO ⃗⃗⃗⃗⃗⃗ =λON⃗⃗⃗⃗⃗⃗ 所以M,O,N 三点共线则13x +13y =1即1x +1y =3 因为x,y 均为正数所以1x +1y ≥2√1xy 则√1xy ≤32所以xy ≥49(当且仅当1x =1y =32即x =y =23时取等号) 所以xy 的最小值为49 故选:B10若函数f (x )=Asin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示则下列说法正确的个数为( )①ω=2;②φ=−π6;③f (x )在(π2,5π6)上单调递减;④f (−π2)=√3 A1B2C3D4【答案】C 【分析】由图像经过的特殊点(5π12,2)和(π6,0)逐项判断即可 【详解】由题图得A =2最小正周期T =4×(5π12−π6)=π 又T =2πω=π所以ω=2故①正确;f (x )=2sin (2x +φ)又f (x )的图象过点(5π12,2) 所以2×5π12+φ=2kπ+π2,k ∈Z 所以φ=2kπ−π3,k ∈Z又|φ|<π2所以φ=−π3故②错误; f (x )=2sin (2x −π3)令t =2x −π3当π2<x <5π6时2π3<t <4π3函数y =sint 在(2π3,4π3)上单调递减故③正确;f (−π2)=2sin (−π−π3)=√3故④正确 故选:C11已知函数f (x )是偶函数当x >0时f (x )=|log 2x |−1则不等式x−1f (−x )−2f (x )≥0的解集是( ) A (−12,0)∪(0,12) B (−2,−1]∪[1,2)C (−2,−12)∪(0,12) D (−∞,−2)∪(−12,0)∪(0,12)∪[1,2)【答案】D 【分析】根据已知画出y =f (x )的图象并将不等式化为{f(x)(x −1)≤0f(x)≠0数形结合求不等式解集【详解】根据题意作偶函数y =f (x )的图象如下图示由f(−x)=f(x)不等式可化为x−1−f(x)≥0则{f(x)(x−1)≤0f(x)≠0所以{x−1≥0f(x)<0或{x−1≤0f(x)>0由图知:1≤x<2或0<x<12或−12<x<0或x<−2所以不等式解集为(−∞,−2)∪(−12,0)∪(0,12)∪[1,2)故选:D12已知函数f(x)=a x+a−x+cosx+x2(a>1)则f(√2),f(−e1e),f(π1π)的大小关系为()A f(π1π)<f(−e 1e)<f(√2)B f(√2)<f(π1π)<f(−e1e)C f(π1π)<f(√2)<f(−e1e)D f(−e1e)<f(π1π)<f(√2)【答案】B【分析】根据函数的奇偶性只需要考虑x>0时的情况利用导数求解函数单调性构造函数φ(x)=2x−sinx,g(x)=lnxx即可由导数求解单调性利用函数单调性即可比较大小【详解】易知f(x)=a x+a−x+cosx+x2(a>1)是偶函数f′(x)=(a x−a−x)lna+2x−sinx当x>0时因为a>1所以lna>0,a x−a−x>0令φ(x)=2x−sinx,x>0则φ′(x)=2−cosx>0所以φ(x)单调递增所以φ(x)>φ(0)=0所以f′(x)>0,f(x)在(0,+∞)上单调递增构造函数g(x)=lnxx 则g′(x)=1−lnxx2令g′(x)>0得0<x<e令g′(x)<0得x>e所以g(x)在区间(0,e)上单调递增在区间(e,+∞)上单调递减又ln22=ln44所以g(4)<g(π)<g(e)所以ln22=ln44<lnππ<lnee所以212<π1π<e1e所以f(√2)<f(π1π)<f(e 1e)=f(−e1e)即f(√2)<f(π1π)<f(−e1e)故选:B【点睛】方法点睛:利用导数比较大小的基本步骤:(1)作差或变形;(2)构造新的函数ℎ(x);(3)利用导数研究ℎ(x)的单调性或最值;(4)根据单调性及最值得到所证不等式.二、填空题(共12 分)13已知向量a=(1,−2)b⃗=(2,λ)若a⊥b⃗则实数λ的值为___________【答案】1【分析】根据向量垂直的坐标表示由题中条件列出方程即可求出结果【详解】因为向量a=(1,−2)b⃗=(2,λ)若a⊥b⃗则a⋅b⃗=2−2λ=0解得λ=1故答案为:114请写出一个满足对任意的x1,x2∈(0,+∞);都有f(x1x2)=f(x1)f(x2)的函数__________【答案】f(x)=x−12(答案不唯一)【分析】取幂函数f(x)=x−12验证得到答案【详解】任意定义域为(0,+∞)的幂函数均可例如f(x)=x−12f(x1x2)=(x1x2)−12,f(x1)f(x2)=x1−12⋅x2−12=(x1x2)−12即f(x1x2)=f(x1)f(x2)成立故答案为:f(x)=x−12(答案不唯一)15《海岛算经》是魏晋时期数学家刘徽所著的测量学著作书中有一道测量山上松树高度的题目受此题启发小李同学打算用学到的解三角形知识测量某建筑物上面一座信号塔的高度如图把塔底与塔顶分别看作点CDCD 与地面垂直小李先在地面上选取点AB (点A,B 在建筑物的同一侧且点A,B,C,D 位于同一个平面内)测得AB =20√3m 在点A 处测得点C,D 的仰角分别为30∘,67∘在点B 处测得点D 的仰角为33.5∘则塔高CD 为__________m (参考数据:sin37∘≈35)【答案】24 【分析】在△ACD 中求出AD =20√3∠CAD =37∘,∠ACD =120∘利用正弦定理求解即可 【详解】如图延长DC 与BA 的延长线交于点E 则∠DAE =67∘,∠CAE =30∘,∠DBA =33.5∘所以∠ADB =67∘−33.5∘=33.5∘,∠CAE =90∘−30∘=60∘ 所以AD =AB =20√3在△ACD 中∠CAD =67∘−30∘=37∘,∠ACD =180∘−60∘=120∘ 由正弦定理得CD =ADsin37∘sin120∘≈20√3×35√32=24(m )故答案为:2416已知函数f (x )=(x +a )lnx −2x 在定义域上单调递增则实数a 的取值范围为______ 【答案】[1,+∞) 【分析】把原函数在区间上单调递增问题转化为a ≥x −xlnx 在(0,+∞)上恒成立构造函数g (x )=x −xlnx(x>0)利用导数求解函数的最值即可求解【详解】f(x)=(x+a)lnx−2x的定义域为(0,+∞)由f(x)=(x+a)lnx−2x在定义域上单调递增得f′(x)=lnx+ax−1≥0在(0,+∞)上恒成立即a≥x−xlnx在(0,+∞)上恒成立设g(x)=x−xlnx(x>0)所以只需a≥g(x)max又g′(x)=−lnx当0<x<1时g′(x)>0当x>1时g′(x)<0所以g(x)在(0,1)上单调递增在(1,+∞)上单调递减所以g(x)max=g(1)=1所以a≥1所以实数a的取值范围为[1,+∞)故答案为:[1,+∞)【点睛】方法点睛:已知函数在区间上单调递增(递减)求参数范围解决这类问题的一般方法是:利用导数转化为不等式恒成立问题然后参变分离根据分离后的式子结构构造函数利用导数求解函数最值即可解决三、问答题(共12 分)已知向量a=(sinx+cosx,1),b⃗=(2cosx,−1)函数f(x)=a⋅b⃗将函数f(x)的图象向右平移π6个单位长度得到函数g(x)的图象17 求函数f(x)的最小正周期和单调递增区间;18 解方程g(x)=0【答案】17 T=π单调递增区间为[kπ−3π8,kπ+π8],k∈Z18 {x|x=kπ2+π24,k∈Z}【分析】(1)利用向量数量积求出f(x)利用正弦函数的周期性与单调性即可求得f(x)的最小正周期和单调递增区间(2)先求出g(x)表达式根据正弦函数零点取值得到g(x)=0的解集【17题详解】由已知得f(x)=a⋅b⃗=2cosx(sinx+cosx)−1=sin2x +cos2x=√2sin (2x +π4)所以函数f (x )的最小正周期T =2πω=2π2=π由2kπ−π2≤2x +π4≤2kπ+π2,k ∈Z 解得kπ−3π8≤x ≤kπ+π8,k ∈Z所以函数f (x )的单调递增区间为[kπ−3π8,kπ+π8],k ∈Z【18题详解】将函数f (x )的图象向右平移π6个单位长度得到函数g (x )=√2sin [2(x −π6)+π4]=√2sin (2x −π12)的图象令g (x )=√2sin (2x −π12)=0得2x −π12=kπ,k ∈Z 解得x =kπ2+π24,k ∈Z所以方程g (x )=0的解集为{x |x =kπ2+π24,k ∈Z }如图在平行四边形ABCD 中AM ⃗⃗⃗⃗⃗⃗ =13AD ⃗⃗⃗⃗⃗ 令AB ⃗⃗⃗⃗⃗ =a AC⃗⃗⃗⃗⃗ =b ⃗19用a ,b ⃗ 表示AM ⃗⃗⃗⃗⃗⃗ BM ⃗⃗⃗⃗⃗⃗ CM⃗⃗⃗⃗⃗⃗ ; 20若AB =AM =2且AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =10求cos⟨a ,b⃗ ⟩ 【答案】19 AM ⃗⃗⃗⃗⃗⃗ =13(b ⃗ −a )BM ⃗⃗⃗⃗⃗⃗ =13b ⃗ −43a CM ⃗⃗⃗⃗⃗⃗ =−13a −23b⃗ 20√3468【分析】(1)利用平面向量的四则运算法则求解即可; (2)利用平面向量数量积的公式和运算律求解即可 【19题详解】因为AB ⃗⃗⃗⃗⃗ =a AC ⃗⃗⃗⃗⃗ =b ⃗ 且ABCD 是平行四边形 所以BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b ⃗ −a所以AM ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ =13(b ⃗ −a ) 所以BM ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =13(b ⃗ −a )−a =13b ⃗ −43a所以CM ⃗⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =13b ⃗ −43a −(b ⃗ −a )=−13a −23b ⃗ 【20题详解】方法一:由(1)知AM ⃗⃗⃗⃗⃗⃗ =13(b ⃗ −a ),BM ⃗⃗⃗⃗⃗⃗ =13b ⃗ −43a又AC ⃗⃗⃗⃗⃗ =b ⃗ ,AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =10,AB =AM =2所以b ⃗ ⋅(13b ⃗ −43a )=10,|13(b ⃗ −a )|=2,|a |=2即b ⃗ 2−4a ⋅b ⃗ =30,b ⃗ 2+a 2−2a ⋅b ⃗ =36 解得a ⋅b⃗ =1,|b ⃗ |=√34 所以cos⟨a ,b ⃗ ⟩=a ⃗ ⋅b ⃗ |a ⃗ ||b ⃗ |=√3468方法二:因为AM ⃗⃗⃗⃗⃗⃗ =13AD ⃗⃗⃗⃗⃗ ,AM =2所以AD =BC =6因为AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )⋅(BA ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ )=−BA ⃗⃗⃗⃗⃗ 2+23BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ 2且AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =10所以−22+23×6×2×cos∠ABC +13×62=10 解得cos∠ABC =14所以a ⋅b ⃗ =(−BA ⃗⃗⃗⃗⃗ )⋅(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )=−BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ 2=−2×6×14+22=1又|a |=2,|b ⃗ |=√(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )2=√BC ⃗⃗⃗⃗⃗ 2−2BC ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ 2=√34所以cos⟨a ,b ⃗ ⟩=a ⃗ ⋅b ⃗ |a ⃗ ||b ⃗ |=√3468四、应用题(共 6 分)某公园池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系如下表所示:现有以下三种函数模型可供选择:①y =kt +b ②y =p ⋅a t +q ③y =m ⋅log a t +n 其中k,b,p,q,m,n,a 均为常数a >0且a ≠121 直接选出你认为最符合题意的函数模型并求出y 关于t 的函数解析式;22 若该公园池塘里浮萍的面积蔓延到15m 2,31m 2,211m 2所经过的时间分别为t 1,t 2,t 3写出一种t 1,t 2,t 3满足的等量关系式并说明理由【答案】21 模型②y=2t+122 t1+t2=t3+1理由见解析【分析】(1)根据表格数据选择函数模型然后求解析式;(2)根据指数幂运算公式计算【21题详解】应选择函数模型②y=p⋅a t+q依题意得{p×a1+q=3p×a2+q=5 p×a3+q=9解得{p=1 a=2 q=1所以y关于t的函数解析式为y=2t+1【22题详解】t1+t2=t3+1理由:依题意得2t1+1=152t2+1=312t3+1=211所以2t1=142t2=302t3=210所以2t1⋅2t2=420所以2t1⋅2t2=2t1+t2=420=2×2t3=2t3+1所以t1+t2=t3+1五、问答题(共12 分)在△ABC中内角A,B,C所对的边分别为a,b,c且__________在①√3a =1−cosCsinA;②sinAbc−sinCab=sinA−sinBac两个条件中任选一个填入上面横线处并解决下列问题注:若选择不同的条件分别解答则按第一个解答计分23 求C;24 若△ABC外接圆的半径为2√3,△ABC的面积为√3求△ABC的周长【答案】23 C=π324 4√3+6【分析】(1)选①先利用正弦定理化边为角再利用和差角公式结合角的取值范围即得选②先用正弦定理化边为角再有余弦定理和角的范围即得(2)由正弦定理和外接圆半径求出c再利用余弦定理即可求出答案【23题详解】若选①:由√3a =1−cosCsinA及正弦定理得sinCsinA=√3sinA(1−cosC)∵sinA≠0,∴sinC+√3cosC=√3∴sin(C+π3)=√32又0<C<π,∴π3<C+π3<4π3∴C+π3=2π3,∴C=π3若选②:由sinAbc −sinCab=sinA−sinBac得asinA−csinC=bsinA−bsinB由正弦定理得a2+b2−c2=ab由余弦定理得cosC=a 2+b2−c22ab=ab2ab=12因为C∈(0,π)所以C=π3【24题详解】设△ABC外接圆的半径为R由正弦定理得c=2RsinC=2×2√3×sinπ3=6又S△ABC=12absinC=12ab×√32=√3所以ab=4由c2=a2+b2−2abcosC=(a+b)2−2ab−2ab×12可得36=(a+b)2−12解得a+b=4√3所以△ABC的周长为a+b+c=4√3+6已知函数f(x)=e x−ax2+x−125 当a=1时求曲线y=f(x)在x=1处的切线方程;26 若f(x)=0有两个不等的实根求实数a的取值范围【答案】25 (e−1)x−y=026 (−∞,0)∪{e2+14}【分析】(1)求导得到f(1)=e−1,f′(1)=e−1,进而求出切线方程;(2)f(0)=0故只需当x≠0时f(x)=0有且仅有一个实根参变分离转化为两函数只有1个交点求导得到g(x)=e x+x−1x2(x≠0)的单调性画出其图象数形结合得到参数的取值范围【25题详解】当a=1时f(x)=e x−x2+x−1,f′(x)=e x−2x+1f(1)=e−1,f′(1)=e−1,所以曲线y=f(x)在x=1处的切线方程为y−(e−1)=(e−1)(x−1)即(e−1)x−y=0【26题详解】显然f(0)=0要使方程f(x)=0有两个不等的实根只需当x≠0时f(x)=0有且仅有一个实根当x≠0时由方程f(x)=0得a=e x+x−1 x2令g(x)=e x+x−1x2(x≠0)则直线y=a与g(x)=e x+x−1x2(x≠0)的图象有且仅有一个交点g′(x)=(e x+1)x2−2x(e x+x−1)x4=(x−2)(e x−1)x3又当x<0时g′(x)<0,g(x)单调递减当0<x<2时g′(x)<0,g(x)单调递减当x>2时g′(x)>0,g(x)单调递增所以当x=2时g(x)取得极小值g(2)=e 2+1 4又当x<0时e x<1所以e x+x−1<0即g(x)<0当x>0时e x>1,e x+x−1>0即g(x)>0所以作出g(x)的大致图象如图所示由图象知要使直线y=a与g(x)=e x+x−1x2(x≠0)的图象有且仅有一个交点只需a<0或a=e 2+1 4综上若f(x)=0有两个不等的实根则a的取值范围为(−∞,0)∪{e 2+1 4}六、其它(共6 分)已知函数f(x)=x−alnx−4,a∈R27 讨论函数f(x)的单调性;28 当a=1时令F(x)=(x−2)e x−f(x)若x=x0为F(x)的极大值点证明:0<F(x0)<1【答案】27 答案见解析;28 证明见解析【分析】(1)对参数a分类讨论根据不同情况下导函数函数值的正负即可判断单调性;(2)利用导数判断F(x)的单调性求得x0的范围满足的条件以及F(x0)根据x0的范围夹逼F(x0)的范围即可【27题详解】函数f(x)的定义域为(0,+∞),f′(x)=1−ax =x−ax①当a≤0时f′(x)>0函数f(x)在(0,+∞)上单调递增;②当a>0时由f′(x)>0得x>a由f′(x)<0得0<x<a所以函数f(x)在(a,+∞)上单调递增在(0,a)上单调递减综上当a≤0时函数f(x)在(0,+∞)上单调递增;当a>0时函数f(x)在(a,+∞)上单调递增在(0,a)上单调递减【28题详解】当a=1时F(x)=(x−2)e x−x+lnx+4,F′(x)=(x−1)e x−1+1x =(x−1)(e x−1x)设g(x)=e x−1x 则g′(x)=e x+1x2当x>0时g′(x)>0所以g(x)在(0,+∞)上单调递增又g(12)=√e−2<0,g(1)=e−1>0所以存在x1∈(12,1)使得g(x1)=0且当x∈(0,x1),g(x)<0,x∈(x1,+∞),g(x)>0;又当x∈(0,1),y=x−1<0;x∈(1,+∞),y=x−1>0;故当x∈(0,x1)F′(x)>0;当x∈(x1,1)F′(x)<0;当x∈(1,+∞)F′(x)>0所以F(x)在(0,x1)上单调递增在(x1,1)上单调递减在(1,+∞)上单调递增所以当x=x1时F(x)取得极大值故x0=x1且e x0−1x0=0所以e x0=1x0,lnx0=−x0F(x0)=(x0−2)e x0−x0+lnx0+4=x0−2x0−x0−x0+4=5−2(x0+1x0)又y=x+1x 在(12,1)单调递减所以0<F(x0)<1【点睛】关键点点睛:本题考察含参函数单调性的讨论以及导数中的隐零点问题;处理问题的关键是能够准确分析F(x)的单调性以及求得隐零点的范围以及满足的条件属综合中档题。
2024届高三12月大联考(全国乙卷)文科数学及答案
绝密★启用前2024届高三12月大联考(全国乙卷)文科数学本卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}0,1,2,3,4U =,集合{}{}0,1,4,0,3,4M N ==,则()U M N ⋂=ð( )A.{}3B.{}0,2,3,4C.{}0,1,2,4D.{}0,1,2,3,42.若复数z 满足216i z z =+-(i 为虚数单位),则z =( )3.已知实数,x y 满足不等式组202406120x y x y x y -≥⎧⎪+-≥⎨⎪--≥⎩,则3z x y =-的最小值是( )A.1B.2C.3D.64.已知α为第二象限角,且终边与单位圆的交点的横坐标为45-,则5cos 4πα⎛⎫-= ⎪⎝⎭()A.C.5.已知P 是抛物线2:2(0)C y px p =>上一点,它在抛物线C 的准线l 上的射影为点,Q F 是抛物线C 的焦点,若FPQ 是边长为2的等边三角形,则抛物线C 的准线l 的方程为( )A.14x =-B.12x =-C.1x =- D.2x =-6.某班举办趣味数学活动,规则是:某同学从分别写有1至9这9个整数的9张卡片中随机抽取两张,将卡片上较大的数作为十位数字,较小的数作为个位数字组成一个两位数.若这个两位数与将它的个位数字与十位数字调换后得到的两位数的差为45,就视为该同学获奖.若该班同学A 参加这项活动,则他获奖的概率为( )A.172 B.136C.118D.197.已知函数()()cos (0,0)f x x ωϕωϕπ=+><<在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,且63f f ππ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭2,则ϕ=( )A.6πB.3πC.4πD.23π8.某校为庆祝建校60周年,有奖征集同学们设计的文创作品.王同学设计的一款文创水杯获奖,其上部分是圆台(多功能盖),下部分是正六棱台(水杯),圆台与棱台的高之比为0.382:0.618,寓意建校60周年,学校发展步入黄金期.这款水杯下部分的三视图如图所示,则这款水杯下部分的容(体)积约为()A.B.C.D.9.已知函数()()[)2log ,43,4,3x x f x x x ∞⎧∈⎪=⎨∈+⎪-⎩,则满足()13f x ≤≤的x 的取值范围为( )A.][0,24,6⎡⎤⋃⎣⎦B.[]11,4,682⎡⎤⋃⎢⎥⎣⎦C.[]11,2,482⎡⎤⋃⎢⎥⎣⎦D.[]11,2,682⎡⎤⋃⎢⎥⎣⎦10.在ABC 中,内角,,A B C 的对边分别为,,a b c ,已知()sin cos2A Cb B C a ++=,且ABC的面积为,则22a c b+的最小值为()A.2C.4D.11.已知双曲线2222:1(0,0)y x E a b a b-=>>,过点(),0M b -的两条直线12,l l 分别与双曲线E 的上支、下支相切于点,A B .若MAB 为锐角三角形,则双曲线E 的离心率的取值范围为()A.⎛ ⎝B.⎛ ⎝C.∞⎫+⎪⎪⎭ D.∞⎫+⎪⎪⎭12.已知323sin ,,ln 232a b c ===,则,,a b c 的大小关系是( )A.b a c >> B.a b c>>C.a c b>> D.b c a>>二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()()1,,2,1a m b ==-.若()2a b + ∥()2a b - ,则实数m 的值为__________.14.在三棱锥P ABC -中,PA ⊥平面,2,ABC AB AC BC PA ====,则三棱锥P ABC -的内切球的表面积等于__________.15.已知数列{}n a 的前n 项和为n S ,且3220,21n n S na n S -+==-,则数列{}n a 的通项公式为n a =__________.16.设函数()f x 是定义域为R 的奇函数,且x ∀∈R ,都有()()20f x f x --=.当(]0,1x ∈时,()ln 21f x x x =+-,则函数()f x 在区间19,22⎡⎤⎢⎥⎣⎦上有__________个零点.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)某社区为了解居民生活垃圾分类的投放情况,对本社区10000户居民进行问卷调查(满分:100分),并从这10000份居民的调查问卷中,随机抽取100份进行统计,绘制成如图所示的频率分布直方图.(1)估计该社区10000份调查问卷得分的平均数(同一组中的数据用该组区间的中点值为代表)和这10000户居民中调查问卷得分不低于85分的居民户数;(2)该社区从调查问卷得分为满分的居民中随机挑选了6户,其中两户为,A B ,并将这6户居民随机分配到社区两个宣传点,每个宣传点3户,且每户居民只能去一个宣传点,帮助社区工作人员开展宣传活动,求,A B 两户居民分在不同宣传点的概率.18.(12分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,4,2,,PA PD AD AB M N ====分别为,PD AB 的中点.(1)求证:AM ⊥平面PCD ;(2)求证:MN ∥平面PBC ;(3)求三棱锥A CMN -的体积.19.(12分)已知数列{}n a 是各项均为正数的等比数列,n S 为数列{}n a 的前n 项和,且1328,327a a ==,213n n nn b a -=.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n T .20.(12分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为())12,F F ,点P 在椭圆E 上,且满足2PF x ⊥轴,12tan PF F ∠=.(1)求椭圆E 的标准方程;(2)设椭圆E 的右顶点为A ,左顶点为B ,是否存在异于点A 的定点(),0(0)Q m m >,使过定点(),0Q m 的任一条直线l 均与椭圆E 交于()()1122,,,M x y N x y (异于,A B 两点)两点,且使得直线AN 的斜率为直线BM 的斜率的2倍?若存在,求出m 的值;若不存在,请说明理由.21.(12分)已知函数()eexax f x x +=+,其中a ∈R ,e 为自然对数的底数.(1)当1a =-时,求函数()f x 的最值;(2)当(]0,e a ∈时,讨论函数()f x 的极值点个数.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知直线l 的参数方程为4334x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线M 的极坐标方程为8cos 6sin ρθθ=+.(1)求直线l 的极坐标方程;(2)设直线l 与曲线M 交于,A B 两点,求AOB 的面积.23.[选修4-5:不等式选讲](10分)已知函数()|1|||f x x x m =--+.(1)当1m =时,求不等式()1f x ≥的解集;(2)若()3f x ≤恒成立,求实数m 的取值范围.2024届高三12月大联考(全国乙卷)文科数学·全解全析及评分标准一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A 【解析】因为全集{}0,1,2,3,4U =,集合{}0,1,4M =,所以{}U 2,3M =ð.又{}0,3,4N =,所以(){}U3M N ⋂=ð.故选A.2.A 【解析】设()i ,z a b a b =+∈R ,则()i 2i 16i a b a b +=-+-,所以21,26a a b b =+=--,解得1,2a b =-=-,所以z ==,故选A.3.C 【解析】作出不等式组202406120x y x y x y -≥⎧⎪+-≥⎨⎪--≥⎩所表示的可行域,如图中阴影部分所示.3z x y =-,即3y x z =-.当直线3y x =自左上向右下平移时,z -逐渐减小,z 逐渐增大,所以当直线3y x z =-经过直线20x y -=与直线6120x y --=的交点()3,6C 时,z 取得最小值,最小值为3363⨯-=.故选C .4.D 【解析】由题意,得43cos ,sin 55αα=-=,所以5333cos cos cos cos sin sin 4444ππππαααα⎛⎫⎛⎫-=+=- ⎪⎪⎝⎭⎝⎭,故选D.5.B 【解析】不妨设点P 的坐标为()()1111,0,0x y x y >>,依题意,得FQ PQ =,即12p x =+①.又2112y px =②,联立①②,解得113,2p x y ==.22p ==,得1p =,所以抛物线C 的准线l 的方程为122p x =-=-,故选B .6.D 【解析】设同学A 随机抽取得到的两位数的十位数字为x ,个位数字为()y x y >.依题意,若2x =,则1y =,有1种情况;若3x =,则1,2y =,有2种情况⋅ 若9x =,则1,2,,8y = ,有8种情况,共计有12836+++= 种情况,其中满足获奖的情况是()()101045x y y x +-+=,即5x y -=,也即获奖情况只有6,1;7,2;8,3;9,4x y x y x y x y ========,这4种情况,所以该班同学A 参加这项活动获奖的概率为41369=.故选D.7.B 【解析】因为()()cos (0)f x x ωϕω=+>在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,且263f f ππ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的最小正周期2,1366T f ππππ⎡⎤⎛⎫⎛⎫=--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以2,cos 13πωϕ⎛⎫=-+= ⎪⎝⎭,所以()23k k πϕπ=+∈Z .又0ϕπ<<,所以3πϕ=,故选B.8.A 【解析】由三视图,知这款水杯的下部分是上底边长为4,下底边长为3,高为6的正六棱台,226364S S ====下底上底,所以这款水杯下部分的容(体)积约为(11633V S S h =++⨯=⨯⨯=下底上底.故选A.9.D 【解析】令()1f x =,则()()2log 10,4xx =∈∣或[)()314,3x x ∞=∈+-,解得12x =或2x =或6x =.令()3f x =,则()()2log 30,4xx =∈∣或[)()334,3x x ∞=∈-,解得18x =或4x =.画出函数()f x 图象的草图(如图),得满足()13f x ≤≤的x 的取值范围为[]11,2,682⎡⎤⋃⎢⎥⎣⎦.故选D.10.B 【解析】由正弦定理和()sin cos 2A Cb B C a ++=,得sin sin sin sin 2B B A A ⋅=⋅.因为sin 0,sin02B A >>,所以1cos 22B =.因为0,22B π⎛⎫∈ ⎪⎝⎭,所以23B π=.又ABC1sin 2ac B =,所以4ac =.由余弦定理,得222222cos 312b a c ac B a c ac ac =+-=++≥=,当且仅当a c =时取等号,所以b ≥,所以22244a cb b b b b+-==-.因为函数4y b b =-在)∞⎡+⎣上单调递增,所以当b =时,22a c b +故选B.11.D 【解析】如图,设过点(),0M b -的直线()1:(0)l y k x b k =+>,联立()22221y k x b y x ab ⎧=+⎪⎨-=⎪⎩,整理,得()()222232222220b k axb k x b b k a -++-=,依题意,得()2642222Δ440b k bb ka=--=,所以2222a k b=.由双曲线的对称性,得201k <=<,所以()2222a c a <-,整理,得双曲线E的离心率c e a =>故选D.12.B 【解析】方法一:因为sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增,所以32sin sin 233a b π=>=>=.设()1ln g x x x =--,则()111x g x x x -=-=',当[)1,x ∞∈+时,()10x g x x-=≥',所以()3111ln102g g ⎛⎫>=--= ⎪⎝⎭,所以331ln 22->,即13ln 22>,所以213ln 322b c =>>=.综上,得a b c >>,故选B .方法二:因为sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增,所以32sin sin 233a b π=>=>=.又213ln 322b c =>=>==.综上,得a b c >>,故选B.二、填空题:本题共4小题,每小题5分,共20分.13.12-【解析】因为()()1,,2,1a m b ==- ,所以()()24,21,23,2a b m a b m +=--=-+ .又()2a b + ∥()2a b - ,所以()()423210m m ++-=,解得12m =-.故填12-.14.1225π【解析】如图,由已知,得ABC 的面积为112⨯=三棱锥P ABC -在底面ABC 上的高为PA =,等腰三角形PBC 底边BC 上的高为2,所以三棱锥P ABC -的表面积1122222S =⨯⨯+⨯⨯=,体积113V ==.又三棱锥P ABC -的体积13V Sr =(其中r 为三棱锥P ABC -内切球的半径),所以r =,所以三棱锥P ABC -的内切球的表面积为212425r ππ=.故填1225π.15.53n -+ 【解析】方法一:当1n =时,11220S a -+=,解得12a =-.又220n n S na n -+=,所以()()1222n n n n a n a a S -+==,所以数列{}n a 为等差数列.又321S =-,所以()313212a a +=-,解得312a =-,所以数列{}n a 的公差3152a a d -==-,所以数列{}n a 的通项公式为53n a n =-+.故填53n -+.方法二:*,220n n n S na n ∀∈-+=N 恒成立,当1n =时,11220S a -+=,解得12a =-.当3n =时,332360S a -+=,且321S =-,解得312a =-.当2n ≥时,()()1121210n n S n a n ----+-=①,又220n n S na n -+=②,①-②,得()()12120n n n a n a -----=③,所以()1120n n n a na +---=④.④-③,得()()11120n n n n a a a +---+=.因为2n ≥,所以1120n n n a a a +--+=,即11n n n n a a a a +--=-.又132,12a a =-=-,所以数列{}n a 是首项为-2,公差为-5的等差数列,所以数列{}n a 的通项公式为53n a n =-+.故填53n -+.16.6 【解析】如图,因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-,且()00f =.又()()20f x f x --=,即()()2f x f x =-,所以函数()f x 的图象关于直线1x =对称,且()()()2f x f x f x +=-=-,所以()()()42f x f x f x +=-+=,所以4是函数()f x 的一个周期,所以()()()0240f f f ===.易知函数()ln 21f x x x =+-在(]0,1上单调递增,且()11ln 11ln20,1ln1211022f f ⎛⎫=+-=-<=+-=>⎪⎝⎭,所以函数()f x 在区间()0,1上仅有1个零点,且零点在区间1,12⎛⎫⎪⎝⎭上.由对称性,知函数()f x 在区间()1,2上有且仅有1个零点.因为()f x 是定义域为R 的奇函数且是4是它的一个周期,所以()()40f x f x -+=,所以函数()f x 的图象关于点()2,0中心对称,所以函数()f x 在区间()2,4上有且仅有2个零点.因为函数()f x 在区间10,2⎛⎫ ⎪⎝⎭上没有零点,所以函数()f x 在区间94,2⎛⎫⎪⎝⎭上没有零点.结合()()240f f ==,得函数()f x 在区间19,22⎡⎤⎢⎥⎣⎦上有6个零点.故填6.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)【解析】(1)由频率分布直方图,得样本平均数为()550.008650.012750.024850.040950.01610x =⨯+⨯+⨯+⨯+⨯⨯79.4=,所以估计该社区10000份调查问卷得分的平均数为79.4.因为这10000户居民中调查问卷得分不低于85分的频率为()90850.0400.016100.36-⨯+⨯=,所以估计该社区这10000户居民中调查问卷得分不低于85分的居民户数为100000.363600⨯=.(2)将6户居民分别记为,,,,,A B c d e f ,依题意,6户居民被随机分到两个宣传点的所有情况有(),ABc def ,()()()()()()()(),,,,,,,,,,,,,,,ABd cef ABe cdf ABf cde Acd Bef Ace Bdf Acf Bde Ade Bcf Adf Bce ,()()()()()()()(),,,,,,,,,,,,,,,Aef Bcd Bcd Aef Bce Adf Bcf Ade Bde Acf Bdf Ace Bef Acd cde ABf ,()()(),,,,,cdf ABe cef ABd def ABc ,共20种,其中,A B 两户居民分在不同宣传点的情况有()()()()(),,,,,,,,,Acd Bef Ace Bdf Acf Bde Ade Bcf Adf Bce ,()()()()()()(),,,,,,,,,,,,,Aef Bcd Bcd Aef Bce Adf Bcf Ade Bde Acf Bdf Ace Bef Acd ,共12种,所以,A B 两户居民分在不同宣传点的概率123205P ==.另解:若采用排列组合解答酌情给分:6户居民均分到两个宣传点共有36C 种情况,其中,A B 两户居民分在相同宣传点有142C 种情况,所以,A B 两户居民分在不同宣传点的概率14362C 31C 5P =-=.18.(12分)【解析】(1)因为底面ABCD 为矩形,所以AD CD ⊥.又平面PAD ⊥平面ABCD ,平面PAD ⋂平面,ABCD AD CD =⊂平面ABCD ,所以CD ⊥平面PAD .又AM ⊂平面PAD ,所以CD AM ⊥.因为在PAD 中,,PA PD AD M ==为PD 的中点,所以AM PD ⊥.又,CD PD D CD ⋂=⊂平面,PCD PD ⊂平面PCD ,所以AM ⊥平面PCD .(2)如图,取PC 的中点E ,连接,ME BE .因为M 为PD 的中点,所以ME ∥CD ,且12ME CD =.又N 为AB 的中点,底面ABCD 为矩形,所以BN∥CD ,且12BN CD =,所以BN ∥EM ,且BN EM =,所以四边形NBEM 为平行四边形,所以BE ∥NM .又BE ⊂平面,PBC MN ⊄平面PBC ,所以MN∥平面PBC .(3)如图,因为,4,2A CMN M ACN V V PA PD AD AB --=====,平面PAD ⊥平面ABCD ,所以点P 到平面ABCD 的距离即为等边三角形PAD 的高,所以点P 到平面ABCD 的距离为4=.又M 为PD 的中点,所以点M 到平面ANC 又11422ANC S =⨯⨯= ,所以123M ACN V -=⨯=A CMN -.19.(12分)【解析】(1)设等比数列{}n a 的公比为(0)q q >.由1328,327a a ==,得228327q =,解得249q =.因为{}n a 的各项均为正数,所以23q =,所以数列{}n a 是以23为首项,23为公比的等比数列,所以数列{}n a 的通项公式为1222333n nn a -⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.(2)由(1)得21212132233n nn n n n n n n b a ---===⎛⎫⋅ ⎪⎝⎭,所以1221321222n n n n T b b b -=+++=+++ ,231113212222n n n T +-=+++ ,两式相减,得23111111212222222n n n n T +-⎛⎫=++++- ⎪⎝⎭ 1111112142212212n n n -+⎛⎫- ⎪-⎝⎭=+⨯--1323,22n n ++=-所以2332n nn T +=-.20.(12分)【解析】(1)因为2PF x ⊥12tan PF F ∠,解得21,2PF =所以172PF ==.根据椭圆的定义,得12712422a PF PF =+=+=,解得2a =.又c =,所以2221b a c =-=,所以椭圆E 的标准方程为2214x y +=.(2)假设存在满足题意的定点(),0Q m .依题意,设直线l 的方程为,0x ty m m =+>,联立2214x ty m x y =+⎧⎪⎨+=⎪⎩,消去x 并整理,得()2224240t y tmy m +++-=,由()()()22222Δ(2)4441640tm t mt m =-+-=-+>,得224m t <+.由根与系数的关系,得212122224,44tm m y y y y t t -+=-=++.由()()2,2,0,2,0ANBM k k A B =-,得2121222y y x x =⋅-+,所以2121222y y ty m ty m =⋅+-++,即()()1212222m y m y ty y --++=,所以()()()212242224t m m y m y t ---++=+,所以()()()21221224222424t m m y m y t tm y y t ⎧-⎪--++=⎪+⎨⎪+=-⎪+⎩,所以()()()()()21212222222224m y m y tm m m y m y t ⎧⎪--++=⎪⎨+⎪+++=-⎪+⎩②,②-①,得()()()12232324t m m m y t -+--=+,当320m -≠时,解得()()12222424t m y t t m y t ⎧-+=⎪⎪+⎨--⎪=⎪+⎩,所以()()22122244t m y y t-=+.又212244m y y t -=+,所以()()2222224444t m mt t --=++.因为上式在t 变化时恒成立,所以240m -=.又0m >,所以2m =.此时点Q 与点A 重合,不合题意,舍去;所以320m -=,即23m =,此时点2,03Q ⎛⎫⎪⎝⎭在椭圆E 的内部,满足直线l 均与椭圆E 交于,M N 两点,所以存在定点2,03Q ⎛⎫⎪⎝⎭满足题意,23m =.21.(12分)【解析】(1)当1a =-时,()e e x x f x x -+=+,则()e 1e e 11e ex x xx x f x '--+--=+=.令()e e 1xx x ϕ=+--,则()x ϕ在R 上单调递增,且()1e 1e 10ϕ=+--=,所以当(),1x ∞∈-时,()0x ϕ<,即()0f x '<;当()1,x ∞∈+时,()0x ϕ>,即()0f x '>,所以()f x 在(),1∞-上单调递减,在()1,∞+上单调递增,所以函数()f x 在1x =处取得极小值()112ef =-,即()f x 有最小值12e-,没有最大值.(2)因为()e e x ax f x x +=+,其中(]0,e a ∈,所以()()()2e e e e e 1e ex x x x x a ax ax a f x -+⋅'-+-=+=.令()e e xg x ax a =-+-,则()e xg x a '=-.因为0a >,令()e 0xg x a =-=',则ln x a =,所以当(),ln x a ∞∈-时,()0g x '<;当()ln ,x a ∞∈+时,()0g x '>,所以()g x 在(),ln a ∞-上单调递减,在()ln ,a ∞+上单调递增,所以()min ()ln 2ln e g x g a a a a ==--.设()2ln e h a a a a =--,其中(]0,e a ∈,则()1ln h a a =-'.令()1ln 0h a a =-=',解得e a =.当(]0,e a ∈时,()0h a '≥,所以()h a 在(]0,e 上单调递增,所以()max ()e 2e elne e 0h a h ==--=.所以当()0,e a ∈时,min ()2ln e 0g x a a a =--<;当e a =时,min ()0g x =.①当e a =时,min ()0g x =,即()0g x ≥,也即()0f x '≥,所以()f x 在R 上单调递增,所以()f x 没有极值点.②当()0,e a ∈时,()ln 1,a g x <在(),ln a ∞-上单调递减.设()e e ln ln t a a a a a ⎛⎫=--=+ ⎪⎝⎭,则当()0,e a ∈时,()221e e 0a t a a a a '-=-=<,所以()()e 20t a t >=>,即当()0,e a ∈时,eln a a-<.又()g x 在(),ln a ∞-上单调递减,所以()g x 在e ,a ∞⎛⎫--⎪⎝⎭上单调递减,且在e ,ln a a ⎡⎫-⎪⎢⎣⎭上单调递减,所以当e ,x a ∞⎛⎫∈-- ⎪⎝⎭时,()e ee e e e e 0aa g x g a a a --⎛⎫>-=++-=+> ⎪⎝⎭,所以()g x 在e ,a ∞⎛⎫--⎪⎝⎭上没有零点,且()e ln 0g g a a ⎛⎫-⋅< ⎪⎝⎭.又()g x 在e ,ln a a ⎡⎫-⎪⎢⎣⎭上单调递减,所以在e ,ln a a ⎡⎫-⎪⎢⎣⎭内存在唯一0x ,使()00g x =,所以当()0,x x ∞∈-时,()0g x >;当()0,ln x x a ∈时,()0g x <,也即当()0,x x ∞∈-时,()0f x '>;当()0,ln x x a ∈时,()0f x '<,所以0x 为()f x 的一个极大值点.又()()10,g g x =在()ln ,a ∞+上单调递增,ln 1a <,所以当()ln ,1x a ∈时,()0g x <;当()1,x ∞∈+时,()0g x >,即当()ln ,1x a ∈时,()0f x '<;当()1,x ∞∈+时,()0f x '>,所以1为()f x 的一个极小值点,所以当()0,e a ∈时,()f x 有2个极值点.综合①②,当()0,e a ∈时,()f x 有2个极值点;当e a =时,()f x 没有极值点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)【解析】(1)直线l 的参数方程为4334x ty t=+⎧⎨=+⎩(t 为参数),消去参数t 并整理,得4370x y --=.因为cos ,sin x y ρθρθ==,所以直线l 的极坐标方程为4cos 3sin 70ρθρθ--=.(2)由(1)知直线l 的普通方程为4370x y --=.曲线M 的极坐标方程为8cos 6sin ρθθ=+,化为直角坐标方程为22(4)(3)25x y -+-=,所以曲线M 是圆心为()4,3,半径为5的圆.又直线l 过圆心()4,3,所以10AB =,所以原点O 到直线l的距离75d ,所以AOB 的面积1710725AOB S =⨯⨯= .23.[选修4-5:不等式选讲](10分)【解析】(1)当1m =时,()2,1112,11,2,1x f x x x x x x -≥⎧⎪=--+=--<<⎨⎪≤-⎩所以()1f x ≥可化为211x ≥⎧⎨≤-⎩,或2111x x -≥⎧⎨-<<⎩,或211x -≥⎧⎨≥⎩,解得1,2x ≤-所以不等式()1f x ≥的解集为1,2∞⎛⎤-- ⎥⎝⎦.(2)()3f x ≤恒成立,即13x x m --+≤恒成立.因为||1|||||1|x x m m --+≤+恒成立,所以13m +≤,解得42m -≤≤,所以实数m 的取值范围是[]4,2-.。
2022年高三12月大联考(全国乙卷)文科数学试题及参考答案
2022年高三12月大联考(全国乙卷)文科数学试题及参考答案一、选择题:本大题共12小题,每小题5分,共60分.砸每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{},0322>-+=x x x A {}1-≥=x x B ,则=B A ()A .()∞+,1B .[)∞+-,1C .(]13,-D .[)11,-2.已知()i i z 7432+-=+⋅,i 为虚数单位,则复数z 在复平面内所对应的点的坐标是()A .()1,1B .()21,C .()1,2D .()2,23.自古以来,斗笠是一种防晒遮雨的用具,是家喻户晓的生活必需品之一,主要用竹篾和一种棕榈叶染白后编织而成,已列入世界非物质文化遗产名录.下图是一个斗笠的实物图和三视图,由三视图中数据可得该斗笠的外表面积为()A .2576cm πB .2624cm πC .2720cm πD .21296cm π4.函数()xx x f ⎪⎭⎫ ⎝⎛-=2cos π的部分图象大致是()5.已知n S 为等差数列{}n a 的前n 项和,1674-=+S a ,48a a -=,则=10S ()A .5B .0C .10-D .5-6.已知抛物线C :x y 42=的焦点为F ,直线1-=kx y 过点F 且与抛物线C 交于B A ,两点,则=AB ()A .8B .6C .2D .47.将函数()162sin +⎪⎭⎫ ⎝⎛+=πx x f 的图象向右平移6π个单位长度,得到函数()x g 的图象,则()x g 图象的对称中心可以为()A .⎪⎭⎫⎝⎛03πB .⎪⎭⎫⎝⎛-0125πC .⎪⎭⎫⎝⎛13,πD .⎪⎭⎫⎝⎛-1125π8.已知函数()x x x x f sin 223++=,则不等式()()0512>+++x f x f 成立的一个充分不必要条件可以是()A .0<x B .2->x C .0>x D .2-<x 9.已知6.05.0=a ,5.06.0=b ,56log =c ,则c b a ,,的大小关系为()A .c b a <<B .b c a <<C .c a b <<D .ac b <<10.在正三棱锥BCD A -中,BC AB 2=,点F E ,分别在棱AB 和AD 上,且AB DF BE 31==,则异面直线CE 和BF 所成角的余弦值为()A .201-B .201C .101-D .10111.已知双曲线C :()0,012222>>=-b a by a x 上的一点M (异于顶点),过点M 双曲线C的一条切线l .若双曲线C 的离心率332=e ,O 为坐标原点,则直线OM 与l 的斜率之积为()A .31B .32C .23D .312.已知各项不等于0的数列{}n a 满足11=a ,22=a ,121+++=n n n n n a a a a a ,n n n n a a a a 221+++++()*N n ∈.设函数()n n n x a x a x a x f ++++= 2211,()x f n '为函数()x f n 的导函数.令()1-'-=n n f b ,则=33b ()A .36-B .36C .54-D .54二、填空题:本题共4小题,每小题5分,共20分.13.已知平面向量()1,1-=a,()0,2=b ,则平面向量a 与b 的夹角为.14.已知圆C :02483422=+--+y x y x ,且圆外有一点()20,P ,过点P 作圆C 的两条切线,且切点分别为B A ,,则=AB .15.已知函数()x f 的导函数()()()m x x m x f -+-='2,若()x f 在m x =处取得的最小值,则m 的取值范围是.16.已知ABC ∆中,点D 在边BC 上,1==BD AD ,2=CD ,BC AD ⊥,沿AD 将ABD ∆折起,使︒=∠120BDC ,若折起后D C B A ,,,四点都在以O 为球心的球面上,则球O 的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)在ABC ∆中,点D 在边BC 上,2=BD ,4=CD ,AB AC >.(1)若32=AB ,6π=C ,求AD 的长;(2)若32π=∠BAC ,求ACD ∆的面积S 的取值范围.18.(12分)已知某绿豆新品种发芽的适宜温度在6℃~22℃之间,一农学实验室研究人员为研究温度x (℃)与绿豆新品种发芽数y (颗)之间的关系,每组选取了成熟种子50颗,分别在对应的8℃~14℃的温度环境下进行试验,得到如下散点图:(1)由折线统计图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)建立y 关于x 的回归方程,并预测在19℃的温度下,种子发芽的颗数.参考数据:24=y ,()()7071=--∑=y y x xi i i,()176712=-∑=i i y y ,77.877≈.参考公式:相关系数()()()()∑∑∑===----=n i ni ii ni i iy y x x y y x xr 11221,回归直线方程a x b yˆˆˆ+=中斜率和截距的最小二乘估计公式分别为()()()∑∑==---=ni i ni i ix x y y x xb121ˆ,x b y aˆˆ-=.19.(12分)如图,正三棱锥111C B A ABC -的底面边长为2,高为3,D 在棱1AA 上,1=AD ,G 为AB 的中点.(1)求证:D B 1⊥平面CGD ;(2)求三棱锥11CC B D -的体积.20.(12分)已知函数()b xax ax x f +--=ln ,b a ,为常数,()x f 的图象在点()()1,1f 处的切线方程为()01221=-++-a y x a .(1)求b 的值;(2)若()0≥x f 对[)+∞∈,1x 恒成立,求实数a 的取值范围.21.(12分)已知抛物线C :x y 42=,直线1l 交抛物线C 于B A ,两点,()()2211,,y x B y x A ,,且421-=y y .(1)求坐标原点O 到直线1l 的距离的取值范围;(2)设直线1l 与x 轴交于D 点,过点D 作与直线1l 垂直的直线2l 交椭圆E :13422=+y x 于N M ,两点,求四边形AMBN 的面积的最小值.(二)选考题:共10分.请考生在第22/23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+=+=ty tx 211(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()1sin 1=-θρ.(1)求曲线1C 的普通方程,曲线2C 的直角坐标方程;(2)设()1,1M ,曲线1C ,2C 的交点为B A ,,求MB MA ⋅的值.23.(10分)【选修4-5:不等式选讲】已知函数()124123---=x x x f .(1)求不等式()2>x f 的解集;(2)若不等式()x k x f ≤恒成立,求实数k 的取值范围.参考答案一、选择题1.A解析:由0322>-+x x ,得1>x 或3-<x ,∴{}31-<>=x x x A 或,又{}1-≥=x x B ,∴()∞+=,1B A .2.B解析:由()i i z 7432+-=+⋅,得()()()()i i i i i ii z 21323232743274+=-+-+-=++-=,∴复数z 在复平面内所对应的点的坐标为()2,1.3.C解析:圆锥底面半径长为cm 24,高为cm 18,由勾股定理知母线长为cm 30,∴圆锥侧面积为2720cm rl S ππ==.4.C解析:由题意,知0≠x ,()x x x f sin =,又()()()x f xxx x x f -=-=--=-sin sin ,∴()x f 为奇函数,排除B A ,,当20π<<x 时,()0>x f ,排除D ,故选C .5.D解析:设等差数列()n a 的公差为d ,由1674-=+S a ,48a a -=,可得:()⎪⎩⎪⎨⎧=+-=-⨯+++016217774814a a d a a ,即⎩⎨⎧=+++-=+++0371621731111d a d a d a d a ,解得⎩⎨⎧=-=151d a ,∴()()5211101051010-=⨯-⨯+-⨯=S .6.A解析:由题意知抛物线C :x y 42=的焦点F 的坐标为()0,1,2=p ,又直线1-=kx y 过抛物线C 的焦点()01,F ,∴01=-k ,解得1=k ,∴直线的方程为1-=x y ,由⎩⎨⎧=-=xy x y 412得0162=+-x x ,设()()B B A A y x B y x A ,,,,∴6=+B A x x ,∴826=+=++=p x x AB B A .7.D解析:由题意得()162sin 1662sin +⎪⎭⎫ ⎝⎛-=+⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=πππx x x g ,令Z k k x ∈=-,62ππ,得122ππ+=k x ,Z k ∈,当1-=k 时,125122πππ-=+-=x ,∴⎪⎭⎫⎝⎛-1125,π为函数()x g 图象的一个对称中心.8.C解析:由题意()R x x x x x f ∈++=,sin 223,()()x f x f -=-,∴()x f 为奇函数,∵()0cos 2232≥++='x x x f ,∴函数()x f 在R 行单调递增.由()()0512>+++x f x f ,得()()()5512--=+->+x f x f x f ,又函数()x f 在R 行单调递增,∴512-->+x x ,解得2->x ,∴不等式()()0512>+++x f x f 的解得为()∞+-,2,不等式()()0512>+++x f x f 成立的一个充分不必要条件是()∞+-,2的真子集,分析各个选项可得0>x 满足条件,故选C.9.A解析:∵5.05.06.06.05.05.0<<,∴b a <.∵64.06.0<,∴5464.06.05.05.0=<=b ,又11296lg 3125lg 6lg 5lg 5log 45456>==,∴545log 6>=c ,∴c b <.∴c b a <<.10.B 解析:如图,过点E 作BF EG ∥交AD 于点G ,则GEC ∠或其补角为异面直线CE 和BF 所成的角.设9=BC ,由条件可知,18812===AC AG AE ,,.由余弦定理得871818291818cos cos 222=⨯⨯-+=∠=∠BAD BAC .根据余弦定理得:10287812281222=⨯⨯⨯-+=EG ,10387181********=⨯⨯⨯-+=EC ,∴在GEC ∆中,根据余弦定理得20110310221369040cos -=⨯⨯-+=∠GEC ,∴异面直线CE 和BF 所成角的余弦值为201.11.A 解析:不妨设()00,y x M 为右支上的一点,则直线OM 的斜率0x y k OM =.又双曲线C 在点M 处的切线l 的方程为12020=-b y y a x x ,即020202y b x y a x b y -=,双曲线C 在点M 处的切线l 的斜率0202y a x b k l =,∴22020200a b y a x b x y k k l OM =⋅=,又曲线C 的离心率221332a b e +==,∴3122=ab ,∴31=l OM k k .12.D 解析:在n n n n n n n n n a a a a a a a a a 221121++++++++=中,令1=n ,得133221321a a a a a a a a a ++=,又2121==a a ,,得333222a a a ++=,解得23-=a .∵{}n a 中的各项都不为0,∴将n n n n n n n n n a a a a a a a a a 221121++++++++=的两边同除以21++n n n a a a 得:111121=++++n n n a a a ,∴1111321=+++++n n n a a a ,以上两式相减得311+=n n a a ,∴n n a a =+3,∴{}n a 是周期数列,3为它的一个周期.求导得()1212-+++='n n n xna x a a x f ,∴()()()()13321113121--+-⨯+-⨯+=-'n n n na a a a f ,∴()()()()()3333332213333133131211-⨯++-⨯+-⨯+-⨯=-'=a a a a f b ()()()33963232852231741-+-+-⨯-+-+-⨯+-+-+-= ()()()53325322531⨯--⨯-⨯+⨯+⨯--=54363416=++-=.二、填空题13.4π解析:设平面向量a 与b的夹角为θ,由()()0,21,1=-=b a ,,得22222cos =⨯=⋅=ba ba θ,又πθ≤≤0,∴4πθ=.14.32解析:由圆C :02483422=+--+y x y x ,整理得:()()443222=-+-y x,∴圆心()4,32C ,半径2=r .根据题意,画出图象如下,则32,2,4===P A r PC ,∴421322212⨯=⨯⨯⨯=AB S APBC 四边形,解得32=AB .15.()2,0解析:由题意得0≠m ,当0>m 时,()x f '为图象开口向下的二次函数,若()x f 在m x =处取到极小值,则有20<<m ;当0<m 时,()x f '为图象开口向上的二次函数,若()x f 在m x =处取到极小值,则有2>m ,与0<m 矛盾,不符合题意,故m 的取值范围是()2,0.16.π331解析:ABC ∆如图(1),折起后得到空间四边形ABCD 如图(2),将其拓展为三棱柱DBC AEF -,且为直三棱柱,它们具有相同的外接球O ,其中︒=∠120BDC .记DBC ∆和AEF ∆的外心分别为21,O O ,则点O 为21O O 的中点,且121==AD O O .设DBC ∆外接圆的半径为r ,球O 的半径为R .在DBC ∆,由余弦定理得7cos 222=∠⋅⋅-+=BDC CD BD CD BD BC ,由正弦定理得372237sin 2==∠=BDCBCr ,∴321=r ,∴123141921222122=+=⎪⎭⎫ ⎝⎛+=O O r R ,故球O 的表面积为ππ33142=R .三、解答题17.解:(1)由题意知6=BC ,在ABC ∆中,由余弦定理得C AC BC AC BC AB cos 2222⋅⋅-+=,即236236122⨯⨯⨯-+=AC AC ,即024362=+-AC AC ,解得32=AC 或34=AC ,∵AB AC >,∴34=AC .在ADC ∆中由余弦定理得:C AC DC AC DC AD cos 2222⋅⋅-+=,即1623344248162=⨯⨯⨯-+=AD ,∴4=AD .(2)∵326π=∠=BAC BC ,,∴在ABC ∆中,由正弦定理得34sin sin sin =∠==BACBCB AC C AB ,∴C AB sin 34=,⎪⎭⎫⎝⎛-==C B AC 3sin 34sin 34π,∴C C C AC CD S sin 3sin 34421sin 21⋅⎪⎭⎫⎝⎛-⨯⨯=⋅⋅=πC C C C C C 2sin 34cos sin 12sin sin 21cos 2338-=⋅⎪⎪⎭⎫ ⎝⎛-⨯=()3262sin 342cos 21322sin 6-⎪⎭⎫ ⎝⎛+=--=πC C C .又AB AC >,则60π<<C ,∴2626πππ<+<C ,∴162sin 21<⎪⎭⎫ ⎝⎛+<πC ,可得320<<S ,∴ACD ∆的面积S 的取值范围为()32,0.18.解:(1)根据题意,得()111413*********1=++++++⨯=x .()()()()()()22222712111211111110119118-+-+-+-+-=-∑=i i x x ()()281114111322=-+-+,()()16.7077817628717122≈=⨯=--∑∑==i i ii y y x x .∴()()()()998.016.707071712271≈≈----=∑∑∑===i i iii i iy yx xy y x xr .∵998.0≈r 很接近1,说明y 与x 的线性相关程度相当高,∴可以用线性回归模型拟合y 与x 的关系.(2)由(1)得()()()252870ˆ71271==---=∑∑==i i i i ix x y y x xb,27112524ˆˆ-=⨯-=-=x b y a,∴y 关于x 的回归方程为2725ˆ-=x y .若19=x ,则44271925ˆ=-⨯=y.所以预测在19℃的温度下,种子发芽的颗数为44.19.解:(1)如图,连接G B 1,由题意知222=+=AD AG GD ,22211211=+=B A D A B D ,102121=+=BB BG G B ,∴21212G B DB GD =+,∴DG D B ⊥1,又易知CG ⊥平面11A ABB ,⊂D B 1平面11A ABB ,∴D B CG 1⊥,又⊂CG 平面CGD ,⊂DG 平面CGD ,G CG DG = ,∴⊥D B 1平面CGD .(2)如图,取11C B 的中点H ,连接H A 1,在正三角形111C B A 中,111C B H A ⊥,则3212111=-=H B B A H A ,又平面111C B A ⊥平面11B BCC ,∴H A 1⊥平面11CC B .∵1AA ∥平面11B BCC ,∴点1A与点D 到平面11B BCC 的距离相等.∴H A S V V C C B CC B A CC B D 1111111131⋅==∆--33322131=⨯⨯⨯⨯=.20.解:(1)求导,得()21xax a x f +-=',∴()121-='a f ,()b f =1,故()x f 的图象在点()()11f ,处的切线方程为()()112--=-x a b y ,即()01221=-+-+-a b y x a ,∴0=b .(2)由(1)知0=b ,则()1,ln ≥--=x x a x ax x f .求导得()22x ax ax x f +-='.令()1,2≥+-=x a x ax x h ,241a -=∆,当0≤a 时,()0<x h 恒成立,∴()0<'x f 恒成立,()x f 在[)∞+,1上单调递减,此时()()01=≤f x f ,与题意不符.当21≥a 时,0≤∆,∴()0≥x h 恒成立,∴()0≥'x f 恒成立,()x f 在[)∞+,1上单调递增,∴()()01=≥f x f ,∴21≥a ,符合题意.当210<<a 时,121>a,∵()0121<-=a h 且()x h 在⎪⎭⎫⎝⎛a 211,上单调递减,∴021<⎪⎭⎫⎝⎛a h .∴a x 211<<时,()0<x h ,故()0<'x f ,∴()x f 在⎪⎭⎫ ⎝⎛a 211,上单调递减,故()0121=<⎪⎭⎫⎝⎛f a f ,与题意不符.综上,实数a 的取值范围是⎪⎭⎫⎢⎣⎡∞+,21.21.解:(1)显然直线1l 的斜率不为0,设直线1l 的方程为n my x +=.联立⎩⎨⎧=+=xy n my x 42,整理得0442=--n my y ,∴4421-=-=n y y ,∴1=n ,∴直线1l 恒过点()0,1.∴坐标原点O 到直线1l 的距离的最大值为1,又直线1l 不经过原点O ,∴坐标原点O 到直线1l 的距离的取值范围为(]1,0.(2)由(1)可知()()14412212212+=-+⋅+=m y y y y m AB .由题意及(1)可知直线2l 的方程为m mx y +-=.设()()4433,,y x N y x M ,,联立()⎪⎩⎪⎨⎧--==+113422x m y y x ,可得()()0348432222=-+-+m x m x m ,则()224322434334438m m x x m m x x +-=+=+,.∴()()341124122432432++=-+⋅+=m m x x x x m MN .∴()3412421222++=⋅=m m MN AB S AMBN四边形.设()3342≥=+t t m ,则⎪⎭⎫⎝⎛++=++⨯=212312232t t t t t S AMBN四边形.∵21++=t t y 在[)∞+,3上单调递增,∴8231323=⎪⎭⎫⎝⎛++⨯≥AMBN S 四边形,∴四边形AMBN 的面积的最小值为8.22.解:(1)∵曲线1C 的参数方程为⎪⎩⎪⎨⎧+=+=②,①t y t x 21,1,则①-⨯2②,得122-=-y x ,∴曲线1C 的普通方程为:0212=-+-y .由()1sin 1=-θρ得1sin +=θρρ,两边同时平方得1sin 2sin 222++=θρθρρ,将y =θρsin ,222y x +=ρ代入上式,得12222++=+y y y x ,化简得122+=y x ,∴曲线2C 的直角坐标方程为21212-=x y .(2)将曲线1C 的参数方程化为⎪⎪⎩⎪⎪⎨⎧'+='+=t y t x 361331,代入21212-=x y 得()0662322=-'-+'t t ,设B A ,两点对应的参数分别为21t t '',,则621-=''t t .∴621='⋅'=⋅t t MB MA .23.解:()⎪⎩⎪⎨⎧>-≤≤+-<=4,43,2473,x x x x x x x f ,(1)①当3<x 时,2>x ,即32<<x ;②当43≤≤x 时,2247>+-x ,解得722<x ,即7223≤≤x ;③当4>x 时,2>-x ,解得2-<x ,则()2>x f 无解.综上所述,不等式()2>x f 的解集为⎪⎭⎫ ⎝⎛7222,.(2)①当0=x 时,显然成立;②当0≠x 时,不等式()x k x f ≤可化为xx xx x k 124123124123---=---≥.又1124123124123=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-≤---x x x x ,当且仅当0124123≥⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-x x 且xx 124123->-时等号成立,∴实数k 的取值范围为[)∞+,1.。
2024-2025学年高三一轮复习联考(三)_全国卷文数(含答案)
2024届高三一轮复习联考(三)全国卷文科数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回,考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}212,1A xx B x x =<<=∣∣,则A B ⋃=()A.[)1,2-B.(),2∞-C.[)1,3- D.[]1,2-2.命题2:,220p x R x x ∀∈+-<的否定p ⌝为()A.2000,220x R x x ∃∈+->B.2,220x R x x ∀∈+-C.2,220x R x x ∀∈+->D.2000,220x R x x ∃∈+-3.3.已知复数2(1i)z =+(i 为虚数单位),则复数z 的虚部为()A.2B.2- C.2iD.2i-4.若函数()222,0,log ,0,x x x f x x x ⎧-=⎨>⎩则()2f f ⎡⎤-=⎣⎦()A.2- B.2 C.3- D.35.已知1sin 62πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭()A.14-B.14C.12-D.126.函数()21x xe ef x x --=+在[]3,3-上的大致图象为()A.B.C. D.7.函数2sin cos21y x x=-+的最小值是()A.3-B.1-C.32- D.12-8.已知数列{}n a的前n项和22nS n n m=-++,且对任意*1,0n nn N a a+∈-<,则实数m 的取值范为是()A.()2,∞-+ B.(),2∞--C.()2,∞+ D.(),2∞-9.已知等比数列()*a满足4221,m nq a a a≠=,(其中,*m n N∈),则91m n+的最小值为()A.6 B.16 C.32 D.210.已知函数()cos3f x xπ⎛⎫=+⎪⎝⎭,若()f x在[]0,a上的值域为11,2⎡⎤-⎢⎥⎣⎦,则实数a的取值范为()A.40,3π⎛⎤⎥⎝⎦B.24,33ππ⎡⎤⎢⎥⎣⎦C.2,3π∞⎡⎫+⎪⎢⎣⎭ D.25,33ππ⎡⎤⎢⎥⎣⎦11.设4sin1,3sin2,2sin3a b c===,则()A.a b c<< B.c b a<<C.c a b<< D.a c b<<12.已矨,,A B C均在球O的球面上运动,且满足3AOBπ∠=,若三棱锥O ABC-体积的最大值为6,则球O的体积为()A.12πB.48πC.D.二、填空题:本题共4小题,每小题5分,共20分.13.已知()(1,,a k b==,若a b⊥,则k=__________.14.已知{}n a是各项不全为零的等差数列,前n项和是n S,且2024S S=,若()2626nS S m=≠,则正整数m=__________.15.设,m n为不重合的直线,,,αβγ为不重合的平面,下列是αβ∥成立的充分条件的有()(只填序号).①,m a m β⊂∥②,,m n n m αβ⊂⊥⊥③,αγβγ⊥⊥④,m m αβ⊥⊥16.已知函数()14sin ,01,2,1,x x x f x x x π-<⎧=⎨+>⎩若关于x 的方程()()()2[]210f x m f x m --+-=恰有5个不同的实数解,则实数m 的取值集合为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)已知数列{}n a 满足12122,log log 1n n a a a +==+,(1)求数列{}n a 的通项公式;(2)求(){}32nn a -的前n 项和nS.18.(12分)已知ABC 中,三个内角,,A B C 的对边分别为,,,,cos cos 2cos 4a b c C a A c C b B π=+=.(1)求tan A ;(2)若c =,求ABC 的面积.19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,O 是BC 的中点,PB PC ==,22PD BC AB ===.(1)求证:平而PBC ⊥平面ABCD ;(2)求点A 到平面PCD 的距离.20.(12分)已知数列()n a 满足()21112122222326n n n n n a a a a n -+-++++=-⋅+ .(1)求{}n a 的通项公式;(2)若2n an n b a =+,求数列n b 的前n 项和T .21.(12分)已知函数()ln x af x ex x -=-+.(1)当1a =时,求曲线()f x 在点()()1,1f 处的切线方程,(2)当0a 时,证明,()2f x x >+.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系,xOy 中,直线l的参数方程为2,21,2x a y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为22413sin ρθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若曲线C 经过伸缩变换,2,x x y y ⎧=⎪⎨⎪='⎩'得到曲线C ',若直线l 与曲线C '有公共点,试求a 的取值范围.23.[选修4-5:不等式选讲](10分)已知函数()22(0)f x x x t t =++->,若函数()f x 的最小值为5.(1)求t 的值;(2)若,,a b c 均为正实数,且2a b c t ++=,求1412a b c++的最小值.2024届高三一轮复习联考(三)全国卷文科数学参考答案及评分意见1.A【解析】由21x ,即()()110x x -+,解得11x -,所以{}11B xx =-∣,所以{12}A B xx ⋃=-<∣.故选A .2.D 【解析】2,220x x x ∀∈+-<R 的否定为:2000,220x x x ∃∈+-R ,故选D.3.A 【解析】2(1i)2i z =+=,即复数z 的虚部为2,故选A .4.D【解析】()()()222(2)228,8log 83f f -=--⨯-===,故选D.5.C 【解析】因为1sin 62πα⎛⎫-= ⎪⎝⎭,所以2211cos 2cos 2cos 22sin 11366622ππππααπαα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=--=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故选C.6.A 【解析】()()2e e 1x xf x f x x ---==-+,所以函数()y f x =是奇函数,排除B 选项,又()22e e 215f --=>,排除C ,D 选项,故选A.7.D 【解析】由题意,函数22sin cos212sin 2sin y x x x x =-+=+,令[]sin 1,1t x =∈-,可得221122222y t t t ⎛⎫=+=+- ⎪⎝⎭,当12t =-,即1sin 2x =-时,函数取得最小值,最小值为12-.故选D.8.A【解析】因为10n n a a +-<,所以数列{}n a 为递减数列,当2n 时,()2212(1)2123n n n a S S n n m n n m n -⎡⎤=-=-++---+-+=-+⎣⎦,故可知当2n 时,{}n a 单调递减,故{}n a 为递减数列,只需满足21a a <,即112m m-+⇒-.故选A .9.D【解析】由等比数列的性质,可得()911911918,10102888m n m n m n m n m n n m ⎛⎛⎫⎛⎫+=+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当6,2m n ==时,等号成立,因此,91m n +的最小值为2.故选D.10.B 【解析】()cos 3f x x π⎛⎫=+⎪⎝⎭,结合图象,()f x 的值域是11,,0,2333x a x a πππ⎡⎤-++⎢⎣⎦,于是533a πππ+,解得2433aππ,所以实数a 的取值范围为24,33ππ⎡⎤⎢⎥⎣⎦.故选B.11.B 【解析】设()()2sin cos sin ,x x x xf x f x x x -==',令()()cos sin ,sing x x x x g x x x =-'=-,当()0,x π∈时,()0g x '<,故()g x 在()0,π上递减,()()()00,0g x g f x <=∴<',故()sin xf x x=在()0,π上递减,023π<<< .()()sin3sin232,,2sin33sin232f f ∴<<<,故c b <,()()()sin 2012,sin1,sin22sin1,3sin232sin14sin12ππππππ-<<-<<<-<-<-,故b a <,故c b a <<,故选B.12.C 【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时231133632212O ABC C AOB V V R R --==⨯⨯⨯==,故3R =O 的体积为343R V π==,故选C.13.3-【解析】0a b a b ⊥⇔⋅=,所以()(1,10,3k k ⋅=+==-.14.18【解析】设等差数列{}n a 的首项和公差分别为1,a d ,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,所以n S 可看成关于n 的二次函数,由二次函数的对称性及202426,m S S S S ==,可得20242622m++=,解得18m =.15.④【解析】根据线面的位置关系易知,①②③中面α和面β可能相交也可能平行,④:若m α⊥且m β⊥,根据面面平行的判定可知垂直于同一直线的两平面互相平行,故④正确.16.()3,1--【解析】作出函数()f x 的大致图象,如图所示,令()t f x =,则()()()2[]210f x m f x m --+-=可化为()()()221110t m t m t m t --+-=-+-=,则11t =或21t m =-,则关于x 的方程()()()2[]210f x m f x m --+-=恰有5个不同的实数解等价于()t f x =的图象与直线12,t t t t ==的交点个数之和为5个,由图可得函数()t f x =的图象与直线1t t =的交点个数为2,所以()t f x =的图象与直线2t t =的交点个数为3个,即此时214m <-<,解得31m -<<-.17.【解析】(1)在数列{}n a 中,已知12122log log log 1n n n na a a a ++-==,所以12n na a +=,.即{}n a 是首项为12a =,公比为2的等比数列,所以()1*222n n n a n -=⨯=∈N .(2)由()()32322nn n a n -=-⨯,故()()231124272352322n n n S n n -=⨯+⨯+⨯++-⨯+-⨯ ,所以()()23412124272352322nn n S n n +=⨯+⨯+⨯++-⨯+-⨯ ,则()23123222322n n n S n +⎡⎤-=+⨯+++--⨯⎣⎦,()()()11212433221053212n n n n n ++-=-+⨯--⨯=-+-⋅-,故()110352n n S n +=+-⋅.18.【解析】(1)解法一:由题,cos cos 2cos a A c C b B +=,由正弦定理得,sin2sin cos sin cos B A A C C =+,.3,,sin2sin 2sin 2cos2422C A B C B A A A ππππ⎛⎫⎛⎫=++==-=-=- ⎪ ⎪⎝⎭⎝⎭,所以1cos2sin cos 2A A A -=+,221sin cos sin cos 2A A A A --=22tan 1tan 1tan 12A A A --=+,化简得2tan 2tan 30A A --=,解得tan 3A =或tan 1A =-(舍去).解法二:由题,cos cos 2cos a A c C b B +=,由正弦定理得,2sin2sin2sin2B A C =+,即()()()()2sin2sin sin B A C A C A C A C ⎡⎤⎡⎤=++-++--⎣⎦⎣⎦,即()()sin2sin cos B A C A C =+-,又A B C π++=,故()sin sin A C B +=,所以()2sin cos sin cos B B B A C =-,又0B π<<,故sin 0B ≠,所以()2cos cos B A C =-,又A B C π++=,故()cos cos B A C =-+,化简得sin sin 3cos cos A C A C =,因此tan tan 3A C =且tan 1C =,所以tan 3A =.(2)由(1)知tan 3A =,因此()tan tan tan tan 21tan tan A CB AC A C+=-+=-=-,.所以sin 10A =,sin 5B =2sin 2C =,因为,6sin sin a c a A C==,.所以1125sin 612225ABC S ac B ==⨯⨯= .19.【解析】(1)因为,PB PC O =是BC 的中点,所以PO BC ⊥,在直角POC 中,1PC OC ==,所以PO =,在矩形ABCD 中,1,2AB BC ==,所以DO =,又因为2PD =,所以在POD 中,222PD PO OD =+,即PO OD ⊥.而,,BC OD O BC OD ⋂=⊂平面ABCD ,所以PO ⊥平面ABCD ,而PO ⊂平面PBC ,所以平面PBC ⊥平面ABCD .'(2)由(1)平面PBC ⊥平面ABCD ,且DC BC ⊥,所以DC ⊥平面PBC ,所以DC PC ⊥,即PCD 是直角三角形,因为1PC CD ==,所以13122PDC S =⨯=,又知11212ACD S =⨯⨯= ,PO ⊥平面ABCD ,设点A 到平面PCD 的距离为d ,则A PCD P ACD V V --=,即1133PCD ACD S d S PO ⨯⨯=⨯⨯ ,即1311323d ⨯⨯=⨯⨯所以263d =,所以点A 到平面PCD 的距离为3..20.【解析】(1)由题当1n =时,()111223262a +=-⋅+=,即11a =.()21112122222326n n n n n a a a a n -+-++++=-⋅+ ①当2n 时,()211212222526n n n a a a n --+++=-⋅+ ②.①-②得()()()1223262526212nn n n n a n n n +=-⋅+--⋅-=-⋅,所以21n a n =-..(2)由(1)知,212221n an n n b a n -=+=+-,则()()()()3521212325221n n T n -=++++++++- ()()3521222213521n n -=+++++++++-⋅()()212214121232..1423nn n n n +⨯-+-+-=+=-21.【解析】(1)当1a =时,()()111e ln ,e 1x xf x x x f x x--=-+=-+',所以()()12,11f f '==,.则切线方程为()211y x -=⨯-,.即10x y -+=曲线()f x 在点()()1,1f 处的切线方程为10x y -+=.(2)证明:要证()2f x x >+,即证e ln 2x a x -->,设()eln ,0x aF x x x -=->,即证()2F x >,当0a 时,()()1e 1e ln ,ex a x ax ax F x x F x x x----=-=-='在()0,∞+上为增函数,且()e1x ah x x -=-中,()()0100e 110,1e 1e 10a a h h --=⨯-=-=-->.故()0F x '=在()0,∞+上有唯一实数根0x ,且()00,1x ∈..当()00,x x ∈时,()0F x '<,当()0,x x ∞∈+时,()0F x '>,从而当0x x =时,()F x 取得最小值.由()00F x '=,得001ex ax -=,故()()000001eln 2x aF x F x x x a a x -=-=+->.综上,当0a 时,()2F x >即()2f x x >+.22.【解析】(1)由题2,21,2x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t得直线:20l x a -=,.22413sin ρθ=+,即2224cos 4sin ρθθ=+,即曲线C 的直角坐标方程为2214x y +=.(2)由,2,x x y y ⎧=⎪⎨⎪='⎩'得2,,x x y y =⎧⎨=''⎩又2214x y +=,所以()()22214x y +'=',即'2'21x y +=,所以曲线C '的方程是221x y +=,.由1d =得11a -.所以a 的取值范围是[]1,1-.23.【解析】(1)()222f x x x t x x t x t =++-=++-+-,()2222y x x tx x t t t =++-+--=+=+,当2x t -时等号成立,.⋅又知当x t =时,x t -取得最小值,所以当x t =时,()f x 有最小值,此时()min ()25f x f t t ==+=,所以3t =..(2)由(1)知,23a b c ++=,()22141114111162(121)232333a b c a b c a b c ⎛⎫++=++++=++= ⎪⎝⎭,当且仅当333,,824a b c ===时取等号,所以1412a b c ++的最小值为163.。
2020届全国大联考高三第六次联考文科数学试题及答案(解析版)
2020 届全国大联考高三第六次联考数学试题(文科)一、单选题11 .已知集合 A x |1 x24 ,B x| y,则2e A B ()x 6x 5A.x|x 5 B.x|5 x 24C.x|x 1 或x 5 D.x|5 x 24【答案】 D【解析】首先求出集合 B ,再根据补集的定义计算可得;【详解】解:∵x2 6x 5 0 ,解得1 x 5∴ B x|1 x 5 ,∴ e A B x|5 x 24 .故选: D【点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.2.设复数z满足z 2i z 1 , z 在复平面内对应的点为(x, y),则()A.2x 4y 3 0 B.2x 4y 3 0 C.4x 2y 3 0D.2x 4y 3 0【答案】 B【解析】设z x yi ,根据复数的几何意义得到x、y的关系式,即可得解;【详解】解:设z x yi∵ | z 2i | | z 1| ,∴ x2(y 2)2(x 1)2 y2,解得2x 4y 3 0 .故选: B【点睛】本题考查复数的几何意义的应用,属于基础题.223.若双曲线x2 y 1 的离心率为 3 ,则双曲线的焦距为()a2 4【解析】 依题意可得b24,再根据离心率求出 a 2,即可求出 c ,从而得解; 【详解】22解: ∵ 双曲线 x y 1 的离心率为 3 ,a 24所以 e 21 42 3, ∴ a 22, ∴ c 6 ,双曲线的焦距为 2 6 .a故选: A【点睛】 本题考查双曲线的简单几何性质,属于基础题 4.在等差数列 a n 中,若 S n 为前 n 项和, 2a 9求得答案 . 【详解】a 7 12 ,13 a 1 a 13S 131 1313a 7 13 12 156 .故选: A.本题主要考查了求等差数列前 n 项和, 解题关键是掌握等差中项定义和等差数列前和公式,考查了分析能力和计算能力,属于基础题 .55.已知a log 374,b log 2 m ,c ,若 a b c ,则正数m 可以为( )2【答案】a 11 12,则 S 13的值是(A . 156 【答案】B . 124C . 136D . 180因为 a 7 a 112a 9 a 11 12 ,可得 a 7 12 ,根据等差数列前 n 项和,即可Q a 7 a 11 2a 9 a 11 12,n 项【答案】 C【解析】首先根据对数函数的性质求出 a 的取值范围,再代入验证即可;解: ∵ 3 log 327 a log 374 log 381 4, ∴ 当 m 8时, b log 2 m 3满足a b c , ∴ 实数 m 可以为 8. 故选: C 【点睛】本题考查对数函数的性质的应用,属于基础题 6.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所 示的正五角星中,以 A 、 B 、 C 、 D 、 E 为顶点的多边形为正五边形,且5 1uuur 5 1 uuur5 1 AP ,则 AT 5 1ES 22【解析】 利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解 决问题. 【详解】uuur uur uuur 5 1 uuurSD SR RD QR .2 故选: A 【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识, 考查运算求解能力,考查化归与转化思想,属于基础题.47. “ tan 2”是 “ tan2 ”的( )PT5 1uuur C . 5 1 RDuuur 5 1 uuur 解:AT ES 2AD .uu ur RC3A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不 必要条件 【答案】 A要条件的定义判断即可; 首先利用二倍角正切公式由 tan 24,求出tan41 , ∴ 可解得 tan 2或4”的充分不必要条件 .3 【答案】 C【解析】首先求出函数的定义域,其函数图象可由 y 5log 3|x | 的图象沿 x 轴向左平x移 1个单位而得到, 因为 y 5log 3| x| 为奇函数, 即可得到函数图象关于( 1,0) 对称,x即可排除 A 、 D ,再根据x 0时函数值,排除 B ,即可得解. 【详解】∵y5log3 |x 1|的定义域为x|x 1 ,x1其图象可由 y 5log 3| x | 的图象沿 x 轴向左平移 1 个单位而得到,x2tan解: ∵ tan 2 2 1 tan 2“tan 2”是 “tan2故选: A本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题属∵ y 5log 3 | x| 为奇函数,图象关于原点对称,x∴ y 5log 3 | x 1| 的图象关于点( 1,0) 成中心对称.x12g(x) sin xsin x33k 1k 1, k 2 Z ,k 2可排除 A 、 D 项 .当x 0时,y5log 3 | x 1| 0, ∴B 项不正确 .x1故选: C 【点睛】本题考查函数的性质与识图能力, 一般根据四个选择项来判断对应的函数性质, 即可排 除三个不符的选项,属于中档题 . 9.已知将函数f(x)sin(x)(6,)的图象向右平移单位长度后得到函数g(x) 的图象,若 f (x)和 g(x) 的图象都关于x 对值为( )A . 2B .3C . 4D .因为将函数 f (x) sin( x )( 0 6,2)的图移个单位长度后g(x) 的图象,可得 g(x) sin xsin xQ 将函数 f (x) sin( x ) ( 06 ,)的图象向右平移个单位又 Q f (x) 和 g(x)的图象都关于 x对称,4得k1 k2 ,k1, k2 Z 3又 Q6, 3.故选: B. 【点睛】本题主要考查了三角函数图象平移和根据图象对称求参数, 解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题 . 10.将一块边长为 acm 的正方形薄铁皮按如图( 1)所示的阴影部分裁下,然后用余下 的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图( 2)放置,若 3 k 1 k 2 k 1,k 2 Z ,72 2cm 3,则a 的值为( )C . 10D . 12推导出 P M PN a ,且 PM PN , MN2a , 2aPM ,设 MN 中点为 O ,则 PO平面 ABCD ,由此能表示出该容器的体积,从而求出参数的值. 解:如图( 4) , P MN 为该四棱锥的正视图,由图( 3)可知, PM PN a ,且PM PN a 2 PMN 为等腰直角三角形可知, MN2 a ,设2MNO ,则 P O1平面 ABCD , ∴ PO MN2a ,故选:V PABCD23 a 24 72 2 ,解得 a 12 .其A .B .6e 第 12 页 共 20 页11 1A .2 ,0 B .,0 C . 0,6e6e6e【答案】 Clnx【解析】令 F(x) f (x) 3kx 20,可得 k 2 ,要使得 F (x) 0有两个实数解,3x 2lnx即 y k 和 g (x) 2 有两个交点,结合已知,即可求得答案 .3x2令 F (x) f (x) 3kx 20 ,要使得 F (x) 0有两个实数解,即 y k 和 g(x) 1 2ln x3, 3x令 1 2ln x 0,可得 x e , 当 x (0, e) 时,g (x) 0,函数 g(x) 在 (0, e)上单调递增; x ( e, ) 时,g (x) 0,函数 g(x) 在 ( e, )上单调递减 1 当 x e 时, g (x) max ,6e可得 k ln x 3x 2本题考查三视图和锥体的体积计算公式的应用,属于中档题 11.已知函数 f(x) ln x ,若 F(x)2f (x) 3kx 2有 2 个零点,则实D .0, 126eln xQ g (x)若直线y k 和g(x) ln 2x 有两个交点,则k 0, .3x 6e1实数k 的取值范围是0,故选: C.0,40,4 x 18kx 2 22 1 2k 2x 1 x 262, 2k 2Q0 POQ uu ur OP uuur OQ 0, uu ur OP uu ur OQx 1x 2 y 1y 2 x 1x 2 kx 1 2 kx 2 2解题关键是掌握根据零点个数求参数的解法和根 据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题 .2x212. 设过定点M (0,2) 的直线 l 与椭圆 C : x y 2 1 交于不同的两点P , Q , 若原点 O2在以 PQ 为直径的圆的外部,则直线 l 的斜率 k 的取值范围为( ) A .5, 6B .5,6U 6, 5233C .6, 5 D .5,6U 6, 5 222【答案】 D 【解析】设直线 l : ykx 2 , P x 1 , y 1 , Q x 2 , y 2 ,由原点O 在以 PQ 为直径的uuur uuur圆的外部,可得OP OQ 0 ,联立直线 l 与椭圆 C 方程,结合韦达定理,即可求得答 案.解得 k 或 k2本题主要考查了根据零点求参数范围, 显然直线0 不满足条件,故可设直线 l :ykx 2 , P x 1, y 1Q x 2 , y 2 ,由kx1 ,得 122k 28kx 6 0 ,Q64k 224 1 2k 20,直线l 的斜率k 的取值范围为k 5, 6 U 6 , 5 .22故选: D.【点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.二、填空题13 .已知盒中有 2 个红球, 2 个黄球,且每种颜色的两个球均按A,B 编号,现从中摸出 2 个球 (除颜色与编号外球没有区别) ,则恰好同时包含字母A,B 的概率为2【答案】 23【解析】根据组合数得出所有情况数及两个球颜色不相同的情况数,让两个球颜色不相同的情况数除以总情况数即为所求的概率.【详解】从袋中任意地同时摸出两个球共C42种情况,其中有C21C21种情况是两个球颜色不相同;11故其概率是P C2C222 2 2C42 6 32故答案为: 2 .3【点睛】本题主要考查了求事件概率,解题关键是掌握概率的基础知识和组合数计算公式,考查了分析能力和计算能力,属于基础题.14.已知函数_____________________________________ f(x) 2 (x 0) ,则f ( 2) ;满足f(x) 0的x的取12 3x(x 0)值范围为______ .1【答案】 1 ( ,4)4【解析】首先由分段函数的解析式代入求值即可得到 f ( 2) ,分x 0 和x 0 两种情况讨论可得;【详解】21 所以 f ( 2)2 2,4∵ f (x) 0 ,∴ 当 x 0时, 0 f (x) 2x1 满足题意, ∴ x 0;x 0时,由 f (x) 12 3x 0,解得 x 4.综合可知:满足 f (x) 0 的 x 的取值范围为(,4) .1故答案为: 1 ; ( ,4) .4【点睛】本题考查分段函数的性质的应用,分类讨论思想,属于基础题 .a 3 a 2 5 ,则 a 4 8a 2的最小值405a 2 5,可得 a 1 ,因为q(q 1)答案 .解:因为 f (x)2x(x 0)12 3x(x 0)15 .已知数列 a n 是各项均为正数的等比数列,若设等比数列 a n 的公比为q ,根据 a 3a 4 8a 23a 1q 5 q 28 8a 1 q5q9 2 , 根据均值不等式, 即可求得q1设等比数列 a nq ,Q a 3 a 2 5,a 15 q(q 1)Q 等比数列 a nq 1,a 4 8a 22 a 1q qq 28 q195 q 1 2 40 ,当且仅当q 1 3 ,q1即q 4时,a4 8a2取得最小值40.故答案为:40 .【点睛】本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题.16.已知边长为 4 3 的菱形ABCD中, A 60 ,现沿对角线BD 折起,使得二面角A BD C 为120 ,此时点A,B ,C,D 在同一个球面上,则该球的表面积为【答案】112【解析】分别取BD ,AC 的中点M ,N ,连接MN ,由图形的对称性可知球心必在MN 的延长线上,设球心为O,半径为R,ON x,由勾股定理可得x、R2,再根据球的面积公式计算可得;【详解】如图,分别取BD ,AC 的中点M ,N ,连接MN ,则易得AM CM 6,MN 3,MD 2 3,CN 3 3 ,由图形的对称性可知球心必在MN 的延长线上,R2设球心为O,半径为R,ON x,可得2R2故该球的表面积为S 4 R2112 .x2271 ,R228.2 (x3)212【点睛】本题考查多面体的外接球的计算,属于中档题17 .在世界读书日期间,某地区调查组对居民阅读情况进获得了一个容量为行了调查,200 的样本,其中城镇居民140 人,农村居民60 人 .在这些居民中,经常阅读的城镇居民有 100 人,农村居民有30 人 .1)填写下面列联表,并判断能否有99% 的把握认为经常阅读与居民居住地有关?( 2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7 位居民中随机选取 2 人作交流发言,求被选中的 2 位居民都是经常阅读居民的概率 .K2 (a b)(c n(a d d)(a bc)c2)(b d),其中 n a b c d附:10( 1)见解析,有99%的把握认为经常阅读与居民居住地有关.( 2)1021( 1)根据题中数据得到列联表,然后计算出K2,与临界值表中的数据对照后可得结论;( 2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求1)由题意可得:2200 (100 30 40 30)2则 K2( )8.477 6.635,140 60 130 70所以有 99%的把握认为经常阅读与居民居住地有关 . ( 2)在城镇居民 140 人中,经常阅读的有 100 人,不经常阅读的有40 人 .采取分层抽样抽取7 人,则其中经常阅读的有 5 人,记为 A 、 B 、 C 、 D 、 E ;不经常阅读的有 2 人,记为 X 、 Y .从这 7 人中随机选取2 人作交流发言, 所有可能的情况为 AB , AC ,AD , AE , AX ,AY , BC , BD , BE , BX , BY , CD , CE , CX , CY , DE , DX , DY ,EX , EY , XY ,共 21 种,被选中的2 位居民都是经常阅读居民的情况有 10 种,【点睛】本题主要考查古典概型的概率计算, 以及独立性检验的应用, 利用列举法是解决本题的 关键,考查学生的计算能力 .对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可,属于中档题 .318.已知在 ABC 中,角 A 、 B 、 C 的对边分别为 a , b , c , c 4 2 , cosC .5( 1)若 B ,求 a 的值;4( 2)若b 5 ,求 ABC 的面积 .【答案】 ( 1) 7( 2) 14 34【解析】( 1)在 ABC 中, cosC ,可得 sin C ,结合正弦定理,即可求得答 55案;( 2)根据余弦定理和三角形面积公式,即可求得答案 . 【详解】所求概率为 P 10 213 ( 1)Q 在ABC中,cosC ,54 sinC ,5Q A (B C),acsin A sin Cc a sin A 7.sin C2)Q c 2a 2b 22abcosC ,32 a 225 6a ,2a 6a 7 0,解得 a 7,1 14absinC 7 5 14.2 2519.如图,在三棱锥P ABC 中,平面 PAC 平面 ABC , ABBC , PA PC .点 E , F , O 分别为线段 PA , PB , AC 的中点,点G 是线段CO 的中点 .2)判断 FG 与平面 EBO 的位置关系,并证明( 1)见解析(2) FG / /平面 EBO .见解析( 1 )要证 PA 平面 EBO ,只需证明 BO PA , OE PA ,即可求得答案;2) 连接 AF 交 BE 于点 Q ,连接 QO , 根据已知条件求证 FG/ /QO ,即可判断 FGsinA sin( B C) sin BcosC cosBsin C 2324 722 5 2 5 10S ABC 本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角, 考查1)求证: PA 平面EBO .与平面EBO的位置关系,进而求得答案【详解】( 1)PAC 平面 ABC ,平面 PAC I 平面 ABC AC , BO 平面 ABC ,Q 在 PAC 内, O , E 为所在边的中点,OE //PC ,又 QPA PC , OE PA ,PA 平面 EBO .2)判断可知,FG / / 平面 EBO ,证明如下: 连接 AF 交 BE 于点 Q ,连接 QO .Q E 、 F 、 O 分别为边 PA 、 PB 、 AC 的中点, AO2. OGFG//QO ,Q FG 平面 EBO , QO 平面 EBO , FG //平面 EBO .本题主要考查了求证线面垂直和线面平行, 解题关键是掌握线面垂直判定定理和线面平 行判断定理,考查了分析能力和空间想象能力,属于中档题 20.已知抛物线 M : x 22 py ( p 0)的焦点 F 到点 N ( 1, 2) 的距离为 10 .1)求抛物线 M的方程;Q AB BC , O 为边 AC 的中点,BO AC ,Q 平面 BO 平面 PAC ,BO PA ,又 QQ 是PAB的重心,AQ 2QFAO OG2)过点N 作抛物线M 的两条切线,切点分别为A,B ,点A、B 分别在第一和第二象限内,求ABN 的面积 .2 27【答案】( 1)x24y( 2)2【解析】(1)因为F 0, p ,可得| FN | 1 p 2 10 ,即可求得答案;(2)分别设NA、NB 的斜率为k1 和k2,切点A x1, y1 ,B x2 , y2 ,可得过点N 的抛物线的切线方程为l :y k(x 1) 2,联立直线l 方程和抛物线M 方程,得到关于x 一元二次方程,根据0 ,求得k1,k2,进而求得切点 A ,B 坐标,根据两点间距离公式求得| AN | ,根据点到直线距离公式求得点 B 到切线AN 的距离d ,进而求得ABN 的面积 .【详解】1) Q F 0, p ,2|FN | 1 p 2 10,解得p 2 ,抛物线M 的方程为x2 4y .NA、NB的斜率都存在,分别设为k1和k2,切点 A 2)由题意可知,x1, y1 ,B x 2, y 2又Q 由x 24y ,1 得 y x ,过点 Nl : y k(x 1) 2,k(x 1)4y2,消掉 可得x 24kx 4k 8 0,Q16k 216k232 0 ,即 k 20,解得k 1 1 , k 2 2,12 2 x 1 2k 1 2 ,y 1x 1 k 1 1 ,4x 2 2k 2 4, y 2A(2,1), B( 4,4) ,点 B 到切线AN 的距离为| 4 4 1| 9 2即 ABN 的面积为 27 .2本题主要考查了求抛物线方程和抛物线中三角形面积问题,和圆锥曲线与直线交点问题时 ,通常用直线和圆锥曲线联立方程组sin x21 .已知函数f (x) , 0 x π . x1)求函数 f (x ) 在 x 处的切线方程; 2| AN | (2 1)2 (1 2)23 2,切线 AN 的方程为 x y 0,S ABN1329227, 2解题关键是掌握抛物线定义,通过韦达定理建立起2)当0 m 时,证明: f (x ) mln x 对任意 x(0, ) 恒成立 .( 1) y4 2x4 ( ( 1)因为f (x) xcosx sin x2 ,可得 x42,2)要证 f (x ) mlnx 对任意 x (0, x ) 恒成立,即证 mxln x sin x 对任意x (0, )恒成立 .设 g(x) m xln x ,h(x) sin x ,当x (0, )时,h(x) sin x ,11) Q f (x)xcosx2 xsin x244函数 f (x) 在 x 2 处的切线方程为 y 2 x .( 2)要证 f (x) mln x 对任意 x (0, ) 恒成立 .x即证 mxln x sin x 对任意 x(0,) 恒成立 . 设 g(x) mxln x , h(x) sin x , 当 x (0, ) 时, h(x) sin x,1 ,Q g (x) m(ln x 1),10 ,解得x , eg(x)min本题主要考查了求曲线的切线方程和求证不等式恒成立问题,解题关键是掌握由导数求Qf2,,令 g (x) 0x1 时,eg (x) 0 ,函数 1g (x ) 在 0, 上单调递减; e 1x e 时, g(x ) 0 ,函数 1 g(x) 在上单调递增 . Qm(0, ),时, m xln x sinx 对任意 x (0, ) 恒成立,即当 0时,f(x) mln x 对任意x(0, ) 恒成立 .2切线方程的解法和根据导数求证不等式恒成立的方法,于难题 .22.在直角坐标系xOy 中,圆C 的参数方程为极点,x轴的非负半轴为极轴建立极坐标系( 1)求圆C 的极坐标方程;( 2)直线l 的极坐标方程是sin6考查了分析能力和计算能力,属x 2 2cos(为参数),以O 为y 2sin3 ,射线OM : 与圆C 的交点为O 、6P ,与直线l 的交点为 Q ,求线段 PQ 的长 .( 1) 4cos ( 2) 2 3 2( 1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;( 2)设 P 1, 1 , Q 2, 2 ,由 12 ,即可求出 1, 2,则 | PQ |126计算可得; 【详解】4 cos 0 ,即圆C 的极坐标方程为 4cosf (x )min a 3 7,即可求出参数的值;112)由m 4n4,可得 m 4(n 1) 8,再利用基本不等式求出的最小解: ( 1 )圆 C 的参数方程x 2 2cosy 2sin为参数)可化为 (x 2)2 y 24,2)设 P 1, 1 ,由14cos 1,解得123设 Q 2 , 2 ,由 2sin 22 26322,解得26∴ |PQ| 122 3 2.本题考考查了推理能力与计算能力, 属于中档23.已知 a 0,函数 f (x ) | x a|( 1)求 a 的值;( 2)设 m, n 0, m 4n a ,求证:【答案】 ( 1) a 4 .( 2)见| 2x 6 | 有最小值 7.119.m n1 8f (x ) a 3 | x 3| ,所以当1)mn1 值,即可得证;解:1)f (x) |x a| |2x 6| |x a| |x 3|a 3 | x 3| ,当 x 3 时, f (x)mina 3 7 ,解得 a4(nm 1) nm1 ,即 m 83, n 13 时,等号成立119 mn182) ∵ m 4n 4 , ∴ m4(n 1)8,11 mn111 mn1m 4(n 1)1 4(n 1) m5 8 m n1本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题.|x 3| |(x a) (x 3)| |x 3|4.。
2023届高三全国学业质量联合检测2月大联考文科数学试题(含答案解析)
2023届高三全国学业质量联合检测2月大联考文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}2,1,0,1,2A =--,B 是偶数集,则A B = ()A .{}2B .{}2,2-C .{}0,2D .{}2,0,2-2.已知复数z 满足i i 1zz +=-,则z 在复平面内所对应的点是()A .11,2⎛⎫- ⎪⎝⎭B .13,55⎛⎫-- ⎪⎝⎭C .()1,1--D .33,55⎛⎫ ⎪⎝⎭3.函数()2exx xf x +=的部分图像大致为()A .B .C .D .4.已知点()1,1A ,()2,1B -,向量()2,1a =- ,()1,1b = ,则AB与a b - 的夹角的余弦值为()A .5-B .5-C D 5.已知M 是双曲线C 上的一个动点,且点M 到C 的两个焦点距离的差的绝对值为6,C 的焦点到渐近线的距离为4,则C 的离心率为()A .35B .53C .45D .546.某市2021年1月至2022年6月的平均气温折线图如图,则()A .平均高温不低于30C 的月份有3个B .平均高温的中位数是21CC .平均高温的极差大于平均低温的极差D .月平均高温与低温之差不超过10C 的月份有5个7.若实数x ,y 满足约束条件10,20,0,x y x y y -+≥⎧⎪-≤⎨⎪≥⎩,则22z x y =--的最大值为()A .4B.5C .2D8.已知[]x 表示不超过实数x 的最大整数.执行如图所示的程序框图,则输出的n =()A .3B .4C .5D .69.记数列{}n a 的前n 项和为22n S n n =+.若等比数列{}n b 满足11b a =,24b a =,则数列1n b ⎧⎫⎨⎩⎭的前n 项和n T =()A .332n-B .1332n +-C .1511623n -⎛⎫-⋅ ⎪⎝⎭D .111223n⎛⎫-⋅ ⎪⎝⎭10.已知正三棱柱111ABC A B C -的所有棱长都相等,D ,E ,F 分别是1BB ,11B C ,1AA 的中点,M 是线段BF 上的动点,则下列结论中正确的个数是()①1BF B C ⊥;②1//BF C D ;③11A E B C ⊥;④1//C M 平面1A DE .A .1B .2C .3D .411.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点12.已知三棱锥P -ABC 的所有顶点均在半径为2的球的O 球面上,底面ABC 是边长为3的等边三角形.若三棱锥P -ABC 的体积取得最大值时,该三棱锥的内切球的半径为r ,则r =()A .1B .14C .32D .)3114二、填空题13.记函数()()n f x x nx n n *=+-∈N 在1x =处的导数为n a ,则()4216log a a =________.14.写出以原点为圆心且与圆C :22430x y y +-+=相切的一个圆的标准方程为________.15.已知实数a ,b ,m ,n 满足20a b --=,240m n -=,则()()22m a n b -+-的最小值为________.三、双空题16.已知()f x 是定义R 在上的奇函数,当0x >时,()222x xf x -=+,当0x <时,()22x x f x m n -=⋅+⋅,则m n +=________;若方程()()R f x a a =∈有两个不同的实数根,则a 的取值范围是________.四、解答题17.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+ ⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.18.2020年,教育部启动实施强基计划.强基计划聚焦国家重大战略需求,突出基础学科的支撑引领作用.三年来,强基计划共录取新生1.8万余人.为响应国家号召,某校2022年7月成立了“强基培优”拓展培训班,从高一入校时中考数学成绩前100名的学生中选取了50名对数学学科研究有志向、有兴趣、有天赋的学生进行拓展培训.为了解数学“强基培优”拓展培训的效果,在高二时举办了一次数学竞赛,这100名学生的成绩(满分为150分)情况如下表所示.成绩不低于135分成绩低于135分总计参加过培训401050未参加过培训203050总计6040100(1)能否有99%的把握认为学生的数学竞赛成绩与是否参加“强基培优”拓展培训有关?(2)从成绩不低于135分的这60名学生中,按是否参加过“强基培优”拓展培训采用分层抽样﹐随机抽取了6人,再从这6人中随机抽取2人代表学校参加区里的数学素养大赛,求这2人中至少有一人未参加过培训的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.100.050.0250.0100.0010k 2.7063.8415.0246.63510.82819.如图①,在平面四边形ABCD 中,2AB AD ==,BC CD ==60BAD ∠= .将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB '的中点,E 是棱AB 上的点,且C E '与平面ABD所成角的正切值为3.(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.20.已知函数()()ln R f x x ax a =+∈,()f x 的导函数为()f x '.(1)讨论()f x 的极值点的个数;(2)当2a =时,方程()()()0f x f x m m '++=∈R 有两个不相等的实数根,求m 的取值范围.21.已知抛物线E :()220y px p =>的焦点关于其准线的对称点为()3,0P -,椭圆C :()222210x y a b a b+=>>的左,右焦点分别是1F ,2F ,且与E 有一个共同的焦点,线段1PF 的中点是C 的左顶点.过点1F 的直线l 交C 于A ,B 两点,且线段AB 的垂直平分线交x 轴于点M .(1)求C 的方程;(2)证明:114F M AB=.22.在直角坐标系xOy 中,曲线1C 的参数方程为2cos sin xy αα=+⎧⎪⎨=⎪⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()22sin sin 12m m θρθ⎛⎫+-=∈ ⎪⎝⎭R .(1)写出1C 的普通方程;(2)若曲线1C 与2C 有两个交点,M N ,则当m 为何值时,MN 最大?并求出MN 的最大值.23.已知a ,b ,c 都是正实数,且3a b c ++=.证明:(1)3331113a b c ++≥;(2)()2221119a b c a b c ≥⎛⎫++++ ⎪⎝⎭.参考答案:1.D【分析】利用偶数和交集的定义即可求解.【详解】因为在集合{}2,1,0,1,2A =--中,-2,0,2是偶数,所以{}2,0,2A B =- .故选:D.2.B【分析】根据复数的运算求出z ,即可得出z 在复平面内所对应的点.【详解】由i i 1zz +=-,得()()()()i 1i 2i 1i 2i 2i 2z +++===--+13i 55--,所以z 在复平面内所对应的点是13,55⎛⎫-- ⎪⎝⎭.故选:B.3.C【分析】利用特殊值及极限思想即可分析得出.【详解】由1110242f ⎛⎫⎫--< ⎪⎪⎝⎭⎭,故D 错误,当x →+∞时,()0f x →,A ,B 错误.故选:C.4.A【分析】由平面向量的坐标运算求得AB,a b - ,结合平面向量的夹角公式即可求得答案.【详解】由题意,得()1,2AB =- ,()3,0a b -=-,则AB与a b - 的夹角的余弦值为()AB a b ABa b ⋅-==- .故选:A .5.B【分析】不妨设双曲线方程为22221x y a b-=()0,0a b >>,表示出双曲线的渐近线方程,根据双曲线的定义得到3a =,再利用点到直线的距离公式求出b ,从而求出c ,即可得解.【详解】解:不妨设双曲线方程为22221x y a b-=()0,0a b >>,则双曲线的渐近线方程为by x a=±,即0bx ay ±=,由双曲线的定义知,26a =,所以3a =,由双曲线C 的焦点到其渐近线的距离为44b ==,所以5c =,所以C 的离心率53ce a==.故选:B 6.C【分析】根据折线图数据,结合中位数、极差的定义依次判断各个选项即可.【详解】对于A ,平均高温不低于30C 的月份有2021年6,7,8月和2022年6月,共4个,A 错误;对于B ,将各个月份数据按照从小到大顺序排序后,可得中位数为202120.5C 2+= ,B 错误;对于C ,平均高温的极差为36630C -= ,平均低温的极差为()24327C --=,则平均高温的极差大于平均低温的极差,C 正确;对于D ,月平均高温与低温之差不超过10C 的月份有2021年7,8,9,10月和2022年1,2月,共6个,D 错误.故选:C.7.C【分析】目标函数22z x y =--的几何意义是可行域内的点到直线l :220x y --=的距离l 的距离最大的点,求解即可.【详解】由约束条件作出可行域,如图中阴影部分所示.由点到直线的距离公可知,目标函数22z x y =--的几何意义是可行域内的点到直线l :220x y --=数形结合可知,可行域内到直线l 的距离最大的点为()1,0A -,且点A 到直线l 的距离d ==则22z x y =--的最大值为4.故选:C.8.C【分析】列举出每次算法步骤,即可得出输出结果.【详解】执行第一次循环,[]3.141 3.14 5.14b =-+=,[]5.1414a =-=,2n =,5.14 1.14110.2850.0544b a -=-==>;执行第二次循环,[]41 5.148.14b =-+=,[]8.1417a =-=,3n =,8.14 1.14110.1630.0577b a -=-=≈>;执行第三次循环,[]718.1414.14b =-+=,[]14.14113a =-=,4n =,14.14 1.14110.0880.051313b a -=-=≈>;执行第四次循环,[]13114.1426.14b =-+=,[]26.14125a =-=,5n =,26.14 1.14110.04560.052525b a -=-==<,退出循环,输出5n =.故选:C.9.D【分析】由1113b a S ===,24439b a S S ==-=,求出等比数列{}n b 的公比q 及n b ,数列1n b ⎧⎫⎨⎩⎭也是等比数列,利用等比数列求和公式可求出答案.【详解】因为1113b a S ===,24439b a S S ==-=,所以等比数列{}n b 的公比3q =,所以1333n nn b -=⨯=,则113nn b ⎛⎫= ⎪⎝⎭,由11113n n b b +=⋅,可知数列1n b ⎧⎫⎨⎬⎩⎭是以13为首项,13为公比的等比数列,所以111111333122313nnn T ⎛⎫-⋅ ⎪⎛⎫⎝⎭==-⋅ ⎪⎝⎭-.故选:D .10.C【分析】连接1BC ,即可得到111A E B C ⊥,再由正三棱柱的性质得到1A E ⊥平面11BB C C ,即可得到11A E B C ⊥,从而得到1B C ⊥平面1A DE ,再由线面垂直的性质得到11B C A D ⊥,即可说明1BF B C ⊥,即可判断①、②、③,连接1C F ,通过证明平面1//A DE 平面1BFC ,即可说明④.【详解】解:连接1BC ,因为正三棱柱111ABC A B C -的所有棱长都相等,所以111A E B C ⊥,11B C BC ⊥.又D ,E 分别是1BB ,11B C 的中点,所以1//DE BC ,所以1B C DE ⊥.因为11A E CC ⊥,1111B C CC C ⋂=,11B C ,1CC ⊂平面11BB C C ,所以1A E ⊥平面11BB C C .又1B C ⊂平面11BB C C ,所以11A E B C ⊥.又1DE A E E ⋂=,DE ,1A E ⊂平面1A DE ,所以1B C ⊥平面1A DE .又1A D ⊂平面1A DE ,所以11B C A D ⊥.由题意知1//A F BD 且1A F BD =,所以四边形1A FBD 是平行四边形,所以1//BF A D ,所以1BF B C ⊥,故①、③正确;BF 与1C D 是异面直线,故②错误;连接1C F ,因为1//BF A D ,BF ⊂平面1BFC ,1A D ⊄平面1BFC ,所以1A D //平面1BFC 又1//DE BC ,同理可证//DE 平面1BFC ,又1A D DE D ⋂=,1,A D DE ⊂平面1A DE ,所以平面1//A DE 平面1BFC .因为M 是线段BF 上的动点,所以1C M ⊂平面1BFC ,所以1//C M 平面1A DE ,故④正确.故选:C 11.D【分析】由商数关系化简函数,结合导数法可得函数性质及图象,即可逐个判断.【详解】因为()22sin tan cos sin sin tan 1sin 1cos xx x f x x x x x x =+=++⎛⎫+ ⎪⎝⎭πsin sin cos π,2x x x x k k ⎛⎫=+≠+∈ ⎪⎝⎭Z ,所以()()()22cos cos 12cos 1cos 1f x x x x x '=+-=-⋅+.当ππ,22x ⎛⎫∈- ⎪⎝⎭时,令()0f x '=,解得π3x =±,则当x 变化时,()f x ',()f x 的变化情况如下表所示.所以()f x 在区间ππ,22⎛⎫- ⎪⎝⎭上的图象如图所示.对A ,()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递增,A 错;对B ,()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极大值,无极小值,B 错;对C ,()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为2M =,最小值为2m =,4M m +=-,C 错;对D ,()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点,D 对.故选:D.12.B【分析】设底面ABC 的中心为Q ,根据题意可知,当三棱锥P -ABC 的体积取得最大值时,PQ ⊥底面ABC ,求出体积的最大值,再利用等体积法求出内切球的半径即可.【详解】设底面ABC 的中心为Q ,连接BQ ,OQ ,则233BQ ==OQ ⊥底面ABC ,如图,延长QO 交球面于点P ,连接OB ,此时三棱锥P -ABC 的体积取得最大值,因为球O 的半径为2,所以2OB =,在Rt OQB 中,1OQ ==,所以三棱锥P -ABC 的体积的最大值为()213213V =⨯+=此时PB =所以2133312P ABCS -=+⨯⨯=,所以11434r =⨯⨯,解得r =故选:B.13.72【分析】求导后可得n a ,结合对数运算法则可求得结果.【详解】()1n f x nx n -'=+ ,()12f n '∴=,即2n a n =,()()274216427log log 432log 22a a ∴=⨯==.故答案为:72.14.221x y +=或229x y +=【分析】根据两圆内切与外切的条件求解即可.【详解】圆C :22430x y y +-+=的圆心为()0,2,半径为1.因为两圆圆心距为2,故若两圆外切,则所求圆的半径为211-=,其标准方程为221x y +=;若两圆内切,则所求圆的半径为213+=,其标准方程为229x y +=.故答案为:221x y +=或229x y +=15.12##0.5【分析】根据实数满足的表达式,将表达式转化成直线和抛物线形式,求出解抛物线上到直线距离最近的点,即可求得()()22m a n b -+-的最小值.【详解】由题意知,(),a b 是直线l :20x y --=上的点,(),m n 是抛物线21:4C y x =上的点,()()22m a n b -+-的几何意义是抛物线C 上的点到直线l 上的点的距离的平方.设0x y c -+=与抛物线相切,切点为0,0()P x y 则12y x '=,即0112x =,所以直线与C 切于点()2,1,所以()()22m a n b -+-的最小值为212=.故答案为:1216.5-()()5,44,5--È【分析】由()()f x f x -=-可求出m n +的值;画出()y f x =的图象,由方程()()f x a a R =∈有两个不同的实数根,即()y f x =的图象与y a =的图象由两个交点,结合图象即可得出答案.【详解】令0x <,则0x ->,所以()222x xf x -+-=+.因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-,所以()222422x x x xf x +--=--=-⨯-,所以4m =-,1n =-,则5m n +=-,故()42,020,0,14202x x x x x f x x x ⎧+>⎪⎪⎪==⎨⎪⎛⎫⎪-⋅+< ⎪⎝⎭⎩,当0x >时,()422xx f x =+,令2xt =,则()41y t t t=+>.因为当()0,1x ∈时,2x t =单调递增,且()1,2t ∈,此时4y t t=+单调递减,所以由复合函数的单调性可知()422xx f x =+在区间()0,1上单调递减;因为当()1,x ∈+∞时,2x t =单调递增,且()2,t ∈+∞,此时4y t t=+单调递增,所以由复合函数的单调性可知()422xxf x =+,在区间()1,+∞上单调递增.由奇函数图象的特点作出()y f x =与y a =的图象如下:由图知,若()f x a =有两个不同的实数根,相当于()y f x =与y a =有两个不同的交点,则54a -<<-或45a <<.故答案为:-5;()()5,44,5--È.17.(1)π3(2)2⎛ ⎝【分析】(1是2a 与πsin 6C ⎛⎫+ ⎪⎝⎭的等比中项可得2π2sin 6a C b c ⎛⎫+==+ ⎪⎝⎭,由正弦定理及两角和的正弦公式化简即可求出A ﹔(2)由正弦定理表示出13sin 2tan a B C ⎛==+ ⎝,结合tan y x =的单调性即可得出答案.【详解】(1)是2a 与πsin 6C ⎛⎫+ ⎪⎝⎭的等比中项,所以2π2sin 6a C b c ⎛⎫+==+ ⎪⎝⎭,由正弦定理及两角和的正弦公式,得12sin cos sin sin 22A C C B C ⎛⎫⋅+=+ ⎪ ⎪⎝⎭.因为πA B C ++=,()sin sin cos sin sin sin cos cos sin sin A C A C A C C A C A C C +=++=++,()sin cos 1sin A C A C =+.因为()0,πC ∈,所以sin 0C ≠,cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭.又()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ66A -=,即π3A =.(2)由正弦定理,得2πsin sin sin 3a b B C ==,所以2π3sin 2sin sin C B a B b CC ⎛⎫- ⎪⎝⎭===3cos 132sin 2tan C C C C+⎛==+⎝.因为ABC 是锐角三角形,所以2ππ032π0,2C C ⎧<-<⎪⎪⎨⎪<<⎪⎩所以ππ62C <<,所以tan C >所以sin a B的取值范围是⎝.18.(1)有99%的把握认为学生的数学竞赛成绩与是否参加“强基培优”拓展培训有关.(2)35【分析】(1)根据表中数据和参考公式代入计算并与6.635比较即可得出结论;(2)由分层抽样可知参加过培训的有4人,未参加过的有2人,列举出6人中随机抽取2人的所有基本事件,再选出符合条件的事件数即可求得结果.【详解】(1))根据列联表代入计算可得:()221004030201050604050503K ⨯⨯-⨯==≈⨯⨯⨯16.667 6.635>,所以有99%的把握认为学生的数学竞赛成绩与是否参加“强基培优”拓展培训有关.(2)由题意可知,所抽取的6名学生中参加过“强基培优”拓展培训的有4人,记为1A ,2A ,3A ,4A ,未参加过“强基培优”拓展培训的有2人,设为甲、乙.从这6人中随机抽取2人的所有基本事件有{}12,A A ,{}13,A A ,{}14,A A ,{}1,A 甲,{}1,A 乙,{}23,A A ,{}24,A A ,{}2,A 甲,{}2,A 乙,{}34,A A ,{}3,A 甲,{}3,A 乙,{}4,A 甲,{}4,A 乙,{},甲乙,共15个,其中至少有一人未参加过培训的基本事件有{}1,A 甲,{}2,A 甲,{}3,A 甲,{}4,A 甲,{},甲乙,{}1,A 乙,{}2,A 乙,{}3,A 乙,{}4,A 乙,共9个.故至少有一人未参加过培训的概率93155P ==.19.(1)证明见解析12【分析】(1)利用三角形中位线性质和线面平行的判定可证得//PG 平面C DB ',//PF 平面C DB ',由面面平行的判定可证得结论;(2)取BD 的中点M ,根据已知的长度关系和面面垂直性质可证得C M '⊥平面ABD ,结合线面角定义可得tan C EM '∠=由此可确定E 点位置,从而求得GFED S 四边形,利用棱锥体积公式可求得结果.【详解】(1),,P G F 分别为,,AC AD AB '的中点,//PG C D '∴,//PF BC ',,PG PF ⊄ 平面C DB ',,C D BC ''⊂平面C DB ',//PG ∴平面C DB ',//PF 平面C DB ',又PG PF P ⋂=,,PG PF ⊂平面PGF ,∴平面//PGF 平面C DB '.(2)取BD 的中点M ,连接,C M EM ',2AB AD == ,60BAD ∠= ,ABD ∴ 为等边三角形,2BD ∴=,又BC C D ''==222BC C D BD ''∴+=,C DB '∴ 为等腰直角三角形,112C M BD '∴==,C M BD '⊥;二面角A BD C '--是直二面角,即平面C DB '⊥平面ABD ,平面C DB '⋂平面ABD BD =,C M '⊂平面C DB ',C M '∴⊥平面ABD ,C EM '∴∠即为C E '与平面ABD 所成角,1tan 3C M C EM EM EM ''∴∠==,解得:2EM =;在EMB △中,由余弦定理得:2222cos60EM BM BE BM BE =+-⋅ ,即2314BE BE =+-,解得:12BE =,E ∴为线段AB 上靠近点B 的四等分点,111442ABD AGF BDE ABD ABD ABD ABD GFED S S S S S S S S ∴=--=--= 四边形211222=⨯⨯⨯111113232P GFED GFED V S C M -'∴=⨯⨯=⨯⨯四棱锥四边形20.(1)答案见解析(2)(),ln 25-∞-【分析】(1)对()f x 求导,分0a ≥和a<0,讨论()f x 的单调性,即可得出对应的极值点的情况;(2)当2a =时,方程()()()0f x f x m m '++=∈R 有两个不相等的实数根,化简为1ln 22m x x x -=+++,即y m =-与1ln 22y x x x =+++的图象有两个交点,令()1ln 22h x x x x=+++,对()h x 求导,得出()h x 的单调性及最值即可得出答案.【详解】(1)函数()f x 的定义域为{}0x x >,()1f x a x'=+.当0a ≥时,()0f x ¢>,()f x 在区间()0,∞+上单调递增,所以()f x 无极值点;当a<0时,令()0f x '=,解得1x a=-,所以当x 变化时,()f x ',()f x 的变化情况如下表所示.x 10,a ⎛⎫- ⎪⎝⎭1a-1,a ∞⎛⎫-+ ⎪⎝⎭()f x '+0-()f x 单调递增极大值单调递减所以()f x 有一个极大值点,无极小值点.综上,当0a ≥时,()f x 无极值点;当a<0时,()f x 有一个极值点.(2)当2a =时,方程()()0f x f x m '++=,即1ln 220x x m x++++=,则1ln 22m x x x-=+++.令()1ln 22h x x x x =+++,0x >,则()()()22121112x x h x x x x +-'=+-=.令()0h x '=,解得12x =或=1x -(舍去).当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0h x '>,()h x 在区间1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()()min 15ln 22h x h x h ⎛⎫≥==- ⎪⎝⎭,又x 趋近于0时()h x 趋近正无穷;x 趋近于正无穷时()h x 趋近正无穷,所以5ln 2m ->-,即ln 25m <-,故m 的取值范围是(),ln 25-∞-.21.(1)22143x y +=(2)证明见解析【分析】(1)由题意得332p-=-,从而得出椭圆C 的焦点()11,0F -,()21,0F ,由线段1PF 的中点为()2,0-求得2a =,23b =,可得C 的方程;(2)直线l 的斜率存在,设为k ,分两种情况讨论:当0k =时,直接验证结论;当0k ≠时,设出直线l 的方程,与椭圆方程联立,结合韦达定理求出线段AB 的中点坐标,得到线段AB 的垂直平分线的方程,求得M 坐标及1F M ,利用弦长公式求得AB ,从而证得结论.【详解】(1)抛物线E 的焦点,02p ⎛⎫ ⎪⎝⎭关于其准线2p x =-的对称点为3,02p ⎛⎫-⎪⎝⎭,所以332p-=-,即12p =.因为椭圆C 与抛物线E 有一个共同的焦点,所以()11,0F -,()21,0F ,所以线段1PF 的中点为()2,0-,所以2a =,222213b =-=.故C 的方程为22143x y +=.(2)由题意知,直线l 的斜率存在,设为k .当0k =时,点A ,B 恰为椭圆C 的左、右顶点,y 轴为线段AB 的垂直平分线,()0,0M ,24AB a ==,11F M c ==,则114F M AB=.当0k ≠时,直线l 的方程为()1y k x =+,设()11,A x y ,()22,B x y ,线段AB 的中点为()00,x y ,(),0M M x .联立()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩,消去y ,得()()2222438430k x k x k +++-=,则2122843k x x k +=-+,()21224343k x x k -=+,所以212024243x x k x k +==-+,则()2002243114343k ky k x k k k ⎛⎫=+=-+= ⎪++⎝⎭.由题意知,线段AB 的垂直平分线的方程为()001y y x x k-=--,令0y =,得200243M kx x ky k =+=-+,则221223314343k k F M k k +=-+=++.又12AB x =-=()2212143k k +=+,所以114F M AB=.综上,114F MAB =.22.(1)()(2221x y -+-=(2)当2m =-时,max 2MN =【分析】(1)消去参数方程中的参数α即可得到普通方程;(2)根据极坐标与直角坐标互化原则可确定1C 为直线,则当直线过圆心时,MN 最大,由此可求得结果.【详解】(1)由2cos sin x y αα=+⎧⎪⎨=+⎪⎩得:()(2221x y -+-=,即1C 的普通方程为:()(2221x y -+-=.(2)由22sin sin 12m θρθ⎛⎫+-= ⎪⎝⎭得:()sin cos sin cos m ρθθρθρθ-=-=,2C ∴的直角坐标方程为:0x y m -+=;当0x y m -+=过圆1C 的圆心(时,MN 取得最大值,即MN 为圆1C 的直径,20m ∴=,解得:2m =,则当2m =时,max 2MN=.23.(1)证明见解析(2)证明见解析【分析】(1)利用三元基本不等式依次证得01abc <≤与3331113a b c ++≥即可,要特别注意等号成立的条件;(2)利用基本不等式依次证得2223a b c ++≥与1113a b c++≥,从而证得()2221119a b c a b c ≥⎛⎫++++ ⎪⎝⎭,要特别注意等号成立的条件.【详解】(1)因为a ,b ,c 都是正实数,且3a b c ++=,所以3a b c =++≥01abc <≤,所以11abc≥,当且仅当a b c ==且3a b c ++=,即1a b c ===时,等号成立,故33311133a b c abc++≥≥,当且仅当333111a b c ==且1a b c ===,即1a b c ===时,等号成立,所以3331113a b c ++≥.(2)因为()()22222222223a b c a b c ab ac bc a b c ++=+++++≤++,3a b c ++=,所以2223a b c ++≥,当且仅当a b c ==且3a b c ++=,即1a b c ===时,等号成立;又()11111113a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭11113a a b b c c b c ac a b ⎛⎫=++++++++ ⎪⎝⎭113a b c a c b b a a c b c ⎡⎤⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦113⎛≥++ ⎝3=,当且仅当,,a b c a c b b a a c b c ===且3a b c ++=时,即1a b c ===时,等号成立,所以1113a b c++≥;故()2221119a b c a b c ≥⎛⎫++++ ⎪⎝⎭,当且仅当1a b c ===时,等号成立.。
联考卷高三二调文数答案解析
联考卷高三二调文数答案解析一、选择题(每题5分,共30分)1. 下列函数中,单调递增且图像关于y轴对称的是()A. y = x^2B. y = x^3C. y = |x|D. y = 2^x2. 已知等差数列{an}的公差为2,且a1+a3+a5=21,则a4的值为()A. 11B. 13C. 15D. 173. 设集合A={x|1<x<3},集合B={x|x^22x3=0},则A∩B的结果是()A. {1, 3}B. {2}C. {1, 2, 3}D. 空集4. 若复数z满足|z1|=|z+1|,则z在复平面内对应的点位于()A. 实轴上B. 虚轴上C. 直线y=x上D. 直线y=x上5. 已知三角形ABC中,a=8, b=10, sinA=3/5,则三角形ABC的面积S为()A. 12B. 24C. 36D. 486. 下列函数中,既是奇函数又是周期函数的是()A. y = sinxB. y = cosxC. y = tanxD. y = cotx二、填空题(每题5分,共30分)7. 已知函数f(x) = (1/2)^x + 2^x,则f(x)的最小值为______。
8. 在平面直角坐标系中,点P(2, 1)关于原点的对称点坐标为______。
9. 若等比数列{an}的公比为2,且a1+a2+a3=21,则a4的值为______。
10. 已知函数g(x) = x^2 2x + 3,则g(x)在区间[1, 3]上的最小值为______。
11. 设直线l的方程为y = 2x + 1,则直线l与圆x^2 + y^2 =4的位置关系为______。
12. 若复数z满足z^2 + z + 1 = 0,则|z|的值为______。
三、解答题(共40分)13. (10分)已知函数h(x) = ax^2 + bx + c(a≠0),求证:当a>0时,h(x)在区间(∞,b/2a)上单调递减。
14. (15分)在直角坐标系中,点A(1, 2)到直线y = 3x 1的距离为______。
高三联考数学文科试卷答案
一、选择题(每小题5分,共50分)1. 已知函数f(x) = 2x - 3,则f(2)的值为:A. 1B. 3C. 5D. 7答案:C2. 若等差数列{an}的前n项和为Sn,且S5 = 15,S10 = 50,则该数列的公差d 为:A. 1B. 2C. 3D. 4答案:C3. 下列函数中,定义域为全体实数的是:A. f(x) = 1/xB. f(x) = √(x+1)C. f(x) = |x|D. f(x) = x^2答案:D4. 若复数z满足|z-1| = |z+1|,则复数z的实部为:A. 0B. 1C. -1D. 不确定答案:A5. 下列命题中,正确的是:A. 若a > b,则a^2 > b^2B. 若a > b,则|a| > |b|C. 若a > b,则a/b > b/aD. 若a > b,则a + c > b + c答案:D6. 已知函数f(x) = x^3 - 3x^2 + 4x,则f'(x)的值为:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 6xD. 3x^2 - 6x - 4答案:A7. 下列数列中,不是等比数列的是:A. 2, 4, 8, 16, 32B. 1, 2, 4, 8, 16C. 1, -2, 4, -8, 16D. 1, 3, 9, 27, 81答案:C8. 已知等差数列{an}的首项为2,公差为3,则第10项a10的值为:A. 27B. 29C. 31D. 33答案:D9. 下列函数中,图像关于y轴对称的是:A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = x答案:C10. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c的关系为:A. a+b+c=0B. a+b=0C. a+c=0D. 2a+b=0答案:D二、填空题(每小题5分,共50分)11. 若等差数列{an}的首项为3,公差为2,则第n项an的表达式为______。
陕西省西安市长安区2024届高三第一次联考数学(文科)试题
C. 4 2 3
D. 4 3 3
10.已知函数 f x
ex ex
x2
,若满足
f
log3m
e1 e
0,则实数 m 的取值范围为
()
A.
0,
1 3
B.
1 3
,
3
C. 0,3
D. 3,
11.从直角三角形顶点中任取两个顶点构成向量,在这些向量中任取两个不同的向量进
行数量积运算,则数量积为 0 的概率为( )
, a1
1,且满足 n
1
Sn
nSn1
1 2
nn
1 .
(1)求数列 an 的通项公式;
(2)设 bn an2 3an cos nπ ,求数列bn 的前 n 项和 Tn .
21.在平面直角坐标系 xOy 中,已知点 A2, 0 ,点 P 为平面内一动点,线段 PA 的中点
为 M ,点 M 到 y 轴的距离等于 MA ,点 P 的轨迹为曲线 C .
(1)求 m ; (2)估计这次体育知识竞赛成绩的众数、平均数(同一组中的数据用该组区间的中点值为 代表); (3)在抽出的 200 位学生中,若规定分数不低于 80 分的学生为获奖学生,已知这 200 名 学生中男生与女生人数相同,男生中有 20 人获奖,请补充 2 2 列联表,并判断是否有 99%的把握认为“体育知识竞赛是否获奖与性别有关”
(1)求曲线 C 的方程;
(2)已知点 Q 2, 4 ,曲线 C 上异于点 Q 的两点 E , F 满足 QE 与 QF 斜率之和为 4,求点
Q 到直线 EF 距离的最大值.
22.在平面直角坐标系
xOy
中,曲线
C
的参数方程为
2023年天津市七所重点学校高考数学联考试卷(文科)+答案解析(附后)
2023年天津市七所重点学校高考数学联考试卷(文科)1. 已知全集,集合,集合,则( )A. B. C. D.2. 实数x,y满足不等式组则目标函数的最小值是( )A. 2B. 3C. 4D. 53. 执行如图所示的程序框图,若输入n的值为3,则输出s的值是( )A. 1B. 2C. 4D. 74. 若,,,则a,b,c的大小关系是( )A. B. C. D.5. 设,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 函数的最小正周期是,若其图象向左平移个单位后得到的函数为奇函数,则函数的图象( )A. 关于点对称B. 关于直线对称C. 关于点对称D. 关于直线对称7. 已知双曲线的两条渐近线与抛物线的准线分别交于A,B两点,O为坐标原点,若双曲线的离心率为2,的面积为,则抛物线的焦点为( )A. B. C. D.8. 已知函数,若存在使得关于x的函数有三个不同的零点,则实数t的取值范围是( )A. B. C. D.9. 已知i是虚数单位,则______ .10. 一个几何体的三视图如图所示,则该几何体的体积为______ .11.等比数列中,各项都是正数,且,,成等差数列,则______.12. 设直线与圆C:相交于A,B两点,若,则______.13. 已知正实数a,b满足,且,则的最小值为______.14. 已知菱形ABCD的边长为2,,点E、F分别在边BC,CD上,,,若,则的最小值______.15. 从高三学生中抽取n名学生参加数学竞赛,成绩单位:分的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间且成绩在区间的学生人数是27人.求x,n的值;若从数学成绩单位:分在的学生中随机选取2人进行成绩分析①列出所有可能的抽取结果;②设选取的2人中,成绩都在内为事件A,求事件A发生的概率.16. 锐角中,a,b,c分别为角A,B,C的对边,若,,求的面积;求的值.17. 如图,在四棱锥中,底面ABCD的边长是2的正方形,,,F为PB上的点,且平面求证:;求证:平面平面ABCD;求直线PB与平面ABCD所成角的正弦值.18. 已知,椭圆E:的离心率,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.求椭圆的方程;设过点A的动直线l与椭圆E相交于P,Q两点,当的面积最大时,求直线l的方程.19. 已知数列的前n项和为,满足,数列满足,且证明数列为等差数列,并求数列和的通项公式;若,求数列的前n项和;若,数列的前n项和为,对任意的,都有,求实数a的取值范围.20. 已知函数其中,当时,求函数在点处的切线方程;若函数在区间上为增函数,求实数a的取值范围;求证:对于任意大于1的正整数n,都有答案和解析1.【答案】C【解析】解:全集,集合,集合,,故选:根据补集与交集的定义计算即可.本题考查了补集与交集的定义与应用问题,是基础题.2.【答案】B【解析】解:由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过B时,直线在y轴上的截距最小,z有最小值为故选:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.3.【答案】C【解析】解:当时,;当时,;当时,;当时,退出循环,输出;故选由已知中的程序框图及已知中输入3,可得:进入循环的条件为,即,2,模拟程序的运行结果,即可得到输出的S值.本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.4.【答案】D【解析】解:,,,,,,,故选:可得出,,,并且得出,,从而可得出a,b,c的大小关系.本题考查了对数函数的值域,对数的换底公式,对数函数的单调性,对数的运算性质,考查了计算能力,属于基础题.5.【答案】A【解析】【分析】本题考查了含绝对值不等式的解法、充分、必要条件的判断,考查了推理能力与计算能力,属于中档题.,对x分类讨论,解出不等式的解集,即可判断出.【解答】解:,当时,化为,恒成立;当时,化为,解得,综上可得:的解集为:“”是“”的充分不必要条件.故选6.【答案】B【解析】【分析】本题考查正弦型函数解析式的求法,正弦型函数图象的性质的应用,属于中档题.直接利用已知条件求出函数的解析式,进一步利用正弦型函数的性质求出结果.【解答】解:函数的最小正周期是,则:,若其图象向左平移个单位后得到:为奇函数,即:,解得:,且知,当时,故令,解得:当时,函数的图象关于对称.故选7.【答案】D【解析】解:双曲线双曲线,双曲线的渐近线方程是又抛物线的准线方程是,故A,B两点的纵坐标分别是,又由双曲线的离心率为2,所以,则,A,B两点的纵坐标分别是,又的面积为,x轴是角AOB的角平分线,,得抛物线的焦点坐标为:故选:求出双曲线双曲线的渐近线方程与抛物线的准线方程,进而求出A,B两点的坐标,再由双曲线的离心率为2,的面积为,列出方程,由此方程求出p的值.本题考查圆锥曲线的共同特征,解题的关键是求出双曲线的渐近线方程,解出A,B两点的坐标,列出三角形的面积与离心率的关系也是本题的解题关键,有一定的运算量,做题时要严谨,防运算出错.8.【答案】B【解析】解:由题意,,时,,对称轴为,在为增函数,此时的值域为时,,对称轴为,在为增函数,此时的值域为在为减函数,此时的值域为;由存在有三个不相等的零点,则,即存在使得即可,令,只要使即可,而在上是增函数,,故实数t的取值范围为故选:根据的解析式,讨论时的表达式,利用函数的单调性求得实数t的取值范围.本题考查了函数恒成立问题和分类讨论以及转化推理能力的应用问题,是难题.9.【答案】【解析】解:故答案为:根据已知条件,结合复数的四则运算,即可求解.本题主要考查复数的四则运算,属于基础题.10.【答案】【解析】解:由三视图知几何体为半圆柱和直三棱柱,半圆柱的半径为2,高为3,体积为,直三棱柱的底面为直角三角形,面积为4,高为3,体积为12,故几何体的体积为故答案为:由三视图知几何体为半圆柱和直三棱柱,半圆柱的半径为2,高为3,体积为,直三棱柱的底面为直角三角形,面积为4,高为3,体积为12,可得几何体的体积.本题考查了由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.11.【答案】【解析】解:等比数列中,各项都是正数,且,,成等差数列,故公比q不等于,即,即为,解得,,故答案为:由条件可得,即,解得,再由,运算求得结果.本题主要考查等差数列的定义和性质,等比数列的通项公式,考查运算能力,属于基础题.12.【答案】【解析】解:圆C:的圆心坐标为,半径为,直线与圆C:相交于A,B两点,且,圆心到直线的距离,即,解得:,解得,故答案为:圆C:的圆心坐标为,半径为,利用圆的弦长公式,求出a 值.本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.13.【答案】【解析】【分析】本题考查基本不等式的运用:求最值,考查化简和变形能力,以及运算能力,属于中档题.由条件可得,则,由,展开后,运用基本不等式即可得到所求最小值.【解答】解:正实数a,b满足,且,可得,解得,则,由,当且仅当时,取得等号,则的最小值为,故答案为14.【答案】3【解析】解:,,,,,,,,,,,当取的最小值,最小值为3,的最小值3,故答案为:由题意画出图形,转化为含有,的代数式,再结合及二次函数的性质求得的最小值.本题考查平面向量的数量积运算,考查了向量加法的三角形法则,训练了二次函数求最值,是中档题.15.【答案】解:由频率分布直方图可得样本容量;①成绩在之间的共有2人,分别记为x,y,成绩在之间的共有3人,分别记为a,b,c,则从中随机选取2人所有可能的抽取结果为:,,,,,,,,,;②从上述5人中,选取的2人,成绩都在内为事件A,事件A包含的基本事件有:,,共3种,事件A发生的概率【解析】由频率分布直方图可得,再由频率相等列式求得样本容量n;①分别求出成绩在之间与成绩在之间的人数,利用枚举法列出从中随机选取2人的所有可能的抽取结果;②直接利用随机事件的概率公式求解.本题考查频率分布直方图,考查学生读取图表的能力,是基础题.16.【答案】本题满分为13分解:,…1分,…2分,…3分是锐角,…4分,…5分由余弦定理,可得:,解得,…7分,…9分,…11分…13分【解析】由已知及正弦定理可得,进而可求,利用同角三角函数基本关系式可求,根据余弦定理可求bc的值,利用三角形面积公式即可计算得解.利用二倍角公式可求,的值,进而根据两角和的正弦函数公式即可计算得解.本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,三角形面积公式,二倍角公式,两角和的正弦函数公式在解三角形中的应用,考查了转化思想,属于中档题.17.【答案】证明:平面PBD,平面PBD,,,,平面PAB,平面PAB,是正方形,,,,平面PAD,平面ABCD,平面平面解:取AD的中点H,连结PH,BH,,,平面平面ABCD,平面PAD,平面平面,平面ABCD,是PB在平面ABCD内的射影,是PB与平面ABCD所成角,在等腰中,,H是AD中点,,在中,,,,,故直线PB与平面ABCD所成角的正弦值为【解析】推导出,,从而平面PAB,由此能证明推导出,,从而平面PAD,由此能证明平面平面取AD的中点H,连结PH,BH,推导出是PB与平面ABCD所成角,由此能求出直线PB与平面ABCD所成角的正弦值.本题考查线线垂直、面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想,是中档题.18.【答案】解:设,由条件知,得,又,所以,,故E的方程;依题意当轴不合题意,故设直线l:,设,,将代入,得,当,可得,即或,,,从而,又点O到直线PQ的距离,所以的面积,设,则,,当且仅当,等号成立,且满足,所以当的面积最大时,l的方程为:或【解析】通过离心率得到a、c关系,通过A求出a,即可求E的方程;设直线l:,设,将代入,利用,求出k的范围,利用弦长公式求出,然后求出的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.本题考查直线与椭圆的位置关系的应用,椭圆方程的求法,基本不等式的应用,考查转化思想以及计算能力.19.【答案】证明:,时,,化为:时,,解得数列是等比数列,公比为数列满足,化为:,且数列为等差数列,公差为1,首项为,解:,数列的前n项和……解:,数列的前n项和为……,……,……,解得对任意的,都有,令则数列单调递增.实数a的取值范围是【解析】,时,,化为:利用等比数列的通项公式可得数列满足,化为:,且即可证明数列为等差数列,利用通项公式可得,利用裂项求和方法即可得出.,利用错位相减法可得数列的前n项和为,又代入对任意的,都有,即可得出.本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、错位相减法、裂项求和方法、数列的单调性,考查了推理能力与计算能力,属于难题.20.【答案】解:,,,,在处的切线方程是:;,,函数在区间上为增函数,当时,恒成立,即在恒成立,解得即为所求的取值范围;证明:由得:时,,,故时,,函数单调递减,时,,函数单调递增,故,故,令,则,……,即…【解析】求导函数,计算和的值,求出切线方程即可;先求出函数的导数,由题意可知:当时,恒成立,解出a的取值范围即可.利用的结论,只要令,即可证明.本题考查了利用导数求函数的单调区间、最值及证明不等式,充分理解导数的意义及掌握恰当分类讨论思想和转化思想是解题的关键.。
高三大联考文科数学试卷
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 2ax + b,其中a、b为实数,若f(x)的图象开口向上,且f(1) < 0,则a的取值范围是()。
A. a > 1B. a < 1C. a ≥ 1D. a ≤ 12. 若复数z满足|z-1|=|z+1|,则z在复平面内的对应点位于()。
A. 虚轴B. 实轴C. 第一象限D. 第二象限3. 已知等差数列{an}的首项为2,公差为3,若存在正整数m,使得am+1=4,则m的最大值为()。
A. 2B. 3C. 4D. 54. 下列各式中,等差数列的通项公式是()。
A. an = 2n - 1B. an = 3n + 2C. an = n^2 + 1D. an = n(n+1)5. 若等比数列{an}的首项为2,公比为q,且q > 0,若存在正整数m,使得am+1=8,则m的最小值为()。
A. 1B. 2C. 3D. 46. 已知函数f(x) = |x-1| + |x+1|,则f(x)的最小值为()。
A. 0B. 2C. 4D. 67. 若直线y=kx+b与圆x^2+y^2=1相切,则k^2+b^2的取值范围是()。
A. [0, 1]B. [1, 2]C. [2, 3]D. [3, 4]8. 下列各式中,对数函数的定义域是()。
A. y = log2(x-1)B. y = log3(x^2+1)C. y = log4(2x+1)D. y = log5(x^2-x)9. 若函数y = asin(x+β) + c的图象过点(0, 3),则a、b、c的取值分别为()。
A. a=2,b=0,c=3B. a=2,b=π/2,c=3C. a=3,b=0,c=3D. a=3,b=π/2,c=310. 若函数y = 2x^3 - 3x^2 + 2x - 1在x=1处的切线斜率为3,则a的值为()。
A. a=1B. a=2C. a=3D. a=4二、填空题(每题5分,共25分)11. 已知等差数列{an}的首项为3,公差为2,则第10项an=______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,时间120分钟。
一、选择题:本大题共 求的。
1、在复平面内zi 1 第一象限 B 2、设 0.3 a e 12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要i ,则复数 、第二象限 In 2 , cA 、 C 、 3、若 f(x) In x ,则 A 、 C 、 充分不必要条件 充分必要条件 4、函数 y Asin( x 所示则函数表示式为( A 、 y 2sin(—x 4 c 、 y 2si n(—x 4 5、在 OAB 中,OA 若OA OB A 、2 3 z 对应的点位于()•C 、第三象限D 、第四象限30,则a 、b 、c 的大小关系是(b 是 f (a) > f (b)的().4)4)0,| |(2cos ,2sin OAB、必要不充分条件 、既不充分也不必要条件i ,x R )的部分图像如图6、阅读如图所示的算法框图,输出的结果 1A 、1 8、若 f (x) 、1 C 、2 2 2x y_ 2 1 (b 4 bB 、2C 、ax 2(a 0), g(x)7、已知双曲线 A 、2 B )则a 的取值范围是2si n(—x )4 42sin(4x4)OB (cos S 的值为( 2 ,sin y、\开始 )n=1,s=0是n>2014 否/输出S /S=S+ sinn=n+1 0)的离心率为2,则焦点到渐近线的距离是( x 1,对于任意 X 1 [1,1],存在 X 。
[ 1,1],使 g(xj f(x °),心,且FP FO 0,则此椭圆的离心率为O9、已知数列{a n }的前n 项和为S n ,且S n a . n ,则数列10、已知命题:第II 卷本卷包括必考题和选考题两部分, 第13题~第21题为必考题, 题~第24题为选考题,同学们可根据要求做答。
13、已知全集 U R ,M {x|y lg(x 1)} ,N {y|y . x 1} 则如图阴影部分代表的集合为22b14、椭圆务1 (a b 0)与直线y - x 的一个交点为P , F 为椭圆右焦点,O 为椭圆的中 a b aA 、(0,2]B 、[2,) C 、(01] D 、[1,)A、(1)n11 B、(尹C、2n - 1 D{a n }的通项公式a n().2p :抛物线y 2x 的准线方程为xq : f(x) 2xx 的零点所在的区间是 (1,0);r :连续掷两次骰子得到的点数分别为 m,n ,令 a (m, n),b (3,1),则|a| |b|的概率为1 ;s : m,n 是两条不同的直线,,是两个不同的平面,则下列复合命题p 且q , r 或A 、1 个 B非p 且非s , 、3个q 或r 中正确的个数是(D 、4个11、在 OAB 中,OA OB OC xOA yOB 且 x y] L1,|OA OB| .3,则 |OC| 的最小值是A 、1 B,312、设函数f (x )x 22x ,在区间[m,n ]上的值域是[3,1], 红二,则z 的取值范围是()m 2A 、[2,4] B[4,8] C 、耶]D 、[殳4]二、填空题:本大题共 4小题,每小题5分。
每个试题同学们都必须做答; 第22选取2人作为领队,求选取的2名领队年龄都在[45,50)岁的概率。
15、设定义域为 R 的奇函数f(x)在(―汽 0)上是减函数,且f( 1) 0,则满足 丄凶一丄凶 0x的实数x 的取值范围是。
16、 集合{2s 2 |0 s t ,s,t Z }中的所有数按照从小到大的顺序组成一个数列{a n }其中,1212313a i 2 2 3 , a 2 2 2 5 , a 3 2 2 6 , a 4 2 2 9 , a 5 2 2 10 ,a 6 22 23 12,…,a 20142 a 2b (0 ab ,且 a, b Z )…,贝U log 3(b a) ___________三、解答题:解答应写出文字说明,证明过程或演算步骤。
17、 (本小题满分12分)(1)求数列{a n }的通项公式(2)记b n a n I°g 2(a 2n 1),求数列2n }的前n 项和「. 19、(本小题满分12分)某班学生利用假期进行一次社会实践,对 [30,60]岁的人群随机抽取n 个,对他们参加体育活动的时间进行调查,若平均每天体育活动在 1小时以上的称为“健康族”,否则称为“亚健康族”,得到如下统计表和各年龄频率分布直方图.频率组距设函数f (x) cos(x —)2sin 2, x(1 )求f (x)的最大值(2) ABC 的内角A 、B 、C 的对边分别为 值。
18、(本小题满分12分)已知数列{a n }满足2a 122a 2 23 a 3[%]a 、b 、c ,若 f (A)1, a 2 , b 2. 3,求 c 的2n a n n组数 分组 “健康族”的人数频率第一组 [30 , 35) 180 a第二组 [35 , 40) 110第三组 [40 , 45) 100第四组 [45 , 50) b第五组 [50 , 55) 30第六组[55 , 60]1530 35 40 45 50 55 60 年龄(岁)(1)补全频率分布直方图,并求出n、a、b的值.(2)从年龄段[45,55)岁的“健康族”中采用分层抽样的方法抽取6人参加户外登山活动,其中选取2人作为领队,求选取的2名领队年龄都在[45,50)岁的概率。
参数).(1 )将圆的参数方程和直线的参数方程化为普通方程。
(2)求圆上的点到直线距离的最小值。
24、(本小题满分10分)已知 f (x) | x 11| x a |,其中 a R .(1 )当a 1时时,求不等式f(x) 3的解集(2)若f (x) 2a 1的解集非空,求实数 a 的取值范围。
20、(本小题满分12分)(12分)如图在四棱锥 P ABCD 中,底面ABCD 是菱形,ABC 60,点M 、N 分别为BC 、PA 的中点(1) 证明MN //平面PCD(2) 若PA 平面ABCD ,求证BC (3) 在(2)的条件下,当 PA AB 求点A 到平面NBC 的距离。
MN 2时,21、(本小题满分 12 分)已知a 0,f(x)屮 2lnx1, g(x) ax(1 )当 a1时,求 f(x)的单调区间.(2)若在区间[1, e ]上,f (x) g(x)恒成立,求实数a 的取值范围。
请同学们从第22、23、24题中任选一题做答。
如果多做, 22、(本小题满分10分)如图,O O 是 ABC 的外接圆,则按所做的第一题计分。
BC 的延长线与过点 A 的切线相交于点 D(1)若 AD 2CD ,求证: (2 )若AC 平分 BAD , BC AD 3CD2 , AB 1,求CD 的长23、(本小题满分10分)x 已知圆的参数方程为y 2cos2si nx t 1J 其中为参数),直线l 的参数方程为丫 1 2t (其中t 为pNl/■A'-BI -------------D2015届高三联考 数学(文)试题参考答案选择题:DABAB DCBAC DC13. [0 , 1] ,14. 于,15〔 - 1,0) U (0, 1) , 16. 117. (1) f (其〕二 |cos x ■+ -ysin x ■+ 1 - cos x 二 乎sinx - ^cos x 十 1二灯 口G _ m 7--宀、- i 、' . ........................................ (6分)(2) V f (A )二吕in (A -+ I =1A sin^A 一石)=0(12 分)18. (1)当 n=1 时,如11,贝U, m 二 £当n 工22ai 十労也十 ...... + 2n a n=n2ai + 22az > ............ < 2rl _ - I = ii - 1②(D -②得:2"a n 二 E 即 % 二 g )引-訥足上式.则吊-(第 ........................... (6分)丁 0 W 兀W 寿71itn二-:;却 ...........................................⑵(1sbi 99oo(-3) X1) X1) xI +3)x G)+(1 - 2 调■1:. - 且.b n = b n = a n log2 {磁n - 1) - (*) log 2 Q)根据错位相减法可得:S n - (2n + 叽 ...................... ••…(12分)19. (1). 补全略。
n=1000,a=........................................... ( 6 分)(2).年龄段在[45, 55)岁的“健康族”为第四组60人和第五组的30人,采用分层以抽 样的方法抽取6人,则第四组抽4人及第五组抽2人。
令第四组的四人为的2名领队年龄都在[45,50)岁,贝U D 事件包含的基本事件为12种 … 在厶PAD 中, N, E 分别为PA PD 的中点1兀,A 帥扎第五组的二人为g %所以 :(12 分)又 V M 为BC 的中点且....L.如下图所示: 总的基本事件为30种,令D 事件为选取Ai| A2IA31^4NB 2■ r 、、CA^J Ai ) (Aj? Ai)■;A 和 Ap CBn Ai> ] 〔际 Ai) A2 (Ai> Aj) |CAa ,Aa>CA4.1 CBi ,. A.) (碁 As) Aa| | CAi* A3) | CA HJA3〉 K| (A4* A3)|(Bu AQ〔屉 A 3)A4 :AQ | 册A 4> (A M A 4)〔弘 A 4> 1 〔碁 A|)山%〉| 如 Bi) |(A a , BPZ B L ;CAj* Bj) |CA^J B3)(Aj? BQ| (A 和 B 2) 1 CBn %〉20. (1)作PD 的中点E ,连接NE CEX・;NE = MC, NE " MC /.四边形NECM 为平行四边形 二 MN 〃 CE )T MN S 平面PCD 且CE £ 平fflPCD— I - I ....................................................................... (4 分)(2) 连接AM.巧 「汀T △ ABC 为等边△, M 为BC 的中点・;AM 丄T PA 丄 二 PA 一又 T RMAM = A. NA, MA 平面NAM:* BC 丄平面NAM 7~MN e 平面 NAM:-[>'.心。